18.600: Lecture 31 Central limit theorem

Scott Sheffield

MIT

Proving the central limit theorem

Proving the central limit theorem

• Let X_i be an i.i.d. sequence of random variables. Write $S_n = \sum_{i=1}^n X_n$.

- Let X_i be an i.i.d. sequence of random variables. Write $S_n = \sum_{i=1}^n X_n$.
- Suppose each X_i is 1 with probability p and 0 with probability q = 1 p.

- Let X_i be an i.i.d. sequence of random variables. Write $S_n = \sum_{i=1}^n X_n$.
- Suppose each X_i is 1 with probability p and 0 with probability q = 1 p.
- DeMoivre-Laplace limit theorem:

$$\lim_{n\to\infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

- Let X_i be an i.i.d. sequence of random variables. Write $S_n = \sum_{i=1}^n X_n$.
- Suppose each X_i is 1 with probability p and 0 with probability q = 1 − p.
- DeMoivre-Laplace limit theorem:

$$\lim_{n\to\infty} P\{a\leq \frac{S_n-np}{\sqrt{npq}}\leq b\}\to \Phi(b)-\Phi(a).$$

Here Φ(b) − Φ(a) = P{a ≤ Z ≤ b} when Z is a standard normal random variable.

- Let X_i be an i.i.d. sequence of random variables. Write $S_n = \sum_{i=1}^n X_n$.
- Suppose each X_i is 1 with probability p and 0 with probability q = 1 p.
- DeMoivre-Laplace limit theorem:

$$\lim_{n\to\infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

- Here Φ(b) − Φ(a) = P{a ≤ Z ≤ b} when Z is a standard normal random variable.
- $\frac{S_n np}{\sqrt{npq}}$ describes "number of standard deviations that S_n is above or below its mean".

- Let X_i be an i.i.d. sequence of random variables. Write $S_n = \sum_{i=1}^n X_n$.
- Suppose each X_i is 1 with probability p and 0 with probability q = 1 p.
- DeMoivre-Laplace limit theorem:

$$\lim_{n\to\infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

- Here Φ(b) − Φ(a) = P{a ≤ Z ≤ b} when Z is a standard normal random variable.
- ▶ $\frac{S_n np}{\sqrt{npq}}$ describes "number of standard deviations that S_n is above or below its mean".
- Question: Does a similar statement hold if the X_i are i.i.d. but have some other probability distribution?

- Let X_i be an i.i.d. sequence of random variables. Write $S_n = \sum_{i=1}^n X_n$.
- Suppose each X_i is 1 with probability p and 0 with probability q = 1 p.
- DeMoivre-Laplace limit theorem:

$$\lim_{n\to\infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

- Here Φ(b) − Φ(a) = P{a ≤ Z ≤ b} when Z is a standard normal random variable.
- $\frac{S_n np}{\sqrt{npq}}$ describes "number of standard deviations that S_n is above or below its mean".
- Question: Does a similar statement hold if the X_i are i.i.d. but have some other probability distribution?

• **Central limit theorem:** Yes, if they have finite variance.

► Say we roll 10⁶ ordinary dice independently of each other.

- ► Say we roll 10⁶ ordinary dice independently of each other.
- Let X_i be the number on the *i*th die. Let $X = \sum_{i=1}^{10^6} X_i$ be the total of the numbers rolled.

- ► Say we roll 10⁶ ordinary dice independently of each other.
- Let X_i be the number on the *i*th die. Let $X = \sum_{i=1}^{10^6} X_i$ be the total of the numbers rolled.
- ▶ What is *E*[*X*]?

- ► Say we roll 10⁶ ordinary dice independently of each other.
- Let X_i be the number on the *i*th die. Let $X = \sum_{i=1}^{10^6} X_i$ be the total of the numbers rolled.
- ▶ What is *E*[*X*]?
- ▶ What is Var[X]?

- ► Say we roll 10⁶ ordinary dice independently of each other.
- Let X_i be the number on the *i*th die. Let $X = \sum_{i=1}^{10^6} X_i$ be the total of the numbers rolled.
- ▶ What is *E*[*X*]?
- What is Var[X]?
- ▶ How about SD[X]?

