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Width-r polytope
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The Gaussian Distance

L = H1 ∩ . . . ∩H6

K

dist(K,L) = Pr
g∼N(0,1)n

[
g ∈

]
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for the (canonical) Gaussian process on T .

Informally: Complexity of T determines E
[
supt∈T Xt
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and furthermore ψ only depends on exp exp(1/ε3) dimensions.

Idea: φ(x) := sup
t∈T
〈x, t〉 for symmetric T



Application 2: Norms are Gaussian Juntas

[DNOS’25]:

Suppose φ : Rn → R is a norm. For any ε ∈ (0, 0.5), there
exists a norm ψ : Rn → R such that

Pr
x∼N(0,1)n

[
1− ε ≤ φ(x)

ψ(x)
≤ 1 + ε

]
≥ 1− ε ,

and furthermore ψ only depends on exp exp(1/ε3) dimensions.

Idea: φ(x) := sup
t∈T
〈x, t〉 for symmetric T



Application 2: Norms are Gaussian Juntas

[DNOS’25]: Suppose φ : Rn → R is a norm.

For any ε ∈ (0, 0.5), there
exists a norm ψ : Rn → R such that

Pr
x∼N(0,1)n

[
1− ε ≤ φ(x)

ψ(x)
≤ 1 + ε

]
≥ 1− ε ,

and furthermore ψ only depends on exp exp(1/ε3) dimensions.

Idea: φ(x) := sup
t∈T
〈x, t〉 for symmetric T



Application 2: Norms are Gaussian Juntas

[DNOS’25]: Suppose φ : Rn → R is a norm. For any ε ∈ (0, 0.5), there
exists a norm ψ : Rn → R such that

Pr
x∼N(0,1)n

[
1− ε ≤ φ(x)

ψ(x)
≤ 1 + ε

]
≥ 1− ε ,

and furthermore ψ only depends on exp exp(1/ε3) dimensions.

Idea: φ(x) := sup
t∈T
〈x, t〉 for symmetric T



Application 2: Norms are Gaussian Juntas

[DNOS’25]: Suppose φ : Rn → R is a norm. For any ε ∈ (0, 0.5), there
exists a norm ψ : Rn → R such that

Pr
x∼N(0,1)n

[
1− ε ≤ φ(x)

ψ(x)
≤ 1 + ε

]
≥ 1− ε ,

and furthermore ψ only depends on exp exp(1/ε3) dimensions.

Idea: φ(x) := sup
t∈T
〈x, t〉 for symmetric T



Application 2: Norms are Gaussian Juntas

[DNOS’25]: Suppose φ : Rn → R is a norm. For any ε ∈ (0, 0.5), there
exists a norm ψ : Rn → R such that

Pr
x∼N(0,1)n

[
1− ε ≤ φ(x)

ψ(x)
≤ 1 + ε

]
≥ 1− ε ,

and furthermore ψ only depends on exp exp(1/ε3) dimensions.

Idea: φ(x) := sup
t∈T
〈x, t〉 for symmetric T



Application 2: Norms are Gaussian Juntas

[DNOS’25]: Suppose φ : Rn → R is a norm. For any ε ∈ (0, 0.5), there
exists a norm ψ : Rn → R such that

Pr
x∼N(0,1)n

[
1− ε ≤ φ(x)

ψ(x)
≤ 1 + ε

]
≥ 1− ε ,

and furthermore ψ only depends on exp exp(1/ε3) dimensions.

Idea: φ(x) := sup
t∈T
〈x, t〉 for symmetric T



Recap

& Rest of Talk

The Main Technical Result
Sparsifying Suprema of Gaussian Processes

Some Consequences
Polytope Sparsification, Norms are (Essentially) Juntas

Elements of the Proof
Talagrand’s Majorizing Measures Theorem



Recap & Rest of Talk

The Main Technical Result
Sparsifying Suprema of Gaussian Processes

Some Consequences
Polytope Sparsification, Norms are (Essentially) Juntas

Elements of the Proof
Talagrand’s Majorizing Measures Theorem



Our Main Theorem

[DNOS’25]: Let T ⊆ Rn. For any ε ∈ (0, 0.5), there is a subset S ⊆ T
and constants {cs ≥ 0}s∈S such that

E

∣∣∣∣∣supt∈T
Xt − sup

s∈S
{Xs + cs}

∣∣∣∣∣
 ≤ εE[sup

t∈T
Xt

]
,

and furthermore |S| ≤ exp exp(1/ε).

