Polytope Sparsification

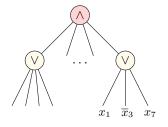
Shivam Nadimpalli (MIT)

Joint work with

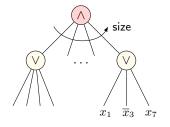
Anindya De (Penn)

Ryan O'Donnell (CMU)

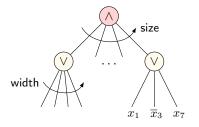
Rocco Servedio (Columbia)



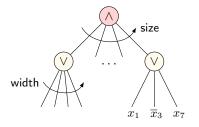
 $f:\{0,1\}^n \to \{0,1\} \equiv \mathrm{AND}\text{-of-}\mathrm{OR}$ circuit representation



 $f:\{0,1\}^n \to \{0,1\} \equiv \mathrm{AND}\text{-of-}\mathrm{OR}$ circuit representation

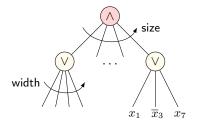


 $f:\{0,1\}^n \to \{0,1\} \equiv \mathrm{AND}\text{-of-}\mathrm{OR}$ circuit representation



 $f:\{0,1\}^n \to \{0,1\} \equiv \text{AND-of-OR circuit representation}$

Our Focus: Approximation of CNF by "simpler" CNF



 $f:\{0,1\}^n \to \{0,1\} \equiv \text{AND-of-OR circuit representation}$

Our Focus: Approximation of CNF by "simpler" CNF

The Hamming Distance

Definition: Given $f, g: \{0,1\}^n \to \{0,1\}$, we define

$$\operatorname{dist}(f,g) := \Pr_{\boldsymbol{x} \sim \{0,1\}^n} \left[f(\boldsymbol{x}) \neq g(\boldsymbol{x}) \right].$$

The Hamming Distance

Definition: Given $f, g: \{0,1\}^n \to \{0,1\}$, we define

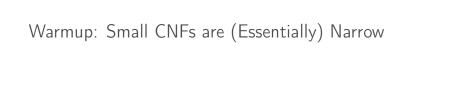
$$\operatorname{dist}(f,g) := \Pr_{\boldsymbol{x} \sim \{0,1\}^n} \left[f(\boldsymbol{x}) \neq g(\boldsymbol{x}) \right].$$

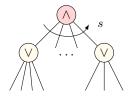
The Hamming Distance

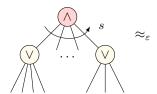
Definition: Given $f, g: \{0,1\}^n \to \{0,1\}$, we define

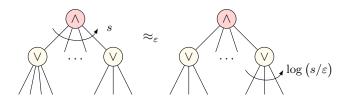
$$\operatorname{dist}(f,g) := \Pr_{\boldsymbol{x} \sim \{0,1\}^n} \left[f(\boldsymbol{x}) \neq g(\boldsymbol{x}) \right].$$

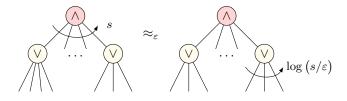
We will write $f \approx_{\varepsilon} g$ if $\operatorname{dist}(f,g) \leq \varepsilon$.



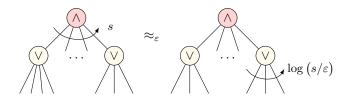






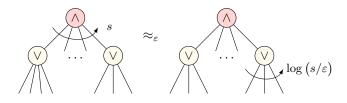


(Folklore) Fact: If $f:\{0,1\}^n \to \{0,1\}$ is computed by a size-s CNF, then $f \approx_\varepsilon g$ where g is a CNF of width $\log(s/\varepsilon)$.



(Folklore) Fact: If $f:\{0,1\}^n \to \{0,1\}$ is computed by a size-s CNF, then $f \approx_{\varepsilon} g$ where g is a CNF of width $\log(s/\varepsilon)$.

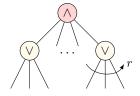
Idea: Drop wide clauses, take union bound ©

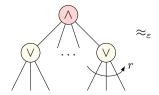


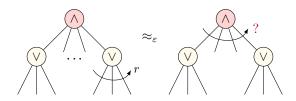
(Folklore) Fact: If $f:\{0,1\}^n \to \{0,1\}$ is computed by a size-s CNF, then $f \approx_{\varepsilon} g$ where g is a CNF of width $\log(s/\varepsilon)$.

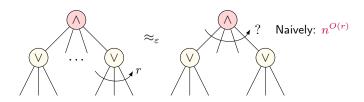
What about a converse?

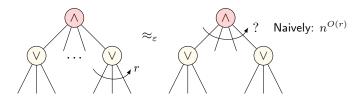




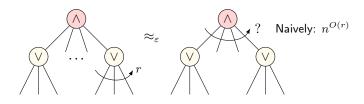




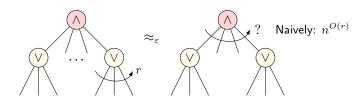




Check: Suppose r=1, i.e. f is just an AND of Boolean literals.



Check: Suppose r=1, i.e. f is just an AND of Boolean literals. If f has more than $\log(1/\varepsilon)$ literals, then $f\approx_\varepsilon 0$.



Check: Suppose r=1, i.e. f is just an AND of Boolean literals. If f has more than $\log(1/\varepsilon)$ literals, then $f\approx_\varepsilon 0$.

Hope: Is every width-r CNF \approx_{ε} size- $O_{\varepsilon,r}(1)$ CNF?

Width-r CNFs are ε -approximated by CNFs of size:

Width-r CNFs are ε -approximated by CNFs of size:

$$2^{O\left(r2^r\log\left(\frac{1}{arepsilon}
ight)}
ight)$$
 [Trevisan '05] Covering/packing argument

Width-r CNFs are ε -approximated by CNFs of size:

$$2^{O\left(r2^r\log\left(\frac{1}{\varepsilon}\right)\right)}$$
 [Trevisan '05]

Covering/packing argument

 $\left(r\log\left(\frac{1}{arepsilon}
ight)
ight)^{O(r)}$ [Gopalan-Meka-Reingold '13] Quasi-sunflowers

Width-r CNFs are ε -approximated by CNFs of size:

$$2^{O\left(r2^r\log\left(\frac{1}{\varepsilon}\right)\right)} \qquad \qquad \text{[Trevisan '05]}$$

$$\text{Covering/packing argument}$$

$$\left(r\log\left(\frac{1}{\varepsilon}\right)\right)^{O(r)} \qquad \qquad \text{[Gopalan-Meka-Reingold '13]}$$

$$\text{Quasi-sunflowers}$$

$$\left(\frac{1}{\varepsilon}\right)^{O(r)} \qquad \qquad \text{[Lovett-Zhang '18]}$$

