Computing exceptional primes for torsion Galois representations of Picard curves

Shiva Chidambaram
Massachusetts Institute of Technology
shivac@mit.edu
Joint work with Pip Goodman
PAlmetto Number Theory Series XXXVI

October 22, 2023

Torsion (or Mod- ℓ) Galois representations

- C - nice curve of genus g defined over \mathbb{Q}.
- $J=\mathrm{Jac}(C)=\operatorname{Pic}^{0}(C)$ - Jacobian of C.

It is a principally polarized abelian variety of dimension g.
$J(\mathbb{C})$ is a complex torus \mathbb{C}^{g} / Λ for some lattice Λ.
Example:
If $g=1$ and $C(\mathbb{Q}) \neq \emptyset$, then $J=C$ is an elliptic curve.

- For any prime ℓ, the ℓ-torsion subgroup $J[\ell] \simeq(\mathbb{Z} / \ell)^{2 g}$ carries a non-degenerate alternating pairing $J[\ell] \times J[\ell] \rightarrow \mu_{\ell}$.
- The absolute Galois group $G_{\mathbb{Q}}:=\operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$ acts on $J[\ell]$, equivariantly wrt this pairing, giving the ℓ-torsion (or mod- ℓ) Galois representation $\bar{\rho}:=\bar{\rho}_{J, \ell}: G_{\mathbb{Q}} \rightarrow \operatorname{GSp}\left(2 g, \mathbb{F}_{\ell}\right)$ such that

Picard curves

A Picard curve over \mathbb{Q} is a smooth projective curve C of genus 3 given by an affine model $y^{3}=f(x)$ for a degree 4 polynomial $f(x)$ with coefficients in \mathbb{Q}, and having no repeated roots.

- The map $\left[\zeta_{3}\right]:(x, y) \mapsto\left(x, \zeta_{3} y\right)$ is an automorphism of C. So we have $\mathbb{Z}\left[\zeta_{3}\right] \subseteq \operatorname{End}(J)$.
- [ζ_{3}] preserves Weil pairing, so gives an element in $\operatorname{Sp}(6)$ with characteristic polynomial $\left(t^{2}+t+1\right)^{3}$.
- The image of $\bar{\rho}$ lies inside the normalizer of $\left[\zeta_{3}\right]$ in $\operatorname{GSp}(6, \ell)$. We say that $\bar{\rho}$ is surjective if this is an equality. In this case

$$
\bar{\rho}\left(G_{\mathbb{Q}\left(\zeta_{3 \ell}\right)}\right)=\left\{\begin{array}{lll}
\mathrm{GL}\left(3, \mathbb{F}_{\ell}\right) & \text { if } \ell=1 \quad \bmod 3 \\
\mathrm{GU}\left(3, \mathbb{F}_{\ell}\right) & \text { if } \ell=2 \quad \bmod 3
\end{array}\right.
$$

Otherwise, we say that ℓ is exceptional or non-maximal.

Question

For a given Picard curve C, can we find all exceptional primes ℓ ?

The Normalizer of $\left[\zeta_{3}\right]$ in $\operatorname{GSp}(6, \ell)$

- $\ell=1 \bmod 3:$ If $\ell \mathbb{Z}\left[\zeta_{3}\right]=\lambda_{1} \lambda_{2}$, then $J[\ell]=J\left[\lambda_{1}\right] \oplus J\left[\lambda_{2}\right]$ as $G_{\mathbb{Q}\left(\zeta_{3}\right) \text {-representations. }}$
The normalizer is $\left(\mathrm{GL}(3, \ell) \times \mathbb{F}_{\ell}^{\times}\right) \rtimes\langle\gamma\rangle$, where

$$
\begin{aligned}
\mathrm{GL}(3, \ell) \times \mathbb{F}_{\ell}^{\times} & \rightarrow \operatorname{GSp}(6, \ell) \\
(A, \mu) & \mapsto\left[\begin{array}{cc}
\mu A & 0 \\
0 & A^{-t}
\end{array}\right],
\end{aligned}
$$

and γ swaps the two isotropic 3-dim subspaces $J\left[\lambda_{1}\right]$ and $J\left[\lambda_{2}\right]$.

