Approximating Sumset Size

Shivam Nadimpalli (Columbia)

Joint work with

Anindya De (Penn)

Rocco Servedio (Columbia)

Approximating Sumset Size

Shivam Nadimpalli (Columbia)

Joint work with

Anindya De

Rocco Servedio (Columbia)

Sumsets

Definition: Given an abelian group (G,+) and a subset $A\subseteq G,$ we define the sumset A+A as

$$A + A := \{a + b : a, b \in A\}.$$

- Note $A + A \neq 2A := \{a + a : a, a \in A\}.$
- Fundamental object of study in additive combinatorics.

Easy Example

- Note that |A| = |A + A|.
- A is a coset of the subgroup of even residues modulo 100.

Why Sumset Size?

Freiman-Rusza, Plünneke-Rusza, Balog-Szemerédi-Gowers, etc.

A Natural Question

A Natural Question over \mathbb{F}_2^n

Question: Given query access to $A \subseteq \mathbb{F}_2^n$ and writing

$$\operatorname{Vol}(A) := \frac{|A|}{2^n}$$

what is Vol(A + A) up to an error of $\pm \varepsilon$?

- Cost measure: number of queries (as a function of n and ε).
- At first glance: To confirm z ∉ A + A, have to check that at least one of x, y ∉ A for the 2ⁿ pairs (x, y) satisfying x + y = z.

No Query-Efficient Algorithm over \mathbb{F}_2^n

Need $\Omega(2^{0.49n})$ queries to distinguish A from A.

Refining The Original Question

Original Question: Given query access to $A \subseteq \mathbb{F}_2^n$ and writing

$$\operatorname{Vol}(A) := \frac{|A|}{2^n}$$

what is Vol(A + A) up to an error of $\pm \varepsilon$?

- Adding a small (random) collection R ⊆ 𝔽ⁿ₂ of 2^{0.51n} elements to A can blow up Vol(A + A) to almost 1.
- Natural relaxation: Output Vol(A' + A') for set A' ⊆ A that is close to A.

An Analogous Situation: Approximating Surface Area

"Given a nice convex set such as a sphere, one can add a very thin tentacle to it with negligible volume but arbitrarily large surface area." – Kothari, Nayyeri, O'Donnell, Wu (2014)

Refining The Original Question

Original Question: Given query access to $A \subseteq \mathbb{F}_2^n$ and writing

$$\operatorname{Vol}(A) := \frac{|A|}{2^n}$$

what is Vol(A + A) up to an error of $\pm \varepsilon$?

- Adding a small (random) collection R ⊆ 𝔽ⁿ₂ of 2^{0.51n} elements to A can blow up Vol(A + A) to almost 1.
- Natural relaxation: Output Vol(A' + A') for set A' ⊆ A that is close to A.

The Question We Consider

New Question: Given query access to $A \subseteq \mathbb{F}_2^n$ and writing $\operatorname{Vol}(A) := \frac{|A|}{2^n}$, what is $\operatorname{Vol}(A' + A')$ up to an error of $\pm \varepsilon$ for some $A' \subseteq A$ such that $\operatorname{Vol}(A \setminus A') \leq \varepsilon$?

The Question We Consider

<u>New</u> Goal: Output Vol(A' + A') instead of Vol(A + A).

Revisiting Our Earlier Example

For $\varepsilon \geq 2^{-0.49n}$, simply output $\operatorname{Vol}(A' + A') = 0$.

Our Main Result

New Question: Given query access to $A \subseteq \mathbb{F}_2^n$ and writing

$$\operatorname{Vol}(A) := \frac{|A|}{2^n},$$

what is $\operatorname{Vol}(A' + A')$ up to an error of $\pm \varepsilon$ for some $A' \subseteq A$ such that $\operatorname{Vol}(A \setminus A') \leq \varepsilon$?

<u>Main Theorem</u>: Can be done using $O_{\varepsilon}(1)$ queries to A.

(Bonus: Outputs an exact oracle to A' and an approximate oracle to A' + A'.)

Proof Sketch

Green's Regularity Lemma

- Decomposes \mathbb{F}_2^n into translates of $H \leq \mathbb{F}_2^n$ such that:
 - $H \cong \mathbb{F}_2^{n-k}$ where k is does not depend on n.
 - $A \cap (x + H)$ is "random-like," i.e. has small Fourier coefficients.
- Made algorithmic by closely following the original proof and using the Goldreich–Levin algorithm.

Sumset Simulation from 30,000 Feet

Defining A': Iterate through 2^k cosets of H:

 $- |\mathsf{lf}| A \cap (x+H)| \leq \varepsilon \cdot 2^{n-k}, \text{ then set } A' \cap (x+H) = \emptyset.$

- Else set
$$A' \cap (x+H) = A$$
.

Approximately Defining A' + A': If A' intersects with cosets x + H, y + H,

$$(A' + A') \cap (x + y + H) \approx x + y + H.$$
 Ingredient 1

Obtaining $O_{\varepsilon}(1)$ Query Complexity

- Explicitly obtaining a description of the subspace *H* necessarily requires a number of queries that scales at least linearly in *n*.
- Require implicit versions of aforementioned algorithms.
 - For Goldreich–Levin: Equivalent to being a local list corrector for the Hadamard code.

Conclusion & Future Directions

- Our approach extends to estimate Vol(A + B) and Vol(A + ... + A) for $A, B \subseteq \mathbb{F}_2^n$.
- Generalizing to groups other than \mathbb{F}_2^n ?
 - Green's Regularity Lemma does hold for arbitrary abelian groups.
 - Implicitly finding significant Fourier coefficients?

Thanks for listening! Questions?