- ► Say we roll 10⁶ ordinary dice independently of each other.
- Let X_i be the number on the *i*th die. Let $X = \sum_{i=1}^{10^6} X_i$ be the total of the numbers rolled.
- ▶ What is *E*[*X*]?
- ▶ What is Var[X]?
- ▶ How about SD[X]?
- ► What is the probability that X is less than a standard deviations above its mean?

- ▶ Say we roll 10⁶ ordinary dice independently of each other.
- Let X_i be the number on the *i*th die. Let $X = \sum_{i=1}^{10^6} X_i$ be the total of the numbers rolled.
- ▶ What is *E*[*X*]?
- ▶ What is Var[X]?
- ▶ How about SD[X]?
- ► What is the probability that X is less than a standard deviations above its mean?
- Central limit theorem: should be about $\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{a}e^{-x^2/2}dx$.

Suppose earthquakes in some region are a Poisson point process with rate λ equal to 1 per year.

- Suppose earthquakes in some region are a Poisson point process with rate λ equal to 1 per year.
- Let X be the number of earthquakes that occur over a ten-thousand year period. Should be a Poisson random variable with rate 10000.

- Suppose earthquakes in some region are a Poisson point process with rate λ equal to 1 per year.
- ▶ Let X be the number of earthquakes that occur over a ten-thousand year period. Should be a Poisson random variable with rate 10000.
- ▶ What is *E*[*X*]?

- Suppose earthquakes in some region are a Poisson point process with rate λ equal to 1 per year.
- ▶ Let X be the number of earthquakes that occur over a ten-thousand year period. Should be a Poisson random variable with rate 10000.
- ▶ What is *E*[*X*]?
- What is Var[X]?

- Suppose earthquakes in some region are a Poisson point process with rate λ equal to 1 per year.
- ▶ Let X be the number of earthquakes that occur over a ten-thousand year period. Should be a Poisson random variable with rate 10000.
- ▶ What is *E*[X]?
- What is Var[X]?
- ► How about SD[X]?

- Suppose earthquakes in some region are a Poisson point process with rate λ equal to 1 per year.
- ▶ Let X be the number of earthquakes that occur over a ten-thousand year period. Should be a Poisson random variable with rate 10000.
- ▶ What is *E*[*X*]?
- What is Var[X]?
- ► How about SD[X]?
- What is the probability that X is less than a standard deviations above its mean?

- Suppose earthquakes in some region are a Poisson point process with rate λ equal to 1 per year.
- ▶ Let X be the number of earthquakes that occur over a ten-thousand year period. Should be a Poisson random variable with rate 10000.
- ▶ What is *E*[*X*]?
- ▶ What is Var[X]?
- ► How about SD[X]?
- What is the probability that X is less than a standard deviations above its mean?
- Central limit theorem: should be about $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} dx$.

Let X_i be an i.i.d. sequence of random variables with finite mean μ and variance σ².

- Let X_i be an i.i.d. sequence of random variables with finite mean μ and variance σ².
- Write $S_n = \sum_{i=1}^n X_i$. So $E[S_n] = n\mu$ and $\operatorname{Var}[S_n] = n\sigma^2$ and $\operatorname{SD}[S_n] = \sigma\sqrt{n}$.

- Let X_i be an i.i.d. sequence of random variables with finite mean μ and variance σ².
- Write $S_n = \sum_{i=1}^n X_i$. So $E[S_n] = n\mu$ and $\operatorname{Var}[S_n] = n\sigma^2$ and $\operatorname{SD}[S_n] = \sigma\sqrt{n}$.
- Write B_n = X₁+X₂+...+X_n-nµ/σ√n. Then B_n is the difference between S_n and its expectation, measured in standard deviation units.

- Let X_i be an i.i.d. sequence of random variables with finite mean μ and variance σ².
- Write $S_n = \sum_{i=1}^n X_i$. So $E[S_n] = n\mu$ and $\operatorname{Var}[S_n] = n\sigma^2$ and $\operatorname{SD}[S_n] = \sigma\sqrt{n}$.
- Write B_n = X₁+X₂+...+X_n-nµ/σ√n. Then B_n is the difference between S_n and its expectation, measured in standard deviation units.
- Central limit theorem:

$$\lim_{n\to\infty} P\{a\leq B_n\leq b\}\to \Phi(b)-\Phi(a).$$

Proving the central limit theorem

Proving the central limit theorem

• Let X be a random variable.

