
Polytope Sparsification

Shivam Nadimpalli
(MIT)

Joint work with

Anindya De
(Penn)

Ryan O’Donnell
(CMU)

Rocco Servedio
(Columbia)

Motivation from the Boolean Setting

: CNFs

∧

∨ ∨. . .

x7x3x1

size

width

f : {0, 1}n → {0, 1} ≡ AND-of-OR circuit representation

Our Focus: Approximation of CNF by “simpler” CNF

Motivation from the Boolean Setting: CNFs

∧

∨ ∨. . .

x7x3x1

size

width

f : {0, 1}n → {0, 1} ≡ AND-of-OR circuit representation

Our Focus: Approximation of CNF by “simpler” CNF

Motivation from the Boolean Setting: CNFs

∧

∨ ∨. . .

x7x3x1

size

width

f : {0, 1}n → {0, 1} ≡ AND-of-OR circuit representation

Our Focus: Approximation of CNF by “simpler” CNF

Motivation from the Boolean Setting: CNFs

∧

∨ ∨. . .

x7x3x1

size

width

f : {0, 1}n → {0, 1} ≡ AND-of-OR circuit representation

Our Focus: Approximation of CNF by “simpler” CNF

Motivation from the Boolean Setting: CNFs

∧

∨ ∨. . .

x7x3x1

size

width

f : {0, 1}n → {0, 1} ≡ AND-of-OR circuit representation

Our Focus: Approximation of CNF by “simpler” CNF

Motivation from the Boolean Setting: CNFs

∧

∨ ∨. . .

x7x3x1

size

width

f : {0, 1}n → {0, 1} ≡ AND-of-OR circuit representation

Our Focus: Approximation of CNF by “simpler” CNF

Motivation from the Boolean Setting: CNFs

∧

∨ ∨. . .

x7x3x1

size

width

f : {0, 1}n → {0, 1} ≡ AND-of-OR circuit representation

Our Focus: Approximation of CNF by “simpler” CNF

The Hamming Distance

Definition: Given f, g : {0, 1}n → {0, 1}, we define

dist(f, g) := Pr
x∼{0,1}n

[
f(x) 6= g(x)

]
.

We will write f ≈ε g if dist(f, g) ≤ ε.

The Hamming Distance

Definition: Given f, g : {0, 1}n → {0, 1}, we define

dist(f, g) := Pr
x∼{0,1}n

[
f(x) 6= g(x)

]
.

We will write f ≈ε g if dist(f, g) ≤ ε.

The Hamming Distance

Definition: Given f, g : {0, 1}n → {0, 1}, we define

dist(f, g) := Pr
x∼{0,1}n

[
f(x) 6= g(x)

]
.

We will write f ≈ε g if dist(f, g) ≤ ε.

Warmup: Small CNFs are (Essentially) Narrow

∧

∨ ∨. . .

s
≈ε

∧

∨ ∨. . .
log
(
s/ε
)

(Folklore) Fact: If f : {0, 1}n → {0, 1} is computed by a size-s
CNF, then f ≈ε g where g is a CNF of width log(s/ε).

Warmup: Small CNFs are (Essentially) Narrow

∧

∨ ∨. . .

s

≈ε
∧

∨ ∨. . .
log
(
s/ε
)

(Folklore) Fact: If f : {0, 1}n → {0, 1} is computed by a size-s
CNF, then f ≈ε g where g is a CNF of width log(s/ε).

Warmup: Small CNFs are (Essentially) Narrow

∧

∨ ∨. . .

s
≈ε

∧

∨ ∨. . .
log
(
s/ε
)

(Folklore) Fact: If f : {0, 1}n → {0, 1} is computed by a size-s
CNF, then f ≈ε g where g is a CNF of width log(s/ε).

Warmup: Small CNFs are (Essentially) Narrow

∧

∨ ∨. . .

s
≈ε

∧

∨ ∨. . .
log
(
s/ε
)

(Folklore) Fact: If f : {0, 1}n → {0, 1} is computed by a size-s
CNF, then f ≈ε g where g is a CNF of width log(s/ε).

Warmup: Small CNFs are (Essentially) Narrow

∧

∨ ∨. . .

s
≈ε

∧

∨ ∨. . .
log
(
s/ε
)

(Folklore) Fact: If f : {0, 1}n → {0, 1} is computed by a size-s
CNF, then f ≈ε g where g is a CNF of width log(s/ε).

Warmup: Small CNFs are (Essentially) Narrow

∧

∨ ∨. . .

s
≈ε

∧

∨ ∨. . .
log
(
s/ε
)

(Folklore) Fact: If f : {0, 1}n → {0, 1} is computed by a size-s
CNF, then f ≈ε g where g is a CNF of width log(s/ε).

Idea: Drop wide clauses, take union bound ,

Warmup: Small CNFs are (Essentially) Narrow

∧

∨ ∨. . .

s
≈ε

∧

∨ ∨. . .
log
(
s/ε
)

(Folklore) Fact: If f : {0, 1}n → {0, 1} is computed by a size-s
CNF, then f ≈ε g where g is a CNF of width log(s/ε).

What about a converse?

Are Narrow CNFs (Essentially) Small?

∧

∨ ∨. . .
r

≈ε
∧

∨ ∨. . .

? Naively: nO(r)

Check: Suppose r = 1, i.e. f is just an AND of Boolean literals.

If f has more than log(1/ε) literals, then f ≈ε 0.

Hope: Is every width-r CNF ≈ε size-Oε,r(1) CNF?

Are Narrow CNFs (Essentially) Small?

∧

∨ ∨. . .
r

≈ε
∧

∨ ∨. . .

? Naively: nO(r)

Check: Suppose r = 1, i.e. f is just an AND of Boolean literals.

If f has more than log(1/ε) literals, then f ≈ε 0.

Hope: Is every width-r CNF ≈ε size-Oε,r(1) CNF?

Are Narrow CNFs (Essentially) Small?

∧

∨ ∨. . .
r

≈ε

∧

∨ ∨. . .

? Naively: nO(r)

Check: Suppose r = 1, i.e. f is just an AND of Boolean literals.

If f has more than log(1/ε) literals, then f ≈ε 0.

Hope: Is every width-r CNF ≈ε size-Oε,r(1) CNF?

Are Narrow CNFs (Essentially) Small?

∧

∨ ∨. . .
r

≈ε
∧

∨ ∨. . .

?

Naively: nO(r)

Check: Suppose r = 1, i.e. f is just an AND of Boolean literals.

If f has more than log(1/ε) literals, then f ≈ε 0.

Hope: Is every width-r CNF ≈ε size-Oε,r(1) CNF?

Are Narrow CNFs (Essentially) Small?

∧

∨ ∨. . .
r

≈ε
∧

∨ ∨. . .

? Naively: nO(r)

Check: Suppose r = 1, i.e. f is just an AND of Boolean literals.

If f has more than log(1/ε) literals, then f ≈ε 0.

Hope: Is every width-r CNF ≈ε size-Oε,r(1) CNF?

Are Narrow CNFs (Essentially) Small?

∧

∨ ∨. . .
r

≈ε
∧

∨ ∨. . .

? Naively: nO(r)

Check: Suppose r = 1, i.e. f is just an AND of Boolean literals.

If f has more than log(1/ε) literals, then f ≈ε 0.

Hope: Is every width-r CNF ≈ε size-Oε,r(1) CNF?

Are Narrow CNFs (Essentially) Small?

∧

∨ ∨. . .
r

≈ε
∧

∨ ∨. . .

