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Recall: DeMoivre-Laplace limit theorem

I Let Xi be an i.i.d. sequence of random variables. Write
Sn =

∑n
i=1 Xn.

I Suppose each Xi is 1 with probability p and 0 with probability
q = 1− p.

I DeMoivre-Laplace limit theorem:

lim
n→∞

P{a ≤ Sn − np
√
npq

≤ b} → Φ(b)− Φ(a).

I Here Φ(b)− Φ(a) = P{a ≤ Z ≤ b} when Z is a standard
normal random variable.

I Sn−np√
npq describes “number of standard deviations that Sn is

above or below its mean”.

I Question: Does a similar statement hold if the Xi are i.i.d. but
have some other probability distribution?

I Central limit theorem: Yes, if they have finite variance.
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Example

I Say we roll 106 ordinary dice independently of each other.

I Let Xi be the number on the ith die. Let X =
∑106

i=1 Xi be the
total of the numbers rolled.

I What is E [X ]?

I What is Var[X ]?

I How about SD[X ]?

I What is the probability that X is less than a standard
deviations above its mean?

I Central limit theorem: should be about 1√
2π

∫ a
−∞ e−x

2/2dx .
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Example

I Suppose earthquakes in some region are a Poisson point
process with rate λ equal to 1 per year.

I Let X be the number of earthquakes that occur over a
ten-thousand year period. Should be a Poisson random
variable with rate 10000.

I What is E [X ]?

I What is Var[X ]?

I How about SD[X ]?

I What is the probability that X is less than a standard
deviations above its mean?
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General statement

I Let Xi be an i.i.d. sequence of random variables with finite
mean µ and variance σ2.

I Write Sn =
∑n

i=1 Xi . So E [Sn] = nµ and Var[Sn] = nσ2 and
SD[Sn] = σ

√
n.

I Write Bn = X1+X2+...+Xn−nµ
σ
√
n

. Then Bn is the difference

between Sn and its expectation, measured in standard
deviation units.

I Central limit theorem:

lim
n→∞

P{a ≤ Bn ≤ b} → Φ(b)− Φ(a).
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Recall: characteristic functions

I Let X be a random variable.

I The characteristic function of X is defined by
φ(t) = φX (t) := E [e itX ]. Like M(t) except with i thrown in.

I Recall that by definition e it = cos(t) + i sin(t).

I Characteristic functions are similar to moment generating
functions in some ways.

I For example, φX+Y = φXφY , just as MX+Y = MXMY , if X
and Y are independent.

I And φaX (t) = φX (at) just as MaX (t) = MX (at).

I And if X has an mth moment then E [Xm] = imφ
(m)
X (0).

I Characteristic functions are well defined at all t for all random
variables X .
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Rephrasing the theorem

I Let X be a random variable and Xn a sequence of random
variables.

I Say Xn converge in distribution or converge in law to X if
limn→∞ FXn(x) = FX (x) at all x ∈ R at which FX is
continuous.

I Recall: the weak law of large numbers can be rephrased as the
statement that An = X1+X2+...+Xn

n converges in law to µ (i.e.,
to the random variable that is equal to µ with probability one)
as n→∞.

I The central limit theorem can be rephrased as the statement
that Bn = X1+X2+...+Xn−nµ

σ
√
n

converges in law to a standard

normal random variable as n→∞.
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Continuity theorems

I Lévy’s continuity theorem (see Wikipedia): if

lim
n→∞

φXn(t) = φX (t)

for all t, then Xn converge in law to X .

I By this theorem, we can prove the central limit theorem by
showing limn→∞ φBn(t) = e−t

2/2 for all t.

I Moment generating function continuity theorem: if
moment generating functions MXn(t) are defined for all t and
n and limn→∞MXn(t) = MX (t) for all t, then Xn converge in
law to X .

I By this theorem, we can prove the central limit theorem by
showing limn→∞MBn(t) = et

2/2 for all t.
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Proof of central limit theorem with moment generating
functions

I Write Y = X−µ
σ . Then Y has mean zero and variance 1.

I Write MY (t) = E [etY ] and g(t) = logMY (t). So
MY (t) = eg(t).

I We know g(0) = 0. Also M ′Y (0) = E [Y ] = 0 and
M ′′Y (0) = E [Y 2] = Var[Y ] = 1.

I Chain rule: M ′Y (0) = g ′(0)eg(0) = g ′(0) = 0 and
M ′′Y (0) = g ′′(0)eg(0) + g ′(0)2eg(0) = g ′′(0) = 1.

I So g is a nice function with g(0) = g ′(0) = 0 and g ′′(0) = 1.
Taylor expansion: g(t) = t2/2 + o(t2) for t near zero.

I Now Bn is 1√
n

times the sum of n independent copies of Y .

I So MBn(t) =
(
MY (t/

√
n)
)n

= e
ng( t√

n
)
.