- Let X be a random variable.
- The characteristic function of X is defined by φ(t) = φ_X(t) := E[e^{itX}]. Like M(t) except with i thrown in.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, φ_{X+Y} = φ_Xφ_Y, just as M_{X+Y} = M_XM_Y, if X and Y are independent.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, φ_{X+Y} = φ_Xφ_Y, just as M_{X+Y} = M_XM_Y, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, φ_{X+Y} = φ_Xφ_Y, just as M_{X+Y} = M_XM_Y, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.
- And if X has an *m*th moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, φ_{X+Y} = φ_Xφ_Y, just as M_{X+Y} = M_XM_Y, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.
- And if X has an *m*th moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.
- Characteristic functions are well defined at all t for all random variables X.

► Let X be a random variable and X_n a sequence of random variables.

- ► Let *X* be a random variable and *X_n* a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if lim_{n→∞} F_{Xn}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.

- ► Let *X* be a random variable and *X_n* a sequence of random variables.
- ▶ Say X_n converge in distribution or converge in law to X if $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$ at all $x \in \mathbb{R}$ at which F_X is continuous.
- ▶ Recall: the weak law of large numbers can be rephrased as the statement that $A_n = \frac{X_1 + X_2 + ... + X_n}{n}$ converges in law to μ (i.e., to the random variable that is equal to μ with probability one) as $n \to \infty$.

- ► Let *X* be a random variable and *X_n* a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if lim_{n→∞} F_{Xn}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.
- ▶ Recall: the weak law of large numbers can be rephrased as the statement that $A_n = \frac{X_1 + X_2 + ... + X_n}{n}$ converges in law to μ (i.e., to the random variable that is equal to μ with probability one) as $n \to \infty$.
- ► The central limit theorem can be rephrased as the statement that $B_n = \frac{X_1 + X_2 + ... + X_n n\mu}{\sigma\sqrt{n}}$ converges in law to a standard normal random variable as $n \to \infty$.

$$\lim_{n\to\infty}\phi_{X_n}(t)=\phi_X(t)$$

for all t, then X_n converge in law to X.

$$\lim_{n\to\infty}\phi_{X_n}(t)=\phi_X(t)$$

for all t, then X_n converge in law to X.

▶ By this theorem, we can prove the central limit theorem by showing $\lim_{n\to\infty} \phi_{B_n}(t) = e^{-t^2/2}$ for all *t*.

$$\lim_{n\to\infty}\phi_{X_n}(t)=\phi_X(t)$$

for all t, then X_n converge in law to X.

- ▶ By this theorem, we can prove the central limit theorem by showing $\lim_{n\to\infty} \phi_{B_n}(t) = e^{-t^2/2}$ for all *t*.
- Moment generating function continuity theorem: if moment generating functions $M_{X_n}(t)$ are defined for all t and n and $\lim_{n\to\infty} M_{X_n}(t) = M_X(t)$ for all t, then X_n converge in law to X.

$$\lim_{n\to\infty}\phi_{X_n}(t)=\phi_X(t)$$

for all t, then X_n converge in law to X.

- ▶ By this theorem, we can prove the central limit theorem by showing $\lim_{n\to\infty} \phi_{B_n}(t) = e^{-t^2/2}$ for all *t*.
- Moment generating function continuity theorem: if moment generating functions $M_{X_n}(t)$ are defined for all t and n and $\lim_{n\to\infty} M_{X_n}(t) = M_X(t)$ for all t, then X_n converge in law to X.
- ▶ By this theorem, we can prove the central limit theorem by showing $\lim_{n\to\infty} M_{B_n}(t) = e^{t^2/2}$ for all *t*.

• Write $Y = \frac{X-\mu}{\sigma}$. Then Y has mean zero and variance 1.

• Write $Y = \frac{X-\mu}{\sigma}$. Then Y has mean zero and variance 1.

• Write
$$M_Y(t) = E[e^{tY}]$$
 and $g(t) = \log M_Y(t)$. So $M_Y(t) = e^{g(t)}$.

- Write $Y = \frac{X-\mu}{\sigma}$. Then Y has mean zero and variance 1.
- Write $M_Y(t) = E[e^{tY}]$ and $g(t) = \log M_Y(t)$. So $M_Y(t) = e^{g(t)}$.
- We know g(0) = 0. Also $M'_Y(0) = E[Y] = 0$ and $M''_Y(0) = E[Y^2] = Var[Y] = 1$.