? Naively: nO(r)

Check: Suppose r = 1, i.e. f is just an AND of Boolean literals.
If f has more than log(1/ε) literals, then f ≈ε 0.

Hope: Is every width-r CNF ≈ε size-Oε,r(1) CNF?

Are Narrow CNFs (Essentially) Small?

∧

∨ ∨. . .
r

≈ε
∧

∨ ∨. . .

? Naively: nO(r)

Check: Suppose r = 1, i.e. f is just an AND of Boolean literals.
If f has more than log(1/ε) literals, then f ≈ε 0.

Hope: Is every width-r CNF ≈ε size-Oε,r(1) CNF?

CNF Sparsification: A Brief History

Width-r CNFs are ε-approximated by CNFs of size:

2
O
(
r2r log (1

ε)
)

[Trevisan ’05]
Covering/packing argument

(
r log

(
1
ε

))O(r) [Gopalan-Meka-Reingold ’13]
Quasi-sunflowers

(
1
ε

)O(r) [Lovett-Zhang ’18]
Switching lemma + noise stability

(
2 + 1

r log
(

1
ε

))O(r) [Lovett-Wu-Zhang ’21]
“Mild” random restrictions + noise stability

CNF Sparsification: A Brief History

Width-r CNFs are ε-approximated by CNFs of size:

2
O
(
r2r log (1

ε)
)

[Trevisan ’05]
Covering/packing argument

(
r log

(
1
ε

))O(r) [Gopalan-Meka-Reingold ’13]
Quasi-sunflowers

(
1
ε

)O(r) [Lovett-Zhang ’18]
Switching lemma + noise stability

(
2 + 1

r log
(

1
ε

))O(r) [Lovett-Wu-Zhang ’21]
“Mild” random restrictions + noise stability

CNF Sparsification: A Brief History

Width-r CNFs are ε-approximated by CNFs of size:

2
O
(
r2r log (1

ε)
)

[Trevisan ’05]
Covering/packing argument

(
r log

(
1
ε

))O(r) [Gopalan-Meka-Reingold ’13]
Quasi-sunflowers

(
1
ε

)O(r) [Lovett-Zhang ’18]
Switching lemma + noise stability

(
2 + 1

r log
(

1
ε

))O(r) [Lovett-Wu-Zhang ’21]
“Mild” random restrictions + noise stability

CNF Sparsification: A Brief History

Width-r CNFs are ε-approximated by CNFs of size:

2
O
(
r2r log (1

ε)
)

[Trevisan ’05]
Covering/packing argument

(
r log

(
1
ε

))O(r) [Gopalan-Meka-Reingold ’13]
Quasi-sunflowers

(
1
ε

)O(r) [Lovett-Zhang ’18]
Switching lemma + noise stability

(
2 + 1

r log
(

1
ε

))O(r) [Lovett-Wu-Zhang ’21]
“Mild” random restrictions + noise stability

CNF Sparsification: A Brief History

Width-r CNFs are ε-approximated by CNFs of size:

2
O
(
r2r log (1

ε)
)

[Trevisan ’05]
Covering/packing argument

(
r log

(
1
ε

))O(r) [Gopalan-Meka-Reingold ’13]
Quasi-sunflowers

(
1
ε

)O(r) [Lovett-Zhang ’18]
Switching lemma + noise stability

(
2 + 1

r log
(

1
ε

))O(r) [Lovett-Wu-Zhang ’21]
“Mild” random restrictions + noise stability

Analogue of CNF sparsification over Gaussian space?

Analogue of CNF sparsification over Gaussian space?

Analogue of CNF sparsification over Gaussian space?

Rn with N(0, 1)n

Analogue of CNF sparsification over Gaussian space?

Rn with N(0, 1)n

Narrow Clauses

≈ Narrow Halfspaces

{0, 1}n

2−r

Clause of width r

e.g. x1 ∨ x2 ←→ 01 ∗ · · · ∗

0n

r

≈ e−r2

Halfspace of width r

e.g. 1{x · v ≤ 10} for v ∈ Sn−1

Narrow Clauses

≈ Narrow Halfspaces

{0, 1}n

2−r

Clause of width r

e.g. x1 ∨ x2 ←→ 01 ∗ · · · ∗

0n

r

≈ e−r2

Halfspace of width r

e.g. 1{x · v ≤ 10} for v ∈ Sn−1

Narrow Clauses ≈ Narrow Halfspaces

{0, 1}n

2−r

Clause of width r

e.g. x1 ∨ x2 ←→ 01 ∗ · · · ∗

0n

r

≈ e−r2

Halfspace of width r

e.g. 1{x · v ≤ 10} for v ∈ Sn−1

Narrow CNFs

≈ Bounded-Width Polytopes

{0, 1}n

AND of width-r ORs

0n ≤ r

Intersection of width-r halfspaces

Narrow CNFs

≈ Bounded-Width Polytopes

{0, 1}n

AND of width-r ORs

0n ≤ r

Intersection of width-r halfspaces

Narrow CNFs ≈ Bounded-Width Polytopes

{0, 1}n

AND of width-r ORs

0n ≤ r

Intersection of width-r halfspaces

Narrow CNFs ≈ Bounded-Width Polytopes

{0, 1}n

AND of width-r ORs

0n ≤ r

Intersection of width-r halfspaces

Width-r polytope

Recall: Small CNFs are (Essentially) Narrow

∧

∨ ∨. . .

s
≈ε

∧

∨ ∨. . .
log
(
s/ε
)

(Folklore) Fact: If f : {0, 1}n → {0, 1} is computed by a size-s
CNF, then f ≈ε g where g is a CNF of width log(s/ε).

Hope: A Gaussian analogue?

Recall: Small CNFs are (Essentially) Narrow

∧

∨ ∨. . .

s
≈ε

∧

∨ ∨. . .
log
(
s/ε
)

(Folklore) Fact: If f : {0, 1}n → {0, 1} is computed by a size-s
CNF, then f ≈ε g where g is a CNF of width log(s/ε).

Hope: A Gaussian analogue?

Recall: Small CNFs are (Essentially) Narrow

∧

∨ ∨. . .

s
≈ε

∧

∨ ∨. . .
log
(
s/ε
)

(Folklore) Fact: If f : {0, 1}n → {0, 1} is computed by a size-s
CNF, then f ≈ε g where g is a CNF of width log(s/ε).

Hope: A Gaussian analogue?

The Gaussian Distance

Definition: Given K,L ⊆ Rn, we define

dist(K,L) := Pr
g∼N(0,1)n

[
K(g) 6= L(g)

]
.

We will write K ≈ε L if dist(K,L) ≤ ε.

Note: Not translation invariant!

The Gaussian Distance

Definition: Given K,L ⊆ Rn, we define

dist(K,L) := Pr
g∼N(0,1)n

[
K(g) 6= L(g)

]
.

We will write K ≈ε L if dist(K,L) ≤ ε.

Note: Not translation invariant!

The Gaussian Distance

Definition: Given K,L ⊆ Rn, we define

dist(K,L) := Pr
g∼N(0,1)n

[
K(g) 6= L(g)

]
.

We will write K ≈ε L if dist(K,L) ≤ ε.

Note: Not translation invariant!

The Gaussian Distance

Definition: Given K,L ⊆ Rn, we define

dist(K,L) := Pr
g∼N(0,1)n

[
K(g) 6= L(g)

]
.

We will write K ≈ε L if dist(K,L) ≤ ε.

Note: Not translation invariant!

