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Disclaimer

What follows is a paper based entirely on the paper "Thick Points of the Gaussian Free Field" by Xiaoyu Hu,
Jason Miller, and Yuval Peres [1]. The purpose of this paper is both to convey that I read and understood
the paper [1], and also to hopefully serve as a more intuitive/less rigorous explanation of the statements and
proofs of Theorems 1.1 and 1.2 in [1]. After reading this paper, the reader is encouraged to read the paper
[1] to fill in the rigorous details. For the most part I have kept the notation the same as in [1] which should
ease the transition.

Abstract
Thick points of a Gaussian Free Field (GFF) are points z such that the average value of z on the disk

D(z, r) centered at z with radius r grows at a certain rate as r → 0. Specifically, z is called an a-thick

point if limr→0

∫
D(z,r) F (x) dx

πr2 log( 1
r )

=
√

a
π . We will show that the Hausdorff dimension of the set of a-thick

points of a GFF over a two dimensional domain U is equal to 2− a almost surely for 0 ≤ a ≤ 2.

1 Introduction

Given a discrete graph and the Discrete Gaussian Free Field (DGFF) on that graph, it makes sense to talk
about "the set of points with height greater than or equal to a" for each instance of the DGFF. The same
statement, however, makes no sense when you are discussing a GFF over a continuous domain U as for
the random field F only exists as a distribution and so the expression F (x) for a fixed point x in U is
meaningless. We can however evaluate the "average value of F over the set A" for certain sets A. In
particular, the expression

∫
A F (x) dx can be rigorously interpreted as the pairing (F, 1A) when the function

1A(x) is a member of H1
0 (U). For this paper we will only need the fact that

∫
A F (x) dx is well defined

when A is a disk, the boundary of a disk, or a square (For a proof of these facts see chapter 2 of [1]). So
while we cannot talk about the "set of points above height a", we can talk about the "set of points whose
average over smaller and smaller disks has an asymptotic limit depending on a". With this in mind, we
define an a-thick point to be a point z in U such that

lim
r→0

∫
D(z,r) F (x) dx

πr2 log(1
r )

=
√
a

π

and we define an a-circle thick point to be a point z in U such that

lim
r→0

∫
∂D(z,r) F (x) dx

2πr log(1
r )

=
√
a

π

(We will see later why the extra factor log(1
r ) appears in the denominator). We use the notation T (a;U) and

TC(a;U) to denote the set of a-thick points and a-circle thick points respectively. Our main theorem will
be the following:



Theorem 1.1.
dimH(T (a;U)) = dimH(TC(a;U)) = 2− a, a.s.

We will prove this theorem in three steps:

1. We introduce the set

TC,s≥ (a;U) = {z : lim sup
r→0

∫
∂D(z,r) F (x) dx

2πr log(1
r )

≥
√
a

π
}

(we just introduced it!) and show that

TC(a;U) ≤ T (a;U) ≤ TC,s≥ (a;U)

2. We show that
dimH(TC,s≥ (a;U)) ≤ 2− a, a.s.

3. We show that
dimH(TC(a;U)) ≥ 2− a, a.s.

It is clear that our main theorem will be proven once we complete these three steps.

2 Preliminary Facts

Before proceeding to these three steps, we will need some preliminary facts. First, we define

F (z, r) =

∫
∂D(z,r) F (x) dx

2πr

to be the circle average process. This quantity appears in both the definitions of TC(a;U) and TC,s≥ (a;U)
so it will clearly be useful. It is called a "process" because as r → 0, F (z, r) behaves like a Brownian
motion run at time t = log(1

r ). We show this formally below:

Theorem 2.1. Let B(z, t) =
√

2πF (z, e−t). Then B(z, t) − B(z, t1) has the law of standard Brownian
motion for t ≥ t1.

Remark 2.2. This is equivalent to saying F (z, r) is equal in law to 1√
2π
B(z, log(1

r )) where B(z, t) is a
standard Brownian motion (that might not start at 0).

