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Abstract. We describe an efficient algorithm which, given a principally polar-
ized (p.p.) abelian surface A over Q with geometric endomorphism ring equal
to Z, computes all the other p.p. abelian surfaces over Q that are isogenous to
A. This algorithm relies on explicit open image techniques for Galois repre-
sentations, and we employ a combination of analytic and algebraic methods
to efficiently prove or disprove the existence of isogenies. We illustrate the
practicality of our algorithm by applying it to 1 440 894 isogeny classes of
Jacobians of genus 2 curves.

1. Introduction

As a consequence of Faltings’ finiteness theorems for abelian varieties [Fal83],
the isogeny class of any abelian variety over a number field is finite. In the simplest
case of elliptic curves over Q, we have a good understanding of which shapes
of isogeny classes can arise. Mazur’s isogeny theorem for elliptic curves [Maz78]
provides the list of primes ` appearing as degrees of isogenies over Q, namely ` ≤ 19
or ` ∈ {37, 43, 67, 163}. Furthermore, isogeny classes all have size at most 8 [Ken82].
In fact, the possible isogeny graphs can be explicitly listed [CL21, §6].

The standard approach to computing isogeny classes of elliptic curves over Q
is the following. Given an elliptic curve E, it is enough to consider isogenies
E → E′ of prime degree ` where ` appears in Mazur’s list. For each such `,
computing the possible image curves E′ is a finite problem. The computation can
be carried out either by factoring the `-division polynomial of E and applying Vélu’s
formulas [Vél71], or more efficiently using explicit parametrizations or equations for
the Hecke correspondence X0(`)→ X(1)×X(1) [Elk98; CW05]. This method was
used to generate the data currently contained in the L-functions and modular forms
database (LMFDB)1 [LMFDB].

As one moves away from the case of elliptic curves over Q, very little is known
on the theoretical side. Nevertheless, by carrying out explicit computations, one can
hope to gain insight into the possible shapes of isogeny classes in higher dimensions.
In this paper, we make a first step in this direction: we describe an algorithm to
compute isogeny classes in the simplest higher-dimensional case, namely that of a
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principally polarized (p.p.) abelian surface A over Q. We also make the simplifying
assumption that the geometric endomorphism ring of A is Z, in other words, A is
typical, although we plan to address more endomorphism ring types in future work.

Our overall strategy is to generalize the above method of computing isogeny
classes to the case of abelian surfaces. However, several obstacles immediately arise:

(1) Isogenies no longer decompose into rational, prime-degree isogenies.
(2) There is no known analogue of Mazur’s theorem for higher-dimensional

abelian varieties.
(3) Division polynomials are too big to be efficiently computed, except for

very small values of `. The same is true of explicit equations for higher-
dimensional analogues of the modular curve X0(`) studied in [Mil15a]:
see [Mil15b] for examples for very small primes `.

We address the first issue in Section 2, where we show that we only need to
consider two types of isogenies of degree `2 and `4 respectively, where ` is a prime.

We circumvent the second issue in the following way. From any given typical
abelian surface, Serre’s open image theorem for Galois representations [Ser99]
asserts that isogenies of the above types can exist over Q only for a finite number of
primes ` (depending on the abelian surface). It is sufficient to consider these primes
to enumerate the “neighbors” of A in the isogeny class. Further, Dieulefait [Die02]
describes how to efficiently compute a finite superset of this list. We review this
method in Section 3, and provide complete proofs for the reader’s convenience.

To address the third issue, we advantageously replace purely algebraic methods
by complex-analytic ones relying on the Siegel moduli space of complex p.p. abelian
surfaces. Concretely, given an abelian surface A, we enumerate images of its period
matrix under certain Hecke correspondences, and compute modular invariants at
these points analytically. By keeping track of the correct scaling factors, we can
actually compute these invariants as algebraic integers (embedded in C), and thus
provably recognize which of these tuples of complex invariants correspond to abelian
surfaces defined over Q. This algorithm is the subject of Section 4. It is significantly
less expensive than writing down equations for modular varieties or factoring division
polynomials, and is practical for isogeny degrees as large as 294 = 707 281, the
largest value we encountered in our computations.

The output invariants only specify the Q-isomorphism class of the abelian
surface A′ isogenous to A. In Section 5, we explain how to obtain the correct Q-
isomorphism class using a well-known and completely algebraic process. First,
Mestre’s algorithm provides a genus 2 curve over Q whose Jacobian is isomorphic
to A′ over Q. We then identify which quadratic twist of that curve represents the
desired Q-isomorphism class.

The resulting algorithm has been implemented: our code and data is publicly
available at https://github.com/edgarcosta/genus2isogenies. Numerical
computations are performed using the C library HDME [Kie23], itself based on the
Arb library [Joh17] for high-precision arithmetic with certified error bounds.

We finally discuss applications of our algorithm in Section 6. We first present
an illustrative example where we found an isogeny of degree 312. We also report
on the results of running our algorithm on a large dataset of Jacobians of genus 2
curves that includes the current LMFDB data [LMFDB]. This dataset consists of
1 743 737 curves split among 1 440 894 isogeny classes. By completing these isogeny
classes, we find 600 948 new curves.

https://github.com/edgarcosta/genus2isogenies
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2. Classification of isogenies

In this section, we describe two fundamental isogeny types that are sufficient to
exhaust isogeny classes of typical p.p. abelian surfaces. The essential ingredient in
this classification is that every isogeny between p.p. abelian varieties is compatible
with the given polarizations up to the action of an endomorphism fixed by the
Rosati involution, as we detail below.

2.1. Isogenies between p.p. abelian varieties. Let k be a field. For
simplicity, we assume thoughout that k has characteristic zero: this allows us to
identify group schemes over k with the groups of their k-points endowed with an
action of Gal(k/k). Unless otherwise specified, we only consider abelian varieties
and isogenies that are defined over k. Two isogenies are considered isomorphic if
they have the same domain and differ by an isomorphism on their targets.

Let A be an abelian variety over k, and denote its dual by A∨. A polarization on
A is an isogeny λ : A→ A∨ of the shape a 7→ T ∗

aL ⊗ L−1 for some (not necessarily
k-rational) ample line bundle L on A, where Ta is the translation by a in A. A
polarization is called principal if it is an isomorphism.

From now on, we assume that A is principally polarized (p.p.), in other words A
is endowed with a principal polarization λA. We then have a Rosati involution
on End(A) given by ϕ 7→ λ−1

A ◦ ϕ∨ ◦ λA. An endomorphism β ∈ End(A) is called
symmetric if it is invariant under this involution. If β is symmetric, then the roots
of its characteristic polynomial are real numbers [Mum70, Thm. 6 p. 208], and we
further say that β is totally positive if these roots are positive.

For A as above and any integer n, there exists a canonical symplectic pairing
A[n] × A[n] → µn known as the Weil pairing. More generally, if β ∈ End(A) is
any endomorphism that is symmetric and totally positive, then λA ◦ β is another
polarization of A [Mum70, (3) p. 190 and (IV) p. 209]. As in [Mum70, Def. p. 227],
we can also define a symplectic pairing on A[β]×A[β] that we also refer to as the
Weil pairing. We then have the following characterization of isogenies in terms of
maximal isotropic subgroups of torsion subgroups A[β]; see also [EGM, Prop. 11.25].

Lemma 2.1. Let (A, λA) be a p.p. abelian variety over k. Then there is a one-to-one
correspondence between isomorphism classes of isogenies from A to other p.p. abelian
varieties A′, and pairs (β,G), where β is a totally positive symmetric endomorphism
of A, and G is a subgroup of A[β] which is defined over k and maximal isotropic
with respect to the Weil pairing. Explicitly, an isogeny ϕ : A → A′ correponds to
the pair (β,G) such that kerϕ = G and β is the unique endomorphism satisfying
ϕ∨ ◦ λA′ ◦ ϕ = λA ◦ β.

Proof. First, we note that any isotropic subgroup of A[β] has cardinality at
most

√
#A[β], and is maximal if and only if equality holds [Mum70, Thm. 4 p. 233].

Let (A′, λA′) be a p.p. abelian variety, and let ϕ : A→ A′ be an isogeny. Then
there is a unique endomorphism β of A such that ϕ∨ ◦ λA′ ◦ ϕ = λA ◦ β. This
β is fixed by the Rosati involution, and corresponds via the bijection of [Mum70,
Application III p. 208] to an ample line bundle on A, namely the pullback by ϕ of
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the ample line bundle on A′ defining the polarization λA′ . Thus β is totally positive.
Moreover, the pairing on A[β] becomes trivial on kerϕ by [Mum70, (1) p. 228]. As
deg(ϕ)2 = deg(ϕ) deg(ϕ∨) = deg(β), it follows that kerϕ is a maximal isotropic
subgroup of A[β].

On the other hand, if β and G are given, then λA ◦ β is a polarization on A,
and the quotient A/G is principally polarized by [Mum70, Cor. p. 231]. �

2.2. Fundamental isogeny types. Assume now that k is a number field. An
abelian variety A over k is called typical if End(AQ) = Z. If A is typical, then only
a small number of isogeny types suffice in order to enumerate its isogeny class.

Lemma 2.2. Any isogeny between typical p.p. abelian varieties over a number
field k can be decomposed into a chain of isogenies ϕ : A→ A′ defined over k whose
kernels are maximal isotropic subgroups of either A[`] or A[`2], where ` is a prime
number (depending on ϕ).

Proof. Let ϕ : A → A′ be any isogeny. Since A is typical, by Lemma 2.1,
there exists an integer n ≥ 1 such that K := kerϕ ⊂ A[n] is maximal isotropic.
Factor n = `e11 · . . . · `err . Then K ∩A[`eii ] is maximal isotropic inside A[`eii ] for all
i = 1, . . . , r. Indeed, by [Mil86, Lemma 16.1] the subgroup is isotropic, and by
checking the cardinality, one sees that the subgroup is maximal isotropic. As each
subgroup K ∩A[`eii ] is defined over Q, we can decompose ϕ as the composition of
isogenies whose degrees are prime powers.