The Gaussian Distance

L = H1 ∩ . . . ∩H6

K

dist(K,L) = Pr
g∼N(0,1)n

[
g ∈

]

Intersections of Few Halfspaces are (Essentially) Narrow

0n

s facets

≈ε
0n

O(1)

(Folklore) Fact: If K ⊆ Rn is an intersection of s halfspaces,
then K ≈ε L where L is a polytope of width

√
2 log(s/ε).

What about a converse?

Intersections of Few Halfspaces are (Essentially) Narrow

0n

s facets

≈ε
0n

O(1)

(Folklore) Fact: If K ⊆ Rn is an intersection of s halfspaces,
then K ≈ε L where L is a polytope of width

√
2 log(s/ε).

What about a converse?

Intersections of Few Halfspaces are (Essentially) Narrow

0n

s facets

≈ε

0n

O(1)

(Folklore) Fact: If K ⊆ Rn is an intersection of s halfspaces,
then K ≈ε L where L is a polytope of width

√
2 log(s/ε).

What about a converse?

Intersections of Few Halfspaces are (Essentially) Narrow

0n

s facets

≈ε
0n

O(1)

(Folklore) Fact: If K ⊆ Rn is an intersection of s halfspaces,
then K ≈ε L where L is a polytope of width

√
2 log(s/ε).

What about a converse?

Intersections of Few Halfspaces are (Essentially) Narrow

0n

s facets

≈ε
0n

O(1)

(Folklore) Fact: If K ⊆ Rn is an intersection of s halfspaces,
then K ≈ε L where L is a polytope of width

√
2 log(s/ε).

What about a converse?

Intersections of Few Halfspaces are (Essentially) Narrow

0n

s facets

≈ε
0n

O(1)

(Folklore) Fact: If K ⊆ Rn is an intersection of s halfspaces,
then K ≈ε L where L is a polytope of width

√
2 log(s/ε).

What about a converse?

Our Main Result: Polytope Sparsification

0n

≤ r

≈ε
0n

O(1) facets

[DNOS’25]: If K ⊆ Rn is a polytope of width r, then K ≈ε L
where L is an intersection of exp exp(r4/ε2) halfspaces.

Yields efficient learning & tolerant testing algorithms

Our Main Result: Polytope Sparsification

0n

≤ r

≈ε
0n

O(1) facets

[DNOS’25]: If K ⊆ Rn is a polytope of width r, then K ≈ε L
where L is an intersection of exp exp(r4/ε2) halfspaces.

Yields efficient learning & tolerant testing algorithms

Our Main Result: Polytope Sparsification

0n

≤ r

≈ε

0n

O(1) facets

[DNOS’25]: If K ⊆ Rn is a polytope of width r, then K ≈ε L
where L is an intersection of exp exp(r4/ε2) halfspaces.

Yields efficient learning & tolerant testing algorithms

Our Main Result: Polytope Sparsification

0n

≤ r

≈ε
0n

O(1) facets

[DNOS’25]: If K ⊆ Rn is a polytope of width r, then K ≈ε L
where L is an intersection of exp exp(r4/ε2) halfspaces.

Yields efficient learning & tolerant testing algorithms

Our Main Result: Polytope Sparsification

0n

≤ r

≈ε
0n

O(1) facets

[DNOS’25]: If K ⊆ Rn is a polytope of width r, then K ≈ε L
where L is an intersection of exp exp(r4/ε2) halfspaces.

Yields efficient learning & tolerant testing algorithms

Our Main Result: Polytope Sparsification

0n

≤ r

≈ε
0n

O(1) facets

[DNOS’25]: If K ⊆ Rn is a polytope of width r, then K ≈ε L
where L is an intersection of exp exp(r4/ε2) halfspaces.

Yields efficient learning & tolerant testing algorithms

Our Main Result: Polytope Sparsification

0n

≤ r

≈ε
0n

O(1) facets

[DNOS’25]: If K ⊆ Rn is a polytope of width r, then K ≈ε L
where L is an intersection of exp exp(r4/ε2) halfspaces.

Yields efficient learning & tolerant testing algorithms

CNF Sparsification: A Brief History

Width-r CNFs are ε-approximated by CNFs of size:

2
O
(
r2r log (1

ε)
)

[Trevisan ’05]
Covering/packing argument

(
r log

(
1
ε

))O(r) [Gopalan-Meka-Reingold ’13]
Quasi-sunflowers

(
1
ε

)O(r) [Lovett-Zhang ’18]
Switching lemma + noise stability

(
2 + 1

r log
(

1
ε

))O(r) [Lovett-Wu-Zhang ’21]
“Mild” random restrictions + noise stability

Our Main Result

0n

≤ r

≈ε
0n

O(1) facets

[DNOS’25]: If K ⊆ Rn is a polytope of width r, then K ≈ε L
where L is an intersection of exp exp(r4/ε2).

Lower Bound: exp(1/ε) halfspaces necessary

Our Main Result

0n

≤ r

≈ε
0n

O(1) facets

[DNOS’25]: If K ⊆ Rn is a polytope of width r, then K ≈ε L
where L is an intersection of exp exp(r4/ε2).

Lower Bound: exp(1/ε) halfspaces necessary

From Polytopes to Suprema

0n

t

Ht

Ht := {x ∈ Rn : 〈x, t〉 ≤ 1}

x ∈ Ht ⇐⇒ 〈x, t〉 ≤ 1

0n

K

K =
⋂
t∈T

Ht

x ∈ K ⇐⇒ sup
t∈T
〈x, t〉 ≤ 1

From Polytopes to Suprema

0n

t

Ht

Ht := {x ∈ Rn : 〈x, t〉 ≤ 1}

x ∈ Ht ⇐⇒ 〈x, t〉 ≤ 1

0n

K

K =
⋂
t∈T

Ht

x ∈ K ⇐⇒ sup
t∈T
〈x, t〉 ≤ 1

From Polytopes to Suprema

0n

t

Ht

Ht := {x ∈ Rn : 〈x, t〉 ≤ 1}

x ∈ Ht ⇐⇒ 〈x, t〉 ≤ 1

0n

K

K =
⋂
t∈T

Ht

x ∈ K ⇐⇒ sup
t∈T
〈x, t〉 ≤ 1

From Polytopes to Suprema

0n

t

Ht

Ht := {x ∈ Rn : 〈x, t〉 ≤ 1}

x ∈ Ht ⇐⇒ 〈x, t〉 ≤ 1

0n

K

K =
⋂
t∈T

Ht

x ∈ K ⇐⇒ sup
t∈T
〈x, t〉 ≤ 1

From Polytopes to Suprema

0n

t

Ht

Ht := {x ∈ Rn : 〈x, t〉 ≤ 1}

x ∈ Ht ⇐⇒ 〈x, t〉 ≤ 1

0n

K

K =
⋂
t∈T

Ht

x ∈ K ⇐⇒ sup
t∈T
〈x, t〉 ≤ 1

From Polytopes to Suprema

0n

t

Ht

Ht := {x ∈ Rn : 〈x, t〉 ≤ 1}

x ∈ Ht ⇐⇒ 〈x, t〉 ≤ 1

0n

K

K =
⋂
t∈T

Ht

x ∈ K ⇐⇒ sup
t∈T
〈x, t〉 ≤ 1

From Polytopes to Suprema

0n

t

Ht

Ht := {x ∈ Rn : 〈x, t〉 ≤ 1}

x ∈ Ht ⇐⇒ 〈x, t〉 ≤ 1

0n

K

K =
⋂
t∈T

Ht

x ∈ K ⇐⇒ sup
t∈T
〈x, t〉 ≤ 1

Gaussian Processes

Definition: Let T ⊆ Rn and x ∼ N(0, 1)n. We will write
{Xt}t∈T where

Xt := 〈x, t〉

for the (canonical) Gaussian process on T .