Switching lemma + noise stability

Width-r CNFs are ε -approximated by CNFs of size:

$$2^{O\left(r2^{r}\log\left(\frac{1}{\varepsilon}\right)\right)} \qquad \text{[Trevisan '05]}$$

$$\operatorname{Covering/packing argument}$$

$$\left(r\log\left(\frac{1}{\varepsilon}\right)\right)^{O(r)} \qquad \text{[Gopalan-Meka-Reingold '13]}$$

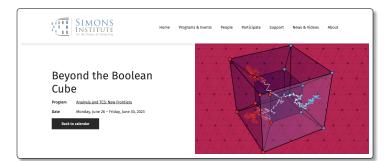
$$\operatorname{Quasi-sunflowers}$$

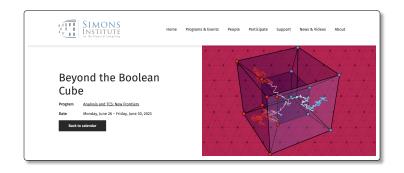
$$\left(\frac{1}{\varepsilon}\right)^{O(r)} \qquad \text{[Lovett-Zhang '18]}$$

$$\operatorname{Switching lemma} + \operatorname{noise stability}$$

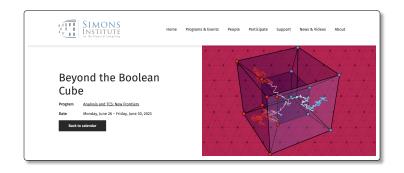
$$\left(2 + \frac{1}{r}\log\left(\frac{1}{\varepsilon}\right)\right)^{O(r)} \qquad \text{[Lovett-Wu-Zhang '21]}$$

$$\operatorname{''Mild''} \operatorname{random restrictions} + \operatorname{noise stability}$$

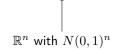




Analogue of CNF sparsification over Gaussian space?

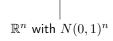


Analogue of CNF sparsification over Gaussian space?

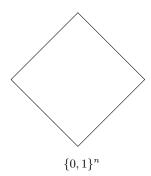




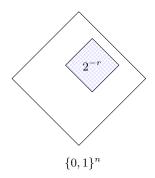
Analogue of CNF sparsification over Gaussian space?



Narrow Clauses



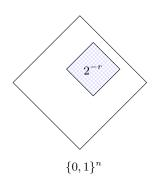
Narrow Clauses

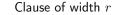


Clause of width $\it r$

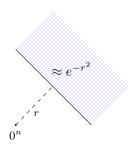
e.g. $x_1 \vee \overline{x}_2 \longleftrightarrow 01 * \cdots *$

Narrow Clauses ≈ Narrow Halfspaces





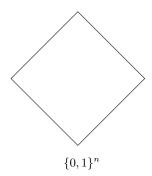
e.g. $x_1 \vee \overline{x}_2 \longleftrightarrow 01 * \cdots *$



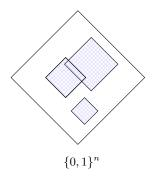
Halfspace of width $\it r$

e.g. $1\{x \cdot v \le 10\}$ for $v \in \mathbb{S}^{n-1}$

Narrow CNFs

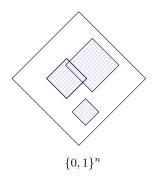


Narrow CNFs

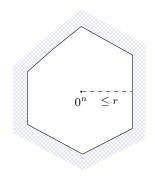


AND of width-r ORs

Narrow CNFs ≈ Bounded-Width Polytopes

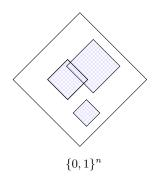


AND of width-r ORs

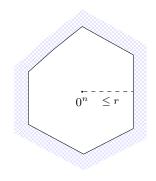


Intersection of width-r halfspaces

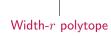
Narrow CNFs ≈ Bounded-Width Polytopes



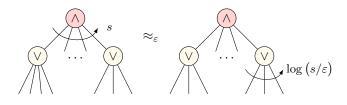
AND of width-r ORs



Intersection of width-r halfspaces \uparrow

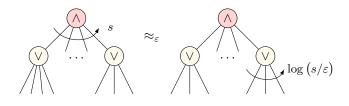


Recall: Small CNFs are (Essentially) Narrow



(Folklore) Fact: If $f:\{0,1\}^n \to \{0,1\}$ is computed by a size-s CNF, then $f \approx_{\varepsilon} g$ where g is a CNF of width $\log(s/\varepsilon)$.

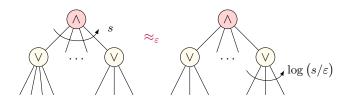
Recall: Small CNFs are (Essentially) Narrow



(Folklore) Fact: If $f:\{0,1\}^n \to \{0,1\}$ is computed by a size-s CNF, then $f \approx_{\varepsilon} g$ where g is a CNF of width $\log(s/\varepsilon)$.

Hope: A Gaussian analogue?

Recall: Small CNFs are (Essentially) Narrow



(Folklore) Fact: If $f:\{0,1\}^n \to \{0,1\}$ is computed by a size-s CNF, then $f \approx_{\varepsilon} g$ where g is a CNF of width $\log(s/\varepsilon)$.

Hope: A Gaussian analogue?

Definition: Given $K, L \subseteq \mathbb{R}^n$, we define

$$\operatorname{dist}(K, L) := \Pr_{\boldsymbol{g} \sim N(0, 1)^n} \left[K(\boldsymbol{g}) \neq L(\boldsymbol{g}) \right].$$

Definition: Given $K, L \subseteq \mathbb{R}^n$, we define

$$\operatorname{dist}(K, L) := \Pr_{\boldsymbol{g} \sim N(0, 1)^n} [K(\boldsymbol{g}) \neq L(\boldsymbol{g})].$$

Definition: Given $K, L \subseteq \mathbb{R}^n$, we define

$$\operatorname{dist}(K, L) := \Pr_{\boldsymbol{g} \sim N(0, 1)^n} \left[K(\boldsymbol{g}) \neq L(\boldsymbol{g}) \right].$$

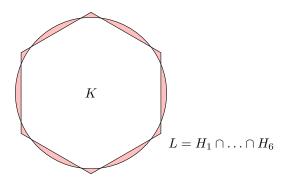
We will write $K \approx_{\varepsilon} L$ if $\operatorname{dist}(K, L) \leq \varepsilon$.

Definition: Given $K, L \subseteq \mathbb{R}^n$, we define

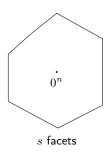
$$\operatorname{dist}(K, L) := \Pr_{\boldsymbol{g} \sim N(0, 1)^n} \left[K(\boldsymbol{g}) \neq L(\boldsymbol{g}) \right].$$

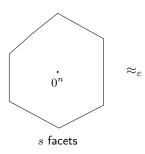
We will write $K \approx_{\varepsilon} L$ if $\operatorname{dist}(K, L) \leq \varepsilon$.

