BASIC DISCRETE RANDOM VARIABLES \(X \) (using \(q = 1 - p \))

1. **Binomial** \((n,p) \): \(p_X(k) = \binom{n}{k} p^k q^{n-k} \) and \(E[X] = np \) and \(\text{Var}[X] = npq \).
2. **Poisson** \(\lambda \): \(p_X(k) = e^{-\lambda} \lambda^k / k! \) and \(E[X] = \lambda \) and \(\text{Var}[X] = \lambda \).
3. **Geometric** \(p \): \(p_X(k) = q^{k-1} p \) and \(E[X] = 1/p \) and \(\text{Var}[X] = q/p^2 \).
4. **Negative binomial** \((n,p) \): \(p_X(k) = \binom{k-1}{n-1} p^n q^{k-n} \), \(E[X] = n/p \), \(\text{Var}[X] = nq/p^2 \).

BASIC CONTINUOUS RANDOM VARIABLES

1. **Uniform on** \([a,b] \): \(f_X(x) = 1/(b-a) \) on \([a,b]\) and \(E[X] = (a+b)/2 \) and \(\text{Var}[X] = (b-a)^2/12 \).
2. **Normal** \((\mu,\sigma^2)\): \(f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2} \) and \(E[X] = \mu \) and \(\text{Var}[X] = \sigma^2 \).
3. **Exponential** \(\lambda \): \(f_X(x) = \lambda e^{-\lambda x} \) (on \([0,\infty)\)) and \(E[X] = 1/\lambda \) and \(\text{Var}[X] = 1/\lambda^2 \).
4. **Gamma** \((n,\lambda)\): \(f_X(x) = \frac{\lambda^n}{\Gamma(n)} e^{-\lambda x} x^{n-1} \) (on \([0,\infty)\)) and \(E[X] = n/\lambda \) and \(\text{Var}[X] = n/\lambda^2 \).
5. **Cauchy**: \(f_X(x) = \frac{1}{\pi(1+x^2)} \) and both \(E[X] \) and \(\text{Var}[X] \) are undefined.
6. **Beta** \((a,b)\): \(f_X(x) = \frac{x^{a-1}(1-x)^{b-1}}{B(a,b)} \) on \([0,1]\) and \(E[X] = a/(a+b) \).

MOMENT GENERATING / CHARACTERISTIC FUNCTIONS

1. **Discrete**: \(M_X(t) = E[e^{itX}] = \sum_x p_X(x) e^{itx} \) and \(\phi_X(t) = E[e^{itX}] = \sum_x p_X(x) e^{itx} \).
2. **Continuous**: \(M_X(t) = E[e^{itX}] = \int_{-\infty}^{\infty} f_X(x) e^{itx} dx \) and \(\phi_X(t) = E[e^{itX}] = \int_{-\infty}^{\infty} f_X(x) e^{itx} dx \).
3. **If** \(X \) and \(Y \) **are independent**: \(M_{X+Y}(t) = M_X(t) M_Y(t) \) and \(\phi_{X+Y}(t) = \phi_X(t) \phi_Y(t) \).
4. **Affine transformations**: \(M_{aX+b}(t) = e^{bt} M_X(at) \) and \(\phi_{aX+b}(t) = e^{ibt} \phi_X(at) \).
5. **Some special cases**; if \(X \) is normal \((0,1)\), complete-the-square trick gives \(M_X(t) = e^{t^2/2} \) and \(\phi_X(t) = e^{-t^2/2} \). If \(X \) is Poisson \(\lambda \) get “double exponential” \(M_X(t) = e^{\lambda(e^{it}-1)} \) and \(\phi_X(t) = e^{\lambda(e^{it}-1)} \).

