Approximating Sumset Size

Shivam Nadimpalli
(Columbia)
Joint work with

Approximating Sumset Size

Shivam Nadimpalli
(Columbia)

Joint work with

Anindya De
(Penn)

Rocco Servedio
(Columbia)

Sumsets

Definition: Given an abelian group $(G,+)$ and a subset $A \subseteq G$, we define the sumset $A+A$ as

$$
A+A:=\{a+b: a, b \in A\} .
$$

- Note $A+A \neq 2 A:=\{a+a: a, a \in A\}$.
- Fundamental object of study in additive combinatorics.

Easy Example

- Note that $|A|=|A+A|$.
- A is a coset of the subgroup of even residues modulo 100 .

Why Sumset Size?

Easy Exercise: For $A \subseteq G$, if $|A|=|A+A|$, then $A=x+H$ for some subgroup $H \leq G$ and $x \in G$.

Freiman-Rusza, Plünneke-Rusza, Balog-Szemerédi-Gowers, etc.

A Natural Question

This work: \mathbb{F}_{2}^{n}

A Natural Question over \mathbb{F}_{2}^{n}

Question: Given query access to $A \subseteq \mathbb{F}_{2}^{n}$ and writing

$$
\operatorname{Vol}(A):=\frac{|A|}{2^{n}}
$$

what is $\operatorname{Vol}(A+A)$ up to an error of $\pm \varepsilon$?

- Cost measure: number of queries (as a function of n and ε).
- At first glance: To confirm $z \notin A+A$, have to check that at least one of $x, y \notin A$ for the 2^{n} pairs (x, y) satisfying $x+y=z$.

No Query-Efficient Algorithm over \mathbb{F}_{2}^{n}

\boldsymbol{A} is a random set of size $2^{0.51 n}$
$\operatorname{Vol}(A+A)=0$
$\operatorname{Vol}(\boldsymbol{A}+\boldsymbol{A}) \geq 1-\exp (-n)$ w.h.p.

Need $\Omega\left(2^{0.49 n}\right)$ queries to distinguish A from \boldsymbol{A}.

Refining The Original Question

Original Question: Given query access to $A \subseteq \mathbb{F}_{2}^{n}$ and writing

$$
\operatorname{Vol}(A):=\frac{|A|}{2^{n}},
$$

what is $\operatorname{Vol}(A+A)$ up to an error of $\pm \varepsilon$?

- Adding a small (random) collection $R \subseteq \mathbb{F}_{2}^{n}$ of $2^{0.51 n}$ elements to A can blow up $\operatorname{Vol}(A+A)$ to almost 1 .
- Natural relaxation: Output $\operatorname{Vol}\left(A^{\prime}+A^{\prime}\right)$ for set $A^{\prime} \subseteq A$ that is close to A.

An Analogous Situation: Approximating Surface Area

"Given a nice convex set such as a sphere, one can add a very thin tentacle to it with negligible volume but arbitrarily large surface area."

- Kothari, Nayyeri, O'Donnell, Wu (2014)

Refining The Original Question

Original Question: Given query access to $A \subseteq \mathbb{F}_{2}^{n}$ and writing

$$
\operatorname{Vol}(A):=\frac{|A|}{2^{n}},
$$

what is $\operatorname{Vol}(A+A)$ up to an error of $\pm \varepsilon$?

- Adding a small (random) collection $R \subseteq \mathbb{F}_{2}^{n}$ of $2^{0.51 n}$ elements to A can blow up $\operatorname{Vol}(A+A)$ to almost 1 .
- Natural relaxation: Output $\operatorname{Vol}\left(A^{\prime}+A^{\prime}\right)$ for set $A^{\prime} \subseteq A$ that is close to A.

