18.600: Lecture 30 Weak law of large numbers

Scott Sheffield

MIT

Outline

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

Outline

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

▶ Markov's inequality: Let X be a random variable taking only non-negative values. Fix a constant a > 0. Then $P\{X \ge a\} \le \frac{E[X]}{2}$.

- ▶ Markov's inequality: Let X be a random variable taking only non-negative values. Fix a constant a > 0. Then $P\{X \geq a\} < \frac{E[X]}{a}$.
- **Proof:** Consider a random variable Y defined by

$$Y =$$
 $\begin{cases} a & X \geq a \\ 0 & X < a \end{cases}$. Since $X \geq Y$ with probability one, it follows that $E[X] \geq E[Y] = aP\{X \geq a\}$. Divide both sides by

a to get Markov's inequality.

- ▶ Markov's inequality: Let X be a random variable taking only non-negative values. Fix a constant a > 0. Then $P\{X \geq a\} < \frac{E[X]}{a}$.
- **Proof:** Consider a random variable Y defined by

$$Y = \begin{cases} a & X \geq a \\ 0 & X < a \end{cases}$$
. Since $X \geq Y$ with probability one, it follows that $E[X] \geq E[Y] = aP\{X \geq a\}$. Divide both sides by

a to get Markov's inequality.

• Chebyshev's inequality: If X has finite mean μ , variance σ^2 , and k > 0 then

$$P\{|X - \mu| \ge k\} \le \frac{\sigma^2}{k^2}.$$

- ▶ Markov's inequality: Let X be a random variable taking only non-negative values. Fix a constant a > 0. Then $P\{X \ge a\} \le \frac{E[X]}{a}$.
- ▶ **Proof:** Consider a random variable *Y* defined by

$$Y = \begin{cases} a & X \ge a \\ 0 & X < a \end{cases}$$
 Since $X \ge Y$ with probability one, it

follows that $E[X] \ge E[Y] = aP\{X \ge a\}$. Divide both sides by a to get Markov's inequality.

▶ **Chebyshev's inequality:** If X has finite mean μ , variance σ^2 , and k > 0 then

$$P\{|X - \mu| \ge k\} \le \frac{\sigma^2}{k^2}.$$

▶ **Proof:** Note that $(X - \mu)^2$ is a non-negative random variable and $P\{|X - \mu| \ge k\} = P\{(X - \mu)^2 \ge k^2\}$. Now apply Markov's inequality with $a = k^2$.

▶ Markov's inequality: Let X be a random variable taking only non-negative values with finite mean. Fix a constant a > 0. Then $P\{X \ge a\} \le \frac{E[X]}{2}$.

- ▶ Markov's inequality: Let X be a random variable taking only non-negative values with finite mean. Fix a constant a > 0. Then $P\{X \ge a\} \le \frac{E[X]}{a}$.
- ▶ Chebyshev's inequality: If X has finite mean μ , variance σ^2 , and k > 0 then

$$P\{|X-\mu| \ge k\} \le \frac{\sigma^2}{k^2}.$$

- ▶ Markov's inequality: Let X be a random variable taking only non-negative values with finite mean. Fix a constant a > 0. Then $P\{X \ge a\} \le \frac{E[X]}{a}$.
- ▶ Chebyshev's inequality: If X has finite mean μ , variance σ^2 , and k > 0 then

$$P\{|X - \mu| \ge k\} \le \frac{\sigma^2}{k^2}.$$

▶ Inequalities allow us to deduce limited information about a distribution when we know only the mean (Markov) or the mean and variance (Chebyshev).

- ▶ Markov's inequality: Let X be a random variable taking only non-negative values with finite mean. Fix a constant a > 0. Then $P\{X \ge a\} \le \frac{E[X]}{a}$.
- ▶ Chebyshev's inequality: If X has finite mean μ , variance σ^2 , and k > 0 then

$$P\{|X - \mu| \ge k\} \le \frac{\sigma^2}{k^2}.$$

- ▶ Inequalities allow us to deduce limited information about a distribution when we know only the mean (Markov) or the mean and variance (Chebyshev).
- ▶ **Markov:** if E[X] is small, then it is not too likely that X is large.