WHY WE REMEMBER: BASIC DISCRETE RANDOM VARIABLES

1. **Binomial** \((n,p)\): sequence of \(n \) coins, each heads with probability \(p \), have \(\binom{n}{k} \) ways to choose a set of \(k \) to be heads; have \(p^k(1-p)^{n-k} \) chance for each choice. If \(n = 1 \) then \(X \in \{0,1\} \) so \(E[X] = E[X^2] = p \), and \(\text{Var}[X] = E[X^2] - E[X]^2 = p - p^2 = pq \). Use expectation/variance additivity (for independent coins) for general \(n \).
2. **Poisson** \(\lambda \): \(p_X(k) = e^{-\lambda} \lambda^k / k! \) times \(k \)th term in Taylor expansion of \(e^\lambda \). Take \(n \) very large and let \(Y \) be \# heads in \(n \) tosses of coin with \(p = \lambda/n \). Then \(E[Y] = np \lambda \) and \(\text{Var}[Y] = npq \approx np \lambda \). Law of \(Y \) tends to law of \(X \) as \(n \to \infty \), so not surprising that \(E[X] = \text{Var}[X] = \lambda \).
3. **Geometric** \(p \): Probability to have no heads in first \(k-1 \) tosses and heads in \(k \)th toss is \((1-p)^{k-1}p\). If you are repeatedly tossing coin forever, makes intuitive sense that if you have \((\text{in expectation}) \) \(p \) heads per toss, then you should need \((\text{in expectation}) \) \(1/p \) tosses to get a heads. Variance formula requires calculation, but not surprising that \(\text{Var}(X) \approx 1/p^2 \) when \(p \) is small (when \(p \) is small \(X \) is kind like of exponential random variable with \(p = \lambda \)) and \(\text{Var}(X) \approx 0 \) when \(q \) is small.
4. **Negative binomial** \((n,p)\): If you want \(n \)th heads to be on the \(k \)th toss then you have to have \(n-1 \) heads during first \(k-1 \) tosses, and then a heads on the \(k \)th toss. Expectations and variance are \(n \) times those for geometric (since were’re summing \(n \) independent geometric random variables).
WHY WE REMEMBER: BASIC CONTINUUM RANDOM VARIABLES

1. **Uniform on** $[a,b]$: Total integral is one, so density is $1/(b-a)$ on $[a,b]$. $E[X]$ is midpoint $(a+b)/2$. When $a=0$ and $b=1$, we know $E[X^2] = \int_0^1 x^2 dx = 1/3$, so that $\text{Var}(X) = 1/3 - 1/4 = 1/12$. Stretching out random variable by $(b-a)$ multiplies variance by $(b-a)^2$.

2. **Normal** (μ,σ^2): when $\sigma = 1$ and $\mu = 0$ we have $f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$. The function $e^{-x^2/2}$ is (up to multiplicative constant) its own Fourier transform. The fact that $\int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi}$ came from a cool and hopefully memorable trick involving passing to two dimensions and using polar coordinates. Once one knows the $\sigma = 1, \mu = 0$ case, general case comes from stretching/squashing the distribution by a factor of σ and then translating it by μ.

3. **Exponential** λ: Suppose $\lambda = 1$. Then $f_X(x) = e^{-x}$ on $[0,\infty)$. Remember the integration by parts induction that proves $\int_0^\infty e^{-x}x^n = n!$. So $E[X] = 1! = 1$ and $E[X^2] = 2! = 2$ so that $\text{Var}(X) = 2 - 1 = 1$. We think of λ as rate (“number of buses per time unit”) so replacing 1 by λ multiplies wait time by $1/\lambda$, which leads to $E[X] = 1/\lambda$ and $\text{Var}(X) = 1/\lambda^2$.

4. **Gamma** (n,λ): Again, focus on the $\lambda = 1$ case. Then $f_X(x)$ is just $e^{-x} x^{n-1}$ times the appropriate constant. Since X represents time until nth bus, expectation and variance should be n (by additivity of variance and expectation). If we switch to general λ, we stretch and squash f_X (and adjust expectation and variance accordingly).

5. **Cauchy**: If you remember that $1/(1+x^2)$ is the derivative of arctangent, you can see why this corresponds to the spinning flashlight story and where the $1/\pi$ factor comes from. Asymptotic $1/x^2$ decay rate is why $\int_{-\infty}^\infty f_X(x) dx$ is finite but $\int_{-\infty}^\infty f_X(x) x dx$ and $\int_{-\infty}^\infty f_X(x) x^2 dx$ diverge.

6. **Beta** (a,b): $f_X(x)$ is (up to a constant factor) the probability (as a function of x) that you see $a-1$ heads and $b-1$ tails when you toss $a+b-2$ p-coins with $p = x$. So makes sense that if Bayesian prior for p is uniform then Bayesian posterior (after seeing $a-1$ heads and $b-1$ tails) should be proportional to this. The constant $B(a,b)$ is by definition what makes the total integral one. Expectation formula (which you computed on pset) suggests rough intuition: if you have uniform prior for fraction of people who like new restaurant, and then $(a-1)$ people say they do and $(b-1)$ say they don’t, your revised expectation for fraction who like restaurant is $a/(a+b)$ (You might have guessed $\frac{(a-1)}{(a-1)+(b-1)}$, but that is not correct — and you can see why it would be wrong if $a-1 = 0$ or $b-1 = 0$.)
