18.600: Lecture 38

Review: practice problems

Scott Sheffield

MIT
Order statistics

Let X be a uniformly distributed random variable on $[-1, 1]$.
Order statistics

- Let X be a uniformly distributed random variable on $[-1, 1]$.
 - Compute the variance of X^2.

18.600 Lecture 38
Let X be a uniformly distributed random variable on $[-1, 1]$.

- Compute the variance of X^2.
- If X_1, \ldots, X_n are independent copies of X, what is the probability density function for the smallest of the X_i?
Order statistics — answers

\[\text{Var}[X^2] = E[X^4] - (E[X^2])^2 \]
\[= \int_{-1}^{1} \frac{1}{2} x^4 \, dx - (\int_{-1}^{1} \frac{1}{2} x^2 \, dx)^2 = \frac{1}{5} - \frac{1}{9} = \frac{4}{45}. \]
Order statistics — answers

\[\text{Var}[X^2] = E[X^4] - (E[X^2])^2 \]
\[= \int_{-1}^{1} \frac{1}{2} x^4 \, dx - \left(\int_{-1}^{1} \frac{1}{2} x^2 \, dx \right)^2 = \frac{1}{5} - \frac{1}{9} = \frac{4}{45}. \]

Note that for \(x \in [-1, 1] \) we have
\[P\{X > x\} = \int_{x}^{1} \frac{1}{2} \, dx = \frac{1 - x}{2}. \]

If \(x \in [-1, 1] \), then
\[P\{\min\{X_1, \ldots, X_n\} > x\} \]
\[= P\{X_1 > x, X_2 > x, \ldots, X_n > x\} = \left(\frac{1 - x}{2}\right)^n. \]

So the density function is
\[-\frac{\partial}{\partial x} \left(\frac{1 - x}{2} \right)^n = \frac{n}{2} \left(\frac{1 - x}{2} \right)^{n-1}. \]
Suppose that X_i are independent copies of a random variable X. Let $M_X(t)$ be the moment generating function for X. Compute the moment generating function for the average $\sum_{i=1}^{n} X_i/n$ in terms of $M_X(t)$ and n.
Write \(Y = \sum_{i=1}^{n} X_i / n \). Then

\[
M_Y(t) = E[e^{tY}] = E[e^{t \sum_{i=1}^{n} X_i / n}] = (M_X(t/n))^n.
\]
Suppose X and Y are independent random variables, each equal to 1 with probability $1/3$ and equal to 2 with probability $2/3$.

Compute the entropy $H(X)$.

Compute $H(X + Y)$.

Which is larger, $H(X + Y)$ or $H(X, Y)$? Would the answer to this question be the same for any discrete random variables X and Y? Explain.
Suppose X and Y are independent random variables, each equal to 1 with probability $1/3$ and equal to 2 with probability $2/3$.

- Compute the entropy $H(X)$.
- Compute $H(X + Y)$.

Which is larger, $H(X + Y)$ or $H(X, Y)$? Would the answer to this question be the same for any discrete random variables X and Y? Explain.
Suppose X and Y are independent random variables, each equal to 1 with probability $1/3$ and equal to 2 with probability $2/3$.

- Compute the entropy $H(X)$.
- Compute $H(X + Y)$.
- Which is larger, $H(X + Y)$ or $H(X, Y)$? Would the answer to this question be the same for any discrete random variables X and Y? Explain.
Entropy — answers

\[H(X) = \frac{1}{3} (- \log \frac{1}{3}) + \frac{2}{3} (- \log \frac{2}{3}). \]
Entropy — answers

- \(H(X) = \frac{1}{3}(- \log \frac{1}{3}) + \frac{2}{3}(- \log \frac{2}{3}) \).
- \(H(X + Y) = \frac{1}{9}(- \log \frac{1}{9}) + \frac{4}{9}(- \log \frac{4}{9}) + \frac{4}{9}(- \log \frac{4}{9}) \).
Entropy — answers

- $H(X) = \frac{1}{3}(-\log \frac{1}{3}) + \frac{2}{3}(-\log \frac{2}{3})$.
- $H(X + Y) = \frac{1}{9}(-\log \frac{1}{9}) + \frac{4}{9}(-\log \frac{4}{9}) + \frac{4}{9}(-\log \frac{4}{9})$
- $H(X, Y)$ is larger, and we have $H(X, Y) \geq H(X + Y)$ for any X and Y. To see why, write $a(x, y) = P\{X = x, Y = y\}$ and $b(x, y) = P\{X + Y = x + y\}$. Then $a(x, y) \leq b(x, y)$ for any x and y, so

$$H(X, Y) = E[-\log a(x, y)] \geq E[-\log b(x, y)] = H(X + Y).$$