Now suppose that n = `e is a prime power, and that e > 2. Then we claim that
K ′ := `K ∩A[`e−2] = `K[`e−1]

is a maximal isotropic subgroup of A[`e−2]. We will then be able to decompose ϕ
into two isogenies of lower degree, namely A→ A/K ′ and A/K ′ → A/K.

First, we prove that K ′ is isotropic: if 〈·, ·〉`i denotes the Weil pairing on A[`i]
(for any i ≥ 1), and `x1, `x2 for x1, x2 ∈ K are arbitrary elements of K ′, we have that
〈`x1, `x2〉`e−2 = 〈x1, x2〉`e = 1 by [Mil86, Lemma 16.1]. To see that K ′ is maximal,
we determine its cardinality. Let r1 and r2 be the ranks of K[`] and K/K[`e−1] as
Z/`Z-modules. We have an exact sequence

0→ K[`]→ K[`e−1]
`→ K ′ → 0

and #K[`e−1] = #K/`r2 . Hence
#K ′ = #K[`e−1]/#K[`] = #K/`r1+r2 = `eg−r1−r2 .

On the other hand, we have r1+ r2 ≤ 2g because the Weil pairing on A[`]×A[`]
vanishes on K[`]× `e−1(K/K[`e−1]), and these subspaces have dimensions r1 and
r2 over Z/`Z respectively. Indeed, for x ∈ K[`] and y ∈ `e−1(K/K[`e−1]), we can
write x as `e−1x′ for some x′ ∈ A[`e] and y as `e−1y′ for some y′ ∈ K, and then

〈x, y〉` = 〈`e−1x′, `e−1y′〉` = 〈x′, y′〉`
e−1

`e = 〈`e−1x′, y′〉`e = 〈x, y′〉`e = 0,

by [Mil86, Lemma 16.1] and the fact that K is isotropic.
Since K ′ is isotropic for the Weil pairing on A[`e−2] and r1 + r2 ≤ 2g, we must

have r1 + r2 = 2g and K ′ is maximal isotropic in A[`e−2]. �

From now on, we focus on the case of typical p.p. abelian surfaces. Let ` be a
prime. We say that an isogeny ϕ : A→ A′ is

• a 1-step `-isogeny, if ker(ϕ) is maximal isotropic in A[`], and
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• a 2-step `-isogeny, if ker(ϕ) is maximal isotropic in A[`2] and isomorphic
to (Z/`Z)2 × Z/`2Z as an abstract abelian group.

Note that the terminology “2-step `-isogeny” is slightly abusive, as the endomor-
phism β associated with ϕ via Lemma 2.1 is actually `2 in that case.

Proposition 2.3. Any isogeny between typical p.p. abelian surfaces over a number
field k can be decomposed into a chain of 1-step `-isogenies, 2-step `-isogenies, and
multiplication-by-` endomorphisms for a series of primes `, all defined over k.

Proof. By Lemma 2.2, we only need to consider an isogeny ϕ whose kernel K
is maximal isotropic inside A[`2]. Then #K = `4, so K is isomorphic to (Z/`Z)4,
(Z/`Z)2 × Z/`2Z or (Z/`2Z)2. In the first case, the isogeny ϕ is multiplication by `.
In the second case, ϕ is 2-step. In the third case, the group K ∩ A[`] = `K is a
maximal isotropic subgroup of A[`]: it is isotropic by [Mil86, Lemma 16.1], and
maximal for cardinality reasons. We can thus decompose ϕ into two 1-step isogenies
A→ A/`K and A/`K → A/K. �

Remark 2.4. A 2-step isogeny factors as a composition of two 1-step isogenies
over k, but these 1-step isogenies are not necessarily defined over k. Here is a more
detailed look into this situation. If K is the kernel of a 2-step `-isogeny, then `K is
a rational 1-dimensional subspace of A[`]. We can extend `K in `+ 1 ways to get a
maximal isotropic subgroup of A[`] contained in K. These `+ 1 ways to factor the
2-step isogeny as a composition of two 1-step isogenies are permuted by Gal(k/k).

2.3. Computing an isogeny class. From now on, we assume that k = Q.
In the following sections, we will detect the existence of 1- or 2-step `-isogenies
from A to another p.p. abelian surface by studying the action of Gal(Q/Q) on A[`].
Let L1 (resp. L2) be the set of primes ` such that A[`] admits a 1-dimensional
(resp. 2-dimensional and isotropic) Galois-stable subspace. Then the existence of a
rational 1-step (resp. 2-step) isogeny implies that ` ∈ L2 (resp. L1).

Summarizing, we use the following algorithm to compute the isogeny class of a
typical p.p. abelian surface A over Q, defined as the set of isomorphism classes of
p.p. abelian surfaces A′ such that there exists an isogeny ϕ : A→ A′ defined over Q.
These abelian surfaces all are the Jacobian of a genus 2 curve over Q by [Lau01,
Appendix, Thm. 4], and this is how we encode both the input and output.

Algorithm 2.5. Input: a genus 2 curve C over Q such that A = Jac(C).
Output: the list of all p.p. abelian surfaces over Q that are isogenous to A.
Step 1. Use Dieulefait’s tests to find finite supersets of L2 and L1 (see §3).
Step 2. For each ` in these sets, compute invariants for all abelian surfaces A′

over Q obtained as the image of a 1-step (resp. 2-step) `-isogeny with
domain A (see §4).

Step 3. Reconstruct each such A′ as the Jacobian of a genus 2 curve over Q by
applying Mestre’s algorithm and identifying the correct twist (see §5).

Step 4. Repeat this process on all the newly obtained abelian surfaces as needed.

3. Rational `-torsion subgroups

Let A be a typical p.p. abelian surface over Q, and let N be its conductor (see
[BK94, §6] for the definition of the conductor and further background). Let d be the
maximal integer such that d2|N . Let S denote the set of primes of bad reduction
for A, i.e. the set of primes dividing N .
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For each prime ` ≥ 2, let ρ` : Gal(Q/Q) → GSp(4,Z`) denote the Galois
representation on the `-adic Tate module

T`(A) = lim←−
n≥1

A[`n] ' Z4
` ,

where we fix a symplectic basis of T`(A) for this last isomorphism. The Néron–
Ogg–Shafarevich criterion [ST68] states that ρ` is unramified away from ` and S; in
other words, if p /∈ S∪{`} is a prime, then the inertia group Ip at p has trivial image
under ρ. The prime-to-` part of the conductor of ρ` equals N when ` is a prime of
good reduction [GRR72, Exposé IX, §4]. For each prime p of good reduction, we let
Qp(x) := x4 − apx3 + bpx

2 − papx+ p2 ∈ Z[x] denote the characteristic polynomial
of ρ`(Frobp), which is independent of ` 6= p. The complex roots of Qp(x) all have
absolute value √p.

Considering all the `-adic representations at the same time, we obtain the
adelic Galois representation ρ : Gal(Q/Q) → GSp(4, Ẑ) attached to A. Serre’s
open image theorem [Ser99] asserts that the image of ρ is an open subgroup
of GSp(4, Ẑ), or equivalently has finite index in it. Consequently, the mod-` Galois
representation ρ` := ρ` mod `, attached to the Galois action on A[`], is surjective
for all primes ` outside a finite set.

Dieulefait [Die02] describes an algorithm to explicitly determine a finite set of
primes containing all primes ` at which ρ` is not surjective, using the classification of
maximal subgroups of GSp(4,F`). For each type of maximal subgroup, one can give
necessary conditions on ` for the image of ρ` to be contained in a subgroup of this
type, and these conditions are satisfied by finitely many primes `. The algorithm
has been implemented in SageMath [Sage] by the work of [BBKKMSV23].

In this work, we are only interested in two types of maximal subgroups, namely
the stabilizers of lines and two-dimensional isotropic subspaces in F4

` [BBKKMSV23,
Lemma 2.3(1)]. Keeping notation from §2.3, we call L1 (resp. L2) the finite set of
primes ` for which the image of ρ` stabilizes a line (resp. a 2-dimensional isotropic
subspace). A 1-step `-isogeny with domain A exists over Q if and only if ` ∈ L2.
Moreover, if a 2-step `-isogeny with domain A exists over Q, then ` ∈ L1 as per
Remark 2.4. We now describe the associated Dieulefait criteria [Die02, §3.1, §3.2]
in more detail, assuming from now on that A has good reduction at `.

3.1. Computing a finite superset of L1. Dieulefait’s tests consist in study-
ing the factorization of characteristic polynomials Qp(x) over finite fields, for a given
list of primes p. We include this list as part of the input of the following algorithm.

Algorithm 3.1. Input:
• a genus 2 curve C over Q such that A = Jac(C),
• the conductor N of A,
• and a non-empty finite set P of primes of good reduction for C.

Output: a finite superset of L1.
Step 1. Compute the maximal integer d such that d2 | N .
Step 2. Compute Qp ∈ Z[x] for p ∈ P by computing the number of points on C

over Fp and Fp2 .
Step 3. Compute M = gcdp∈P Res

(
Qp(x), x

f(p) − 1
)
, where f(p) is the order of p

in (Z/dZ)×.
Step 4. Return the list of prime divisors of M .
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Proposition 3.2. Algorithm 3.1 returns a finite superset of L1.

Proof. Suppose that there exists a 1-dimensional subrepresentation (π, V )
of ρ`, induced by a stable line V ⊂ A[`]. Let V ⊥ denote the subgroup of A[`] that
pairs trivially with V under the Weil pairing. By Galois equivariance of the Weil
pairing, the 1-dimensional quotient representation on A[`]/V ⊥ is given by π−1χ`,
where χ` is the mod-` cyclotomic character. By results of Raynaud [Ray74, Cor.
3.4.4] and Serre [Ser72, §1.9], we know that π restricted to the inertia group I` at `
is either trivial or equal to χ`.