Our Focus: sup
t∈T

Xt

Compressed sensing, metric embeddings, random matrix theory, . . .

Gaussian Processes

Definition: Let T ⊆ Rn and x ∼ N(0, 1)n. We will write
{Xt}t∈T where

Xt := 〈x, t〉

for the (canonical) Gaussian process on T .

Our Focus: sup
t∈T

Xt

Compressed sensing, metric embeddings, random matrix theory, . . .

Gaussian Processes

Definition: Let T ⊆ Rn and x ∼ N(0, 1)n. We will write
{Xt}t∈T where

Xt := 〈x, t〉

for the (canonical) Gaussian process on T .

Our Focus: sup
t∈T

Xt

Compressed sensing, metric embeddings, random matrix theory, . . .

Gaussian Processes

Definition: Let T ⊆ Rn and x ∼ N(0, 1)n. We will write
{Xt}t∈T where

Xt := 〈x, t〉

for the (canonical) Gaussian process on T .

Our Focus: sup
t∈T

Xt

Compressed sensing, metric embeddings, random matrix theory, . . .

Example 1

e1

en

e2

0n

T = {e1, . . . , en}

E

[
sup
t

Xt

]
= E

xi∼N(0,1)

[
max

1≤i≤n
xi

]
�
√

log n

Example 1

e1

en

e2

0n

T = {e1, . . . , en}

E

[
sup
t

Xt

]
= E

xi∼N(0,1)

[
max

1≤i≤n
xi

]
�
√

log n

Example 1

e1

en

e2

0n

T = {e1, . . . , en}

E

[
sup
t

Xt

]

= E
xi∼N(0,1)

[
max

1≤i≤n
xi

]
�
√

log n

Example 1

e1

en

e2

0n

T = {e1, . . . , en}

E

[
sup
t

Xt

]
= E

xi∼N(0,1)

[
max

1≤i≤n
xi

]

�
√

log n

Example 1

e1

en

e2

0n

T = {e1, . . . , en}

E

[
sup
t

Xt

]
= E

xi∼N(0,1)

[
max

1≤i≤n
xi

]
�
√
log n

Example 2

Rd

0n

T =

{
x :

d∑
i=1

x2
1 + . . . x2

d ≤ 1 and xd+1 = · · · = xn = 0

}

E

[
sup
t

Xt

]
= E

x∼N(0,1)d

[
‖x‖2

]
�
√
d

Example 2

Rd

0n

T =

{
x :

d∑
i=1

x2
1 + . . . x2

d ≤ 1 and xd+1 = · · · = xn = 0

}

E

[
sup
t

Xt

]
= E

x∼N(0,1)d

[
‖x‖2

]
�
√
d

Example 2

Rd

0n

T =

{
x :

d∑
i=1

x2
1 + . . . x2

d ≤ 1 and xd+1 = · · · = xn = 0

}

E

[
sup
t

Xt

]

= E
x∼N(0,1)d

[
‖x‖2

]
�
√
d

Example 2

Rd

0n

T =

{
x :

d∑
i=1

x2
1 + . . . x2

d ≤ 1 and xd+1 = · · · = xn = 0

}

E

[
sup
t

Xt

]
= E

x∼N(0,1)d

[
‖x‖2

]

�
√
d

Example 2

Rd

0n

T =

{
x :

d∑
i=1

x2
1 + . . . x2

d ≤ 1 and xd+1 = · · · = xn = 0

}

E

[
sup
t

Xt

]
= E

x∼N(0,1)d

[
‖x‖2

]
�
√
d

Gaussian Processes

Definition: Let T ⊆ Rn and x ∼ N(0, 1)n. We will write
{Xt}t∈T where

Xt := 〈x, t〉

for the (canonical) Gaussian process on T .

Informally: Complexity of T determines E
[
supt∈T Xt

]

Gaussian Processes

Definition: Let T ⊆ Rn and x ∼ N(0, 1)n. We will write
{Xt}t∈T where

Xt := 〈x, t〉

for the (canonical) Gaussian process on T .

Informally: Complexity of T determines E
[
supt∈T Xt

]

Sparsifying Gaussian Suprema

[DNOS’25]: Let T ⊆ Rn and let {Xt}t∈T be the associated Gaussian
process.

For any ε ∈ (0, 0.5), there is a subset S ⊆ T and constants
{cs ≥ 0}s∈S such that

E

∣∣∣∣∣supt∈T
Xt − sup

s∈S
{Xs + cs}

∣∣∣∣∣
 ≤ εE[sup

t∈T
Xt

]
,

and furthermore |S| ≤ exp exp(1/ε).

Note: Shifts cs are necessary

Sparsifying Gaussian Suprema

[DNOS’25]: Let T ⊆ Rn and let {Xt}t∈T be the associated Gaussian
process.

For any ε ∈ (0, 0.5), there is a subset S ⊆ T and constants
{cs ≥ 0}s∈S such that

E

∣∣∣∣∣supt∈T
Xt − sup

s∈S
{Xs + cs}

∣∣∣∣∣
 ≤ εE[sup

t∈T
Xt

]
,

and furthermore |S| ≤ exp exp(1/ε).

Note: Shifts cs are necessary

Sparsifying Gaussian Suprema

[DNOS’25]: Let T ⊆ Rn and let {Xt}t∈T be the associated Gaussian
process. For any ε ∈ (0, 0.5),

there is a subset S ⊆ T and constants
{cs ≥ 0}s∈S such that

E

∣∣∣∣∣supt∈T
Xt − sup

s∈S
{Xs + cs}

∣∣∣∣∣
 ≤ εE[sup

t∈T
Xt

]
,

and furthermore |S| ≤ exp exp(1/ε).

Note: Shifts cs are necessary

Sparsifying Gaussian Suprema

[DNOS’25]: Let T ⊆ Rn and let {Xt}t∈T be the associated Gaussian
process. For any ε ∈ (0, 0.5), there is a subset S ⊆ T

and constants
{cs ≥ 0}s∈S such that

E

∣∣∣∣∣supt∈T
Xt − sup

s∈S
{Xs + cs}

∣∣∣∣∣
 ≤ εE[sup

t∈T
Xt

]
,

and furthermore |S| ≤ exp exp(1/ε).

Note: Shifts cs are necessary

Sparsifying Gaussian Suprema

[DNOS’25]: Let T ⊆ Rn and let {Xt}t∈T be the associated Gaussian
process. For any ε ∈ (0, 0.5), there is a subset S ⊆ T and constants
{cs ≥ 0}s∈S

such that

E

∣∣∣∣∣supt∈T
Xt − sup

s∈S
{Xs + cs}

∣∣∣∣∣
 ≤ εE[sup

t∈T
Xt

]
,

and furthermore |S| ≤ exp exp(1/ε).

Note: Shifts cs are necessary

Sparsifying Gaussian Suprema

[DNOS’25]: Let T ⊆ Rn and let {Xt}t∈T be the associated Gaussian
process. For any ε ∈ (0, 0.5), there is a subset S ⊆ T and constants
{cs ≥ 0}s∈S such that

E

∣∣∣∣∣supt∈T
Xt − sup

s∈S
{Xs + cs}

∣∣∣∣∣
 ≤ εE[sup

t∈T
Xt

]
,

and furthermore |S| ≤ exp exp(1/ε).