Proof. We first note that F (z, r) = (F, η(z, r)) where η(z, r) is the uniform probability measure on
∂D(z, r). Therefore, by standard facts about GFF, we have that

Cov(B(z, t), B(z, s)) = 2πCov(F (z, e−t), F (z, e−s))
= 2πCov((F, η(z, e−t)), (F, η(z, e−s)))

= 2π
∫
U

∫
U
η(z, e−t)(x)η(z, e−s)(y)G(x, y) dxdy

where G(x, y) = −1
2π (log |x − y| − harmonic extension) is the standard Green’s function. Intuitively, the

quantity ∫
U

∫
U
η(z, e−t)(x)η(z, e−s)(y)G(x, y) dxdy
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is what you get if you solve the Poisson partial differential equation{
∆u = η(z, e−s)
u = 0 on ∂U

and then take the average value of u on the circle ∂D(z, e−t). Suppose s ≤ t then our picture looks like
this:

We know that the solution to {
∆u = δz

u = 0 on ∂U

is given by u = −1
2π log |x− z| −HEz(x), where HEz(x) is the harmonic extension of the boundary values

of −1
2π log |x − z| on ∂U . Therefore, by symmetry, the solution to our original PDE is given by this but

truncated so that u is constant in the disk D(z, e−s). That is, we have that

u =
−1
2π

log(max(|x− z|, e−s))−HEz(x)

And so the average of this on the ∂D(z, e−t) is easily computed as the average of −1
2π log max(|x− z|, e−s)

is equal to −1
2π log(e−s) = s

2π and the average of HEz(x) over D(z, e−t) is simply HEz(z) since HEz(x)
is harmonic. In particular, HEz(z) only depends on z and not t. And so we have that for s ≤ t,

Cov(B(z, t), B(z, s)) = 2π
∫
U

∫
U
η(z, e−t)(x)η(z, e−s)(y)G(x, y) dxdy

= s+ 2πHEz(z)

It therefore follows that for t1 ≤ s ≤ t,

Cov(B(z, t)−B(z, t1), B(z, s)−B(z, t1)) = (s− t1)

and so we have shown that B(z, t)−B(z, t1) has the law of standard Brownian motion started from 0.

So for a fixed z, F (z, r) looks like a time-scaled Brownian motion as r → 0. Of course, F (z, r) and
F (w, s) are correlated for each pair of points (z, w). However, by the Markov property of GFF, once the
rings ∂D(z, r) and ∂D(w, s) stop overlapping, the increments of the respective processes will be indepen-
dent. We state this more precisely as the following theorem:
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Theorem 2.3. Given z, w and s1 ≤ s ≤ s2, t1 ≤ t ≤ t2 such that the annuli D(z, e−s1)\D(z, e−s2) and
D(z, e−t1)\D(z, e−t2) are disjoint, then the Brownian motions B(z, s) − B(z, s1) for s1 ≤ s ≤ s2 and
B(z, t)−B(z, t1) for t1 ≤ t ≤ t2 are independent.

As F (z, r) behaves like a Brownian motion we have that it is continuous in r for fixed z. In fact, we
have a stronger modulus of continuity (after taking a modification of F if necessary) in both r and z. This
is given in the following theorem whose proof we omit (but can be found in [1])

Theorem 2.4. For every 0 < γ < 1
2 and ε, δ > 0, there exists an M = M(γ, ε, ζ) such that

|F (z, r)− F (w, s)| ≤M(log
1
r

)ζ
|(z, r)− (w, s)|γ

rγ(1+ε)

for r, s ∈ (0, 1] with 1
2 ≤

r
s ≤ 2.

3 The Three Steps

We are now ready to complete the three steps of our proof.