In any case, there exists a character ε, unramified away from N , such that
the semisimplification ρss` admits both ε and ε−1χ` as direct summands. Hence
the conductor of ρ` is divisible by the square of the conductor of ε, in other
words cond(ε) divides d. Class field theory then implies that ε is a character
of Gal(Q(ζd)/Q) ' (Z/dZ)×. For each prime p ∈ L, since f(p) is the order
of p in (Z/dZ)×, we have ε(Frobp)f(p) = 1. Therefore, ε(Frobp) is a root of the
characteristic polynomial of ρ`(Frobp) and also of the polynomial xf(p) − 1 over F`.
Thus ` divides Res(Qp(x), x

f(p) − 1) and hence ` divides M .
Since the complex roots of Qp(x) have absolute value √p, they are distinct from

the roots of xf(p) − 1 which have absolute value 1. So the resultants and thus M
are guaranteed to be non-zero and the computed superset is finite. �

Remark 3.3. Building on results of Grothendieck [GRR72, Exposé IX, Prop. 3.5]
and Larson–Vaintrob [LV14, Thm. 7.2], the authors of [BBKKMSV23] introduce
the following strengthening of the above technique (Alg. 3.3). For p ∈ P , let r =
gcd(f(p), 120). Let Rp be the polynomial whose roots are the r-th powers of the
roots of Qp. Then each ` ∈ L1 must divide pRp(1). The original criterion by
Dieulefait, as presented above, was however sufficient for our purposes.

3.2. Computing a finite superset of L2. In the case of L2, the computation
of a finite superset might fail if the list of auxiliary primes p is too small, leading to
the following algorithm.

Algorithm 3.4. Input:
• a genus 2 curve C over Q such that A = Jac(C),
• the conductor N of A,
• and a non-empty finite set P of primes of good reduction for C.

Output: a finite superset of L2, or false.
Step 1. Compute d.
Step 2. For p ∈ P , compute Qp = x4 − apx3 + bpx

2 − papx+ p2 ∈ Z[x].
Step 3. For p ∈ P , compute the polynomials

R1,p(x) := (bpx− 1− p2x2)(px+ 1)2 − a2ppx2 and
R2,p(x) := (bpx− p− px2)(x+ 1)2 − a2px2.

Step 4. For i = 1 and 2, compute Mi = gcdp∈P Res
(
Ri,p(x), x

f(p)− 1
)
, where f(p)

is the order of p in (Z/dZ)×. Let M =M1M2.
Step 5. If M is nonzero, return the list of prime divisors of M , else return false.

Proposition 3.5. Algorithm 3.4 returns either false or a finite superset of L2.

Proof. Suppose that ρ` admits a 2-dimensional isotropic subrepresentation
denoted by (π, V ). The quotient representation on A[`]/V is given by χ` ⊗ (π−1)t.
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By [Ray74, Cor. 3.4.4] and [Ser72, §1.9], we obtain as above that either det(π) = εχ2
`

or det(π) = εχ` for some character ε unramified away from N . The direct sum
decomposition ρss` ' π ⊕ χ` ⊗ (π−1)t then implies that cond(ε) still divides d.

If det(π) = εχ2
` , then for every prime p of good reduction, we have the following

factorization of Qp(x) into a product of two related quadratic polynomials modulo `:

Qp(x) =
(
x2 − rx+ p2ε(p)

)(
x2 − r

pε(p)
x+ ε−1(p)

)
.

If det(π) = εχ`, then for all such p, we have

Qp(x) =
(
x2 − rx+ pε(p)

)(
x2 − r

ε(p)
x+ pε−1(p)

)
.

By comparing coefficients and eliminating r, one observes that the first kind of
factorization happens if and only if ε(p) is a root of the integral polynomial R1,p(x)
introduced in Algorithm 3.4 over F` for all p. Similarly, the second kind of factor-
ization happens if and only if ε(p) is a root of R2,p(x) over F` for all p. Thus, there
is an i ∈ {1, 2} such that for all p of good reduction, Res

(
Ri,p(x), x

f(p) − 1
)
= 0

mod `. We deduce that ` always divides M =M1M2. �

We now show that Algorithm 3.4 returns a superset of L2 provided that P
contains enough primes. In practice, failures are not an issue even for a small list P .

Proposition 3.6. For B large enough and P = {p ≤ B : p is a good prime for C},
Algorithm 3.4 returns a finite list of primes, in other words both M1 and M2 are
nonzero.

Proof. We first prove that M1 6= 0. For p = 1 mod d, we have

Res(R1,p(x), x
f(p) − 1) = R1,p(1) = (bp − 1− p2)(p+ 1)2 − a2pp.

Using the bounds |ap| ≤ 4
√
p and |bp| ≤ 6p coming from the fact that the roots

of Qp(x) have absolute value √p, it follows that R1,p(1) < 0 if p is large enough,
and thus M1 6= 0 for large B.

Second, we prove that M2 6= 0. Consider all polynomials over F` which, over F`,
admit a factorization of the form

(x2 − rx+ pη)(x2 − r
ηx+ pη−1),

where η ∈ F` is a d-th root of unity and r ∈ F`. When ` is sufficiently large,
these polynomials do not account for all characteristic polynomials of matrices
in GSp(4,F`). By Serre’s open image theorem, we can further assume that the
representation ρ` is surjective. For such an `, by the Chebotarev density theorem,
there must exist infinitely many p such that Qp(x) does not factor over F` in
the above shape, and thus ` - Res(R2,p(x), x

f(p) − 1). Therefore M2 6= 0 if B is
sufficiently large. �

Remark 3.7. Showing that M2 6= 0 for a sufficiently large B is non-trivial: indeed,
if the reduction of A modulo p is isogenous to the square of an elliptic curve over Fp,
then Res(R2,p(x), x

f(p) − 1) = 0.

Remark 3.8. An improvement of a similar flavor to Remark 3.3 is also available
here: see [BBKKMSV23, §3.1.3].
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3.3. Other tests for irreducibility. The output of Algorithms 3.1 and 3.4
usually consists of very short lists of primes, but might still contain extraneous
primes ` /∈ L1 ∪ L2. In order to further weed out some of these primes, one can
compute Qp(x) for a larger set of primes p, and eliminate any prime ` with the
property that one of these polynomials is irreducible modulo `. In our computations,
we considered all primes p ≤ 500 of good reduction for C.

4. Invariants of isogenous abelian surfaces

In this section, we describe an efficient algorithm solving the following problem:
given a typical p.p. abelian surface A over Q and a prime number `, compute the
complete list of p.p. abelian surfaces A′ over Q such that A and A′ are linked by a
rational 1- or 2-step `-isogeny.

Devising a polynomial-time algorithm for this task is straightforward: we can
write down equations for the torsion subgroups A[`] or A[`2], look for rational
subgroups of the correct shape by factoring these polynomials over Q, and apply al-
gorithms to compute quotients of p.p. abelian surfaces by isotropic subgroups [CE15;
LR23]. Such an algorithm would however be hopelessly slow in practice.

A more efficient approach is to use modular equations for p.p. abelian surfaces,
which are higher-dimensional analogues of elliptic modular polynomials: see [BL09]
for their definition in the case of 1-step isogenies, and [Mil15a] for an efficient
algorithm to compute them. Evaluating modular equations at A provides tuples
of modular invariants (for instance Igusa–Clebsch invariants) of abelian surfaces
isogenous to A, possibly defined over a number field. This evaluation can be done
within a reasonable complexity, namely Õ(`6h) bit operations2 in the case of 1-step
`-isogenies, where h is the height of the invariants of A [Kie22b]. This algorithm
works by computing the invariants of isogenous abelian surfaces as complex numbers,
packaging them into a polynomial, and recognizing its coefficients as rational
numbers. Then a rational isogeny from A exists exactly when this polynomial has a
rational root (see Proposition 4.7 below).

Here we take this method one step further: we compute these invariants over C,
and directly recognize when they are attached to a p.p. abelian surface defined over Q.
In a sense, we detect rational roots of modular equations without computing the
number fields that other roots generate. When doing so, the cost is further lowered
to Õ

(
(n+ 1)`dh

)
bit operations, where d = 3 (resp. 4) in the case of 1-step (resp. 2-

step) isogenies, and n is the number of roots “close to” being rational, in a precise
sense explained below. (We usually have n = 0, sometimes n = 1, and rarely more.)
Crucially, this analytic method allows for certification. The modular invariants we
compute provably correspond to p.p. abelian surfaces rationally isogenous to A, and
provably miss none of them.

The computations over C make use of structure theorems for Siegel modular
forms in dimension 2 and explicit formulas for Hecke correspondences, recalled
in §4.1 and §4.2. Next, we explain why detecting rational isogenies reduces to
detecting invariants defined over Q (§4.3), and how to compute these invariants
as algebraic integers, which is the crucial idea behind certification (§4.4). Finally,
in §4.5 and §4.6, we describe the algorithm and sketch its complexity analysis.

2We use the notation Õ(N) to denote O
(
N logk(N)

)
for some value of k.
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4.1. Siegel modular forms. Over C, every p.p. abelian surface A can be
written as a complex torus C2/(Z2 ⊕ τZ2), where τ belongs to the Siegel upper half
space H2, consisting of complex 2×2 symmetric matrices with positive definite imag-
inary part. Such a τ is called a (small) period matrix of A. The group GSp(4,R)+
consisting of general symplectic matrices with positive similitude factor acts on H2

as follows:

γτ = (aτ + b)(cτ + d)−1, where γ =

(
a b
c d

)
in 2× 2 blocks.

For later use, we also write
γ∗τ = cτ + d.