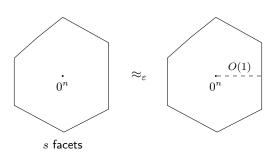
Note: Not translation invariant!

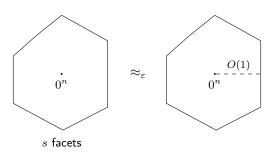


$$\operatorname{dist}(K,L) = \Pr_{\boldsymbol{g} \sim N(0,1)^n} \left[\boldsymbol{g} \in \square \right]$$

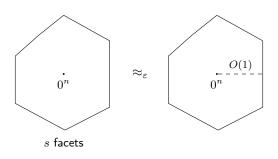






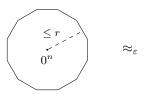


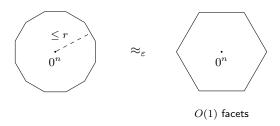
(Folklore) Fact: If $K \subseteq \mathbb{R}^n$ is an intersection of s halfspaces, then $K \approx_{\varepsilon} L$ where L is a polytope of width $\sqrt{2\log(s/\varepsilon)}$.

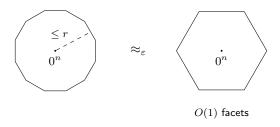


(Folklore) Fact: If $K \subseteq \mathbb{R}^n$ is an intersection of s halfspaces, then $K \approx_{\varepsilon} L$ where L is a polytope of width $\sqrt{2\log(s/\varepsilon)}$.

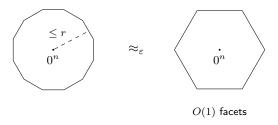
What about a converse?





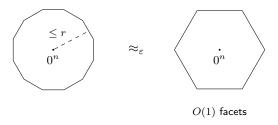


[DNOS'25]: If $K \subseteq \mathbb{R}^n$ is a polytope of width r, then $K \approx_{\varepsilon} L$ where L is an intersection of $\exp \exp(r^4/\varepsilon^2)$ halfspaces.



[DNOS'25]: If $K\subseteq\mathbb{R}^n$ is a polytope of width r, then $K\approx_\varepsilon L$ where L is an intersection of $\exp\exp(r^4/\varepsilon^2)$ halfspaces.

Yields efficient learning & tolerant testing algorithms



[DNOS'25]: If $K \subseteq \mathbb{R}^n$ is a polytope of width r, then $K \approx_{\varepsilon} L$ where L is an intersection of $\exp \exp(r^4/\varepsilon^2)$ halfspaces.

Yields efficient learning & tolerant testing algorithms

CNF Sparsification: A Brief History

Width-r CNFs are ε -approximated by CNFs of size:

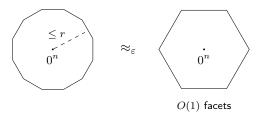
$$2^{O\left(r2^r\log\left(rac{1}{arepsilon}
ight)
ight)}$$
 [Trevisan '05] Covering/packing argum

$$\left(r\log\left(rac{1}{arepsilon}
ight)
ight)^{O(r)}$$
 [Gopalan-Meka-Reingold '13

$$\left(\frac{1}{\varepsilon}\right)^{O(r)}$$
 [Lovett-Zhang '18

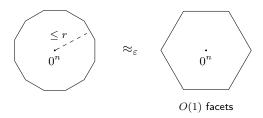
$$\left(2+\frac{1}{r}\log\left(\frac{1}{\varepsilon}\right)\right)^{O(r)}$$
 [Lovett-Wu-Zhang '21] "Mild" random restrictions + noise stability

Our Main Result



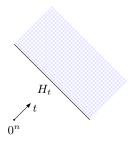
[DNOS'25]: If $K\subseteq \mathbb{R}^n$ is a polytope of width r, then $K\approx_\varepsilon L$ where L is an intersection of $\exp\exp(r^4/\varepsilon^2)$.

Our Main Result

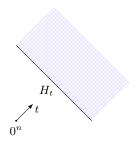


[DNOS'25]: If $K\subseteq\mathbb{R}^n$ is a polytope of width r, then $K\approx_\varepsilon L$ where L is an intersection of $\exp\exp(r^4/\varepsilon^2)$.

Lower Bound: $\exp(1/\varepsilon)$ halfspaces necessary

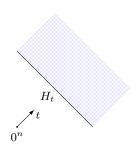


$$H_t := \{ x \in \mathbb{R}^n : \langle x, t \rangle \le 1 \}$$



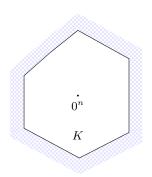
$$H_t := \{ x \in \mathbb{R}^n : \langle x, t \rangle \le 1 \}$$

 $x \in H_t \iff \langle x, t \rangle \le 1$

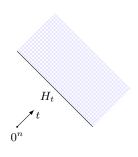


$$H_t := \{x \in \mathbb{R}^n : \langle x, t \rangle \le 1\}$$

 $x \in H_t \iff \langle x, t \rangle \le 1$

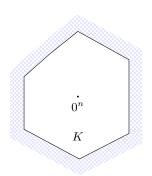


$$K = \bigcap_{t \in T} H_t$$



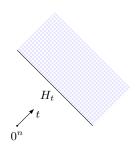
$$H_t := \{ x \in \mathbb{R}^n : \langle x, t \rangle \le 1 \}$$

 $x \in H_t \iff \langle x, t \rangle \le 1$



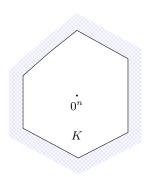
$$K = \bigcap_{t \in T} H_t$$

$$x \in K \iff \sup_{t \in T} \langle x, t \rangle \le 1$$



$$H_t := \{ x \in \mathbb{R}^n : \langle x, t \rangle \le 1 \}$$

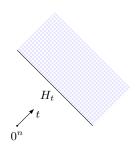
 $x \in H_t \iff \langle x, t \rangle \le 1$



$$K = \bigcap_{t \in T} H_t$$

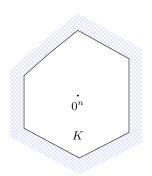
$$x \in K \iff \sup_{t \in T} \langle x, t \rangle \le 1$$

From Polytopes to Suprema



$$H_t := \{ x \in \mathbb{R}^n : \langle x, t \rangle \le 1 \}$$

 $x \in H_t \iff \langle x, t \rangle \le 1$



$$K = \bigcap_{t \in T} H_t$$

$$x \in K \iff \sup_{t \in T} \langle x, t \rangle \le 1$$

Definition: Let $T\subseteq \mathbb{R}^n$ and ${\pmb x}\sim N(0,1)^n$. We will write $\{{\pmb X}_t\}_{t\in T}$ where

$$\boldsymbol{X}_t := \langle \boldsymbol{x}, t \rangle$$

for the (canonical) Gaussian process on T.