Step 1 (Show that TC(a; U) ≤ T (a; U) ≤ TC,s
≥ (a; U))

First we use our circle average process F (z, r) and its corresponding Brownian motion process B(z, t) to
produce three equivalent definitions for TC(a;U) and TC,s≥ (a;U):

TC(a;U) = {z : lim
r→0

∫
∂D(z,r) F (x) dx

2πr log(1
r )

=
√
a

π
} = {z : lim

r→0

√
πF (z, r)
log(1

r )
=
√
a} = {z : lim

t→∞

B(z, t)√
2t

=
√
a}

TC,s≥ (a;U) = {z : lim sup
r→0

∫
∂D(z,r) F (x) dx

2πr log(1
r )

≥
√
a

π
} = {z : lim sup

r→0

√
πF (z, r)
log(1

r )
≥
√
a} = {z : lim sup

t→∞

B(z, t)√
2t
≥
√
a}

These equivalent definitions will be of use in what follows(It is now more intuitively clear why we divide
by log(1

r ) or t as without dividing, there is no hope of achieving a limit since a Brownian motion fluctuates
wildly). Since F (z, r) is continuous,we have that∫

D(z,r)
F (x) dx =

∫ r

0
2πsF (z, s) ds
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and so we have as equivalent definitions for T (a;U),

T (a;U) = {z : lim
r→0

∫
D(z,r) F (x) dx

πr2 log(1
r )

=
√
a

π
} = {z : lim

r→0

∫ r
0 2πsF (z, s) ds
πr2 log(1

r )
=

√
a

π
}

By comparing the definitions involving F (z, r), it is clear that

TC(a;U) ≤ T (a;U) ≤ TC,s≥ (a;U)

Step 2 (Show that dimH(TC,s
≥ (a; U)) ≤ 2− a, a.s.)

We show this by showing that for each α > 2 − a, there exists a covering of TC,s≥ (a;U) by balls such that
the α-Hausdorff dimension of this covering is arbitrarily small.

Recall the equivalent definitions of TC,s≥ (a;U) given in Step 1. We first show that, by the modulus
of continuity, for each ε > 0 and K = ε−1, it suffices to look at the values of F (z, r) on the sequence
rn = n−K (or if we are thinking in terms of the Brownian process B(z, t) we are looking at the values at
tn = log 1

rn
= K log(n)). That is, equivalent definitions for TC,s≥ (a;U) are given by

TC,s≥ (a;U) = {z : lim sup
n→∞

√
πF (z, rn)
log( 1

rn
)
≥
√
a} = {z : lim sup

n→∞

B(z, tn)√
2tn

≥
√
a}

This is true because if we take γ ∈ (0, 1), ζ ∈ (0, 1), and ε > 0, by our modulus of continuity we have that
for tn ≤ t ≤ tn+1,

|B(z, t)−B(z, tn)| =
√

2π|F (z, r)− F (z, rn)|

≤ M(log
1
rn

)ζ
|e−t − rn|γ

r
γ(1+ε)
n

≤ MKζ(log(n))ζ
|rn+1 − rn|γ

r
γ(1+ε)
n

Now |rn− rn+1|γ = |n−K − (n+ 1)−K |γ = O(n−(K+1)γ) and rγ(1+ε)
n = (n−K(1+ε)) = n−Kγ−γ . And so

|B(z, t)−B(z, tn)| = O((log(n))ζn−(K+1)γn−Kγ−γ) = O((log(n))ζ)

Note that this bound is uniform in n and z since the constant M depended only on γ, ε, and ζ. From this
we see that it suffices to look at times tn or radii rn since the other times/radii will be controlled by these
as we are dividing by t or log 1

r when taking our limit, and both of these quantities are order log(n). So
we now know that whether or not z is in TC,s≥ (a;U) depends only on the average value over a countable

number of rings around z. Pictorially, suppose that we color the ring ∂D(z, rn) red if
√
πF (z,rn)

log( 1
rn

)
≥
√
a and

black otherwise. Then we have that z is in TC,s≥ (a;U) if there are red rings arbitrarily close to it (see picture
below):
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By a similar argument via the modulus of continuity, we have the following continuity statement for
F (z, r) in the z-coordinate:

|F (z, rn)− F (w, rn)| ≤ O((log(n))ζ), if |z − w| ≤ rn

from this modulus of continuity, we see that for other points inside a red ring of radius rn at z, those
points’ own rings of radius rn will be nearly red if not red. More precisely, let δ(n) = C(log(n))ζ−1.
Then if

√
πF (z,rn)

log( 1
rn

)
≥
√
a (rn-th ring is red), then for every w such that |w − z| < rn, we have that

√
πF (w,rn)

log( 1
rn

)
≥
√
a− δ(n)(rn-th ring is nearly red) for a sufficiently large choice of C.