- $\ell=2 \bmod 3:$ As $G_{\mathbb{Q}\left(\zeta_{3}\right)}$-representations, $J[\ell]$ can be thought of as a 3-dim representation V over $\mathbb{F}_{\ell^{2}}$; and the symplectic pairing becomes a hermitian form on V. The normalizer is $\Delta U(3, \ell) \rtimes\langle$ Frob \rangle. where $\Delta U(3, \ell)$ is the group of similarities of a hermitian form.

What's known for elliptic curves?

Theorem (Serre's open image theorem)

For a non-CM elliptic curve E over a number field K, the ℓ-torsion representation $\bar{\rho}_{E, \ell}: G_{K} \rightarrow \operatorname{Aut}(E[\ell])=\mathrm{GL}\left(2, \mathbb{F}_{\ell}\right)$ is surjective for all but finitely many primes ℓ.

Serre's uniformity conjecture

For elliptic curves over \mathbb{Q}, the ℓ-torsion representation is surjective whenever $\ell>37$.

- A stronger uniformity conjecture and an algorithm to find exceptional primes - Zywina.
- Algorithms to find ℓ-adic Galois images - Sutherland, Zywina, Rouse-Zureick-Brown-Sutherland

What's known for $g=2$?

Serre's open image theorem

If A / \mathbb{Q} is a principally polarized abelian surface with $\operatorname{End}(A)=\mathbb{Z}$, then $\bar{\rho}_{A, \ell}$ is surjective for all but finitely many primes ℓ.

- No uniform bound (analogous to 37 for $g=1$) conjectured.
- [Die02]: algorithm to find exceptional primes for a given A / \mathbb{Q}. The algorithm computes a non-zero integer M for each class of maximal subgroup H of $G S p(4)$, such that:

$$
\bar{\rho}_{A, \ell}\left(G_{\mathbb{Q}}\right) \subseteq H \quad \Longrightarrow \quad \ell \mid M
$$

- $\left[\mathrm{BBK}^{+} 23\right]$: Sage implementation + theoretical uniform bound $\exp \left(N^{1 / 2+\epsilon}\right)$ in terms of conductor N (assuming GRH).
- Largest exceptional prime they find is 31 for the Jacobian of $C: y^{2}+(x+1) y=x^{5}+23 x^{4}-48 x^{3}+85 x^{2}-69 x+45$. [vBCCK23]: confirm by exhibiting an isogeny of degree 31^{2}.

Main result

Algorithm (Goodman-C)

Input: a degree 4 polynomial $f(x) \in \mathbb{Q}[x]$ with no repeated roots. Output: A finite list of primes containing all the exceptional primes ℓ at which $\bar{\rho}_{J, \ell}$ is non-surjective.

Magma implementation at https://github.com/shiva-chid/Picard.

Examples

Searching in a box

We considered the curves $C: y^{3}=x^{4}+a x^{2}+b x+c$ with $a, b, c \in \mathbb{Z}$ and $|a|,|b|,|c| \leq 100$, and $b>0$.

- The curve $y^{3}=x^{4}+10 x^{2}+8 x+13$ seems to have reducible image at $\ell=7$, i.e.,
$J[7]$ must have a cyclic subgroup of order 7 defined over $\mathbb{Q}\left(\zeta_{3}\right)$.
- No examples with an exceptional prime >7.

More interesting example
Let $C: y^{3}=243 x^{4}+338 x^{3}-147 x^{2}-387 x-142$ and $J=\operatorname{Jac}(C)$.
Then $\bar{\rho}_{J, \ell}$ is surjective for all primes $\ell \neq 2,13$.
Note: This is the largest exceptional prime we have found so far.