The period matrix of A is unique up to the action of the modular group Sp(4,Z), so
the quotient Sp(4,Z)\H2 is precisely the coarse moduli space of complex p.p. abelian
surfaces. In fact, this coarse moduli space A2 exists as a quasi-projective variety
defined over Q, and A2(C) can be identified with Sp(4,Z)\H2.

A (scalar-valued) Siegel modular form on H2 of weight k ∈ Z≥0 (and level 1) is
a complex-analytic map f : H2 → C satisfying f(γτ) = det(γ∗τ)kf(τ) for all τ ∈ H2

and γ ∈ Sp(4,Z). See [Gee08] for more background on these objects. Siegel modular
forms admit Fourier expansions: writing τ ∈ H2 as

τ =

(
τ1 τ3
τ3 τ2

)
and qj = exp(2πiτj) for 1 ≤ j ≤ 3, the Fourier expansion of a Siegel modular form
belongs to the power series ring C[q3, q−1

3 ][[q1, q2]].
By the Baily–Borel theorem, Siegel modular forms with rational Fourier coeffi-

cients yield projective embeddings of A2 that are defined over Q, and can thus be
used as rational coordinates on this moduli space. Igusa [Igu62] proved the following
fundamental theorem.

Theorem 4.1. The graded C-algebra of Siegel modular forms on H2 of even weight
is free with four generators M4,M6,M10,M12 of weights 4, 6, 10, 12 with integral
Fourier coefficients.

In this paper, we normalize these generators so that their Fourier expansions
are primitive and M10,M12 are cusp forms. This defines them uniquely up to sign.
We can fix these signs by specifying their first few Fourier coefficients:

M4(τ) = 1 + 240(q1 + q2) +O
(
q21 , q

2
2 , q1q2

)
,

M6(τ) = 1− 504(q1 + q2) +O
(
q21 , q

2
2 , q1q2

)
,

M10(τ) =
(
q3 − 2 + q−1

3

)
q1q2 +O(q21 , q

2
2), and

M12(τ) =
(
q3 + 10 + q−1

3

)
q1q2 +O

(
q21 , q

2
2

)
.

We find this normalization more convenient than the ones usually considered in the
literature. In terms of Igusa’s notation in [Igu62], we have

M4 = ψ4, M6 = ψ6, M10 = 4χ10, and M12 = 12χ12.

In terms of the modular forms hk for k ∈ {4, 6, 10, 12} from [Str14, §7.1], we have
(4.2) M4 = 2−2h4, M6 = 2−2h6, M10 = −2−12h10, and M12 = 2−15h12.

From Theorem 4.1, we deduce that for each τ ∈ H2, at least one of the values Mk(τ)
for k ∈ {4, 6, 10, 12} does not vanish.
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Igusa [Igu79] further determined an explicit set of fourteen generators for the
graded ring of Siegel modular forms with integral Fourier coefficients, which contains
the above forms Mk. The following easy corollary of Igusa’s result will play an
essential role in this paper.

Proposition 4.3 ([Kie22b, §2.1]). Let f be a Siegel modular form on H2 of even
weight k with integral Fourier coefficients. Then 12kf ∈ Z[M4,M6,M10,M12].

If f is a Siegel modular form of weight k with rational Fourier coefficients, then
we can also give f an algebraic meaning as follows [FC90, Def. 1.1 p. 137]. Let A be
a p.p. abelian surface over a number field L embedded in C, and let ω be a basis of
the 1-dimensional L-vector space ∧2Ω1(A). Then f(A,ω) is a well-defined element
of L, and satisfies f(A, tω) = t−kf(A,ω) for all t ∈ L×.

The relation between f(A,ω) and the values of f on the Siegel half space H2 is the
following [FC90, p. 141]. Let τ ∈ H2 be a period matrix of A, and choose an isomor-
phism η : A(C)→ C2/(Z2 ⊕ τZ2). The basis of differential forms (2πi dz1, 2πi dz2)
induces a natural basis of ∧2Ω1 on the complex torus; call this basis ω(τ). There is
a unique r ∈ C× such that ω = r · η∗ω(τ). Then f(A,ω) = r−kf(τ); one can check
that this quantity f(A,ω) does not depend on the choice of τ or η.

Let now A be a p.p. abelian surface over Q, and choose a basis ω of ∧2Ω1(A).
Then the weighted projective point
(4.4)

(
M4(A,ω) :M6(A,ω) :M10(A,ω) :M12(A,ω)

)
∈ P4,6,10,12(Q)

is independent of ω, since scaling ω by t−1 ∈ Q× scales the above coordinates
by (t4, t6, t10, t12). We call this projective point the modular invariants of A. This
projective point has a unique representative (m4,m6,m10,m12) ∈ Z4 that is reduced
in the sense that no prime p satisfies pk | mk for all k ∈ {4, 6, 10, 12}; by a slight
abuse of language, we also call this tuple of integers the modular invariants of A.

If A is the Jacobian of a genus 2 curve C defined over Q, then the modular
invariants of A can be computed as follows. Let (I2 : I4 : I6 : I10) ∈ P2,4,6,10(Q) be
the Igusa–Clebsch invariants of C as defined in [Str14, §2.1]; these invariants are
also denoted by (A : B : C : D) in [Igu62] and (A′ : B′ : C ′ : D′) in [Mes91]. Then,
as a consequence of (4.2), the modular invariants of A are
(4.5) (m4 : m6 : m10 : m12) =

(
2−2I4 : 2−3(I2I4 − 3I6) : −2−12I10 : 2−15I2I10

)
.

In particular, on the input of C, the modular invariants of A can easily be computed
from the expression of I2, . . . , I10 as polynomials in the coefficients of C.

4.2. Hecke correspondences. Consider a period matrix τ ∈ H2 attached to
a p.p. abelian surface A over C. Then the period matrices of abelian surfaces linked
to A by an isogeny of a given type can be computed by letting certain symplectic
matrices act on τ . This precisely corresponds to analytic formulas for the action of
Hecke operators on spaces of Siegel modular forms [CG15, §10], [Kri90, Chap. VI,
§5]. The case of 1-step isogenies corresponds to the Hecke operator usually denoted
by T (`), and 2-step isogenies correspond to the Hecke operator T1(`2). Concretely,
we define the following collections of matrices:

(1) S(`) consists of the `3 + `2 + `+ 1 matrices of the form(
1 0 a b
0 1 b c
0 0 ` 0
0 0 0 `

)
,

(
` 0 0 0

−a 1 0 b
0 0 1 a
0 0 0 `

)
,

(
1 0 a 0
0 ` 0 0
0 0 ` 0
0 0 0 1

)
or

(
` 0 0 0
0 ` 0 0
0 0 1 0
0 0 0 1

)
where a, b, c run through {0, . . . , `− 1};
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(2) S(`2) consists of the `4 + `3 + `2 + ` matrices of the following form:( ` 0 0 a`
−b 1 a ab+d
0 0 ` b`
0 0 0 `2

)
,

(
1 0 d −a
0 ` −`a 0
0 0 `2 0
0 0 0 `

)
,

(
`2 0 0 0
−a` ` 0 0
0 0 1 a
0 0 0 `

)
or

(
` 0 0 0
0 `2 0 0
0 0 ` 0
0 0 0 1

)
where a, b run through {0, . . . , `− 1} and d runs through {0, . . . , `2 − 1};
as well as (

` 0 a b
0 ` b c
0 0 ` 0
0 0 0 `

)
where a, b, c run through {0, . . . , ` − 1} with the additional conditions
that ac = b2 and (a, b, c) 6= (0, 0, 0).

The set S(`) (resp. S(`2)) consists of matrices in GSp(4,R)+ with integral coefficients,
zero lower left block, and with the property that the determinant of their lower
right block divides `2 (resp. `3).

Proposition 4.6. Let τ ∈ H2, let A = C2/(Z2 ⊕ τZ2) be the p.p. complex abelian
surface attached to τ , and let ` be a prime number.

(1) The matrices γτ for γ ∈ S(`) are period matrices for the abelian sur-
faces A/K where K runs through the maximal isotropic subgroups of A[`].

(2) The matrices γτ for γ ∈ S(`2) are period matrices for the abelian sur-
faces A/K where K runs through the maximal isotropic subgroups of A[`2]
isomorphic to (Z/`Z)2 × (Z/`2Z).

Proof. First, we consider 1-step isogenies. Consider the subgroup Γ0(`) of
Sp4(Z) defined as

Γ0(`) :=

{(
a b
c d

)
∈ Sp(4,Z) : b = 0 (mod `)

}
.

The map
τ 7→

(
C2/(Z2 ⊕ τZ2), (Z2 ⊕ 1

` τZ
2)/(Z2 ⊕ τZ2)

)
is a bijection between Γ0(`)\H2 and the set of isomorphism classes of pairs (A,K),
where A is a p.p. abelian surface over C and K ⊂ A[`] is maximal isotropic for
the Weil pairing. (This is proved in an analogous way to [BL09, Thm. 3.2], which
uses the subgroup Γ0(`) instead.) The quotient surface A/K admits 1

` τ as a period
matrix. The period matrices we wish to enumerate are therefore the 1

`γτ , where γ
runs through a (finite) set of representatives of Γ0(`)\Sp(4,Z).

We can rewrite these matrices using the action of GSp(4,Q)+, noting that for
all γ ∈ Sp(4,Z), (

Diag(1, 1, `, `)γ
)
· τ = 1

` (γτ).

This leads us to the formalism of Hecke operators in terms of double cosets: we have
Γ0(`) = Sp(4,Z) ∩Diag(1, 1, `, `)−1 Sp(4,Z)Diag(1, 1, `, `),

so the map γ 7→ Diag(1, 1, `, `)γ induces a bijection
Γ0(`)\ Sp(4,Z)→ Sp(4,Z)\Sp(4,Z)Diag(1, 1, `, `) Sp(4,Z).

By [CG15, Prop. 10.1], the set S(`) is a set of representatives for the coset space
on the right hand side (we acted on some representatives by elements of Sp4(Z) to
simplify them). This proves (1).