We now have the ingredients necessary to construct a set of balls which covers TC,s≥ (a;U). For each n,
we take a set Nn of points {znj} in U such that the union of disks centered at these points with radii r1+ε

n

covers U , and such that there are O( 1

r
2(1+ε)
n

) of these points as n→∞. We call Nn the nth net of points and

intuitively it consists of a set of points spaced about a distance 2r1+ε
n apart and such that any point in U is

within a distance r1+ε
n of one of these points.

Assign to znj (the jth point in the nth net) the event

In(znj) = {
√
πF (z, rn)
log( 1

rn
)
≥
√
a− δ(n)}

i.e. this is the event that the rnth ring surrounding znj is "nearly red". It is then clear that

TC,s≥ (a;U) ⊆
⋃
n≥N
{D(znj , rn) : In(znj) is true} =: I(a,N)

for each N . So for each N , I(a,N) is a random union of balls which covers TC,s≥ (a;U)! For α > 2 − a,
we must show that for each w,

Hα(I(a,N))→ 0 as N →∞

whereHα(·) denotes the α-Hausdorff dimension. Since I(a,N) is a decreasing sequence of sets asN →∞
and since Hα(I(a,N)) ≥ 0 it will suffice to show that

E[Hα(I(a,N))]→ 0 as N →∞
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To this end, we compute that

E[Hα(I(a,N))] ≤ E[
∑
n≥N

∑
{j:In(znj)}

(diamD(znj , r1+ε
n ))α]

=
∑
n≥N

E[|{j : In(znj)}|]2αrα(1+ε)
n

To compute E[|{j : In(znj)}|], we note that for a fixed znj , we have that

P (In(znj)) = P (
√
πF (znj , rn)
log( 1

rn
)

≥
√
a− δ(n)) = O(ra−o(1)

n )

where here we have used the fact that if Z ∼ N(0, 1), then P (|Z| > λ) ∼
√

2
πλ
−1e−

λ2

2 as λ → ∞. And
so we have that

E[|{j : In(znj)}|] ≤ O(
r
a−o(1)
n

r
2(1+ε)
n

) = O(ra−o(1)−2(1+ε)
n )

And so finally we have that

E[Hα(I(a,N))] ≤
∑
n≥N

O(ra−o(1)−2−ε+α(1+ε)
n )

and so taking α = 2− a+ 2+a
1+εε, we get that

E[Hα(I(a,N))] ≤
∑
n≥N

O(r2ε−o(1))
n ) =

∑
n≥N

O(n−2+o(1)))→ 0 as N →∞

Since α’s of this form cover all of the numbers less than 2− a, Step 2 is proved.

Step 3 (Show that dimH(TC(a; U)) ≥ 2− a, a.s.)

To prove a lower bound on Hausdorff measure, we will need to rely on the Frostman Lemma. This Lemma
states that given a set A, if we can find a probability measure µ supported on A (i.e. µ(A) = 1) such that its
α-th energy

Iα(µ) :=
∫
A

∫
A

dµ(z1)dµ(z2)
|z1 − z2|α

is finite, then dimH(A) ≥ α. So for our purposes, it suffices to find, for each ω, a positive, finite measure
(which we can then normalize into a probability measure) with support on TC(a;U) and whose αth-energy
is finite for α < 2− a. We will construct this measure as the limit of simpler measures. Let H be a square
in U and by scaling/translation w.l.o.g. we may take H = [0, 1]2. We now divide H into smaller squares

7



Let sn = 1
n! be the side lengths of the squares and let tn = log 1

sn
= log (n!)) be the corresponding time

values. For each n, we divide H up into s−2
n squares of side length sn (see the picture above) and let Cn be

the set of their centers which we denote by znj . We will examine the circle average process F (z, r) at each
of these centers. For any z ∈ U , we define

