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Sumsets

Definition: Given an abelian group (G,+) and a subset A ⊆ G, we
define the sumset A + A as

A + A := {a + b : a, b ∈ A}.

• Note A + A 6= 2A := {a + a : a, a ∈ A}.
• Fundamental object of study in additive

combinatorics.



Easy Example
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A = {1, 3, . . . , 99}
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A + A = {0, 2, . . . , 98}

• Note that |A| = |A + A|.
• A is a coset of the subgroup of even residues modulo 100.



Why Sumset Size?

Easy Exercise: For A ⊆ G, if |A| = |A + A|, then A = x + H

for some subgroup H ≤ G and x ∈ G.

Robustifications & Variants

Freiman–Rusza, Plünneke–Rusza, Balog–Szemerédi–Gowers, etc.



A Natural Question

Question: Given query access to A ⊆ G, what is |A+A|
|G| up to an

error of ±ε?

Ax
1 if x ∈ A

0 if x /∈ A

Vol(A + A)

This work: Fn
2



A Natural Question over Fn
2

Question: Given query access to A ⊆ Fn
2 and writing

Vol(A) :=
|A|
2n

,

what is Vol(A + A) up to an error of ±ε?

• Cost measure: number of queries (as a function of n and ε).

• At first glance: To confirm z /∈ A + A, have to check that at least
one of x, y /∈ A for the 2n pairs (x, y) satisfying x + y = z.



No Query-Efficient Algorithm over Fn
2

A = ∅

Vol(A+A) = 0

A is a random set of size 20.51n

Vol(A+A) ≥ 1− exp(−n) w.h.p.

Need Ω(20.49n) queries to distinguish A from A.



Refining The Original Question

Original Question: Given query access to A ⊆ Fn
2 and writing

Vol(A) :=
|A|
2n

,

what is Vol(A + A) up to an error of ±ε?

• Adding a small (random) collection R ⊆ Fn
2 of 20.51n elements to A

can blow up Vol(A + A) to almost 1.

• Natural relaxation: Output Vol(A′ + A′) for set A′ ⊆ A that is close
to A.



An Analogous Situation: Approximating Surface Area

“Given a nice convex set such as a sphere, one can add a very thin
tentacle to it with negligible volume but arbitrarily large surface area.”

– Kothari, Nayyeri, O’Donnell, Wu (2014)



Refining The Original Question

Original Question: Given query access to A ⊆ Fn
2 and writing

Vol(A) :=
|A|
2n

,

what is Vol(A + A) up to an error of ±ε?

• Adding a small (random) collection R ⊆ Fn
2 of 20.51n elements to A

can blow up Vol(A + A) to almost 1.

• Natural relaxation: Output Vol(A′ + A′) for set A′ ⊆ A that is close
to A.



The Question We Consider

New Question: Given query access to A ⊆ Fn
2 and writing

Vol(A) :=
|A|
2n

,

what is Vol
(
A′ + A′

)
up to an error of ±ε for some A′ ⊆ A such

that
Vol

(
A \A′

)
≤ ε?



The Question We Consider

New Goal: Output Vol(A′ + A′) instead of Vol(A + A).



Revisiting Our Earlier Example

A = ∅

Vol(A+A) = 0

A is a random set of size 20.51n

Vol(A+A) ≥ 1− exp(−n) w.h.p.

For ε ≥ 2−0.49n, simply output Vol(A′ + A′) = 0.



Our Main Result

New Question: Given query access to A ⊆ Fn
2 and writing

Vol(A) :=
|A|
2n

,

what is Vol
(
A′ + A′

)
up to an error of ±ε for some A′ ⊆ A such

that
Vol

(
A \A′

)
≤ ε?

Main Theorem: Can be done using Oε(1) queries to A.

(Bonus: Outputs an exact oracle to A′ and an approximate oracle to
A′ + A′.)



Proof Sketch

Ingredient 1: “Non-tiny” random-like sets have “large” sumsets.

Ingredient 2: Green’s Regularity Lemma.

Almost all of Fn
2

Need an algorithmic version



Green’s Regularity Lemma

• Decomposes Fn
2 into translates of H ≤ Fn

2 such that:

– H ∼= Fn−k
2 where k is does not depend on n.

– A ∩ (x+H) is “random-like,” i.e. has small Fourier coefficients.

• Made algorithmic by closely following the original proof and using the
Goldreich–Levin algorithm.



Sumset Simulation from 30,000 Feet

Defining A′: Iterate through 2k cosets of H:

– If |A ∩ (x+H)| ≤ ε · 2n−k, then set A′ ∩ (x+H) = ∅.
– Else set A′ ∩ (x+H) = A.

Approximately Defining A′ +A′: If A′ intersects with cosets x+H, y +H,

(A′ +A′) ∩ (x+ y +H) ≈ x+ y +H. Ingredient 1



Obtaining Oε(1) Query Complexity

• Explicitly obtaining a description of the subspace H necessarily
requires a number of queries that scales at least linearly in n.

• Require implicit versions of aforementioned algorithms.
– For Goldreich–Levin: Equivalent to being a local list corrector for the

Hadamard code.



Conclusion & Future Directions

• Our approach extends to estimate Vol(A+B) and Vol(A+ . . .+A)

for A,B ⊆ Fn
2 .

• Generalizing to groups other than Fn
2 ?

• Green’s Regularity Lemma does hold for arbitrary abelian groups.
• Implicitly finding significant Fourier coefficients?



Thanks for listening! Questions?