The 2-step case is similar. The reduction map Sp(4,Z) → Sp(4,Z/`2Z) is
surjective (see [BL09, §3]), and we define Γ0(`2) as the preimage in Sp(4,Z) of
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the stabilizer of the maximal isotropic subgroup
〈
(0, `, 0, 0), (0, 0, 1, 0), (0, 0, 0, `)

〉
in (Z/`2Z)4. The map

τ 7→
(
C2/(Z2 ⊕ τZ2), (Z⊕ 1

`Z)⊕ τ(
1
`2Z⊕

1
`Z))/(Z

2 ⊕ τZ2)
)

is a bijection between Γ0(`2)\H2 and the set of isomorphism classes of pairs (A,K),
where A is a p.p. abelian surface over C and K ⊂ A[`2] is a maximal isotropic
subgroup for the Weil pairing and isomorphic to (Z/`Z)2 × Z/`2Z. A period
matrix for the quotient abelian surface A/K is then Diag(1, `, `2, `) τ . As above, a
reformulation in terms of double cosets will be convenient. We have

Γ0(`2) = Sp(4,Z) ∩Diag(1, `, `2, `)−1 Sp(4,Z)Diag(1, `, `2, `),

so the map γ 7→ Diag(1, `, `2, `)γ induces a bijection

Γ0(`2)\ Sp(4,Z)→ Sp(4,Z)\Sp(4,Z)Diag(1, `, `2, `) Sp(4,Z).

Combining [CG15, Prop. 10.5] with [Kri90, Chap. VI, Lem. 5.2], we find that S(`2)
is exactly a set of representatives for the coset space on the right hand side. �

4.3. Rational invariants versus rational isogenies. Our algorithm will
enumerate period matrices γτ using Proposition 4.6 and evaluate the modular
forms Mk at these points. If γτ corresponds to an abelian surface A′ that is
isogenous to A over Q, then

(
M4(γτ) : M6(γτ) : M10(γτ) : M12(γτ)

)
must be

rational as a weighted projective point, i.e. up to complex scaling with the correct
weights. In fact, the converse statement also holds.

Proposition 4.7. Let A be a typical p.p. abelian surface over Q, let τ be a period
matrix of A, let ` be a prime number, and let i ∈ {1, 2}. Then

(1) As γ runs through S(`i), the projective points
(
M4(γτ) : · · · : M12(γτ)

)
in P4,6,10,12(C) are all distinct.

(2) Fix γ ∈ S(`i), and assume that there exists a scalar λ ∈ C× such that
λkMk(γτ) ∈ Q for each k ∈ {4, 6, 10, 12}. Then γτ is a period matrix of
a p.p. abelian surface A′, defined over Q, such that there exists an i-step
isogeny A→ A′ of degree `2i defined over Q.

Proof. We first prove (1) by contradiction. If these projective points happen
to be equal for some γ1 6= γ2, then we have a (non-commutative) diagram

A A∨

A1 A2 A∨
2

f1 f2

λA

η

∼
λA2

f∨
2

where f1, f2 are isogenies with distinct kernels, and η is an isomorphism. Then
the compositions η ◦ f1 ◦ λ−1

A ◦ f∨2 ◦ λA2
and f2 ◦ λ−1

A ◦ f∨2 ◦ λA2
yield elements

of End((A2)Q) = Z of the same degree `2i. They must therefore be equal up to sign.
Thus η ◦ f1 = ±f2 and ker f1 = ker f2, a contradiction.

For (2), let K be the subgroup of A attached to γ. If K is not defined over Q,
then the Galois orbit of K consists of several subgroups of A, and the associated
quotients have the same modular invariants, contradicting (1). Therefore K and
the associated isogeny are defined over Q. �
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4.4. Certification. By Proposition 4.7, evaluating modular invariants and
detecting when they are rational suffices to detect rational isogenies. In practice
however, we will have to manipulate these complex numbers up to some finite
precision. While rational invariants can still be detected heuristically and the
isogeny might be proved to exist by other methods, certifying the non-existence of a
rational isogeny is not immediate.

A key idea to achieve certification is to leverage the fact that we manipulate
modular forms with integral Fourier coefficients to compute algebraic integers
instead of just complex numbers. This technique is inspired from the description
of denominators for modular equations in [Kie22b], and allows us to rule out non-
rational isogenies. As a byproduct, we are also able to certify the existence of
rational isogenies using computations over C only.

Concretely, let A, τ and ` be as in Proposition 4.7, and denote the modular
invariants of A as defined in §4.1 by (m4,m6,m10,m12) ∈ Z4. Then there exists a
scalar λ ∈ C×, uniquely determined up to sign (but dependent on τ), such that

(4.8) λkMk(τ) = mk for all k ∈ {4, 6, 10, 12}.
Let f be a Siegel modular form of even weight k with integral Fourier coefficients.
For γ ∈ S(`i), we define

(4.9) N(f, γ) := (12λ)k(`d det(γ∗τ)−1)kf(γτ).

with d = 2 if i = 1, and d = 3 if i = 2. (The central factor `d det(γ∗τ)−1 is a power
of ` independent of τ .) We will show that the N(f, γ) are in fact algebraic integers.

The first step is to reinterpret the complex numbers N(f, γ) algebraically. Let ω
be a basis of ∧2Ω1(A) such that Mj(A,ω) = mj for all j ∈ {4, 6, 10, 12}, and let K
be the subgroup of A corresponding to γ via the correspondence of Proposition 4.6.
The subgroup K is not necessarily defined over Q; let L be its field of definition,
which is a number field embedded in C. Then pulling back differential forms along
the quotient isogeny A → A/K induces a bijection between the L-vector spaces
L ⊗Q Ω1(A) and Ω1(A/K). Under this bijection, ω corresponds to an L-basis ω′

of ∧2Ω1(A/K).

Lemma 4.10. With the above notation, we have N(f, γ) = 12kf(A/K,ω′).

Proof. By [BL04, Rem. 8.1.4], for every τ ′ ∈ H2 and γ ∈ Sp(4,Z), the map
z 7→ (γ∗τ ′)−tz defines an isomorphism between the abelian surfaces C2/(Z2 ⊕ τ ′Z2)
and C2/(Z2 ⊕ (γτ ′)Z2). Keeping the notation from above the lemma, we write
γ = δ2∆δ1 where δ1, δ2 ∈ Sp(4,Z) and ∆ is either Diag(1, 1, `, `) or Diag(1, `, `2, `)
depending on i. We then consider the commutative diagram

A A/K

C2/(Z2 ⊕ τZ2) C2/(Z2 ⊕ γτZ2)

C2/(Z2 ⊕ δ1τZ2) C2/(Z2 ⊕∆δ1τZ2)

η1 η2

ζ1

ξ

ζ2

where ζ1 (resp. ζ2) is the isomorphism z 7→ (δ∗1τ)
−tz (resp. z 7→ (δ∗2(∆δ1τ))

−tz),
double-tipped arrows denote natural quotient maps, η1 is an isomorphism of complex
tori, and η2 is another isomorphism that is determined by the choice of η1. We recall
that ω(τ) denotes the element 2πidz1∧2πidz2 of ∧2Ω1

(
C2/(Z2⊕τZ2)

)
, where z1, z2

are the coordinates of C2. Let r ∈ C× be chosen such that ω′ = r η∗2 ω(γτ) as
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differential forms on A/K. We have f(A/K,ω′) = r−kf(γτ). Using the bottom
line of the diagram, we find that

ω(τ) = det(δ∗1τ) · det
(
δ∗2(∆δ1τ)

)
· (ζ2 ◦ ξ ◦ ζ1)∗ ω(γτ).

We can rewrite this equality using the following cocycle relation:

γ∗τ = (δ2∆δ1)
∗τ = δ∗2(∆δ1τ) ·∆∗(δ1τ) · δ∗1τ.

As det∆∗(δ1τ) = `d, we have

ω(τ) = `−d det(γ∗τ) · (ζ2 ◦ ξ ◦ ζ1)∗ ω(γτ)

We deduce that ω = r `d det(γ∗τ)−1η∗1ω(τ) as differential forms on A, and thus
λ = ±r−1`−d det(γ∗τ). From (4.9), we finally obtain

N(f, γ) = 12kr−kf(γτ) = 12kf(A/K,ω′). �

Theorem 4.11. Let A be a p.p. abelian surface defined over Q, let τ ∈ H2 be a
period matrix of A, let ` be a prime, and let i ∈ {1, 2}. For a Siegel modular form f
on H2 of even weight with integral Fourier coefficients and γ ∈ S(`i) (cf. §4.2), we
define N(f, γ) as in equation (4.9). Then

(1) For each such modular form f , the set {N(f, γ) : γ ∈ S(`i)} is a Galois-
stable set of algebraic integers. Moreover, the action of Gal(Q/Q) on
this set corresponds to the Galois action on subgroups of A[`i] via the
correspondence of Proposition 4.6.

(2) If γ ∈ S(`i) corresponds to a subgroup K of A that is defined over Q, then(
N(M4, γ) : N(M6, γ) : N(M10, γ) : N(M12, γ)

)
∈ P4,6,10,12(Q)

are the modular invariants of the quotient A/K in the sense of §4.1.

Proof. By Lemma 4.10, the complex numbers N(f, γ) are in fact algebraic,
form a Galois-stable set, and the action of Gal(Q/Q) on them corresponds to the
Galois action on subgroups of A. We now show that the N(f, γ) are algebraic
integers. To this end, we construct the monic polynomial

P (X) =
∏

γ∈S(`i)

(
X −N(f, γ)

)
.