Em(z) = {|B(z, t)−B(z, tm)−
√

2a(t− tm)| ≤
√
tm+1 − tm for all tm ≤ t ≤ tm+1}

and
Fm(z) = {|B(z, t)−B(z, tm)|(t− tm) + 1 for all tm ≤ t ≤ tm+1}

and let En(z) =
⋂
m≤nEm(z) ∩ Fn+1(z) and call z an n-perfect thick point if En(z) holds true. We see

that if z is an n-perfect thick point, then B(z, t) stays within envelopes which are recalibrated at each tm up
until tn+1. Notice the difference in the form of the envelopes from the Em events and the Fn+1 event in the
picture below of a path for which En(z) holds:

Note that on En(z), for tm ≤ t ≤ tm+1, we have that

|B(z, t)−B(z, t1)−
√

2a(t− t1)| ≤
n∑
k=1

√
log(k + 1) = o(m logm) = o(t) as t→∞

and if t ≥ tm+1 then
|B(z, t)−B(z, t1)| = O(t)
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We are now ready to define our sequence of measures. For each n, we define the measure τn by

τn(A) =
|Cn|∑
i=1

1
P (En(zni))

1{En(zni)}|A ∩ S(zni, sn)|

where S(zni, sn) is the square centered at zni with side length sn, and | · | denotes Lebesgue measure on
R2. Thus, τn is a random measure, and intuitively it is generated by looking at the nth set of centers, Cn,
determining which of those centers are n-perfect, and then weighting those squares by the reciprocal of the
probability of being n-perfect (see picture below).

Assuming that a limit of these measures exists, it will have support on lim supn→∞(supp(τn))(i.e. the
set of points which are in supp(τn) infinitely often). From the "O(t) bounds" on B(z, t) derived above, it
follows that

lim sup
n→∞

(supp(τn)) ⊆ TC(a;U)

so in particular, any limit of the measures τn will have support on TC(a;U), as desired. So it remains to
show that we can in fact take a limit of the measures τn and that their limiting measure will be finite, positive,
and have finite α-energy for α < 2− a. For this, we will need that the measures τn lie on a compact space
and we will show this by exhibiting uniform bounds on E[τn(H)2] and E[Iα(τn(H))]. First we note that
clearly for each n,

E[τn(H)] = 1

We next compute that

E[τn(H)2] = s4n

|Cn|∑
i,j=1

1
P (En(zni))P (En(znj))

P (En(zni) ∩ En(znj))

and so to find a bound on E[τn(H)2], we will need to know something about the correlation between the
events En(zni) and En(znj). For this we have the following lemma:

Lemma 3.1. For z, w ∈ H , let ` be such that w ∈ S(z, s`)\S(z, s`+1). Then for every n ≥ ` and ε > 0, we
have that

P (En(z) ∩ En(w)) ≤ O(s−a−ε` )P (En(z))P (En(w))

uniformly in z, w, `, n.
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Proof. It is a well known result that is B(t) is a Brownian motion, µ > 0, and T ≥ 1, we have that

P (|B(t)− µt| ≤
√
T for all 0 ≤ t ≤ T ) ≥ Ce−µ

√
T−µ

2T
2

We therefore have that
P (Em(z)) ≥ C

ma
exp(−

√
2a log(m))

and similarly

P (Em(w)) ≥ C

ma
exp(−

√
2a log(m))

since the eventEm(z) only depends on the square annulusD(z, sm)\D(z, sm+1), and sincew ∈ S(z, s`)\S(z, s`+1),
we have that for `+ 1 < i ≤ n, 1 ≤ j ≤ n, j 6= `− 1, `, `+ 1 the events Ei(z) and Ej(w) are independent.
It therefore follows that

