Computing exceptional primes for torsion Galois representations of Picard curves

Shiva Chidambaram

Massachusetts Institute of Technology

shivac@mit.edu

Joint work with Pip Goodman

PAlmetto Number Theory Series XXXVI

October 22, 2023

Torsion (or Mod- ℓ) Galois representations

- C nice curve of genus g defined over \mathbb{Q} .
- J = Jac(C) = Pic⁰(C) Jacobian of C. It is a principally polarized abelian variety of dimension g. J(C) is a complex torus C^g/Λ for some lattice Λ. Example:

If g = 1 and $C(\mathbb{Q}) \neq \emptyset$, then J = C is an elliptic curve.

- For any prime ℓ, the ℓ-torsion subgroup J[ℓ] ≃ (Z/ℓ)^{2g} carries a non-degenerate alternating pairing J[ℓ] × J[ℓ] → μ_ℓ.

Picard curves

A Picard curve over \mathbb{Q} is a smooth projective curve *C* of genus 3 given by an affine model $y^3 = f(x)$ for a degree 4 polynomial f(x) with coefficients in \mathbb{Q} , and having no repeated roots.

- The map [ζ₃] : (x, y) → (x, ζ₃y) is an automorphism of C. So we have Z[ζ₃] ⊆ End(J).
- $[\zeta_3]$ preserves Weil pairing, so gives an element in Sp(6) with characteristic polynomial $(t^2 + t + 1)^3$.
- The image of p̄ lies inside the normalizer of [ζ₃] in GSp(6, ℓ). We say that p̄ is surjective if this is an equality. In this case

$$\overline{
ho}(G_{\mathbb{Q}(\zeta_{3\ell})}) = egin{cases} \mathsf{GL}(3,\mathbb{F}_\ell) & ext{if } \ell = 1 \mod 3 \ \mathsf{GU}(3,\mathbb{F}_\ell) & ext{if } \ell = 2 \mod 3. \end{cases}$$

Otherwise, we say that ℓ is exceptional or non-maximal.

Question

For a given Picard curve C, can we find all exceptional primes ℓ ?

The Normalizer of $[\zeta_3]$ in $GSp(6, \ell)$

▶ $\ell = 1 \mod 3$: If $\ell \mathbb{Z}[\zeta_3] = \lambda_1 \lambda_2$, then $J[\ell] = J[\lambda_1] \oplus J[\lambda_2]$ as $G_{\mathbb{Q}(\zeta_3)}$ -representations. The normalizer is $(GL(3, \ell) \times \mathbb{F}_{\ell}^{\times}) \rtimes \langle \gamma \rangle$, where

$$\begin{aligned} \mathsf{GL}(3,\ell) \times \mathbb{F}_{\ell}^{\times} &\to \mathsf{GSp}(6,\ell) \\ (A,\mu) &\mapsto \begin{bmatrix} \mu A & 0 \\ 0 & A^{-t} \end{bmatrix}. \end{aligned}$$

and γ swaps the two isotropic 3-dim subspaces $J[\lambda_1]$ and $J[\lambda_2]$.

ℓ = 2 mod 3: As G_{Q(ζ3)}-representations, J[ℓ] can be thought of as a 3-dim representation V over F_{ℓ2}; and the symplectic pairing becomes a hermitian form on V. The normalizer is ΔU(3,ℓ) ⋊ (Frob). where ΔU(3,ℓ) is the group of similarities of a hermitian form.

What's known for elliptic curves?

Theorem (Serre's open image theorem)

For a non-CM elliptic curve E over a number field K, the ℓ -torsion representation $\overline{\rho}_{E,\ell} : G_K \to \operatorname{Aut}(E[\ell]) = \operatorname{GL}(2, \mathbb{F}_{\ell})$ is surjective for all but finitely many primes ℓ .

Serre's uniformity conjecture

For elliptic curves over $\mathbb{Q},$ the $\ell\text{-torsion}$ representation is surjective whenever $\ell>37.$

- A stronger uniformity conjecture and an algorithm to find exceptional primes - Zywina.
- ► Algorithms to find *l*-adic Galois images Sutherland, Zywina, Rouse-Zureick-Brown-Sutherland

What's known for g = 2?

Serre's open image theorem

If A/\mathbb{Q} is a principally polarized abelian surface with $\text{End}(A) = \mathbb{Z}$, then $\overline{\rho}_{A,\ell}$ is surjective for all but finitely many primes ℓ .

No uniform bound (analogous to 37 for g = 1) conjectured.