- ▶ Markov's inequality: Let X be a random variable taking only non-negative values with finite mean. Fix a constant a > 0. Then $P\{X \ge a\} \le \frac{E[X]}{a}$.
- ► Chebyshev's inequality: If X has finite mean μ , variance σ^2 , and k > 0 then

$$P\{|X - \mu| \ge k\} \le \frac{\sigma^2}{k^2}.$$

- ▶ Inequalities allow us to deduce limited information about a distribution when we know only the mean (Markov) or the mean and variance (Chebyshev).
- ▶ **Markov:** if E[X] is small, then it is not too likely that X is large.
- ▶ **Chebyshev:** if $\sigma^2 = \text{Var}[X]$ is small, then it is not too likely that X is far from its mean.

▶ Suppose X_i are i.i.d. random variables with mean μ .

- ▶ Suppose X_i are i.i.d. random variables with mean μ .
- ► Then the value $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ is called the *empirical average* of the first n trials.

- ▶ Suppose X_i are i.i.d. random variables with mean μ .
- ► Then the value $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ is called the *empirical average* of the first n trials.
- ▶ We'd guess that when *n* is large, A_n is typically close to μ .

- ▶ Suppose X_i are i.i.d. random variables with mean μ .
- ► Then the value $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ is called the *empirical average* of the first n trials.
- ▶ We'd guess that when n is large, A_n is typically close to μ .
- ▶ Indeed, weak law of large numbers states that for all $\epsilon > 0$ we have $\lim_{n\to\infty} P\{|A_n \mu| > \epsilon\} = 0$.

- ▶ Suppose X_i are i.i.d. random variables with mean μ .
- ► Then the value $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ is called the *empirical average* of the first n trials.
- ▶ We'd guess that when n is large, A_n is typically close to μ .
- ▶ Indeed, weak law of large numbers states that for all $\epsilon > 0$ we have $\lim_{n\to\infty} P\{|A_n \mu| > \epsilon\} = 0$.
- ► Example: as *n* tends to infinity, the probability of seeing more than .50001*n* heads in *n* fair coin tosses tends to zero.

▶ As above, let X_i be i.i.d. random variables with mean μ and write $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$.

- ▶ As above, let X_i be i.i.d. random variables with mean μ and write $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$.
- ▶ By additivity of expectation, $\mathbb{E}[A_n] = \mu$.

- ▶ As above, let X_i be i.i.d. random variables with mean μ and write $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$.
- ▶ By additivity of expectation, $\mathbb{E}[A_n] = \mu$.
- ► Similarly, $Var[A_n] = \frac{n\sigma^2}{n^2} = \sigma^2/n$.

- As above, let X_i be i.i.d. random variables with mean μ and write $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$.
- ▶ By additivity of expectation, $\mathbb{E}[A_n] = \mu$.
- ► Similarly, $Var[A_n] = \frac{n\sigma^2}{n^2} = \sigma^2/n$.
- ▶ By Chebyshev $P\{|A_n \mu| \ge \epsilon\} \le \frac{\operatorname{Var}[A_n]}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$.

- As above, let X_i be i.i.d. random variables with mean μ and write $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$.
- ▶ By additivity of expectation, $\mathbb{E}[A_n] = \mu$.
- ► Similarly, $Var[A_n] = \frac{n\sigma^2}{n^2} = \sigma^2/n$.
- ▶ By Chebyshev $P\{|A_n \mu| \ge \epsilon\} \le \frac{\operatorname{Var}[A_n]}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$.
- No matter how small ϵ is, RHS will tend to zero as n gets large.

Outline

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

Outline

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

▶ Question: does the weak law of large numbers apply no matter what the probability distribution for *X* is?

- ▶ Question: does the weak law of large numbers apply no matter what the probability distribution for *X* is?
- ▶ Is it always the case that if we define $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ then A_n is typically close to some fixed value when n is large?

- ▶ Question: does the weak law of large numbers apply no matter what the probability distribution for *X* is?
- ▶ Is it always the case that if we define $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ then A_n is typically close to some fixed value when n is large?
- What if X is Cauchy?

- ▶ Question: does the weak law of large numbers apply no matter what the probability distribution for *X* is?
- ▶ Is it always the case that if we define $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ then A_n is typically close to some fixed value when n is large?
- What if X is Cauchy?
- Recall that in this strange case A_n actually has the same probability distribution as X.