I But e
ng( t√

n
) ≈ e

n( t√
n
)2/2

= et
2/2, in sense that LHS tends to

et
2/2 as n tends to infinity.

18.600 Lecture 31



Proof of central limit theorem with moment generating
functions

I Write Y = X−µ
σ . Then Y has mean zero and variance 1.

I Write MY (t) = E [etY ] and g(t) = logMY (t). So
MY (t) = eg(t).

I We know g(0) = 0. Also M ′Y (0) = E [Y ] = 0 and
M ′′Y (0) = E [Y 2] = Var[Y ] = 1.

I Chain rule: M ′Y (0) = g ′(0)eg(0) = g ′(0) = 0 and
M ′′Y (0) = g ′′(0)eg(0) + g ′(0)2eg(0) = g ′′(0) = 1.

I So g is a nice function with g(0) = g ′(0) = 0 and g ′′(0) = 1.
Taylor expansion: g(t) = t2/2 + o(t2) for t near zero.

I Now Bn is 1√
n

times the sum of n independent copies of Y .

I So MBn(t) =
(
MY (t/

√
n)
)n

= e
ng( t√

n
)
.

I But e
ng( t√

n
) ≈ e

n( t√
n
)2/2

= et
2/2, in sense that LHS tends to

et
2/2 as n tends to infinity.

18.600 Lecture 31



Proof of central limit theorem with moment generating
functions

I Write Y = X−µ
σ . Then Y has mean zero and variance 1.

I Write MY (t) = E [etY ] and g(t) = logMY (t). So
MY (t) = eg(t).

I We know g(0) = 0. Also M ′Y (0) = E [Y ] = 0 and
M ′′Y (0) = E [Y 2] = Var[Y ] = 1.

I Chain rule: M ′Y (0) = g ′(0)eg(0) = g ′(0) = 0 and
M ′′Y (0) = g ′′(0)eg(0) + g ′(0)2eg(0) = g ′′(0) = 1.

I So g is a nice function with g(0) = g ′(0) = 0 and g ′′(0) = 1.
Taylor expansion: g(t) = t2/2 + o(t2) for t near zero.

I Now Bn is 1√
n

times the sum of n independent copies of Y .

I So MBn(t) =
(
MY (t/

√
n)
)n

= e
ng( t√

n
)
.

I But e
ng( t√

n
) ≈ e

n( t√
n
)2/2

= et
2/2, in sense that LHS tends to

et
2/2 as n tends to infinity.

18.600 Lecture 31



Proof of central limit theorem with moment generating
functions

I Write Y = X−µ
σ . Then Y has mean zero and variance 1.

I Write MY (t) = E [etY ] and g(t) = logMY (t). So
MY (t) = eg(t).

I We know g(0) = 0. Also M ′Y (0) = E [Y ] = 0 and
M ′′Y (0) = E [Y 2] = Var[Y ] = 1.

I Chain rule: M ′Y (0) = g ′(0)eg(0) = g ′(0) = 0 and
M ′′Y (0) = g ′′(0)eg(0) + g ′(0)2eg(0) = g ′′(0) = 1.

I So g is a nice function with g(0) = g ′(0) = 0 and g ′′(0) = 1.
Taylor expansion: g(t) = t2/2 + o(t2) for t near zero.

I Now Bn is 1√
n

times the sum of n independent copies of Y .

I So MBn(t) =
(
MY (t/

√
n)
)n

= e
ng( t√

n
)
.

I But e
ng( t√

n
) ≈ e

n( t√
n
)2/2

= et
2/2, in sense that LHS tends to

et
2/2 as n tends to infinity.

18.600 Lecture 31



Proof of central limit theorem with moment generating
functions

I Write Y = X−µ
σ . Then Y has mean zero and variance 1.

I Write MY (t) = E [etY ] and g(t) = logMY (t). So
MY (t) = eg(t).

I We know g(0) = 0. Also M ′Y (0) = E [Y ] = 0 and
M ′′Y (0) = E [Y 2] = Var[Y ] = 1.

I Chain rule: M ′Y (0) = g ′(0)eg(0) = g ′(0) = 0 and
M ′′Y (0) = g ′′(0)eg(0) + g ′(0)2eg(0) = g ′′(0) = 1.

I So g is a nice function with g(0) = g ′(0) = 0 and g ′′(0) = 1.
Taylor expansion: g(t) = t2/2 + o(t2) for t near zero.

I Now Bn is 1√
n

times the sum of n independent copies of Y .

I So MBn(t) =
(
MY (t/

√
n)
)n

= e
ng( t√

n
)
.

I But e
ng( t√

n
) ≈ e

n( t√
n
)2/2

= et
2/2, in sense that LHS tends to

et
2/2 as n tends to infinity.

18.600 Lecture 31



Proof of central limit theorem with moment generating
functions

I Write Y = X−µ
σ . Then Y has mean zero and variance 1.

I Write MY (t) = E [etY ] and g(t) = logMY (t). So
MY (t) = eg(t).