- Write $Y = \frac{X-\mu}{\sigma}$. Then Y has mean zero and variance 1.
- Write $M_Y(t) = E[e^{tY}]$ and $g(t) = \log M_Y(t)$. So $M_Y(t) = e^{g(t)}$.
- We know g(0) = 0. Also $M'_Y(0) = E[Y] = 0$ and $M''_Y(0) = E[Y^2] = \operatorname{Var}[Y] = 1$.
- ► Chain rule: $M'_Y(0) = g'(0)e^{g(0)} = g'(0) = 0$ and $M''_Y(0) = g''(0)e^{g(0)} + g'(0)^2e^{g(0)} = g''(0) = 1.$

- Write $Y = \frac{X \mu}{\sigma}$. Then Y has mean zero and variance 1.
- Write $M_Y(t) = E[e^{tY}]$ and $g(t) = \log M_Y(t)$. So $M_Y(t) = e^{g(t)}$.
- We know g(0) = 0. Also $M'_Y(0) = E[Y] = 0$ and $M''_Y(0) = E[Y^2] = Var[Y] = 1$.
- ► Chain rule: $M'_Y(0) = g'(0)e^{g(0)} = g'(0) = 0$ and $M''_Y(0) = g''(0)e^{g(0)} + g'(0)^2e^{g(0)} = g''(0) = 1.$
- So g is a nice function with g(0) = g'(0) = 0 and g''(0) = 1. Taylor expansion: g(t) = t²/2 + o(t²) for t near zero.

- Write $Y = \frac{X \mu}{\sigma}$. Then Y has mean zero and variance 1.
- Write $M_Y(t) = E[e^{tY}]$ and $g(t) = \log M_Y(t)$. So $M_Y(t) = e^{g(t)}$.
- We know g(0) = 0. Also $M'_Y(0) = E[Y] = 0$ and $M''_Y(0) = E[Y^2] = Var[Y] = 1$.
- ► Chain rule: $M'_Y(0) = g'(0)e^{g(0)} = g'(0) = 0$ and $M''_Y(0) = g''(0)e^{g(0)} + g'(0)^2e^{g(0)} = g''(0) = 1.$
- So g is a nice function with g(0) = g'(0) = 0 and g''(0) = 1. Taylor expansion: g(t) = t²/2 + o(t²) for t near zero.
- Now B_n is $\frac{1}{\sqrt{n}}$ times the sum of *n* independent copies of *Y*.

- Write $Y = \frac{X \mu}{\sigma}$. Then Y has mean zero and variance 1.
- Write $M_Y(t) = E[e^{tY}]$ and $g(t) = \log M_Y(t)$. So $M_Y(t) = e^{g(t)}$.
- We know g(0) = 0. Also $M'_Y(0) = E[Y] = 0$ and $M''_Y(0) = E[Y^2] = \operatorname{Var}[Y] = 1$.
- ► Chain rule: $M'_Y(0) = g'(0)e^{g(0)} = g'(0) = 0$ and $M''_Y(0) = g''(0)e^{g(0)} + g'(0)^2e^{g(0)} = g''(0) = 1.$
- So g is a nice function with g(0) = g'(0) = 0 and g''(0) = 1. Taylor expansion: g(t) = t²/2 + o(t²) for t near zero.
- Now B_n is $\frac{1}{\sqrt{n}}$ times the sum of *n* independent copies of *Y*.

• So
$$M_{B_n}(t) = \left(M_Y(t/\sqrt{n})\right)^n = e^{ng(\frac{t}{\sqrt{n}})}.$$

- Write $Y = \frac{X \mu}{\sigma}$. Then Y has mean zero and variance 1.
- Write $M_Y(t) = E[e^{tY}]$ and $g(t) = \log M_Y(t)$. So $M_Y(t) = e^{g(t)}$.
- We know g(0) = 0. Also $M'_Y(0) = E[Y] = 0$ and $M''_Y(0) = E[Y^2] = Var[Y] = 1$.
- ► Chain rule: $M'_Y(0) = g'(0)e^{g(0)} = g'(0) = 0$ and $M''_Y(0) = g''(0)e^{g(0)} + g'(0)^2e^{g(0)} = g''(0) = 1.$
- So g is a nice function with g(0) = g'(0) = 0 and g''(0) = 1. Taylor expansion: g(t) = t²/2 + o(t²) for t near zero.
- Now B_n is $\frac{1}{\sqrt{n}}$ times the sum of *n* independent copies of *Y*.