Let n = deg(P ) = #S(`i). Expanding the product, we observe as in [Kie22b, Prop.
2.4] that for each 0 ≤ j ≤ n, the coefficient of Xn−j in P takes the form

(12λ)kj · gj(τ),

where gj is a Siegel modular form of weight kj with integral Fourier coefficients. By
Proposition 4.3, the modular form 12kjgj is an element of Z[M4,M6,M10,M12] of
weight kj. Therefore

(12λ)kjgj(τ) ∈ Z[m4,m6,m10,m12] = Z.

Thus P has integral coefficients, which concludes the proof of (1).
Item (2) is a direct consequence of Lemma 4.10: we showed the existence of a

basis ω of the Q-vector space ∧2Ω1(A/K) such that N(Mk, γ) = 12kMk(A/K,ω)
for all k ∈ {4, 6, 10, 12}, and absorbing the scalar factors 12k does not modify the
projective point. �
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4.5. Outline of the algorithm. Now that the theoretical background is set,
we describe the concrete computations over C that we perform to list the rational
1- or 2-step isogenies from a given typical p.p. abelian surface A over Q. We take
the modular invariants of A as input. If A is given as the Jacobian of a genus 2
curve over Q as in Algorithm 2.5, then its modular invariants can be determined by
polynomial formulas in terms of the coefficients of the curve, as explained in §4.1.
Similarly, the output will consists of modular invariants of isogenous abelian surfaces:
we refer to Section 5 for the subsequent reconstruction of genus 2 curve equations.

In the whole algorithm, we use interval arithmetic to keep track of precision
losses: each complex number is encoded as a ball that provably contains the exact
value. Of course, we need to assume more than mere correctness of the underlying
arithmetic for our algorithms to work, as we will not get far if every operation
returns the whole of C. A minimal assumption in this subsection is that any given
computation with exact input will output a complex ball whose radius tends to
zero as its working precision tends to infinity. This will ensure that our algorithms
terminate. In fact, we have a precise control on the precision losses incurred during
the computations: we postpone this discussion to the complexity analysis in §4.6.

There are two main stages in the algorithm. First, we use low-precision compu-
tations to filter out symplectic matrices γ ∈ S(`) or S(`2) whose associated N(f, γ),
seen as a ball, does not contain any rational integer. By Theorem 4.11, these matri-
ces γ do not correspond to rational isogenies with domain A. One expects that all
remaining subgroups correspond to rational isogenies. Second, we use high-precision
computations to either certify or disprove that the remaining subgroups are defined
over Q. We will use two black boxes, namely the computation of a period matrix
from modular invariants and the evaluation the Siegel modular forms Mk at a point
of Hg; we also refer to §4.6 for a discussion of these steps. In the first stage, we
proceed as follows.

Algorithm 4.12. Input:
• the modular invariants m4,m6,m10,m12 of a p.p. abelian surface A over Q,
• a prime number `, and i ∈ {1, 2} indicating either 1-step or 2-step isogenies.

Output:
• a period matrix τ of A (to low precision),
• a list L of symplectic matrices that provably contains all γ ∈ S(`i) associ-

ated with a rational subgroup of A[`i] for this choice of τ ,
• for each γ ∈ L and k ∈ {4, 6, 10, 12}, a candidate value m′

k(γ) ∈ Z for the
algebraic integer N(Mk, γ) satisfying |N(Mk, γ)−m′

k(γ)| ≤ 2−10;
• for each γ /∈ L and k ∈ {4, 6, 10, 12}, a ball containing N(Mk, γ) of radius

at most 2−10.
Step 1. Compute a low-precision approximation of a period matrix τ of A, see

Theorem 4.17.
Step 2. Evaluate the modular forms M4, . . . ,M12 at τ , and deduce an approxima-

tion of the scaling factor λ as defined in §4.4.
Step 3. For each γ ∈ S(`i) and each k ∈ {4, 6, 10, 12}, evaluate N(Mk, γ). If

the radius of one of these approximations is larger than 2−10, double the
working precision and restart.

Step 4. Let L be the list of all γ such that each of the balls N(Mk, γ) for k ∈
{4, 6, 10, 12} contains an integer m′

k(γ), and return the output listed above.
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At the end of Algorithm 4.12, for each γ ∈ L, the integers m′
k(γ) are the only

possible values for the modular invariants of the isogenous abelian surface if it is
indeed defined over Q. One could stop here and certify the existence of an isogeny
by other methods. In order to certify that these likely isogenies indeed exist using
computations over C only, we proceed as follows.

Lemma 4.13. Keep the notation of Algorithm 4.12. Let k ∈ {4, 6, 10, 12}, let
m ∈ Z, and let S0 ⊂ S(`i) be a nonempty subset such that |N(Mk, γ)−m| ≤ 1 for
all γ ∈ S0, and N(Mk, γ) 6= m for all γ ∈ S(`i)\S0. Let

B =
∏

γ∈S(`i)\S0

|N(Mk, γ)−m|.

Then for each γ ∈ S0, the inequality |N(Mk, γ) − m| <
1

B
holds if and only if

N(Mk, γ) = m.

Proof. Let S1 ⊂ S0 be the subset of matrices γ such that the equality
N(Mk, γ) = m holds, and consider the polynomial

P =
∏

γ∈S(`i)

(
X −N(Mk, γ) +m

)
∈ Z[X], by Theorem 4.11.

The coefficient of Xj in P is zero for 0 ≤ j ≤ #S1 − 1, and the coefficient of X#S1

is, up to sign, ∏
γ∈S(`i)\S0

(
N(Mk, γ)−m

)
·
∏

γ∈S0\S1

(
N(Mk, γ)−m

)
.

By construction, this integer is nonzero, hence at least 1 in absolute value. Thus,
for every γ ∈ S0\S1, we have as claimed

|N(Mk, γ)−m| ≥
1

B
. �

Algorithm 4.14. Input: the input and output of Algorithm 4.12.
Output: the modular invariants of all the p.p. abelian surfaces linked to A by an
i-step `-isogeny, as a list of integer-valued tuples (m′

4,m
′
6,m

′
10,m

′
12).

Step 1. For each γ0 ∈ L and k ∈ {4, 6, 10, 12}, let S0 ⊂ L to be the set of all
matrices γ such that m′

k(γ) = m′
k(γ0), and compute a low-precision upper

bound for the quantity B as in Lemma 4.13. Let B0 be their maximum
value ranging over all γ0 and k.

Step 2. Choose a higher working precision (more on this below). Recompute the
period matrix τ , as well as N(Mk, γ) for each γ ∈ L and k ∈ {4, 6, 10, 12}.

Step 3. For each γ ∈ L and k ∈ {4, 6, 10, 12}, check whether N(Mk, γ) still contains
the candidate value m′

k(γ). If not, remove γ from L. If yes, check whether
the inequality

|N(Mk, γ)−m′
k(γ)| <

1

B0

holds; if this cannot be decided, double the working precision and go back
to Step 2.

Step 4. Output the list of tuples (m′
4(γ), . . . ,m

′
12(γ)) for the remaining γ ∈ L.

As soon as all the radii of the balls containing N(Mk, γ) are less than 1
2B0

, there
will be no further doubling of the working precision in Step 3, thus Algorithm 4.14
terminates. Lemma 4.13 guarantees that the algorithm is correct.



18 R. VAN BOMMEL, S. CHIDAMBARAM, E. COSTA, AND J. KIEFFER

Remark 4.15. In practice, increasing the working precision by p bits results in
output intervals whose radius is multiplied by roughly 2−p. Therefore a good guess
for the choice of high precision in Step 2 of Algorithm 4.14 is to add dlog2(B0)e bits
to the current working precision at the end of Algorithm 4.12. We then expect that
no further precision increases are needed in Step 3.

4.6. Implementation details and complexity analysis. We conclude this
section with a complexity analysis of the isogeny algorithm in terms of `, i and the
height of the integers mk for k ∈ {4, 6, 10, 12}. First, we give an asymptotic upper
bound on the absolute values |N(Mk, γ)|: this will specify the necessary working
precisions in Algorithms 4.12 and 4.14. Then, we review previous works on the
computation of period matrices and the evaluation of modular forms in quasi-linear
time in terms of the required precision, filling in the two black boxes of §4.5.

We may fix a compact subset G ⊂ H2 ∪ {∞}, where ∞ denotes the cusp at
infinity, such that the period matrix τ in Step 1 of Algorithm 4.12 always belongs
to G. For instance, we can take G to be the set of points at a distance at most 2−10

from the Siegel fundamental domain F (see [Str14, §6.2]), plus the point ∞. Recall
that the modular forms Mk are bounded in a neighborhood of ∞, never vanish
simultaneously on H2, and that M4 and M6 take the value 1 at ∞. Thus there exist
two absolute constants 0 < C1 < C2 < +∞ such that Mk ≤ C2 uniformly on G for
each k ∈ {4, 6, 10, 12}, and max

{
|Mk(τ)| : k ∈ {4, 6, 10, 12}

}
≥ C1 for each τ ∈ G.

Lemma 4.16. In Algorithm 4.12, assume that τ ∈ G, and let

h = logmax{|m4|, . . . , |m12|}.

Then in Step 2 of that algorithm, we have log |λ| = O(h). In Step 3, we have
log |N(Mk, γ)| = O(h+log `) for each γ ∈ S(`i) and k ∈ {4, 6, 10, 12}. Both implied
constants are absolute.

Proof. For the first part, we have log |λ| ≤ 1
4 (h− logC1). For the second part,

we need to estimate |Mk(γτ)|. The matrix γτ ∈ H2 will not usually belong to G, but
its imaginary part is nevertheless “bounded below”: if a, b, 0, d denote the 2×2 blocks
of γ, we have Im(γτ) = a Im(τ)d−1, so det Im(γτ) ≥ C3/`

2 where C3 is an absolute
constant. Let now η ∈ Sp(4,Z) be such that ηγτ ∈ G, and let r = det(η∗(γτ)).
Then by [Kli90, Proof of Prop. 1.1], we have

det(Im(ηγτ)) = |r|−2 det(Im(γτ))

so |r|−2 ≤ C4`
2, where C4 is an absolute constant. Finally we have

log |Mk(γτ)| = log |r−kMk(ηγτ)| = O(log `)

where the implied constant is absolute. �

With these estimates in hand, we focus on the two key computations left
aside in §4.5. From the data of modular invariants in Z, a corresponding period
matrix τ ∈ F can be efficiently computed using arithmetic-geometric means, an
algorithm described in [Dup06, Chap. 9] and proved correct in [Kie22a]. (In the
first low-precision step, we could also use numerical integration [MN19], but the
dependency of this algorithm on h has not been made explicit.)