Definition: Let $T\subseteq \mathbb{R}^n$ and ${\boldsymbol x}\sim N(0,1)^n$. We will write $\{{\boldsymbol X}_t\}_{t\in T}$ where

$$\boldsymbol{X}_t := \langle \boldsymbol{x}, t \rangle$$

for the (canonical) Gaussian process on T.

Definition: Let $T\subseteq \mathbb{R}^n$ and ${\pmb x}\sim N(0,1)^n$. We will write $\{{\pmb X}_t\}_{t\in T}$ where

$$\boldsymbol{X}_t := \langle \boldsymbol{x}, t \rangle$$

for the (canonical) Gaussian process on T.

Our Focus: $\sup_{t \in T} X_t$

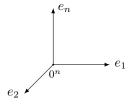
Definition: Let $T\subseteq \mathbb{R}^n$ and ${\boldsymbol x}\sim N(0,1)^n$. We will write $\{{\boldsymbol X}_t\}_{t\in T}$ where

$$\boldsymbol{X}_t := \langle \boldsymbol{x}, t \rangle$$

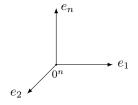
for the (canonical) Gaussian process on T.

Our Focus: $\sup_{t \in T} X_t$

Compressed sensing, metric embeddings, random matrix theory, ...

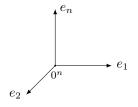


$$T = \{e_1, \dots, e_n\}$$



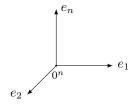
$$T = \{e_1, \dots, e_n\}$$

$$\mathbf{E}\left[\sup_t oldsymbol{X}_t
ight]$$



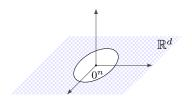
$$T = \{e_1, \dots, e_n\}$$

$$\mathbf{E}\left[\sup_{t}oldsymbol{X}_{t}
ight] = \mathop{\mathbf{E}}_{oldsymbol{x}_{i}\sim N(0,1)}\left[\max_{1\leq i\leq n}oldsymbol{x}_{i}
ight]$$

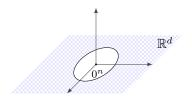


$$T = \{e_1, \dots, e_n\}$$

$$\mathbf{E}\left[\sup_t \boldsymbol{X}_t\right] = \mathbf{E}_{\boldsymbol{x}_i \sim N(0,1)} \left[\max_{1 \leq i \leq n} \boldsymbol{x}_i\right] \asymp \sqrt{\log n}$$

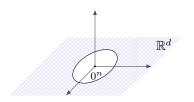


$$T = \left\{ x : \sum_{i=1}^{d} x_1^2 + \dots x_d^2 \le 1 \text{ and } x_{d+1} = \dots = x_n = 0 \right\}$$



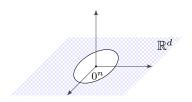
$$T = \left\{ x : \sum_{i=1}^{d} x_1^2 + \dots x_d^2 \le 1 \text{ and } x_{d+1} = \dots = x_n = 0 \right\}$$

$$\mathbf{E} \left[\sup_{t} \mathbf{X}_t \right]$$



$$T = \left\{ x : \sum_{i=1}^{d} x_1^2 + \dots x_d^2 \le 1 \text{ and } x_{d+1} = \dots = x_n = 0 \right\}$$

$$\mathbf{E} \left[\sup_t \mathbf{X}_t \right] = \mathbf{E}_{\mathbf{x} \sim N(0,1)^d} \left[\|\mathbf{x}\|_2 \right]$$



$$T = \left\{ x : \sum_{i=1}^{d} x_1^2 + \dots x_d^2 \le 1 \text{ and } x_{d+1} = \dots = x_n = 0 \right\}$$

$$\mathbf{E} \left[\sup_t \mathbf{X}_t \right] = \mathbf{E}_{\mathbf{x} \sim N(0,1)^d} \left[\|\mathbf{x}\|_2 \right] \times \sqrt{d}$$

Definition: Let $T\subseteq \mathbb{R}^n$ and ${\boldsymbol x}\sim N(0,1)^n$. We will write $\{{\boldsymbol X}_t\}_{t\in T}$ where

$$\boldsymbol{X}_t := \langle \boldsymbol{x}, t \rangle$$

for the (canonical) Gaussian process on T.

Definition: Let $T\subseteq \mathbb{R}^n$ and ${\pmb x}\sim N(0,1)^n$. We will write $\{{\pmb X}_t\}_{t\in T}$ where

$$\boldsymbol{X}_t := \langle \boldsymbol{x}, t \rangle$$

for the (canonical) Gaussian process on T.

Informally: Complexity of T determines $\mathbf{E}\left[\sup_{t\in T} \boldsymbol{X}_{t}\right]$

[DNOS'25]: Let $T\subseteq\mathbb{R}^n$ and let $\{\pmb{X}_t\}_{t\in T}$ be the associated Gaussian process.

[DNOS'25]: Let $T\subseteq\mathbb{R}^n$ and let $\{\boldsymbol{X}_t\}_{t\in T}$ be the associated Gaussian process. For any $\varepsilon\in(0,0.5)$,

[DNOS'25]: Let $T\subseteq\mathbb{R}^n$ and let $\{\boldsymbol{X}_t\}_{t\in T}$ be the associated Gaussian process. For any $\varepsilon\in(0,0.5)$, there is a subset $S\subseteq T$

[DNOS'25]: Let $T \subseteq \mathbb{R}^n$ and let $\{\boldsymbol{X}_t\}_{t \in T}$ be the associated Gaussian process. For any $\varepsilon \in (0,0.5)$, there is a subset $S \subseteq T$ and constants $\{c_s \geq 0\}_{s \in S}$

[DNOS'25]: Let $T\subseteq\mathbb{R}^n$ and let $\{\boldsymbol{X}_t\}_{t\in T}$ be the associated Gaussian process. For any $\varepsilon\in(0,0.5)$, there is a subset $S\subseteq T$ and constants $\{c_s\geq 0\}_{s\in S}$ such that

$$\mathbf{E} \left| \left| \sup_{t \in T} \boldsymbol{X}_t - \sup_{s \in S} \{\boldsymbol{X}_s + c_s\} \right| \right| \le \varepsilon \mathbf{E} \left[\sup_{t \in T} \boldsymbol{X}_t \right],$$

[DNOS'25]: Let $T\subseteq\mathbb{R}^n$ and let $\{\boldsymbol{X}_t\}_{t\in T}$ be the associated Gaussian process. For any $\varepsilon\in(0,0.5)$, there is a subset $S\subseteq T$ and constants $\{c_s\geq 0\}_{s\in S}$ such that

$$\mathbf{E}\left[\left|\sup_{t\in T} \boldsymbol{X}_t - \sup_{s\in S} \{\boldsymbol{X}_s + c_s\}\right|\right] \leq \varepsilon \mathbf{E}\left[\sup_{t\in T} \boldsymbol{X}_t\right],$$

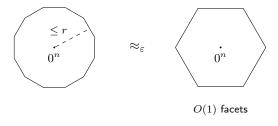
and furthermore $|S| \leq \exp \exp(1/\varepsilon)$.