• So
$$M_{B_n}(t) = \left(M_Y(t/\sqrt{n})\right)^n = e^{ng\left(\frac{t}{\sqrt{n}}\right)}$$
.

• But $e^{ng(\frac{t}{\sqrt{n}})} \approx e^{n(\frac{t}{\sqrt{n}})^2/2} = e^{t^2/2}$, in sense that LHS tends to $e^{t^2/2}$ as *n* tends to infinity.

18.600 Lecture 31

Proof of central limit theorem with characteristic functions

Moment generating function proof only applies if the moment generating function of X exists.

- Moment generating function proof only applies if the moment generating function of X exists.
- But the proof can be repeated almost verbatim using characteristic functions instead of moment generating functions.

- Moment generating function proof only applies if the moment generating function of X exists.
- But the proof can be repeated almost verbatim using characteristic functions instead of moment generating functions.
- ► Then it applies for any X with finite variance.

• Write
$$\phi_Y(t) = E[e^{itY}]$$
 and $g(t) = \log \phi_Y(t)$. So $\phi_Y(t) = e^{g(t)}$.

- Write $\phi_Y(t) = E[e^{itY}]$ and $g(t) = \log \phi_Y(t)$. So $\phi_Y(t) = e^{g(t)}$.
- We know g(0) = 0. Also $\phi'_Y(0) = iE[Y] = 0$ and $\phi''_Y(0) = i^2 E[Y^2] = -\text{Var}[Y] = -1$.

- Write $\phi_Y(t) = E[e^{itY}]$ and $g(t) = \log \phi_Y(t)$. So $\phi_Y(t) = e^{g(t)}$.
- We know g(0) = 0. Also $\phi'_Y(0) = iE[Y] = 0$ and $\phi''_Y(0) = i^2 E[Y^2] = -\text{Var}[Y] = -1$.
- ► Chain rule: $\phi'_Y(0) = g'(0)e^{g(0)} = g'(0) = 0$ and $\phi''_Y(0) = g''(0)e^{g(0)} + g'(0)^2e^{g(0)} = g''(0) = -1.$

- Write $\phi_Y(t) = E[e^{itY}]$ and $g(t) = \log \phi_Y(t)$. So $\phi_Y(t) = e^{g(t)}$.
- We know g(0) = 0. Also $\phi'_Y(0) = iE[Y] = 0$ and $\phi''_Y(0) = i^2 E[Y^2] = -\text{Var}[Y] = -1$.
- ► Chain rule: $\phi'_Y(0) = g'(0)e^{g(0)} = g'(0) = 0$ and $\phi''_Y(0) = g''(0)e^{g(0)} + g'(0)^2e^{g(0)} = g''(0) = -1$.
- So g is a nice function with g(0) = g'(0) = 0 and g"(0) = −1. Taylor expansion: g(t) = −t²/2 + o(t²) for t near zero.

- Write $\phi_Y(t) = E[e^{itY}]$ and $g(t) = \log \phi_Y(t)$. So $\phi_Y(t) = e^{g(t)}$.
- We know g(0) = 0. Also $\phi'_Y(0) = iE[Y] = 0$ and $\phi''_Y(0) = i^2 E[Y^2] = -\text{Var}[Y] = -1$.
- Chain rule: $\phi'_Y(0) = g'(0)e^{g(0)} = g'(0) = 0$ and $\phi''_Y(0) = g''(0)e^{g(0)} + g'(0)^2e^{g(0)} = g''(0) = -1$.
- So g is a nice function with g(0) = g'(0) = 0 and g"(0) = −1. Taylor expansion: g(t) = −t²/2 + o(t²) for t near zero.
- ▶ Now B_n is $\frac{1}{\sqrt{n}}$ times the sum of *n* independent copies of *Y*.