Theorem 4.17 ([Kie22b, §4.1]). There exists an algorithm which, given the modular
invariants m4, . . . ,m12 ∈ Z of a typical p.p. abelian surface A over Q and p ≥ 1,
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computes an approximation of a period matrix τ ∈ F of A up to an error of 2−p within
a running time of Õ(p+ h) binary operations, where h = logmax{|m4|, . . . , |m12|}.

In order to evaluate the modular forms Mk at a point γτ ∈ H2, we compute
a matrix η ∈ Sp(4,Z) such that ηγτ is close to the fundamental domain F and
evaluate Mk(ηγτ). The latter can be rewritten as polynomials in terms of theta
constants at ηγτ : see [Str14, §7.1] for explicit formulas. Following [Kie22b, §4.3],
we can control the cost of the reduction step in terms of the quantity

Λ(γτ) = logmax{2, |γτ |,det(Im(γτ))−1},

where |γτ | denotes the largest absolute value of an entry of γτ . As a consequence
of [Str14, Cor. 7.8], we have |τ | = O(h), so Λ(γτ) = O(log h + log `) where the
implied constant is absolute. After the reduction step, the evaluation of theta
constants on F can be done in uniform quasi-linear time using arithmetic-geometric
means and Newton’s method. The following result summarizes this approach.

Theorem 4.18 ([Kie22b, §4.3]). There exists an algorithm and an absolute con-
stant C5 such that the following holds. Let τ ∈ H2 and p ≥ 1. Then, given an approx-
imation of τ to precision p+ C5Λ(τ), the algorithm computes a matrix γ ∈ Sp(4,Z)
such that log |γ| = O(Λ(τ)), a matrix τ ′ ∈ F such that |τ ′ − γτ | ≤ 2−p, and an
approximation of the squares of theta constants at γτ up to an error of 2−p. Its
running time is Õ(Λ(τ)2 + p) binary operations.

We can now prove the complexity bound stated at the beginning of Section 4.

Corollary 4.19. Let A be a typical p.p. abelian surface over Q with modular
invariants m4, . . . ,m12, and let h = logmax{|m4|, . . . , |m12|}. Let ` be a prime,
let i ∈ {1, 2}, and let n be the size of the list L returned by Algorithm 4.12 on this
input. Then one can run Algorithms 4.12 and 4.14 to detect i-step `-isogenies with
domain A using a total of Õ

(
(n+ 1)`dh

)
binary operations, where d = 3 when i = 1

and d = 4 when i = 2.

Proof. By Lemma 4.16, in Step 3 of Algorithm 4.12, we need to evalu-
ate Mk(γτ) to O(h+ log `) bits of precision for each γ ∈ S(`i). By Theorems 4.17
and 4.18, this can be done within Õ(`dh) binary operations, as #S(`i) = O(`d).
Similarly, in Algorithm 4.14, we have log |B0| = O(`d(h + log `)), so we need to
evaluate Mk(γτ) to O

(
`d(h+ log `)

)
bits of precision for each γ ∈ L. This can be

done in Õ(n`dh) binary operations. �

5. Reconstructing genus 2 curves

5.1. Mestre’s algorithm. Given a quadruple of Igusa–Clebsch invariants
I = (I2 : I4 : I6 : I10) over Q, there always exists a genus 2 curve over Q having
these invariants, but it cannot always be defined over Q. This phenomenon is
known as Mestre’s obstruction. Given I, Mestre [Mes91] constructs a conic L
over Q together with an effective divisor D of degree 6 on this conic with the
following properties. If L(Q) 6= ∅ and hence L ∼= P1, then there exists a genus 2
curve over Q with invariants I whose Weierstrass points correspond to the points
in D. If L(Q) = ∅, there is no genus 2 curve over Q having these invariants. This
reconstruction algorithm has been implemented in many computer algebra systems
and the reader is referred to [Mes91] for more details about the method.
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In our setting, Mestre’s obstruction does not arise, and L(Q) is always non-
empty. Indeed, by Proposition 4.7, we only manipulate typical p.p. abelian surfaces
defined over Q. By [Lau01, Appendix, Thm. 4], these surfaces all are Jacobians of
genus 2 curves defined over Q.

Mestre’s algorithm usually produces curves with very large coefficients. Their
sizes can be reduced by applying [SC03], which has been implemented in [PARI/GP]
and [Magma]. Note that even this reduced model is not necessarily unique.

5.2. Identifying the correct twists. Having constructed a curve C ′ over Q
from the invariants output by Algorithm 4.14, we have no guarantee yet that Jac(C)
will be isogenous to Jac(C ′) over Q: we can only say that Jac(C ′) is a twist of the
abelian surface isogenous to Jac(C). Since End(Jac(C ′)Q) = Z, the only possible
twists of Jac(C ′) are quadratic twists, and correspond to quadratic twists of the
curve C ′ itself. Therefore, there will be a unique twist C ′′ of C ′ (up to isomorphism
over Q) such that Jac(C) is isogenous to Jac(C ′′).

We use the following method to find C ′′. For a genus 2 curve C and a prime of
good reduction ` of Jac(C), we denote by a`(C) ∈ Z the trace of Frobenius on the
reduction on Jac(C) modulo `.

Algorithm 5.1. Input: curves C and C ′ of genus 2 over Q with typical Jacobians,
such that some twist of Jac(C ′) is isogenous to Jac(C).
Output: the unique twist C ′′ of C ′ such that Jac(C) is isogenous to Jac(C ′′).
Step 1. Compute a set B of primes containing the bad primes of C and C ′. Let

G = 〈−1〉 × 〈b : b ∈ B〉 ⊂ Q∗/Q∗2.

Step 2. Find auxiliary primes `1, . . . , `k such that the Frobenius traces a`i(C) are
nonzero and the map

µ : G→ {±1}k, x 7→
((

x

`i

))
1≤i≤k

is injective.
Step 3. Identify the unique element g ∈ G for which the twist C ′′ of C ′ by g

satisfies a`i(C ′′) = a`i(C) for every 1 ≤ i ≤ k, and return C ′′.

Proposition 5.2. Algorithm 5.1 terminates and is correct.

Proof. First, we will prove the existence of the auxiliary primes `1, . . . , `k. By
[CDSS17, Theorem 1] and the fact that Jac(C) is typical, the equality a`(C) = 0
holds only for a density 0 subset of primes. Write B ∪ {−1} = {b1, . . . , bk}. For
each 1 ≤ i ≤ k, by quadratic reciprocity, we can find congruence conditions on `

guaranteeing that
(
bi
`

)
= −1 and

(bj
`

)
= 1 for each j 6= i. By Dirichlet’s prime

number theorem and the fact that only a density 0 subset of the primes are excluded,
there exists a prime `i (in fact infinitely many) satisfying these congruence conditions
and such that a`i(C) 6= 0. With this choice of `1, . . . , `k, the map µ is injective.

Next, we recall the Néron–Ogg–Shafarevich criterion [ST68]: an abelian sur-
face A has good reduction at a prime p if and only if for all primes ` 6= p, the Galois
representation T`(A) is unramified at p. Hence, if A has good reduction at p and A′

is the quadratic twist of A by a squarefree integer D divisible by p, then A′ has bad
reduction at p. Indeed, the Galois representation T`(A

′) is obtained from T`(A) by
tensoring with the quadratic character associated with Q(

√
D), which is ramified
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at p. On the other hand, any abelian surface isogenous to A must have the same
primes of bad reduction.

As a consequence, the correct twist Jac(C ′′) of Jac(C ′) is given by a squarefree
integer D that can only be divisible by primes of bad reduction of Jac(C) or Jac(C ′).
These form a subset of B, so the correct twist is among those enumerated by G.
By the choice of the auxiliary primes `1, . . . , `k, the tuples of Frobenius traces
(a`1 , . . . , a`k) take distinct values for all the twists enumerated by G, so there is a
unique output in Step 3. �

Algorithm 5.1 has an exponential complexity in terms of the number of bad
primes of C and C ′, but this number is small in practice.

Remark 5.3. In the case of elliptic curves, an analogue of Algorithm 5.1 would not
be needed. Indeed, if E is an elliptic curve over Q with automorphism group {±1},
then the modular invariants of E in P4,6(Q) determine the Q-isomorphism class
of E, as twisting E by d multiplies its invariants by d2 and d3. Thus we would
obtain the correct twist as a direct result of the computations over C.

In genus 2 however, quadratic twists have the same modular invariants: this
comes from the fact that twisting an abelian surface A by d acts on Ω1(A)

as Diag(
√
d,
√
d), hence on ∧2Ω1(A) as multiplication by d, which is a rational

number. Nevertheless, one would still be able to compute the correct twist directly
(and thus circumvent Algorithm 5.1) by considering vector-valued Siegel modular
forms, or equivalently by keeping track of big period matrices. This goes beyond
the scope of this paper, and Algorithm 5.1 was sufficient for our experiments.

6. Examples

We now give explicit illustrations of the methods developed above. First, we
discuss an example of a 1-step 31-isogeny; then, we report on the results of running
our algorithm on a large dataset of Jacobians of genus 2 curves that includes the
current LMFDB data [LMFDB]. The prime ` = 31 is the largest prime for which
the Galois representation on A[`] is not surjective among all the abelian surfaces A
in this dataset [BBKKMSV23].