[DNOS'25]: Let $T\subseteq\mathbb{R}^n$ and let $\{\boldsymbol{X}_t\}_{t\in T}$ be the associated Gaussian process. For any $\varepsilon\in(0,0.5)$, there is a subset $S\subseteq T$ and constants $\{c_s\geq 0\}_{s\in S}$ such that

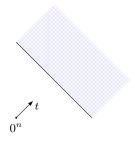
$$\mathbf{E}\left[\left|\sup_{t\in T}\boldsymbol{X}_{t}-\sup_{s\in S}\{\boldsymbol{X}_{s}+c_{s}\}\right|\right]\leq \varepsilon \mathbf{E}\left[\sup_{t\in T}\boldsymbol{X}_{t}\right],$$

and furthermore $|S| \leq \exp \exp(1/\varepsilon)$.

Note: Shifts c_s are necessary \odot

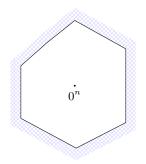


[DNOS'25]: If $K \subseteq \mathbb{R}^n$ is a polytope of width r, then $K \approx_{\varepsilon} L$ where L is an intersection of $\exp \exp(r^4/\varepsilon^2)$.

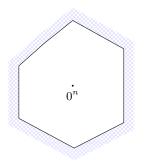


$$H_t := \{x \in \mathbb{R}^n : \langle x, t \rangle \le 1\}$$

 $x \in H_t \iff \langle x, t \rangle \le 1$



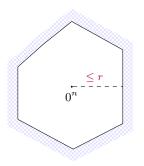
$$K = \bigcap_{t \in T} H_t$$
$$x \in K \iff \sup_{t \in T} \langle x, t \rangle \le 1$$



$$K = \bigcap_{t \in T} H_t$$

$$x \in K \iff \sup_{t \in T} \langle x, t \rangle \le 1$$

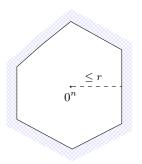
Small width



$$K = \bigcap_{t \in T} H_t$$

$$x \in K \iff \sup_{t \in T} \langle x, t \rangle \le 1$$

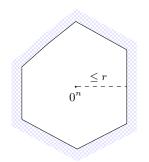
Small width
$$\Longrightarrow \mathbf{E}\left[\sup_{t\in T} \mathbf{X}_t\right] = O(1)$$



$$K = \bigcap_{t \in T} H_t$$

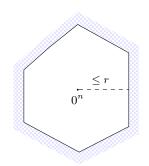
$$x \in K \iff \sup_{t \in T} \langle x, t \rangle \le 1$$

$$\begin{array}{c} \mathsf{Small \ width} \Longrightarrow \mathbf{E} \left[\sup_{t \in T} \boldsymbol{X}_t \right] = O(1) \\ \\ \\ \mathsf{Sparsification} + \mathsf{Markov's \ Inequality} \\ \\ \\ \end{array}$$



$$K = \bigcap_{t \in T} H_t$$
$$x \in K \iff \sup_{t \in T} \langle x, t \rangle \le 1$$

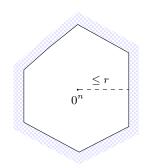
$$\begin{array}{c} \mathsf{Small \ width} \Longrightarrow \mathbf{E} \left[\sup_{t \in T} \boldsymbol{X}_t \right] = O(1) \\ \\ | \\ | \\ \mathsf{Sparsification} + \mathsf{Markov's \ Inequality} \\ \\ | \\ \sup_{t \in T} \boldsymbol{X}_t = \sup_{s \in S} \{ \boldsymbol{X}_s + c_s \} \pm \varepsilon \ \mathsf{w.h.p.} \end{array}$$



$$K = \bigcap_{t \in T} H_t$$

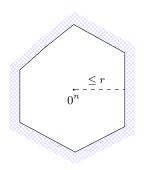
$$x \in K \iff \sup_{t \in T} \langle x, t \rangle \le 1$$

$$\begin{array}{c} \mathsf{Small \ width} \Longrightarrow \mathbf{E} \left[\sup_{t \in T} \boldsymbol{X}_t \right] = O(1) \\ \\ | \\ | \\ \mathsf{Sparsification} + \mathsf{Markov's \ Inequality} \\ \\ | \\ \sup_{t \in T} \boldsymbol{X}_t = \sup_{s \in S} \{ \boldsymbol{X}_s + c_s \} \pm \varepsilon \ \mathsf{w.h.p.} \\ \\ | \\ \mathsf{Obtain \ a \ Polytope} \\ \\ | \\ \end{pmatrix}$$



$$K = \bigcap_{t \in T} H_t$$
$$x \in K \iff \sup_{t \in T} \langle x, t \rangle \le 1$$

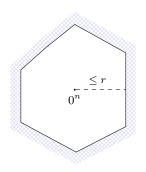
$$\begin{aligned} \mathsf{Small \ width} &\Longrightarrow \mathbf{E} \left[\sup_{t \in T} \boldsymbol{X}_t \right] = O(1) \\ & & \\ & & \\ \mathsf{Sparsification} + \mathsf{Markov's \ Inequality} \\ & & \\ & & \\ \sup_{t \in T} \boldsymbol{X}_t = \sup_{s \in S} \{ \boldsymbol{X}_s + c_s \} \pm \varepsilon \ \mathsf{w.h.p.} \\ & & \\ & & \\ \mathsf{Obtain \ a \ Polytope} \\ & &$$



$$K = \bigcap_{t \in T} H_t$$

$$x \in K \iff \sup_{t \in T} \langle x, t \rangle \le 1$$

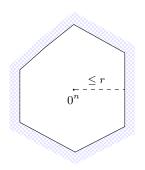
$$\begin{array}{c} \mathsf{Small \ width} \Longrightarrow \mathbf{E} \left[\sup_{t \in T} \boldsymbol{X}_t \right] = O(1) \\ \\ \mathsf{Sparsification} + \mathsf{Markov's \ Inequality} \\ \\ \downarrow \\ \\ \sup_{t \in T} \boldsymbol{X}_t = \sup_{s \in S} \{ \boldsymbol{X}_s + c_s \} \pm \varepsilon \ \mathsf{w.h.p.} \\ \\ \\ \mathsf{Obtain \ a \ Polytope} \\ \\ \\ \boldsymbol{x} \in L \iff \sup_{s \in S} \{ \langle \boldsymbol{x}, \boldsymbol{s} \rangle + c_s \} \leq 1 \end{array}$$



$$K = \bigcap_{t \in T} H_t$$
$$x \in K \iff \sup_{t \in T} \langle x, t \rangle \le 1$$