- Write $\phi_Y(t) = E[e^{itY}]$ and $g(t) = \log \phi_Y(t)$. So $\phi_Y(t) = e^{g(t)}$.
- We know g(0) = 0. Also $\phi'_Y(0) = iE[Y] = 0$ and $\phi''_Y(0) = i^2 E[Y^2] = -\text{Var}[Y] = -1$.
- Chain rule: $\phi'_Y(0) = g'(0)e^{g(0)} = g'(0) = 0$ and $\phi''_Y(0) = g''(0)e^{g(0)} + g'(0)^2e^{g(0)} = g''(0) = -1$.
- So g is a nice function with g(0) = g'(0) = 0 and g"(0) = −1. Taylor expansion: g(t) = −t²/2 + o(t²) for t near zero.
- Now B_n is 1/√n times the sum of n independent copies of Y.
 So φ_{B_n}(t) = (φ_Y(t/√n))ⁿ = e^{ng(t/√n)}.

- Write $\phi_Y(t) = E[e^{itY}]$ and $g(t) = \log \phi_Y(t)$. So $\phi_Y(t) = e^{g(t)}$.
- We know g(0) = 0. Also $\phi'_Y(0) = iE[Y] = 0$ and $\phi''_Y(0) = i^2 E[Y^2] = -\text{Var}[Y] = -1$.
- Chain rule: $\phi'_Y(0) = g'(0)e^{g(0)} = g'(0) = 0$ and $\phi''_Y(0) = g''(0)e^{g(0)} + g'(0)^2e^{g(0)} = g''(0) = -1$.
- So g is a nice function with g(0) = g'(0) = 0 and g"(0) = −1. Taylor expansion: g(t) = −t²/2 + o(t²) for t near zero.
- ▶ Now B_n is $\frac{1}{\sqrt{n}}$ times the sum of *n* independent copies of *Y*.
- So $\phi_{B_n}(t) = \left(\phi_Y(t/\sqrt{n})\right)^n = e^{ng(\frac{t}{\sqrt{n}})}.$
- ▶ But $e^{ng(\frac{t}{\sqrt{n}})} \approx e^{-n(\frac{t}{\sqrt{n}})^2/2} = e^{-t^2/2}$, in sense that LHS tends to $e^{-t^2/2}$ as *n* tends to infinity.

18.600 Lecture 31

► The central limit theorem is actually fairly robust. Variants of the theorem still apply if you allow the X_i not to be identically distributed, or not to be completely independent.

- ► The central limit theorem is actually fairly robust. Variants of the theorem still apply if you allow the X_i not to be identically distributed, or not to be completely independent.
- We won't formulate these variants precisely in this course.

- ► The central limit theorem is actually fairly robust. Variants of the theorem still apply if you allow the X_i not to be identically distributed, or not to be completely independent.
- ▶ We won't formulate these variants precisely in this course.
- But, roughly speaking, if you have a lot of little random terms that are "mostly independent" — and no single term contributes more than a "small fraction" of the total sum then the total sum should be "approximately" normal.

- ► The central limit theorem is actually fairly robust. Variants of the theorem still apply if you allow the X_i not to be identically distributed, or not to be completely independent.
- ▶ We won't formulate these variants precisely in this course.
- But, roughly speaking, if you have a lot of little random terms that are "mostly independent" — and no single term contributes more than a "small fraction" of the total sum then the total sum should be "approximately" normal.
- Example: if height is determined by lots of little mostly independent factors, then people's heights should be normally distributed.

- ► The central limit theorem is actually fairly robust. Variants of the theorem still apply if you allow the X_i not to be identically distributed, or not to be completely independent.
- ► We won't formulate these variants precisely in this course.
- But, roughly speaking, if you have a lot of little random terms that are "mostly independent" — and no single term contributes more than a "small fraction" of the total sum then the total sum should be "approximately" normal.
- Example: if height is determined by lots of little mostly independent factors, then people's heights should be normally distributed.
- Not quite true... certain factors by themselves can cause a person to be a whole lot shorter or taller. Also, individual factors not really independent of each other.

- ► The central limit theorem is actually fairly robust. Variants of the theorem still apply if you allow the X_i not to be identically distributed, or not to be completely independent.
- ► We won't formulate these variants precisely in this course.
- But, roughly speaking, if you have a lot of little random terms that are "mostly independent" — and no single term contributes more than a "small fraction" of the total sum then the total sum should be "approximately" normal.
- Example: if height is determined by lots of little mostly independent factors, then people's heights should be normally distributed.
- Not quite true... certain factors by themselves can cause a person to be a whole lot shorter or taller. Also, individual factors not really independent of each other.
- Kind of true for homogenous population, ignoring outliers.

18.600 Lecture 31