The image of $\bar{\rho}_{J, 13}$ seems to be reducible, i.e., $J[13]$ must have a cyclic subgroup of order 13 defined over $\mathbb{Q}\left(\zeta_{3}\right)$.

Sutherland's dataset of ~ 3 million Picard curves

How many curves are nonsurjective at p ? Total curves $=2413173$

- Curves in the dataset have good reduction outside $\{2,3,5,7\}$.
- All exceptional primes >2 correspond to reducible images.
- All five curves with 13 as an exceptional prime are twists.
- Bias towards 1 mod 3 primes being exceptional, more than 2 $\bmod 3$ primes.

Ingredients in Proof

- Classification of maximal subgroups of low-dimensional finite classical groups - [Bray-Holt-Roney-Dougal]
- Control action of inertia group at primes λ above ℓ. Specifically,
- Tameness
- determinant character $\left.\operatorname{det}\left(\bar{\rho}_{J, \lambda}\right)\right|_{I_{\lambda}}-[$ Goodman]
- L-polynomials of Picard curves - [Asif-Fite-Pentland] Example: For an elliptic curve E / \mathbb{Q}, the L-polynomial at p is $1-a_{p}(E) t+p t^{2}$.

$\ell=1 \bmod 3$. Maximal subgroups of $\mathrm{GL}(3, \ell)$.

Let V be a 3 -dim vector space over \mathbb{F}_{ℓ}. Up to conjugacy, the maximal subgroups of $\mathrm{GL}(3, \ell)$ not containing $\mathrm{SL}(3, \ell)$ are:

1. Reducible: Stabilizer of a subspace $0 \subsetneq U \subsetneq V$. The two cases yield conjugate subgroups inside $\mathrm{GSp}(6, \ell)$.
2. Imprimitive: Stabilizer of a decomposition $V \simeq \oplus_{i=1}^{3} V_{i}$. Isomorphic to $\mathrm{GL}(1, \ell)^{3} \rtimes S_{3}$.
3. Field extension subgroup: A subgroup isomorphic to $\operatorname{GL}\left(1, \ell^{3}\right) \rtimes \operatorname{Gal}\left(\mathbb{F}_{\ell^{3}} \mid \mathbb{F}_{\ell}\right)$.
4. Symplectic type subgroup: If $\ell=4,7 \bmod 9$, a subgroup with projective image isomorphic to $C_{3}^{2} \rtimes \mathrm{SL}(2,3)$.

Test in "Field-extension" case

Suppose that $\operatorname{im}\left(\bar{\rho}_{J, \ell}\right)$ lies inside $H \simeq \operatorname{GL}\left(1, \ell^{3}\right) \rtimes \operatorname{Gal}\left(\mathbb{F}_{\ell^{3}} \mid \mathbb{F}_{\ell}\right)$.

- Consider the further quotient $H \rightarrow \operatorname{Gal}\left(\mathbb{F}_{\ell^{3}} \mid \mathbb{F}_{\ell}\right)$. This cuts out some C_{3}-extension $K \mid \mathbb{Q}\left(\zeta_{3}\right)$.
- Let $\ell=\lambda \bar{\lambda}$ in $\mathbb{Z}\left[\zeta_{3}\right]$. If $\mathfrak{p} \subset \mathbb{Z}\left[\zeta_{3}\right]$ is a prime that remains inert in K, then $\operatorname{Tr} \rho_{\lambda}\left(\operatorname{Frob}_{\mathfrak{p}}\right)=0 \bmod \lambda$ and $\operatorname{Tr} \rho_{\bar{\lambda}\left(\operatorname{Frob}_{\mathfrak{p}}\right)=0 \bmod \bar{\lambda}}$.
Let S be the set of primes of bad reduction for the curve.
If we can show that K is unramified away from S, i.e., K is not ramified at ℓ, then:

Algorithm

1. Enumerate all C_{3} field extensions $K \mid \mathbb{Q}\left(\zeta_{3}\right)$ unramified away S.
2. For each K, and primes p up to a chosen bound, calculate the product $\operatorname{Tr} \rho_{\lambda}\left(\operatorname{Frob}_{\mathfrak{p}}\right) \cdot \operatorname{Tr} \rho_{\bar{\lambda}\left(\mathrm{Frob}_{\mathfrak{p}}\right)}$, whenever possible, from the L-polynomial at p. Let N_{K} be their gcd.
3. Return all prime factors of all N_{K}.