Note: Shifts cs are necessary

Sparsifying Gaussian Suprema

[DNOS’25]: Let T ⊆ Rn and let {Xt}t∈T be the associated Gaussian
process. For any ε ∈ (0, 0.5), there is a subset S ⊆ T and constants
{cs ≥ 0}s∈S such that

E

∣∣∣∣∣supt∈T
Xt − sup

s∈S
{Xs + cs}

∣∣∣∣∣
 ≤ εE[sup

t∈T
Xt

]
,

and furthermore |S| ≤ exp exp(1/ε).

Note: Shifts cs are necessary

Sparsifying Gaussian Suprema

[DNOS’25]: Let T ⊆ Rn and let {Xt}t∈T be the associated Gaussian
process. For any ε ∈ (0, 0.5), there is a subset S ⊆ T and constants
{cs ≥ 0}s∈S such that

E

∣∣∣∣∣supt∈T
Xt − sup

s∈S
{Xs + cs}

∣∣∣∣∣
 ≤ εE[sup

t∈T
Xt

]
,

and furthermore |S| ≤ exp exp(1/ε).

Note: Shifts cs are necessary

Application 1: Polytope Sparsification

0n

≤ r

≈ε
0n

O(1) facets

[DNOS’25]: If K ⊆ Rn is a polytope of width r, then K ≈ε L
where L is an intersection of exp exp(r4/ε2).

Application 1: Polytope Sparsification

0n

≤ r

≈ε
0n

O(1) facets

[DNOS’25]: If K ⊆ Rn is a polytope of width r, then K ≈ε L
where L is an intersection of exp exp(r4/ε2).

Application 1: Polytope Sparsification

0n

t

Ht := {x ∈ Rn : 〈x, t〉 ≤ 1}

x ∈ Ht ⇐⇒ 〈x, t〉 ≤ 1

0n

≤ r

K =
⋂
t∈T

Ht

x ∈ K ⇐⇒ sup
t∈T
〈x, t〉 ≤ 1

Anti-concentration: K ≈ε L

Application 1: Polytope Sparsification

Small width =⇒ E

[
sup
t∈T

Xt

]
= O(1)

Sparsification + Markov’s Inequality

sup
t∈T

Xt = sup
s∈S
{Xs + cs} ± ε w.h.p.

Obtain a Polytope

x ∈ L

⇐⇒ sup
s∈S
{〈x, s〉+ cs}≤ 1

0n

≤ r

K =
⋂
t∈T

Ht

x ∈ K ⇐⇒ sup
t∈T
〈x, t〉 ≤ 1

Anti-concentration: K ≈ε L

Application 1: Polytope Sparsification

Small width

=⇒ E

[
sup
t∈T

Xt

]
= O(1)

Sparsification + Markov’s Inequality

sup
t∈T

Xt = sup
s∈S
{Xs + cs} ± ε w.h.p.

Obtain a Polytope

x ∈ L

⇐⇒ sup
s∈S
{〈x, s〉+ cs}≤ 1

0n

≤ r

K =
⋂
t∈T

Ht

x ∈ K ⇐⇒ sup
t∈T
〈x, t〉 ≤ 1

Anti-concentration: K ≈ε L

Application 1: Polytope Sparsification

Small width =⇒ E

[
sup
t∈T

Xt

]
= O(1)

Sparsification + Markov’s Inequality

sup
t∈T

Xt = sup
s∈S
{Xs + cs} ± ε w.h.p.

Obtain a Polytope

x ∈ L

⇐⇒ sup
s∈S
{〈x, s〉+ cs}≤ 1

0n

≤ r

K =
⋂
t∈T

Ht

x ∈ K ⇐⇒ sup
t∈T
〈x, t〉 ≤ 1

Anti-concentration: K ≈ε L

Application 1: Polytope Sparsification

Small width =⇒ E

[
sup
t∈T

Xt

]
= O(1)

Sparsification + Markov’s Inequality

sup
t∈T

Xt = sup
s∈S
{Xs + cs} ± ε w.h.p.

Obtain a Polytope

x ∈ L

⇐⇒ sup
s∈S
{〈x, s〉+ cs}≤ 1

0n

≤ r

K =
⋂
t∈T

Ht

x ∈ K ⇐⇒ sup
t∈T
〈x, t〉 ≤ 1

Anti-concentration: K ≈ε L

Application 1: Polytope Sparsification

Small width =⇒ E

[
sup
t∈T

Xt

]
= O(1)

Sparsification + Markov’s Inequality

sup
t∈T

Xt = sup
s∈S
{Xs + cs} ± ε w.h.p.

Obtain a Polytope

x ∈ L

⇐⇒ sup
s∈S
{〈x, s〉+ cs}≤ 1

0n

≤ r

K =
⋂
t∈T

Ht

x ∈ K ⇐⇒ sup
t∈T
〈x, t〉 ≤ 1

Anti-concentration: K ≈ε L

Application 1: Polytope Sparsification

Small width =⇒ E

[
sup
t∈T

Xt

]
= O(1)

Sparsification + Markov’s Inequality

sup
t∈T

Xt = sup
s∈S
{Xs + cs} ± ε w.h.p.

Obtain a Polytope

x ∈ L

⇐⇒ sup
s∈S
{〈x, s〉+ cs}≤ 1

0n

≤ r

K =
⋂
t∈T

Ht

x ∈ K ⇐⇒ sup
t∈T
〈x, t〉 ≤ 1

Anti-concentration: K ≈ε L

Application 1: Polytope Sparsification

Small width =⇒ E

[
sup
t∈T

Xt

]
= O(1)

Sparsification + Markov’s Inequality

sup
t∈T

Xt = sup
s∈S
{Xs + cs} ± ε w.h.p.

Obtain a Polytope

x ∈ L

⇐⇒ sup
s∈S
{〈x, s〉+ cs}≤ 1

0n

≤ r

K =
⋂
t∈T

Ht

x ∈ K ⇐⇒ sup
t∈T
〈x, t〉 ≤ 1

Anti-concentration: K ≈ε L

Application 1: Polytope Sparsification

Small width =⇒ E

[
sup
t∈T

Xt

]
= O(1)

Sparsification + Markov’s Inequality

sup
t∈T

Xt = sup
s∈S
{Xs + cs} ± ε w.h.p.

Obtain a Polytope

x ∈ L ⇐⇒ sup
s∈S
{〈x, s〉+ cs}≤ 1

0n

≤ r

K =
⋂
t∈T

Ht

x ∈ K ⇐⇒ sup
t∈T
〈x, t〉 ≤ 1

Anti-concentration: K ≈ε L

Application 1: Polytope Sparsification

Small width =⇒ E

[
sup
t∈T

Xt

]
= O(1)

Sparsification + Markov’s Inequality

sup
t∈T

Xt = sup
s∈S
{Xs + cs} ± ε w.h.p.

Obtain a Polytope

x ∈ L ⇐⇒ sup
s∈S
{〈x, s〉+ cs}≤ 1

0n

≤ r

K =
⋂
t∈T

Ht

x ∈ K ⇐⇒ sup
t∈T
〈x, t〉 ≤ 1

Anti-concentration: K ≈ε L

Application 1: Polytope Sparsification

Small width =⇒ E

[
sup
t∈T

Xt

]
= O(1)

Sparsification + Markov’s Inequality

sup
t∈T

Xt = sup
s∈S
{Xs + cs} ± ε w.h.p.