- ▶ Question: does the weak law of large numbers apply no matter what the probability distribution for *X* is?
- ▶ Is it always the case that if we define $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ then A_n is typically close to some fixed value when n is large?
- ▶ What if *X* is Cauchy?
- ▶ Recall that in this strange case A_n actually has the same probability distribution as X.
- ▶ In particular, the A_n are not tightly concentrated around any particular value even when n is very large.

- ▶ Question: does the weak law of large numbers apply no matter what the probability distribution for *X* is?
- ▶ Is it always the case that if we define $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ then A_n is typically close to some fixed value when n is large?
- ▶ What if *X* is Cauchy?
- Recall that in this strange case A_n actually has the same probability distribution as X.
- ▶ In particular, the A_n are not tightly concentrated around any particular value even when n is very large.
- ▶ But in this case E[|X|] was infinite. Does the weak law hold as long as E[|X|] is finite, so that μ is well defined?

- ▶ Question: does the weak law of large numbers apply no matter what the probability distribution for *X* is?
- ▶ Is it always the case that if we define $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ then A_n is typically close to some fixed value when n is large?
- ▶ What if *X* is Cauchy?
- Recall that in this strange case A_n actually has the same probability distribution as X.
- ▶ In particular, the A_n are not tightly concentrated around any particular value even when n is very large.
- ▶ But in this case E[|X|] was infinite. Does the weak law hold as long as E[|X|] is finite, so that μ is well defined?
- ▶ Yes. Can prove this using characteristic functions.

▶ Let *X* be a random variable.

- Let X be a random variable.
- ▶ The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with i thrown in.

- Let X be a random variable.
- ▶ The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with i thrown in.
- ▶ Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.

- Let X be a random variable.
- ▶ The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with i thrown in.
- ▶ Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.

- Let X be a random variable.
- ▶ The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with i thrown in.
- ▶ Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- ▶ For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.

Characteristic functions

- Let X be a random variable.
- ▶ The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with i thrown in.
- ▶ Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- ▶ For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.

Characteristic functions

- Let X be a random variable.
- ▶ The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with i thrown in.
- ▶ Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- ▶ For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.
- ▶ And if X has an mth moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.

Characteristic functions

- Let X be a random variable.
- ▶ The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with i thrown in.
- ▶ Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- ▶ For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.
- ▶ And if X has an mth moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.
- ▶ But characteristic functions have an advantage: they are well defined at all *t* for all random variables *X*.

Let X be a random variable and X_n a sequence of random variables.

- Let X be a random variable and X_n a sequence of random variables.
- ▶ Say X_n converge in distribution or converge in law to X if $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$ at all $x \in \mathbb{R}$ at which F_X is continuous.

- Let X be a random variable and X_n a sequence of random variables.
- ▶ Say X_n converge in distribution or converge in law to X if $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$ at all $x \in \mathbb{R}$ at which F_X is continuous.
- ▶ The weak law of large numbers can be rephrased as the statement that A_n converges in law to μ (i.e., to the random variable that is equal to μ with probability one).

- Let X be a random variable and X_n a sequence of random variables.
- ▶ Say X_n converge in distribution or converge in law to X if $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$ at all $x \in \mathbb{R}$ at which F_X is continuous.
- ▶ The weak law of large numbers can be rephrased as the statement that A_n converges in law to μ (i.e., to the random variable that is equal to μ with probability one).
- Lévy's continuity theorem (see Wikipedia): if

$$\lim_{n\to\infty}\phi_{X_n}(t)=\phi_X(t)$$

for all t, then X_n converge in law to X.

- Let X be a random variable and X_n a sequence of random variables.
- ▶ Say X_n converge in distribution or converge in law to X if $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$ at all $x \in \mathbb{R}$ at which F_X is continuous.
- ▶ The weak law of large numbers can be rephrased as the statement that A_n converges in law to μ (i.e., to the random variable that is equal to μ with probability one).
- Lévy's continuity theorem (see Wikipedia): if

$$\lim_{n\to\infty}\phi_{X_n}(t)=\phi_X(t)$$

for all t, then X_n converge in law to X.

▶ By this theorem, we can prove the weak law of large numbers by showing $\lim_{n\to\infty}\phi_{A_n}(t)=\phi_{\mu}(t)=e^{it\mu}$ for all t. In the special case that $\mu=0$, this amounts to showing $\lim_{n\to\infty}\phi_{A_n}(t)=1$ for all t.