Application 1: Polytope Sparsification

$$\begin{array}{c} \mathsf{Small \ width} \Longrightarrow \mathbf{E} \left[\sup_{t \in T} \boldsymbol{X}_t \right] = O(1) \\ \\ \mathsf{Sparsification} + \mathsf{Markov's \ Inequality} \\ \\ \sup_{t \in T} \boldsymbol{X}_t = \sup_{s \in S} \{ \boldsymbol{X}_s + c_s \} \pm \varepsilon \ \mathsf{w.h.p.} \\ \\ \\ \mathsf{Obtain \ a \ Polytope} \\ \\ \\ \boldsymbol{x} \in L \iff \sup_{s \in S} \{ \langle \boldsymbol{x}, \boldsymbol{s} \rangle + c_s \} \leq 1 \end{array}$$



$$K = \bigcap_{t \in T} H_t$$
$$x \in K \iff \sup_{t \in T} \langle x, t \rangle \le 1$$

Application 1: Polytope Sparsification

$$\begin{aligned} \mathsf{Small \ width} &\Longrightarrow \mathbf{E} \left[\sup_{t \in T} \boldsymbol{X}_t \right] = O(1) \\ & \downarrow \\ & \mathsf{Sparsification} + \mathsf{Markov's \ Inequality} \\ & \sup_{t \in T} \boldsymbol{X}_t = \sup_{s \in S} \{\boldsymbol{X}_s + c_s\} \pm \varepsilon \ \mathsf{w.h.p.} \\ & \downarrow \\ & \mathsf{Obtain \ a \ Polytope} \\ & \downarrow \\ & \boldsymbol{X} \in L \iff \sup_{s \in S} \{\langle x, s \rangle + c_s\} \leq 1 \end{aligned} \qquad \boldsymbol{X} \in K \iff \sup_{t \in T} \langle x, t \rangle \leq 1$$

Anti-concentration: $K \approx_{\varepsilon} L$

Back to Our Main Result

Back to Our Main Result

[DNOS'25]: Let $T\subseteq\mathbb{R}^n$ and let $\{\boldsymbol{X}_t\}_{t\in T}$ be the associated Gaussian process. For any $\varepsilon\in(0,0.5)$, there is a subset $S\subseteq T$ and constants $\{c_s\geq 0\}_{s\in S}$ such that

$$\mathbf{E}\left[\left|\sup_{t\in T}\boldsymbol{X}_{t}-\sup_{s\in S}\{\boldsymbol{X}_{s}+c_{s}\}\right|\right]\leq\varepsilon\,\mathbf{E}\left[\sup_{t\in T}\boldsymbol{X}_{t}\right],$$

and furthermore $|S| \leq \exp \exp(1/\varepsilon)$.

[D <u>N</u> OS'25]:		

[DNOS'25]: Suppose $\phi:\mathbb{R}^n \to \mathbb{R}$ is a norm.

[DNOS'25]: Suppose $\phi: \mathbb{R}^n \to \mathbb{R}$ is a norm. For any $\varepsilon \in (0,0.5)$, there exists a norm $\psi: \mathbb{R}^n \to \mathbb{R}$ such that

[DNOS'25]: Suppose $\phi: \mathbb{R}^n \to \mathbb{R}$ is a norm. For any $\varepsilon \in (0,0.5)$, there exists a norm $\psi: \mathbb{R}^n \to \mathbb{R}$ such that

$$\Pr_{\boldsymbol{x} \sim N(0,1)^n} \left[1 - \varepsilon \leq \frac{\phi(\boldsymbol{x})}{\psi(\boldsymbol{x})} \leq 1 + \varepsilon \right] \geq 1 - \varepsilon \,,$$

[DNOS'25]: Suppose $\phi: \mathbb{R}^n \to \mathbb{R}$ is a norm. For any $\varepsilon \in (0,0.5)$, there exists a norm $\psi: \mathbb{R}^n \to \mathbb{R}$ such that

$$\Pr_{\boldsymbol{x} \sim N(0,1)^n} \left[1 - \varepsilon \leq \frac{\phi(\boldsymbol{x})}{\psi(\boldsymbol{x})} \leq 1 + \varepsilon \right] \geq 1 - \varepsilon\,,$$

and furthermore ψ only depends on $\exp \exp(1/\varepsilon^3)$ dimensions.

[DNOS'25]: Suppose $\phi:\mathbb{R}^n\to\mathbb{R}$ is a norm. For any $\varepsilon\in(0,0.5)$, there exists a norm $\psi:\mathbb{R}^n\to\mathbb{R}$ such that

$$\Pr_{\boldsymbol{x} \sim N(0,1)^n} \left[1 - \varepsilon \le \frac{\phi(\boldsymbol{x})}{\psi(\boldsymbol{x})} \le 1 + \varepsilon \right] \ge 1 - \varepsilon,$$

and furthermore ψ only depends on $\exp \exp(1/\varepsilon^3)$ dimensions.

Idea:
$$\phi(x) := \sup_{t \in T} \langle x, t \rangle$$
 for symmetric T

Recap

The Main Technical Result

Sparsifying Suprema of Gaussian Processes

Some Consequences

Polytope Sparsification, Norms are (Essentially) Juntas

Recap & Rest of Talk

The Main Technical Result

Sparsifying Suprema of Gaussian Processes

Some Consequences

Polytope Sparsification, Norms are (Essentially) Juntas

Elements of the Proof

Talagrand's Majorizing Measures Theorem

[DNOS'25]: Let $T\subseteq\mathbb{R}^n$. For any $\varepsilon\in(0,0.5)$, there is a subset $S\subseteq T$ and constants $\{c_s\geq 0\}_{s\in S}$ such that

$$\mathbf{E}\left[\left|\sup_{t\in T}\boldsymbol{X}_{t}-\sup_{s\in S}\{\boldsymbol{X}_{s}+c_{s}\}\right|\right]\leq \varepsilon\,\mathbf{E}\left[\sup_{t\in T}\boldsymbol{X}_{t}\right],$$

and furthermore $|S| \leq \exp \exp(1/\varepsilon)$.

[DNOS'25]: Let $T\subseteq\mathbb{R}^n$. For any $\varepsilon\in(0,0.5)$, there is a subset $S\subseteq T$ and constants $\{c_s\geq 0\}_{s\in S}$ such that

$$\mathbf{E}\left[\left|\sup_{t\in T} \boldsymbol{X}_t - \sup_{s\in S} \{\boldsymbol{X}_s + c_s\}\right|\right] \leq \varepsilon \mathbf{E}\left[\sup_{t\in T} \boldsymbol{X}_t\right],$$

and furthermore $|S| \leq \exp \exp(1/\varepsilon)$.