▶ [Die02]: algorithm to find exceptional primes for a given A/Q. The algorithm computes a non-zero integer M for each class of maximal subgroup H of GSp(4), such that:

$$\overline{\rho}_{\mathcal{A},\ell}(\mathcal{G}_{\mathbb{Q}}) \subseteq H \implies \ell | M.$$

- ► [BBK⁺23]: Sage implementation + theoretical uniform bound $\exp(N^{1/2+\epsilon})$ in terms of conductor N (assuming GRH).
- Largest exceptional prime they find is 31 for the Jacobian of C: y² + (x + 1)y = x⁵ + 23x⁴ 48x³ + 85x² 69x + 45.
 [vBCCK23]: confirm by exhibiting an isogeny of degree 31².

Main result

Algorithm (Goodman-C)

Input: a degree 4 polynomial $f(x) \in \mathbb{Q}[x]$ with no repeated roots. *Output:* A finite list of primes containing all the exceptional primes ℓ at which $\overline{\rho}_{J,\ell}$ is non-surjective.

Magma implementation at https://github.com/shiva-chid/Picard.

Examples

Searching in a box

We considered the curves $C: y^3 = x^4 + ax^2 + bx + c$ with $a, b, c \in \mathbb{Z}$ and $|a|, |b|, |c| \le 100$, and b > 0.

- The curve y³ = x⁴ + 10x² + 8x + 13 seems to have reducible image at l = 7, i.e.,
 J[7] must have a cyclic subgroup of order 7 defined over Q(ζ₃).
- ▶ No examples with an exceptional prime > 7.

More interesting example

Let $C: y^3 = 243x^4 + 338x^3 - 147x^2 - 387x - 142$ and J = Jac(C). Then $\overline{\rho}_{J,\ell}$ is surjective for all primes $\ell \neq 2, 13$. Note: This is the largest exceptional prime we have found so far.

The image of $\overline{\rho}_{J,13}$ seems to be reducible, i.e., J[13] must have a cyclic subgroup of order 13 defined over $\mathbb{Q}(\zeta_3)$.

Sutherland's dataset of \sim 3 million Picard curves

How many curves are nonsurjective at p? Total curves = 2413173

- Curves in the dataset have good reduction outside {2,3,5,7}.
- ► All exceptional primes > 2 correspond to reducible images.
- All five curves with 13 as an exceptional prime are twists.
- Bias towards 1 mod 3 primes being exceptional, more than 2 mod 3 primes.

Ingredients in Proof

- Classification of maximal subgroups of low-dimensional finite classical groups - [Bray–Holt–Roney-Dougal]
- Control action of inertia group at primes λ above ℓ.
 Specifically,
 - Tameness
 - determinant character det $(\overline{\rho}_{J,\lambda})|_{I_{\lambda}}$ [Goodman]
- ► L-polynomials of Picard curves [Asif-Fite-Pentland] Example: For an elliptic curve E/Q, the L-polynomial at p is 1 - a_p(E)t + pt².

$\ell = 1 \mod 3$. Maximal subgroups of $GL(3, \ell)$.

Let V be a 3-dim vector space over \mathbb{F}_{ℓ} . Up to conjugacy, the maximal subgroups of $GL(3, \ell)$ not containing $SL(3, \ell)$ are:

- Reducible: Stabilizer of a subspace 0 ⊊ U ⊊ V. The two cases yield conjugate subgroups inside GSp(6, ℓ).
- 2. Imprimitive: Stabilizer of a decomposition $V \simeq \bigoplus_{i=1}^{3} V_i$. Isomorphic to $GL(1, \ell)^3 \rtimes S_3$.
- Field extension subgroup: A subgroup isomorphic to GL(1, ℓ³) ⋊ Gal(𝔽_{ℓ³} |𝔽_ℓ).
- 4. Symplectic type subgroup: If $\ell = 4,7 \mod 9$, a subgroup with projective image isomorphic to $C_3^2 \rtimes SL(2,3)$.

Test in "Field-extension" case

Suppose that $\operatorname{im}(\overline{\rho}_{J,\ell})$ lies inside $H \simeq \operatorname{GL}(1,\ell^3) \rtimes \operatorname{Gal}(\mathbb{F}_{\ell^3}|\mathbb{F}_\ell)$.