Obtain a Polytope

x ∈ L ⇐⇒ sup
s∈S
{〈x, s〉+ cs}≤ 1

0n

≤ r

K =
⋂
t∈T

Ht

x ∈ K ⇐⇒ sup
t∈T
〈x, t〉 ≤ 1

Anti-concentration: K ≈ε L

Back to Our Main Result

[DNOS’25]: Let T ⊆ Rn and let {Xt}t∈T be the associated Gaussian
process. For any ε ∈ (0, 0.5), there is a subset S ⊆ T and constants
{cs ≥ 0}s∈S such that

E

∣∣∣∣∣supt∈T
Xt − sup

s∈S
{Xs + cs}

∣∣∣∣∣
 ≤ εE[sup

t∈T
Xt

]
,

and furthermore |S| ≤ exp exp(1/ε).

Back to Our Main Result

[DNOS’25]: Let T ⊆ Rn and let {Xt}t∈T be the associated Gaussian
process. For any ε ∈ (0, 0.5), there is a subset S ⊆ T and constants
{cs ≥ 0}s∈S such that

E

∣∣∣∣∣supt∈T
Xt − sup

s∈S
{Xs + cs}

∣∣∣∣∣
 ≤ εE[sup

t∈T
Xt

]
,

and furthermore |S| ≤ exp exp(1/ε).

Application 2: Norms are Gaussian Juntas

[DNOS’25]:

Suppose φ : Rn → R is a norm. For any ε ∈ (0, 0.5), there
exists a norm ψ : Rn → R such that

Pr
x∼N(0,1)n

[
1− ε ≤ φ(x)

ψ(x)
≤ 1 + ε

]
≥ 1− ε ,

and furthermore ψ only depends on exp exp(1/ε3) dimensions.

Idea: φ(x) := sup
t∈T
〈x, t〉 for symmetric T

Application 2: Norms are Gaussian Juntas

[DNOS’25]:

Suppose φ : Rn → R is a norm. For any ε ∈ (0, 0.5), there
exists a norm ψ : Rn → R such that

Pr
x∼N(0,1)n

[
1− ε ≤ φ(x)

ψ(x)
≤ 1 + ε

]
≥ 1− ε ,

and furthermore ψ only depends on exp exp(1/ε3) dimensions.

Idea: φ(x) := sup
t∈T
〈x, t〉 for symmetric T

Application 2: Norms are Gaussian Juntas

[DNOS’25]: Suppose φ : Rn → R is a norm.

For any ε ∈ (0, 0.5), there
exists a norm ψ : Rn → R such that

Pr
x∼N(0,1)n

[
1− ε ≤ φ(x)

ψ(x)
≤ 1 + ε

]
≥ 1− ε ,

and furthermore ψ only depends on exp exp(1/ε3) dimensions.

Idea: φ(x) := sup
t∈T
〈x, t〉 for symmetric T

Application 2: Norms are Gaussian Juntas

[DNOS’25]: Suppose φ : Rn → R is a norm. For any ε ∈ (0, 0.5), there
exists a norm ψ : Rn → R such that

Pr
x∼N(0,1)n

[
1− ε ≤ φ(x)

ψ(x)
≤ 1 + ε

]
≥ 1− ε ,

and furthermore ψ only depends on exp exp(1/ε3) dimensions.

Idea: φ(x) := sup
t∈T
〈x, t〉 for symmetric T

Application 2: Norms are Gaussian Juntas

[DNOS’25]: Suppose φ : Rn → R is a norm. For any ε ∈ (0, 0.5), there
exists a norm ψ : Rn → R such that

Pr
x∼N(0,1)n

[
1− ε ≤ φ(x)

ψ(x)
≤ 1 + ε

]
≥ 1− ε ,

and furthermore ψ only depends on exp exp(1/ε3) dimensions.

Idea: φ(x) := sup
t∈T
〈x, t〉 for symmetric T

Application 2: Norms are Gaussian Juntas

[DNOS’25]: Suppose φ : Rn → R is a norm. For any ε ∈ (0, 0.5), there
exists a norm ψ : Rn → R such that

Pr
x∼N(0,1)n

[
1− ε ≤ φ(x)

ψ(x)
≤ 1 + ε

]
≥ 1− ε ,

and furthermore ψ only depends on exp exp(1/ε3) dimensions.

Idea: φ(x) := sup
t∈T
〈x, t〉 for symmetric T

Application 2: Norms are Gaussian Juntas

[DNOS’25]: Suppose φ : Rn → R is a norm. For any ε ∈ (0, 0.5), there
exists a norm ψ : Rn → R such that

Pr
x∼N(0,1)n

[
1− ε ≤ φ(x)

ψ(x)
≤ 1 + ε

]
≥ 1− ε ,

and furthermore ψ only depends on exp exp(1/ε3) dimensions.

Idea: φ(x) := sup
t∈T
〈x, t〉 for symmetric T

Recap

& Rest of Talk

The Main Technical Result
Sparsifying Suprema of Gaussian Processes

Some Consequences
Polytope Sparsification, Norms are (Essentially) Juntas

Elements of the Proof
Talagrand’s Majorizing Measures Theorem

Recap & Rest of Talk

The Main Technical Result
Sparsifying Suprema of Gaussian Processes

Some Consequences
Polytope Sparsification, Norms are (Essentially) Juntas

Elements of the Proof
Talagrand’s Majorizing Measures Theorem

Our Main Theorem

[DNOS’25]: Let T ⊆ Rn. For any ε ∈ (0, 0.5), there is a subset S ⊆ T
and constants {cs ≥ 0}s∈S such that

E

∣∣∣∣∣supt∈T
Xt − sup

s∈S
{Xs + cs}

∣∣∣∣∣
 ≤ εE[sup

t∈T
Xt

]
,

and furthermore |S| ≤ exp exp(1/ε).

First: Rescale so that E[supt∈T Xt] = 1

Our Main Theorem

[DNOS’25]: Let T ⊆ Rn. For any ε ∈ (0, 0.5), there is a subset S ⊆ T
and constants {cs ≥ 0}s∈S such that

E

∣∣∣∣∣supt∈T
Xt − sup

s∈S
{Xs + cs}

∣∣∣∣∣
 ≤ εE[sup

t∈T
Xt

]
,

and furthermore |S| ≤ exp exp(1/ε).

First: Rescale so that E[supt∈T Xt] = 1

Our Main Theorem

[DNOS’25]: Let T ⊆ Rn with E[supt∈T Xt] = 1. For any ε ∈ (0, 0.5),
there is a subset S ⊆ T and constants {cs ≥ 0}s∈S such that

E

∣∣∣∣∣supt∈T
Xt − sup

s∈S
{Xs + cs}

∣∣∣∣∣
 ≤ ε ,

and furthermore |S| ≤ exp exp(1/ε).

Natural Idea: Cluster the points in T

Our Main Theorem

[DNOS’25]: Let T ⊆ Rn with E[supt∈T Xt] = 1. For any ε ∈ (0, 0.5),
there is a subset S ⊆ T and constants {cs ≥ 0}s∈S such that

E

∣∣∣∣∣supt∈T
Xt − sup

s∈S
{Xs + cs}

∣∣∣∣∣
 ≤ ε ,

and furthermore |S| ≤ exp exp(1/ε).

Natural Idea: Cluster the points in T

Attempt 1: A δ-Cover

T

δ

Suppose M clusters: C1, . . . , CM . Pick rep. ri from each Ci.