First: Rescale so that $\mathbf{E}[\sup_{t \in T} X_t] = 1$

[DNOS'25]: Let $T \subseteq \mathbb{R}^n$ with $\mathbf{E}[\sup_{t \in T} X_t] = 1$. For any $\varepsilon \in (0, 0.5)$, there is a subset $S \subseteq T$ and constants $\{c_s \geq 0\}_{s \in S}$ such that

$$\mathbf{E} \left| \left| \sup_{t \in T} \mathbf{X}_t - \sup_{s \in S} \{ \mathbf{X}_s + c_s \} \right| \right| \le \varepsilon,$$

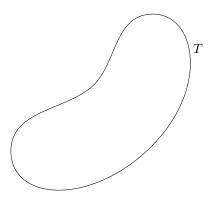
and furthermore $|S| \leq \exp \exp(1/\varepsilon)$.

[DNOS'25]: Let $T \subseteq \mathbb{R}^n$ with $\mathbf{E}[\sup_{t \in T} X_t] = 1$. For any $\varepsilon \in (0, 0.5)$, there is a subset $S \subseteq T$ and constants $\{c_s \geq 0\}_{s \in S}$ such that

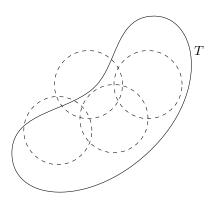
$$\mathbf{E}\left[\left|\sup_{t\in T}\boldsymbol{X}_{t}-\sup_{s\in S}\{\boldsymbol{X}_{s}+c_{s}\}\right|\right]\leq\varepsilon\,,$$

and furthermore $|S| \leq \exp \exp(1/\varepsilon)$.

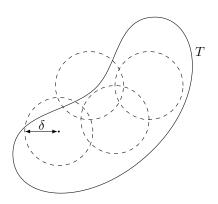
Natural Idea: Cluster the points in T

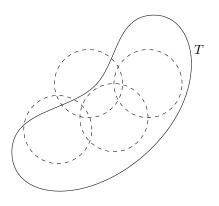


Attempt 1: A δ -Cover

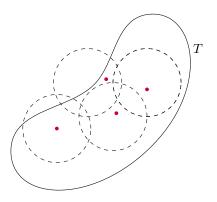


Attempt 1: A δ -Cover

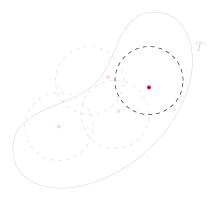




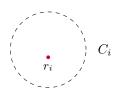
Suppose M clusters: C_1, \ldots, C_M .

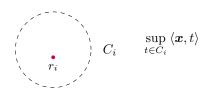


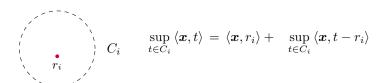
Suppose M clusters: C_1, \ldots, C_M . Pick rep. r_i from each C_i .

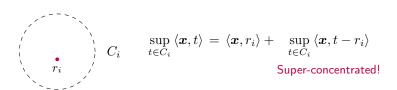


Suppose M clusters: C_1, \ldots, C_M . Pick rep. r_i from each C_i .









$$\begin{cases} \sum_{t \in C_i} c_i & \sup_{t \in C_i} \langle \boldsymbol{x}, t \rangle = \langle \boldsymbol{x}, r_i \rangle + \sup_{t \in C_i} \langle \boldsymbol{x}, t - r_i \rangle \\ & \text{Super-concentrated!} \end{cases}$$

Take
$$c_i := \mathbf{E} \left[\sup_{t \in C_i} \langle \boldsymbol{x}, t - r_i \rangle \right],$$

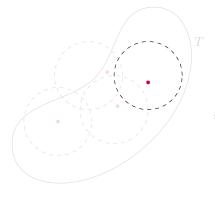
$$\begin{cases} \sum_{t \in C_i} \left\langle \boldsymbol{x}, t \right\rangle = \left\langle \boldsymbol{x}, r_i \right\rangle + \sup_{t \in C_i} \left\langle \boldsymbol{x}, t - r_i \right\rangle \\ \text{Super-concentrated!} \end{cases}$$

$$\mathsf{Take} \; c_i := \mathbf{E} \left[\sup_{t \in C_i} \left\langle \boldsymbol{x}, t - r_i \right\rangle \right], \; \mathsf{have} \; \mathbf{E} \; \left| \left| \sup_{t \in C_i} \left\langle \boldsymbol{x}, t \right\rangle - \left\langle \boldsymbol{x}, r_i \right\rangle - c_i \right| \right| \lesssim \delta$$

$$\begin{cases} \sum_{t \in C_i} C_i & \sup_{t \in C_i} \langle \boldsymbol{x}, t \rangle = \langle \boldsymbol{x}, r_i \rangle + \sup_{t \in C_i} \langle \boldsymbol{x}, t - r_i \rangle \\ & \text{Super-concentrated!} \end{cases}$$

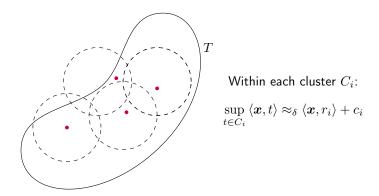
Take
$$c_i := \mathbf{E}\left[\sup_{t \in C_i} \langle \boldsymbol{x}, t - r_i \rangle\right]$$
, have $\mathbf{E}\left[\left|\sup_{t \in C_i} \langle \boldsymbol{x}, t \rangle - \langle \boldsymbol{x}, r_i \rangle - c_i\right|\right] \lesssim \delta$

(Consequence of Lipschitz concentration of Gaussians)

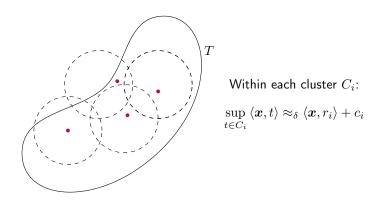


Within each cluster C_i :

$$\sup_{t \in C_i} \langle \boldsymbol{x}, t \rangle \approx_{\delta} \langle \boldsymbol{x}, r_i \rangle + c_i$$

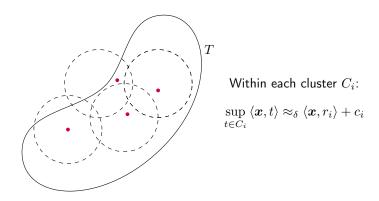


Natural Idea: Approximate $\sup_t \langle {m x}, t \rangle$ by $\sup_{i \in [M]} \{ \langle {m x}, r_i \rangle + c_i \}$



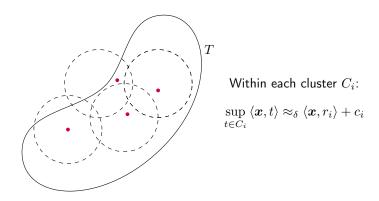
Natural Idea: Approximate
$$\sup_t \langle {m x}, t \rangle$$
 by $\sup_{i \in [M]} \{ \langle {m x}, r_i \rangle + c_i \}$

Size = M



Natural Idea: Approximate
$$\sup_t \langle {\bm x}, t \rangle$$
 by $\sup_{i \in [M]} \{ \langle {\bm x}, r_i \rangle + c_i \}$