- Consider the further quotient H → Gal(𝔽_{ℓ³} |𝔽_ℓ). This cuts out some C₃-extension K |ℚ(ζ₃).
- ▶ Let $\ell = \lambda \overline{\lambda}$ in $\mathbb{Z}[\zeta_3]$. If $\mathfrak{p} \subset \mathbb{Z}[\zeta_3]$ is a prime that remains inert in K, then $\operatorname{Tr} \rho_{\lambda}(\operatorname{Frob}_{\mathfrak{p}}) = 0 \mod \lambda$ and $\operatorname{Tr} \rho_{\overline{\lambda}(\operatorname{Frob}_{\mathfrak{p}})=0 \mod \overline{\lambda}}$.

Let S be the set of primes of bad reduction for the curve. If we can show that K is unramified away from S, i.e., K is not ramified at ℓ , then:

Algorithm

- 1. Enumerate all C_3 field extensions $K|\mathbb{Q}(\zeta_3)$ unramified away S.
- 2. For each K, and primes p up to a chosen bound, calculate the product $\operatorname{Tr} \rho_{\lambda}(\operatorname{Frob}_{\mathfrak{p}}) \cdot \operatorname{Tr} \rho_{\overline{\lambda}(\operatorname{Frob}_{\mathfrak{p}})}$, whenever possible, from the *L*-polynomial at p. Let N_K be their gcd.
- 3. Return all prime factors of all N_K .

Action of inertia at ℓ

Let λ be a prime of $\mathbb{Z}[\zeta_3]$ lying above ℓ . Let ρ_{λ} denote the Galois action on $J[\lambda]$.

Proposition(Goodman)

Suppose J has good reduction at ℓ .

• If $\ell = 1 \mod 3$, then

$$\det \rho_{\lambda} \mid_{I_{\lambda'}} = \begin{cases} \chi_{\ell}^2 & \text{ if } \lambda' = \lambda \\ \chi_{\ell} & \text{ if } \lambda' = \overline{\lambda} \end{cases}$$

▶ If $\ell = 2 \mod 3$, then det $\rho_{\lambda} \mid_{I_{\lambda}} = \theta_2^{2+\ell}$, where θ_2 is a fundamental character of level 2.

Action of inertia at ℓ

Accordingly, we get using Raynaud's theorem about the constituents in the semisimplification of $\rho_{\lambda} \mid_{I_{\lambda'}}$

Proposition

Let θ_n be a fundamental character of level n.

• If
$$\ell=1 \mod 3$$
, then

$$\begin{split} \rho_{\lambda}^{\mathrm{ss}} \mid_{l_{\overline{\lambda}}} &= 2\mathbf{1} + \chi_{\ell}, \mathbf{1} + \theta_{2} + \theta_{2}^{\ell} \text{ or } \theta_{3} + \theta_{3}^{\ell} + \theta_{3}^{\ell^{2}}, \text{ and} \\ \rho_{\lambda}^{\mathrm{ss}} \mid_{l_{\lambda}} &= \chi_{\ell} \otimes \left(\rho_{\lambda}^{\mathrm{ss}} \mid_{l_{\overline{\lambda}}}\right)^{-T} \end{split}$$

• If $\ell = 2 \mod 3$, then $\rho_{\lambda}^{ss} \mid_{I_{\lambda}} = 2\theta_2 + \theta_2^{\ell}$ or $\mathbf{1} + \chi_{\ell} + \theta_2$.

Summary

Main result

An algorithm that takes as input a Picard curve $C: y^3 = f_4(x)$ and produces a finite set containing all exceptional primes for Jac(C). Magma implementation at https://github.com/shiva-chid/Picard.

Future work

- ► For small ℓ , the distribution of characteristic polynomials seems to determine the image of $\overline{\rho}_{J,\ell}$ exactly (except in the reducible case).
- In the reducible case, we are trying to write down the explicit congruence relations with Bianchi modular forms for Q(ζ₃).

Thank you

Barinder S. Banwait, Armand Brumer, Hyun Jong Kim, Zev Klagsbrun, Jacob Mayle, Padmavathi Srinivasan, and Isabel Vogt.

Computing nonsurjective primes associated to galois representations of genus 2 curves, 2023.

arXiv:2301.02222.

Luis V. Dieulefait.

Explicit determination of the images of the Galois representations attached to abelian surfaces with $End(A) = \mathbb{Z}$.

Experiment. Math., 11(4):503–512, 2002. URL:

http://projecteuclid.org/euclid.em/1057864660.

Raymond van Bommel, Shiva Chidambaram, Edgar Costa, and Jean Kieffer.

Computing isogeny classes of typical principally polarized abelian surfaces over the rationals, 2023.

arXiv:2301.10118.