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The Hamming Distance

Definition: Given f,g:{0,1}" — {0, 1}, we define

dist(f,g) == Pr [f(z) # g(=)].

xz~{0,1}"

We will write f ~. g if dist(f,g) <e.
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(Folklore) Fact: If f:{0,1}™ — {0,1} is computed by a size-s
CNF, then f =, g where g is a CNF of width log(s/¢).

What about a converse?
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Are Narrow CNFs (Essentially) Small?

?  Naively: n©®

Q

Check: Suppose r =1, i.e. fis just an AND of Boolean literals.
If f has more than log(1/¢) literals, then f =~

Hope: Is every width-r CNF =, size-O, ,.(1) CNF?
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Width-r CNFs are e-approximated by CNFs of size:
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dsi(K, L) = Pr  [K(g)# L(g)]

We will write K . L if dist(K, L) < e.

Note: Not translation invariant!



The Gaussian Distance

L=H,Nn...NHg

dist(K,L)= Pr [ge[]|

g~N(0,1)"
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(Folklore) Fact: If K C R™ is an intersection of s halfspaces,
then K =, L where L is a polytope of width /2log(s/e).

What about a converse?
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CNF Sparsification: A Brief History

Width-r CNFs are e-approximated by CNFs of size:

O(r) )
il 1 Lovett-Wu-Zhang '21
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Our Main Result

Q

O(1) facets

[DNOS'25]: If K C R™ is a polytope of width 7, then K ~_. L

where L is an intersection of exp exp(rt/e?).

Lower Bound: exp(1/e) halfspaces necessary
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T ={e1,...,en}

E {sup Xt} =
t

max wz} = y/logn

E
z;~N(0,1) | 1<i<n
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Gaussian Processes

Definition: Let 7" C R™ and & ~ N(0,1)". We will write
{X}ter where
Xy = (x,t)

for the (canonical) Gaussian process on T'.

Informally: Complexity of T' determines E [supth Xt]
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[DNOS'25]: Let T C R™ and let {X;}1cr be the associated Gaussian
process. For any € € (0,0.5), there is a subset S C T and constants
{es > 0}ses such that

E ||[sup X; —sup{ X+ cs}
teT seS

<e¢E

sup X |,
teT

and furthermore |S| < expexp(1/e).

Note: Shifts ¢, are necessary @
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Anti-concentration: K ~. L
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[DNOS'25]: Suppose ¢ : R™ — R is a norm. For any € € (0,0.5), there
exists a norm v : R™ — R such that

¢(z)

P l—e< 28 o >1—¢,
N (01) S @) fep=ioE

and furthermore 1 only depends on exp exp(1/¢?) dimensions.

Idea: ¢(x) := sup (z,t) for symmetric T'
teT
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Sparsifying Suprema of Gaussian Processes
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Polytope Sparsification, Norms are (Essentially) Juntas

Elements of the Proof

Talagrand’s Majorizing Measures Theorem
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[DNOS'25]: Let T' € R™ with E[sup,c X¢] = 1. For any € € (0,0.5),
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Approximation Within a Single /-Ball

\
: : sup (z,8) = (@,rs) + sup (@t —r)
| . | C; teC; teC;
\
\ T / Super-concentrated!

Take ¢; == E sup (xz,t) — (&, ) —¢i| | SO

teC;

sup (x,t — 7“)1 , have E
teC;

(Consequence of Lipschitz concentration of Gaussians)
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Approximation Across M Clusters

Within each cluster C;:

sup (x,t) ~5 (x,7;) + ¢;
teC;

Natural Idea: Approximate sup (x,t) by sup {(z,r;) + ¢;}
t i€[M]

Size = M Error < d+/log M
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If M = 2°0/5%) then §y/Tog M — 0 as § — 0
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Recall: We rescaled to ensure LHS =1
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If M = 2°0/) then dy/logM —0asd — 0
If M = 2“’(1/52), then contradiction
If M =290/5%)  we're stuck?

Issue: Gaussian processes s.t. the best J-covering
of the set has size 29(1/5°) at every fixed scale § ®
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Our Proof from 30,000 Feet

Recall we have Gaussian process { X;}:cr with E[sup X;] =1

Take MM Tree: 1> 3", -, 2"/2 - diam(Ap(t))

Simple algorithm to choose parts from Talagrand's tree

See paper for full details (and more) ®



Recap

The Main Technical Result

Sparsifying Suprema of Gaussian Processes

Some Consequences

Polytope Sparsification, Norms are (Essentially) Juntas

Elements of the Proof

Talagrand’s Majorizing Measures Theorem
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Thanks for listening! Questions? ©