As above, let X_i be i.i.d. instances of random variable X with mean zero. Write $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X - \mu$. Thus it suffices to prove the weak law in the mean zero case.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X \mu$. Thus it suffices to prove the weak law in the mean zero case.
- ▶ Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X \mu$. Thus it suffices to prove the weak law in the mean zero case.
- ▶ Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.
- ▶ Since E[X] = 0, we have $\phi'_X(0) = E[\frac{\partial}{\partial t}e^{itX}]_{t=0} = iE[X] = 0$.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X \mu$. Thus it suffices to prove the weak law in the mean zero case.
- ▶ Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.
- ▶ Since E[X] = 0, we have $\phi'_X(0) = E[\frac{\partial}{\partial t}e^{itX}]_{t=0} = iE[X] = 0$.
- ▶ Write $g(t) = \log \phi_X(t)$ so $\phi_X(t) = e^{g(t)}$. Then g(0) = 0 and (by chain rule) $g'(0) = \lim_{\epsilon \to 0} \frac{g(\epsilon) g(0)}{\epsilon} = \lim_{\epsilon \to 0} \frac{g(\epsilon)}{\epsilon} = 0$.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X \mu$. Thus it suffices to prove the weak law in the mean zero case.
- ▶ Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.
- ▶ Since E[X] = 0, we have $\phi'_X(0) = E[\frac{\partial}{\partial t}e^{itX}]_{t=0} = iE[X] = 0$.
- ▶ Write $g(t) = \log \phi_X(t)$ so $\phi_X(t) = e^{g(t)}$. Then g(0) = 0 and (by chain rule) $g'(0) = \lim_{\epsilon \to 0} \frac{g(\epsilon) g(0)}{\epsilon} = \lim_{\epsilon \to 0} \frac{g(\epsilon)}{\epsilon} = 0$.
- Now $\phi_{A_n}(t) = \phi_X(t/n)^n = e^{ng(t/n)}$. Since g(0) = g'(0) = 0 we have $\lim_{n\to\infty} ng(t/n) = \lim_{n\to\infty} t\frac{g(\frac{t}{n})}{\frac{t}{n}} = 0$ if t is fixed. Thus $\lim_{n\to\infty} e^{ng(t/n)} = 1$ for all t.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X \mu$. Thus it suffices to prove the weak law in the mean zero case.
- ▶ Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.
- ▶ Since E[X] = 0, we have $\phi'_X(0) = E[\frac{\partial}{\partial t}e^{itX}]_{t=0} = iE[X] = 0$.
- ▶ Write $g(t) = \log \phi_X(t)$ so $\phi_X(t) = e^{g(t)}$. Then g(0) = 0 and (by chain rule) $g'(0) = \lim_{\epsilon \to 0} \frac{g(\epsilon) g(0)}{\epsilon} = \lim_{\epsilon \to 0} \frac{g(\epsilon)}{\epsilon} = 0$.
- Now $\phi_{A_n}(t) = \phi_X(t/n)^n = e^{ng(t/n)}$. Since g(0) = g'(0) = 0 we have $\lim_{n\to\infty} ng(t/n) = \lim_{n\to\infty} t\frac{g(\frac{t}{n})}{\frac{t}{n}} = 0$ if t is fixed. Thus $\lim_{n\to\infty} e^{ng(t/n)} = 1$ for all t.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X \mu$. Thus it suffices to prove the weak law in the mean zero case.
- ▶ Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.
- ▶ Since E[X] = 0, we have $\phi'_X(0) = E[\frac{\partial}{\partial t}e^{itX}]_{t=0} = iE[X] = 0$.
- ▶ Write $g(t) = \log \phi_X(t)$ so $\phi_X(t) = e^{g(t)}$. Then g(0) = 0 and (by chain rule) $g'(0) = \lim_{\epsilon \to 0} \frac{g(\epsilon) g(0)}{\epsilon} = \lim_{\epsilon \to 0} \frac{g(\epsilon)}{\epsilon} = 0$.
- Now $\phi_{A_n}(t) = \phi_X(t/n)^n = e^{ng(t/n)}$. Since g(0) = g'(0) = 0 we have $\lim_{n\to\infty} ng(t/n) = \lim_{n\to\infty} t\frac{g(\frac{t}{n})}{\frac{t}{n}} = 0$ if t is fixed. Thus $\lim_{n\to\infty} e^{ng(t/n)} = 1$ for all t.
- ▶ By Lévy's continuity theorem, the A_n converge in law to 0 (i.e., to the random variable that is 0 with probability one).