Action of inertia at ℓ

Let λ be a prime of $\mathbb{Z}\left[\zeta_{3}\right]$ lying above ℓ. Let ρ_{λ} denote the Galois action on $J[\lambda]$.

Proposition(Goodman)

Suppose J has good reduction at ℓ.

- If $\ell=1 \bmod 3$, then

$$
\left.\operatorname{det} \rho_{\lambda}\right|_{\lambda^{\prime}}= \begin{cases}\chi_{\ell}^{2} & \text { if } \lambda^{\prime}=\lambda \\ \chi \ell & \text { if } \lambda^{\prime}=\bar{\lambda}\end{cases}
$$

- If $\ell=2 \bmod 3$, then $\left.\operatorname{det} \rho_{\lambda}\right|_{\lambda}=\theta_{2}^{2+\ell}$, where θ_{2} is a fundamental character of level 2.

Action of inertia at ℓ

Accordingly, we get using Raynaud's theorem about the constituents in the semisimplification of $\rho_{\lambda} \mid l_{\lambda^{\prime}}$

Proposition

Let θ_{n} be a fundamental character of level n.

- If $\ell=1 \bmod 3$, then

$$
\begin{aligned}
& \left.\rho_{\lambda}^{s s}\right|_{\lambda}=2 \mathbf{1}+\chi_{\ell}, \mathbf{1}+\theta_{2}+\theta_{2}^{\ell} \text { or } \theta_{3}+\theta_{3}^{\ell}+\theta_{3}^{\ell^{2}}, \text { and } \\
& \left.\rho_{\lambda}^{s s}\right|_{\lambda}=\chi \ell \otimes\left(\left.\rho_{\lambda}^{s s}\right|_{\grave{\lambda}}\right)^{-T}
\end{aligned}
$$

- If $\ell=2 \bmod 3$, then $\left.\rho_{\lambda}^{s s}\right|_{\lambda}=2 \theta_{2}+\theta_{2}^{\ell}$ or $\mathbf{1}+\chi_{\ell}+\theta_{2}$.

Summary

Main result

An algorithm that takes as input a Picard curve $C: y^{3}=f_{4}(x)$ and produces a finite set containing all exceptional primes for $\operatorname{Jac}(C)$. Magma implementation at https://github.com/shiva-chid/Picard.

Future work

- For small ℓ, the distribution of characteristic polynomials seems to determine the image of $\bar{\rho}_{J, \ell}$ exactly (except in the reducible case).
- In the reducible case, we are trying to write down the explicit congruence relations with Bianchi modular forms for $\mathbb{Q}\left(\zeta_{3}\right)$.

Thank you

囯 Barinder S．Banwait，Armand Brumer，Hyun Jong Kim，Zev Klagsbrun，Jacob Mayle，Padmavathi Srinivasan，and Isabel Vogt．
Computing nonsurjective primes associated to galois representations of genus 2 curves， 2023.
arXiv：2301． 02222.
目 Luis V．Dieulefait．
Explicit determination of the images of the Galois representations attached to abelian surfaces with $\operatorname{End}(A)=\mathbb{Z}$ ．

Experiment．Math．，11（4）：503－512， 2002.
URL：
http：／／projecteuclid．org／euclid．em／1057864660．
目 Raymond van Bommel，Shiva Chidambaram，Edgar Costa，and Jean Kieffer．
Computing isogeny classes of typical principally polarized abelian surfaces over the rationals， 2023.
arXiv：2301．10118．