Attempt 1: A δ-Cover

T

δ

Suppose M clusters: C1, . . . , CM . Pick rep. ri from each Ci.

Attempt 1: A δ-Cover

T

δ

Suppose M clusters: C1, . . . , CM . Pick rep. ri from each Ci.

Attempt 1: A δ-Cover

T

δ

Suppose M clusters: C1, . . . , CM .

Pick rep. ri from each Ci.

Attempt 1: A δ-Cover

T

δ

Suppose M clusters: C1, . . . , CM . Pick rep. ri from each Ci.

Attempt 1: A δ-Cover

T

δ

Suppose M clusters: C1, . . . , CM . Pick rep. ri from each Ci.

Approximation Within a Single δ-Ball

Ci
ri

sup
t∈Ci

〈x, t〉 = 〈x, ri〉+ sup
t∈Ci

〈x, t− ri〉

Super-concentrated!

Take ci := E

[
sup
t∈Ci

〈x, t− ri〉

]
, have E

∣∣∣∣∣supt∈Ci

〈x, t〉 − 〈x, ri〉 − ci

∣∣∣∣∣
 . δ

(Consequence of Lipschitz concentration of Gaussians)

Approximation Within a Single δ-Ball

Ci
ri

sup
t∈Ci

〈x, t〉 = 〈x, ri〉+ sup
t∈Ci

〈x, t− ri〉

Super-concentrated!

Take ci := E

[
sup
t∈Ci

〈x, t− ri〉

]
, have E

∣∣∣∣∣supt∈Ci

〈x, t〉 − 〈x, ri〉 − ci

∣∣∣∣∣
 . δ

(Consequence of Lipschitz concentration of Gaussians)

Approximation Within a Single δ-Ball

Ci
ri

sup
t∈Ci

〈x, t〉

= 〈x, ri〉+ sup
t∈Ci

〈x, t− ri〉

Super-concentrated!

Take ci := E

[
sup
t∈Ci

〈x, t− ri〉

]
, have E

∣∣∣∣∣supt∈Ci

〈x, t〉 − 〈x, ri〉 − ci

∣∣∣∣∣
 . δ

(Consequence of Lipschitz concentration of Gaussians)

Approximation Within a Single δ-Ball

Ci
ri

sup
t∈Ci

〈x, t〉 = 〈x, ri〉+ sup
t∈Ci

〈x, t− ri〉

Super-concentrated!

Take ci := E

[
sup
t∈Ci

〈x, t− ri〉

]
, have E

∣∣∣∣∣supt∈Ci

〈x, t〉 − 〈x, ri〉 − ci

∣∣∣∣∣
 . δ

(Consequence of Lipschitz concentration of Gaussians)

Approximation Within a Single δ-Ball

Ci
ri

sup
t∈Ci

〈x, t〉 = 〈x, ri〉+ sup
t∈Ci

〈x, t− ri〉

Super-concentrated!

Take ci := E

[
sup
t∈Ci

〈x, t− ri〉

]
, have E

∣∣∣∣∣supt∈Ci

〈x, t〉 − 〈x, ri〉 − ci

∣∣∣∣∣
 . δ

(Consequence of Lipschitz concentration of Gaussians)

Approximation Within a Single δ-Ball

Ci
ri

sup
t∈Ci

〈x, t〉 = 〈x, ri〉+ sup
t∈Ci

〈x, t− ri〉

Super-concentrated!

Take ci := E

[
sup
t∈Ci

〈x, t− ri〉

]
,

have E

∣∣∣∣∣supt∈Ci

〈x, t〉 − 〈x, ri〉 − ci

∣∣∣∣∣
 . δ

(Consequence of Lipschitz concentration of Gaussians)

Approximation Within a Single δ-Ball

Ci
ri

sup
t∈Ci

〈x, t〉 = 〈x, ri〉+ sup
t∈Ci

〈x, t− ri〉

Super-concentrated!

Take ci := E

[
sup
t∈Ci

〈x, t− ri〉

]
, have E

∣∣∣∣∣supt∈Ci

〈x, t〉 − 〈x, ri〉 − ci

∣∣∣∣∣
 . δ

(Consequence of Lipschitz concentration of Gaussians)

Approximation Within a Single δ-Ball

Ci
ri

sup
t∈Ci

〈x, t〉 = 〈x, ri〉+ sup
t∈Ci

〈x, t− ri〉

Super-concentrated!

Take ci := E

[
sup
t∈Ci

〈x, t− ri〉

]
, have E

∣∣∣∣∣supt∈Ci

〈x, t〉 − 〈x, ri〉 − ci

∣∣∣∣∣
 . δ

(Consequence of Lipschitz concentration of Gaussians)

Approximation Across M Clusters

T

Within each cluster Ci:

sup
t∈Ci

〈x, t〉 ≈δ 〈x, ri〉+ ci

Natural Idea: Approximate sup
t
〈x, t〉 by sup

i∈[M]

{〈x, ri〉+ ci}

Size =M Error� δ
√
logM

Approximation Across M Clusters

T

Within each cluster Ci:

sup
t∈Ci

〈x, t〉 ≈δ 〈x, ri〉+ ci

Natural Idea: Approximate sup
t
〈x, t〉 by sup

i∈[M]

{〈x, ri〉+ ci}

Size =M Error� δ
√
logM

Approximation Across M Clusters

T

Within each cluster Ci:

sup
t∈Ci

〈x, t〉 ≈δ 〈x, ri〉+ ci

Natural Idea: Approximate sup
t
〈x, t〉 by sup

i∈[M]

{〈x, ri〉+ ci}

Size =M

Error� δ
√
logM

Approximation Across M Clusters

T

Within each cluster Ci:

sup
t∈Ci

〈x, t〉 ≈δ 〈x, ri〉+ ci

Natural Idea: Approximate sup
t
〈x, t〉 by sup

i∈[M]

{〈x, ri〉+ ci}

Size =M Error

� δ
√
logM

Approximation Across M Clusters

T

Within each cluster Ci:

sup
t∈Ci

〈x, t〉 ≈δ 〈x, ri〉+ ci

Natural Idea: Approximate sup
t
〈x, t〉 by sup

i∈[M]

{〈x, ri〉+ ci}

Size =M Error� δ
√
logM

Error Analysis: Controlling δ
√
logM

If M = 2o(1/δ
2), then δ

√
logM → 0 as δ → 0

Set δ as an appropriate polynomial of ε ,

If M = 2ω(1/δ2),

Error Analysis: Controlling δ
√
logM

If M = 2o(1/δ
2),

then δ
√
logM → 0 as δ → 0

Set δ as an appropriate polynomial of ε ,

If M = 2ω(1/δ2),

Error Analysis: Controlling δ
√
logM

If M = 2o(1/δ
2), then δ

√
logM → 0 as δ → 0

Set δ as an appropriate polynomial of ε ,

If M = 2ω(1/δ2),

Error Analysis: Controlling δ
√
logM

If M = 2o(1/δ
2), then δ

√
logM → 0 as δ → 0

Set δ as an appropriate polynomial of ε ,

If M = 2ω(1/δ2),

Sudakov Minoration

Theorem: If smallest δ net for T ⊆ Rn has size M , then

E
x∼N(0,1)n

[
sup
t∈T
〈x, t〉

]
& δ
√

logM.

Recall: We rescaled to ensure LHS = 1

Sudakov Minoration

Theorem: If smallest δ net for T ⊆ Rn has size M , then

E
x∼N(0,1)n

[
sup
t∈T
〈x, t〉

]
& δ
√

logM.