First: Rescale so that E[supt∈T Xt] = 1



Our Main Theorem

[DNOS’25]: Let T ⊆ Rn. For any ε ∈ (0, 0.5), there is a subset S ⊆ T
and constants {cs ≥ 0}s∈S such that

E

∣∣∣∣∣supt∈T
Xt − sup

s∈S
{Xs + cs}

∣∣∣∣∣
 ≤ εE[sup

t∈T
Xt

]
,

and furthermore |S| ≤ exp exp(1/ε).

First: Rescale so that E[supt∈T Xt] = 1



Our Main Theorem

[DNOS’25]: Let T ⊆ Rn with E[supt∈T Xt] = 1. For any ε ∈ (0, 0.5),
there is a subset S ⊆ T and constants {cs ≥ 0}s∈S such that

E

∣∣∣∣∣supt∈T
Xt − sup

s∈S
{Xs + cs}

∣∣∣∣∣
 ≤ ε ,

and furthermore |S| ≤ exp exp(1/ε).

Natural Idea: Cluster the points in T



Our Main Theorem

[DNOS’25]: Let T ⊆ Rn with E[supt∈T Xt] = 1. For any ε ∈ (0, 0.5),
there is a subset S ⊆ T and constants {cs ≥ 0}s∈S such that

E

∣∣∣∣∣supt∈T
Xt − sup

s∈S
{Xs + cs}

∣∣∣∣∣
 ≤ ε ,

and furthermore |S| ≤ exp exp(1/ε).

Natural Idea: Cluster the points in T



Attempt 1: A δ-Cover

T

δ

Suppose M clusters: C1, . . . , CM . Pick rep. ri from each Ci.



Attempt 1: A δ-Cover

T

δ

Suppose M clusters: C1, . . . , CM . Pick rep. ri from each Ci.



Attempt 1: A δ-Cover

T

δ

Suppose M clusters: C1, . . . , CM . Pick rep. ri from each Ci.



Attempt 1: A δ-Cover

T

δ

Suppose M clusters: C1, . . . , CM .

Pick rep. ri from each Ci.



Attempt 1: A δ-Cover

T

δ

Suppose M clusters: C1, . . . , CM . Pick rep. ri from each Ci.



Attempt 1: A δ-Cover

T

δ

Suppose M clusters: C1, . . . , CM . Pick rep. ri from each Ci.



Approximation Within a Single δ-Ball

Ci
ri

sup
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〈x, t〉 = 〈x, ri〉+ sup
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Super-concentrated!
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]
, have E
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(Consequence of Lipschitz concentration of Gaussians)
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Gives hierarchical sequence of partitions of T :

...
...

A0= {T}

A1

Refinement

|Ah|≤ 22h
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]
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Our Proof from 30,000 Feet

Recall we have Gaussian process {Xt}t∈T with E[supXt] = 1

Thanks to rescaling assumption

Take MM Tree: 1 ≥
∑
h≥0 2

h/2 · diam(Ah(t))
The hth level has exp exp(h) nodes

Simple algorithm to choose parts from Talagrand’s tree
Terminates by depth 1/ε, then proceed as before

See paper for full details (and more) ,
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Recap

The Main Technical Result
Sparsifying Suprema of Gaussian Processes

Some Consequences
Polytope Sparsification, Norms are (Essentially) Juntas

Elements of the Proof
Talagrand’s Majorizing Measures Theorem



Many Open Directions

Closing the gap in our bounds?
Singly- versus doubly-exponential in 1/ε?

Other applications?
Suprema are everywhere

Generalizations or variants?
Sparsifying suprema of Bernoulli processes? Empirical processes?

Thanks for listening! Questions? ,
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