Size = M Error



Natural Idea: Approximate
$$\sup_t \langle \boldsymbol{x}, t \rangle$$
 by $\sup_{i \in [M]} \{ \langle \boldsymbol{x}, r_i \rangle + c_i \}$

$$\mathsf{Size} = M \qquad \mathsf{Error} \asymp \delta \sqrt{\log M}$$

If
$$M = 2^{o(1/\delta^2)}$$
,

If $M=2^{o(1/\delta^2)}$, then $\delta\sqrt{\log M}\to 0$ as $\delta\to 0$ Set δ as an appropriate polynomial of ε

If $M=2^{o(1/\delta^2)}$, then $\delta\sqrt{\log M}\to 0$ as $\delta\to 0$ Set δ as an appropriate polynomial of ε

If $M=2^{\omega(1/\delta^2)}$,

Sudakov Minoration

Theorem: If smallest δ net for $T \subseteq \mathbb{R}^n$ has size M, then

$$\mathbf{E}_{\boldsymbol{x} \sim N(0,1)^n} \left[\sup_{t \in T} \langle \boldsymbol{x}, t \rangle \right] \gtrsim \delta \sqrt{\log M}.$$

Sudakov Minoration

Theorem: If smallest δ net for $T \subseteq \mathbb{R}^n$ has size M, then

$$\mathbf{E}_{\boldsymbol{x} \sim N(0,1)^n} \left[\sup_{t \in T} \langle \boldsymbol{x}, t \rangle \right] \gtrsim \delta \sqrt{\log M}.$$

Recall: We rescaled to ensure LHS = 1

If $M=2^{o(1/\delta^2)}$, then $\delta\sqrt{\log M}\to 0$ as $\delta\to 0$ Set δ as an appropriate polynomial of ε

If
$$M=2^{\omega(1/\delta^2)}$$
,

If $M=2^{o(1/\delta^2)}$, then $\delta\sqrt{\log M}\to 0$ as $\delta\to 0$ Set δ as an appropriate polynomial of ε

If $M = 2^{\omega(1/\delta^2)}$, then contradiction Thanks to Sudakov minoration

If $M=2^{o(1/\delta^2)}$, then $\delta\sqrt{\log M}\to 0$ as $\delta\to 0$ Set δ as an appropriate polynomial of ε

If $M = 2^{\omega(1/\delta^2)}$, then contradiction Thanks to Sudakov minoration

If
$$M = 2^{\Theta(1/\delta^2)} \dots$$

If $M=2^{o(1/\delta^2)}$, then $\delta\sqrt{\log M}\to 0$ as $\delta\to 0$ Set δ as an appropriate polynomial of ε

If $M = 2^{\omega(1/\delta^2)}$, then contradiction Thanks to Sudakov minoration

If $M = 2^{\Theta(1/\delta^2)}$... we're stuck?

If
$$M=2^{o(1/\delta^2)}$$
, then $\delta\sqrt{\log M}\to 0$ as $\delta\to 0$
Set δ as an appropriate polynomial of ε

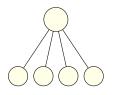
If
$$M = 2^{\omega(1/\delta^2)}$$
, then contradiction Thanks to Sudakov minoration

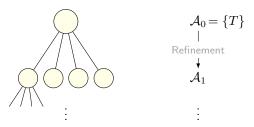
If
$$M = 2^{\Theta(1/\delta^2)}$$
 ... we're stuck?

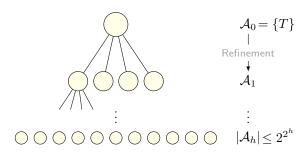
Issue: Gaussian processes s.t. the best δ -covering of the set has size $2^{\Theta(1/\delta^2)}$ at every fixed scale δ \odot

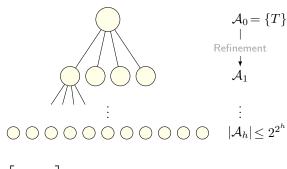
Gives hierarchical sequence of partitions of T:

 $\mathcal{A}_0 = \{T\}$

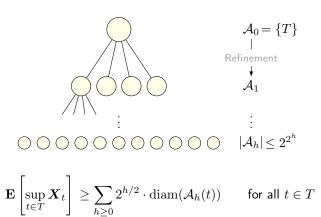








$$\mathbf{E}\left[\sup_{t\in T}oldsymbol{X}_{t}
ight]$$



Recall we have Gaussian process $\{X_t\}_{t\in T}$ with $\mathbf{E}[\sup X_t] = 1$ Thanks to rescaling assumption

Recall we have Gaussian process $\{X_t\}_{t\in T}$ with $\mathbf{E}[\sup X_t] = 1$ Thanks to rescaling assumption

Take MM Tree: $1 \ge \sum_{h \ge 0} 2^{h/2} \cdot \operatorname{diam}(\mathcal{A}_h(t))$ The h^{th} level has $\exp \exp(h)$ nodes

Recall we have Gaussian process $\{X_t\}_{t\in T}$ with $\mathbf{E}[\sup X_t] = 1$ Thanks to rescaling assumption

Take MM Tree: $1 \ge \sum_{h \ge 0} 2^{h/2} \cdot \operatorname{diam}(\mathcal{A}_h(t))$ The h^{th} level has $\exp \exp(h)$ nodes

Simple algorithm to choose parts from Talagrand's tree Terminates by depth $1/\varepsilon$, then proceed as before

Recall we have Gaussian process $\{X_t\}_{t\in T}$ with $\mathbf{E}[\sup X_t] = 1$ Thanks to rescaling assumption

Take MM Tree:
$$1 \ge \sum_{h \ge 0} 2^{h/2} \cdot \operatorname{diam}(\mathcal{A}_h(t))$$

The h^{th} level has $\exp \exp(h)$ nodes

Simple algorithm to choose parts from Talagrand's tree Terminates by depth $1/\varepsilon$, then proceed as before

See paper for full details (and more) $\ensuremath{\boxdot}$

Recap

The Main Technical Result

Sparsifying Suprema of Gaussian Processes

Some Consequences

Polytope Sparsification, Norms are (Essentially) Juntas

Elements of the Proof

Talagrand's Majorizing Measures Theorem

Closing the gap in our bounds?

Singly- versus doubly-exponential in $1/\varepsilon$?

Closing the gap in our bounds?

Singly- versus doubly-exponential in $1/\varepsilon$?

Other applications?

Suprema are everywhere

Closing the gap in our bounds?

Singly- versus doubly-exponential in $1/\varepsilon$?

Other applications?

Suprema are everywhere

Generalizations or variants?

Sparsifying suprema of Bernoulli processes? Empirical processes?

Closing the gap in our bounds?

Singly- versus doubly-exponential in $1/\varepsilon$?

Other applications?

Suprema are everywhere

Generalizations or variants?

Sparsifying suprema of Bernoulli processes? Empirical processes?

Thanks for listening! Questions? ©