The Question We Consider

New Question: Given query access to $A \subseteq \mathbb{F}_{2}^{n}$ and writing

$$
\operatorname{Vol}(A):=\frac{|A|}{2^{n}},
$$

what is $\operatorname{Vol}\left(A^{\prime}+A^{\prime}\right)$ up to an error of $\pm \varepsilon$ for some $A^{\prime} \subseteq A$ such that

$$
\operatorname{Vol}\left(A \backslash A^{\prime}\right) \leq \varepsilon ?
$$

The Question We Consider

New Goal: Output $\operatorname{Vol}\left(A^{\prime}+A^{\prime}\right)$ instead of $\operatorname{Vol}(A+A)$.

Revisiting Our Earlier Example

$$
A=\emptyset
$$

$\operatorname{Vol}(A+A)=0$

\boldsymbol{A} is a random set of size $2^{0.51 n}$
$\operatorname{Vol}(\boldsymbol{A}+\boldsymbol{A}) \geq 1-\exp (-n)$ w.h.p.

For $\varepsilon \geq 2^{-0.49 n}$, simply output $\operatorname{Vol}\left(A^{\prime}+A^{\prime}\right)=0$.

Our Main Result

New Question: Given query access to $A \subseteq \mathbb{F}_{2}^{n}$ and writing

$$
\operatorname{Vol}(A):=\frac{|A|}{2^{n}},
$$

what is $\operatorname{Vol}\left(A^{\prime}+A^{\prime}\right)$ up to an error of $\pm \varepsilon$ for some $A^{\prime} \subseteq A$ such that

$$
\operatorname{Vol}\left(A \backslash A^{\prime}\right) \leq \varepsilon ?
$$

Main Theorem: Can be done using $O_{\varepsilon}(1)$ queries to A.
(Bonus: Outputs an exact oracle to A^{\prime} and an approximate oracle to

$$
\left.A^{\prime}+A^{\prime} .\right)
$$

Proof Sketch

Almost all of \mathbb{F}_{2}^{n}

Ingredient 1: "Non-tiny" random-like sets have "large" sumsets.

Ingredient 2: Green's Regularity Lemma.

Need an algorithmic version

Green's Regularity Lemma

- Decomposes \mathbb{F}_{2}^{n} into translates of $H \leq \mathbb{F}_{2}^{n}$ such that:
- $H \cong \mathbb{F}_{2}^{n-k}$ where k is does not depend on n.
- $A \cap(x+H)$ is "random-like," i.e. has small Fourier coefficients.
- Made algorithmic by closely following the original proof and using the Goldreich-Levin algorithm.

Sumset Simulation from 30,000 Feet

Defining A^{\prime} : Iterate through 2^{k} cosets of H :

- If $|A \cap(x+H)| \leq \varepsilon \cdot 2^{n-k}$, then set $A^{\prime} \cap(x+H)=\emptyset$.
- Else set $A^{\prime} \cap(x+H)=A$.

Approximately Defining $A^{\prime}+A^{\prime}$: If A^{\prime} intersects with cosets $x+H, y+H$,

$$
\left(A^{\prime}+A^{\prime}\right) \cap(x+y+H) \widetilde{\mathbb{A}^{\prime}} x+y+H . \ldots-\text { - } n \text { ngredient } 1
$$

Obtaining $O_{\varepsilon}(1)$ Query Complexity

- Explicitly obtaining a description of the subspace H necessarily requires a number of queries that scales at least linearly in n.
- Require implicit versions of aforementioned algorithms.
- For Goldreich-Levin: Equivalent to being a local list corrector for the Hadamard code.

Conclusion \& Future Directions

- Our approach extends to estimate $\operatorname{Vol}(A+B)$ and $\operatorname{Vol}(A+\ldots+A)$ for $A, B \subseteq \mathbb{F}_{2}^{n}$.
- Generalizing to groups other than \mathbb{F}_{2}^{n} ?
- Green's Regularity Lemma does hold for arbitrary abelian groups.
- Implicitly finding significant Fourier coefficients?

Thanks for listening! Questions?