All computations were ran on a server with an AMD EPYC 7713 2GHz CPU
and Sage 9.7 [Sage], Magma 2.28-2 [Magma], GP/PARI 2.15.0 [PARI/GP], and
pydhme v0.0.6 installed.3

6.1. A 1-step 31-isogeny. Consider the hyperelliptic curve

C : y2 + (x+ 1)y = x5 + 23x4 − 48x3 + 85x2 − 69x+ 45.

The conductor of Jac(C) is 72 · 312. Combining this with the study of local Euler
factors at p ∈ {3, 5, 11}, we see that L1 = ∅ and L2 ⊆ {31} in the notation of §3.

The Igusa–Clebsch invariants (I2 : I4 : I6 : I10) of C in P2,4,6,10(Q) are

(−324608 : 7340502400 : −589129410429504 : 5306537926135312384),

from which we can deduce that Jac(C) has the following modular invariants:

(m4,m6,m10,m12) = (1909600, 2582145496, 45252529,−59231181184).

3A Sage interface for [Kie23] is available at https://github.com/edgarcosta/pyhdme/.

https://github.com/edgarcosta/pyhdme/
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We apply Algorithm 4.12 with ` = 31 and i = 1. After computing a period matrix

τ ≈
(

1.69708i 0.31188 + 0.84854i
0.31188 + 0.84854i −0.18812 + 2.09922i

)
in the Siegel fundamental domain with 300 bits of precision, we conclude that there
is a unique coset representative

γ =


1 0 0 7
0 1 7 23
0 0 31 0
0 0 0 31

 ∈ S(31)
such that N(M4, γ) contains an integer. Indeed, we have

|N(M4, γ)− α2 · 318972640| < 7.8× 10−47

|N(M6, γ)− α3 · 1225361851336| < 5.5× 10−39

|N(M10, γ)− α5 · 10241530643525839| < 1.6× 10−29

|N(M12, γ) + α6 · 307105165233242232724| < 4.6× 10−22

where α = 22 · 32 · 31. We then employ Algorithm 4.14, working with 4 128 800 bits
of precision, to certify that an abelian surface with projective invariants

(318972640, 1225361851336, 10241530643525839,−307105165233242232724)
is indeed isogenous to Jac(C) via a 1-step 31-isogeny.

Mestre’s algorithm and a reduction algorithm (§5.1) yield the hyperelliptic curve
y2 = −1624248x6+5412412x5−6032781x4+876836x3−1229044x2−5289572x−1087304.

Applying Algorithm 5.1 we learn that the desired curve C ′′ is the quadratic twist of
this hyperelliptic curve by −83761, and is given by the equation
y2 + xy = −x5 + 2573x4 + 92187x3 + 2161654285x2 + 406259311249x+ 93951289752862

with discriminant 72 · 313 · 8376112.
The overall computation took 175 minutes of CPU time and used 6.5 gigabytes

of ram, of which roughly 90% is spent certifying the existence of an isogeny between
these two curves, i.e. in Algorithm 4.14.

Given C and C ′′, we can also independently produce a certificate for the existence
of an isogeny of the correct degree [CMSV19]. It took about 6.5 CPU hours to
produce the 2.8 megabyte certificate.

6.2. LMFDB and beyond. We now report on the application of our algo-
rithms to a dataset of 1 743 737 genus 2 curves with trivial geometric endomorphism
algebra. These are all the typical abelian surfaces in a dataset of approximately
5 million curves with conductor up to 220 provided to us by Andrew Sutherland
[Sut22]. This dataset expands the current set of genus 2 curves in the L-functions
and modular forms database (LMFDB) [LMFDB].

The 1 743 737 curves are split among 1 440 894 isogeny classes, while the LMFDB
subset contains 63 107 curves split among 62 600 isogeny classes. These isogeny
classes have been identified using Frobenius traces only [BSSVY16, §4.3], a heuristic
method whose results are confirmed by our computations.

We have applied our algorithms to one curve per isogeny class and found 600 948
new curves in total. Table 1 lists the degrees of the irreducible isogenies that we
found (in other words we ignore 2-step isogenies arising as the composition of two
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rational 1-step isogenies), and Table 2 shows the sizes of the 1 440 894 isogeny classes.
Most of the large classes only feature Richelot isogenies, i.e. 1-step 2-isogenies. In
total, however, only 242 442 of the 600 948 new curves can be reached from the
original dataset via Richelot isogenies.

d
Number of isogenies

of degree d d
Number of isogenies

of degree d
22 419 157 74 246
24 693 519 114 9
32 11 568 132 20
34 29 742 134 9
52 415 172 4
54 2 440 312 1
72 154

Table 1. Number of isogenies of each degree in the extended dataset.

k
Number of isogeny

classes of size k k
Number of isogeny

classes of size k
1 1 032 456 12 52
2 116 847 14 102
3 197 253 16 1 555
4 54 543 18 706
5 15 547 20 120
6 14 323 22 99
7 430 24 6
8 5 594 28 4
9 35 30 8
10 1 214

Table 2. Distribution of isogeny class sizes in the extended dataset.

Remark 6.1. It is worth noting that 195 806 of the 197 253 isogeny classes of
size 3 and 15 523 of the 15 547 isogeny classes of size 5 are only made up of 2-step
2-isogenies, of degree 16. The isogeny graphs in these two cases are a triangle 4
and a bowtie ./ respectively. Moreover, there is no isogeny class of size 2 made of a
single 2-step 2-isogeny.

These observations can be explained as follows: the existence of a 2-step
2-isogeny ϕ1 : A1 → A2 always implies the existence of a triangle consisting of
three 2-step 2-isogenies. Indeed, assume that ker f is generated by e1, 2e2, 2f2,
where (e1, e2, f1, f2) is a symplectic basis of A1[4]. Then the subgroup generated
by e1 + 2f1, 2e2, 2f2 is another rational maximal isotropic subgroup of A1[4], and
gives rise to an isogeny ϕ2 : A1 → A3. Furthermore, one can show that there exists
another 2-step 2-isogeny ϕ3 : A2 → A3 such that ϕ2 ◦ [2] = ϕ3 ◦ ϕ1.

The whole computation took 111 days of CPU time and used 215 megabytes of
RAM on average per class. Only 30 classes taking more than 10 minutes. In these
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29 cases, we had to search for and potentially certify isogenies of large degree. For
6 of the classes, it took on average 18 minutes to prove the nonexistence of 1 and
2-step 29-isogenies; one of them has LMFDB label 976.a, and contains a Jacobian
with a 29-torsion point. The remainder correspond to 23 = 9 + 9 + 4 + 1 isogeny
classes consisting of exactly two abelian surfaces linked by isogenies of degrees 114,
134, 172, and 312 respectively, as listed in Table 1. The only class that took more
than 1.5 hours is the example discussed in §6.1, featuring the isogeny of degree 312.

The largest degree of an irreducible isogeny was 134. For example, the class
349.a has two abelian surfaces connected by such an isogeny, namely the Jacobians
of the two curves
349.a.349.1: y2 + (x3 + x2 + x+ 1)y = −x3 − x2

C : y2 + y = x5 − 363x4 − 2517x3 + 151106x2 + 487525x− 16355862.

Table 3 continues our zoological study of isogeny graphs by listing all graphs on
at most four vertices that we observed. We label an edge by ` (resp. `2) when it
corresponds to a 1-step (resp. 2-step) `-isogeny.

n for n ∈ {2, 3, 5, 7, 13, 17, 31, 9, 25, 49, 121, 169}
n n for n ∈ {3, 5, 7, 9}

4

4

4

n n n for n ∈ {3, 5}

n

n

m m for (m,n) ∈ {(2, 3), 2, 5), (2, 9), (2, 25),
(3, 3), (5, 9), (9, 25)}

n

n n
for n ∈ {2, 3}

Table 3. Observed isogeny graphs with 2 to 4 vertices.

The 1 440 894 isogeny classes represent 71 non-isomorphic graphs, the largest
having size 30 (see https://github.com/edgarcosta/genus2isogenies/tree/m
ain/data/graphs_2e20). In every class containing 18 or more abelian surfaces, the
only irreducible isogenies are Richelot isogenies.

https://www.lmfdb.org/Genus2Curve/Q/976/a/
https://www.lmfdb.org/Genus2Curve/Q/349/a/
https://www.lmfdb.org/Genus2Curve/Q/349/a/349/1
https://github.com/edgarcosta/genus2isogenies/tree/main/data/graphs_2e20
https://github.com/edgarcosta/genus2isogenies/tree/main/data/graphs_2e20
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Despite the size of our dataset, this list of graphs is not complete. The following
curve, suggested by Noam Elkies, gives rise to an isogeny graph consisting of 42
vertices connected by Richelot isogenies:

y2 = (x+ 4)(x+ 11)(4x− 1)(12x+ 13)(15x− 4).

This curve has conductor 224·33·52·72·13·172 and discriminant 240·318·56·76·134·174.
Its isogeny graph is displayed in Figure 1.

Figure 1. Isogeny graph with 42 vertices.

6.3. Sanity checks. Running such a large scale computation allows us to
perform several sanity checks regarding the correctness of our implementation. For
each isogeny found, we heuristically confirmed that the Jacobians were isogenous in
two ways. First, we confirmed that all the traces of Frobenius agree for all primes up
to 216, using [smalljac], that do not divide the discriminants of the curves involved.
Second, independent analytic computations based on [CMSV19] have confirmed the
isogeny degrees that we computed.

Regarding completeness of the isogeny classes, we ran two checks. As indicated
above, we started from only one curve in each of the 1 440 894 (heuristic) isogeny
classes in our dataset, and we checked that all the other curves in that class indeed
appeared in our result. We also confirmed that our isogeny classes are closed under
Richelot isogenies, using the function RichelotIsogenousSurfaces in [Magma]
based on algebraic formulas specific to this case.
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