I We know g(0) = 0. Also M ′Y (0) = E [Y ] = 0 and
M ′′Y (0) = E [Y 2] = Var[Y ] = 1.

I Chain rule: M ′Y (0) = g ′(0)eg(0) = g ′(0) = 0 and
M ′′Y (0) = g ′′(0)eg(0) + g ′(0)2eg(0) = g ′′(0) = 1.

I So g is a nice function with g(0) = g ′(0) = 0 and g ′′(0) = 1.
Taylor expansion: g(t) = t2/2 + o(t2) for t near zero.

I Now Bn is 1√
n

times the sum of n independent copies of Y .

I So MBn(t) =
(
MY (t/

√
n)
)n

= e
ng( t√

n
)
.

I But e
ng( t√

n
) ≈ e

n( t√
n
)2/2

= et
2/2, in sense that LHS tends to

et
2/2 as n tends to infinity.

18.600 Lecture 31



Proof of central limit theorem with moment generating
functions

I Write Y = X−µ
σ . Then Y has mean zero and variance 1.

I Write MY (t) = E [etY ] and g(t) = logMY (t). So
MY (t) = eg(t).

I We know g(0) = 0. Also M ′Y (0) = E [Y ] = 0 and
M ′′Y (0) = E [Y 2] = Var[Y ] = 1.

I Chain rule: M ′Y (0) = g ′(0)eg(0) = g ′(0) = 0 and
M ′′Y (0) = g ′′(0)eg(0) + g ′(0)2eg(0) = g ′′(0) = 1.

I So g is a nice function with g(0) = g ′(0) = 0 and g ′′(0) = 1.
Taylor expansion: g(t) = t2/2 + o(t2) for t near zero.

I Now Bn is 1√
n

times the sum of n independent copies of Y .

I So MBn(t) =
(
MY (t/

√
n)
)n

= e
ng( t√

n
)
.

I But e
ng( t√

n
) ≈ e

n( t√
n
)2/2

= et
2/2, in sense that LHS tends to

et
2/2 as n tends to infinity.

18.600 Lecture 31



Proof of central limit theorem with moment generating
functions

I Write Y = X−µ
σ . Then Y has mean zero and variance 1.

I Write MY (t) = E [etY ] and g(t) = logMY (t). So
MY (t) = eg(t).

I We know g(0) = 0. Also M ′Y (0) = E [Y ] = 0 and
M ′′Y (0) = E [Y 2] = Var[Y ] = 1.

I Chain rule: M ′Y (0) = g ′(0)eg(0) = g ′(0) = 0 and
M ′′Y (0) = g ′′(0)eg(0) + g ′(0)2eg(0) = g ′′(0) = 1.

I So g is a nice function with g(0) = g ′(0) = 0 and g ′′(0) = 1.
Taylor expansion: g(t) = t2/2 + o(t2) for t near zero.

I Now Bn is 1√
n

times the sum of n independent copies of Y .

I So MBn(t) =
(
MY (t/

√
n)
)n

= e
ng( t√

n
)
.

I But e
ng( t√

n
) ≈ e

n( t√
n
)2/2

= et
2/2, in sense that LHS tends to

et
2/2 as n tends to infinity.

18.600 Lecture 31



Proof of central limit theorem with characteristic functions

I Moment generating function proof only applies if the moment
generating function of X exists.

I But the proof can be repeated almost verbatim using
characteristic functions instead of moment generating
functions.

I Then it applies for any X with finite variance.
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Almost verbatim: replace MY (t) with φY (t)

I Write φY (t) = E [e itY ] and g(t) = log φY (t). So
φY (t) = eg(t).

I We know g(0) = 0. Also φ′Y (0) = iE [Y ] = 0 and
φ′′Y (0) = i2E [Y 2] = −Var[Y ] = −1.

I Chain rule: φ′Y (0) = g ′(0)eg(0) = g ′(0) = 0 and
φ′′Y (0) = g ′′(0)eg(0) + g ′(0)2eg(0) = g ′′(0) = −1.

I So g is a nice function with g(0) = g ′(0) = 0 and
g ′′(0) = −1. Taylor expansion: g(t) = −t2/2 + o(t2) for t
near zero.
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Perspective

I The central limit theorem is actually fairly robust. Variants of
the theorem still apply if you allow the Xi not to be identically
distributed, or not to be completely independent.

I We won’t formulate these variants precisely in this course.

I But, roughly speaking, if you have a lot of little random terms
that are “mostly independent” — and no single term
contributes more than a “small fraction” of the total sum —
then the total sum should be “approximately” normal.

I Example: if height is determined by lots of little mostly
independent factors, then people’s heights should be normally
distributed.

I Not quite true... certain factors by themselves can cause a
person to be a whole lot shorter or taller. Also, individual
factors not really independent of each other.

I Kind of true for homogenous population, ignoring outliers.
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