P (
⋂

1≤i≤`+1

Ei(z))P (
⋂

`−1≤j≤`+1

Ej(w)) ≥ C`sa` exp(−O(`
√

log `)) ≥ C`Sa+ε`

and so finally we have that

P (En(z) ∩ En(w)) = P (
⋂
i≤n

Ei(z) ∩ Fn+1(z) ∩
⋂
j≤n

Ej(w) ∩ Fn+1(w))

= P (
⋂

`+1<i≤n

Ei(z))P (
⋂

j 6=`−1,`,`+1

Ej(w))P (
⋂

1≤i≤`+1

Ei(z)Fn+1(z) ∩
⋂

j=`−1,`,`+1

Ej(w) ∩ Fn+1(w))

≤ P (
⋂

`+1<i≤n

Ei(z))P (
⋂

j 6=`−1,`,`+1

Ej(w))

≤ P (
⋂

`+1<i≤n

Ei(z))P (
⋂

j 6=`−1,`,`+1

Ej(w))C−`s−a−ε` P (
⋂

1≤i≤`+1

Ei(z))P (
⋂

`−1≤j≤`+1

Ej(w))

= C−`s−a−ε` P (
⋂

1≤i≤n

Ei(z))P (
⋂

1≤j≤n

Ej(w))

since Fn+1(z) is independent of Ei(z) for 1 ≤ i ≤ n and since P (Fn+1(z)) ≥ c > 0 uniformly in n, z we
have that

P (En(z) ∩ En(w)) ≤ C−`s−a−ε` P (
⋂

1≤i≤n

Ei(z))P (
⋂

1≤j≤n

Ej(w))

≤ O(s−a−ε` )P (
⋂

1≤i≤n

Ei(z))P (
⋂

1≤j≤n

Ej(w))P (Fn+1(z))P (Fn+1(w))

= O(s−a−ε` )P (En(z))P (En(w))

So with this lemma in hand, we can now finish our computation:

E[τn(H)2] = s4n

|Cn|∑
i,j=1

1
P (En(zni))P (En(znj))

P (En(zni) ∩ En(znj))

≤ s4n

|Cn|∑
i=1

n∑
`=1

s2`
s2n

1
P (En(zni))P (En(znj))

O(s−a−ε` )P (En(zni))P (En(znj))

=
n∑
`=1

s2`O(s−a−ε` )

≤
∑
`≥1

O(s2−a−ε` ) <∞
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So E[τn(H)2] is bounded independently of n. Finally, we compute

E[Iα(τn)] =
|Cn|∑
i,j=1

1
P (En(zni))P (En(znj))

∫
S(zni,sn)

∫
S(znj ,sn)

dz1dz2
|z1 − z2|α

≤
∑
`≥1

O(s2−a−ε` s−α`+1)

and so E[Iα(τn)] <∞ independently of n for α < 2− a. To recap, we have that

• E[τn(H)] = 1 for all n

• E[τn(H)2] is bounded uniformly in n

• E[Iα(τn)] is bounded uniformly in n

Therefore, there exists a b, d > 0 such that

P (b ≤ τn(H) ≤ b−1, Iα(τn) < d) ≥ ε > 0, for all n

LetMα(b, d) be the set of measures µ such that b ≤ µ(H) ≤ b−1 and Iα(µ) < d. It is known thatMα(b, d)
is compact in the topology of weak convergence. We have shown that for each n,

P (τn ∈Mα(b, d)) ≥ ε > 0

and so
P (τn ∈Mα(b, d) infinitely often) ≥ ε > 0

For each of the ω on which this event occurs, we can take a subsequence τnk ∈ Mα(b, d) which then has a
limit point τ in Mα(b, d). This measure will satisfy the Frostman lemma, and so we have shown that

P (dimH(TC(a;U)) ≥ α) > 0

for α < 2 − a. Finally, by the Hewitt Savage 0-1 Law, we have that (actually I am not entirely sure how it
is applied here)

P (dimH(TC(a;U)) ≥ α) = 1

for α < 2 − a. And so we have shown that dimH(TC(a;U)) ≥ 2 − a, a.s. and thus we have completed
Step 3 and so the proof of the main theorem!
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