Recall: We rescaled to ensure LHS = 1

Error Analysis: Controlling δ
√
logM

If M = 2o(1/δ
2), then δ

√
logM → 0 as δ → 0

Set δ as an appropriate polynomial of ε ,

If M = 2ω(1/δ2),

then contradiction
Thanks to Sudakov minoration

If M = 2Θ(1/δ2) . . . we’re stuck?

Issue: Gaussian processes s.t. the best δ-covering
of the set has size 2Θ(1/δ2) at every fixed scale δ /

Error Analysis: Controlling δ
√
logM

If M = 2o(1/δ
2), then δ

√
logM → 0 as δ → 0

Set δ as an appropriate polynomial of ε ,

If M = 2ω(1/δ2), then contradiction
Thanks to Sudakov minoration

If M = 2Θ(1/δ2) . . . we’re stuck?

Issue: Gaussian processes s.t. the best δ-covering
of the set has size 2Θ(1/δ2) at every fixed scale δ /

Error Analysis: Controlling δ
√
logM

If M = 2o(1/δ
2), then δ

√
logM → 0 as δ → 0

Set δ as an appropriate polynomial of ε ,

If M = 2ω(1/δ2), then contradiction
Thanks to Sudakov minoration

If M = 2Θ(1/δ2) . . .

we’re stuck?

Issue: Gaussian processes s.t. the best δ-covering
of the set has size 2Θ(1/δ2) at every fixed scale δ /

Error Analysis: Controlling δ
√
logM

If M = 2o(1/δ
2), then δ

√
logM → 0 as δ → 0

Set δ as an appropriate polynomial of ε ,

If M = 2ω(1/δ2), then contradiction
Thanks to Sudakov minoration

If M = 2Θ(1/δ2) . . . we’re stuck?

Issue: Gaussian processes s.t. the best δ-covering
of the set has size 2Θ(1/δ2) at every fixed scale δ /

Error Analysis: Controlling δ
√
logM

If M = 2o(1/δ
2), then δ

√
logM → 0 as δ → 0

Set δ as an appropriate polynomial of ε ,

If M = 2ω(1/δ2), then contradiction
Thanks to Sudakov minoration

If M = 2Θ(1/δ2) . . . we’re stuck?

Issue: Gaussian processes s.t. the best δ-covering
of the set has size 2Θ(1/δ2) at every fixed scale δ /

Talagrand’s Majorizing Measures Theorem

Gives hierarchical sequence of partitions of T :

...
...

A0= {T}

A1

Refinement

|Ah|≤ 22h

E

[
sup
t∈T

Xt

]
≥
∑
h≥0

2h/2 · diam(Ah(t)) for all t ∈ T

Talagrand’s Majorizing Measures Theorem

Gives hierarchical sequence of partitions of T :

...
...

A0= {T}

A1

Refinement

|Ah|≤ 22h

E

[
sup
t∈T

Xt

]
≥
∑
h≥0

2h/2 · diam(Ah(t)) for all t ∈ T

Talagrand’s Majorizing Measures Theorem

Gives hierarchical sequence of partitions of T :

...
...

A0= {T}

A1

Refinement

|Ah|≤ 22h

E

[
sup
t∈T

Xt

]
≥
∑
h≥0

2h/2 · diam(Ah(t)) for all t ∈ T

Talagrand’s Majorizing Measures Theorem

Gives hierarchical sequence of partitions of T :

...
...

A0= {T}

A1

Refinement

|Ah|≤ 22h

E

[
sup
t∈T

Xt

]
≥
∑
h≥0

2h/2 · diam(Ah(t)) for all t ∈ T

Talagrand’s Majorizing Measures Theorem

Gives hierarchical sequence of partitions of T :

...
...

A0= {T}

A1

Refinement

|Ah|≤ 22h

E

[
sup
t∈T

Xt

]
≥
∑
h≥0

2h/2 · diam(Ah(t)) for all t ∈ T

Talagrand’s Majorizing Measures Theorem

Gives hierarchical sequence of partitions of T :

...
...

A0= {T}

A1

Refinement

|Ah|≤ 22h

E

[
sup
t∈T

Xt

]

≥
∑
h≥0

2h/2 · diam(Ah(t)) for all t ∈ T

Talagrand’s Majorizing Measures Theorem

Gives hierarchical sequence of partitions of T :

...
...

A0= {T}

A1

Refinement

|Ah|≤ 22h

E

[
sup
t∈T

Xt

]
≥
∑
h≥0

2h/2 · diam(Ah(t)) for all t ∈ T

Our Proof from 30,000 Feet

Recall we have Gaussian process {Xt}t∈T with E[supXt] = 1

Thanks to rescaling assumption

Take MM Tree: 1 ≥
∑
h≥0 2

h/2 · diam(Ah(t))
The hth level has exp exp(h) nodes

Simple algorithm to choose parts from Talagrand’s tree
Terminates by depth 1/ε, then proceed as before

See paper for full details (and more) ,

Our Proof from 30,000 Feet

Recall we have Gaussian process {Xt}t∈T with E[supXt] = 1

Thanks to rescaling assumption

Take MM Tree: 1 ≥
∑
h≥0 2

h/2 · diam(Ah(t))
The hth level has exp exp(h) nodes

Simple algorithm to choose parts from Talagrand’s tree
Terminates by depth 1/ε, then proceed as before

See paper for full details (and more) ,

Our Proof from 30,000 Feet

Recall we have Gaussian process {Xt}t∈T with E[supXt] = 1

Thanks to rescaling assumption

Take MM Tree: 1 ≥
∑
h≥0 2

h/2 · diam(Ah(t))
The hth level has exp exp(h) nodes

Simple algorithm to choose parts from Talagrand’s tree
Terminates by depth 1/ε, then proceed as before

See paper for full details (and more) ,

Our Proof from 30,000 Feet

Recall we have Gaussian process {Xt}t∈T with E[supXt] = 1

Thanks to rescaling assumption

Take MM Tree: 1 ≥
∑
h≥0 2

h/2 · diam(Ah(t))
The hth level has exp exp(h) nodes

Simple algorithm to choose parts from Talagrand’s tree
Terminates by depth 1/ε, then proceed as before

See paper for full details (and more) ,

Recap

The Main Technical Result
Sparsifying Suprema of Gaussian Processes

Some Consequences
Polytope Sparsification, Norms are (Essentially) Juntas

Elements of the Proof
Talagrand’s Majorizing Measures Theorem

Many Open Directions

Closing the gap in our bounds?
Singly- versus doubly-exponential in 1/ε?

Other applications?
Suprema are everywhere

Generalizations or variants?
Sparsifying suprema of Bernoulli processes? Empirical processes?

Thanks for listening! Questions? ,

Many Open Directions

Closing the gap in our bounds?
Singly- versus doubly-exponential in 1/ε?

Other applications?
Suprema are everywhere

Generalizations or variants?
Sparsifying suprema of Bernoulli processes? Empirical processes?

Thanks for listening! Questions? ,

Many Open Directions

Closing the gap in our bounds?
Singly- versus doubly-exponential in 1/ε?

Other applications?
Suprema are everywhere

Generalizations or variants?
Sparsifying suprema of Bernoulli processes? Empirical processes?

Thanks for listening! Questions? ,

Many Open Directions

Closing the gap in our bounds?
Singly- versus doubly-exponential in 1/ε?

Other applications?
Suprema are everywhere

Generalizations or variants?
Sparsifying suprema of Bernoulli processes? Empirical processes?

Thanks for listening! Questions? ,

