18.600: Lecture 28

Lectures 17-27 Review

Scott Sheffield

MIT

18 600 | ecture 28



Continuous random variables
Problems motivated by coin tossing

Random variable properties
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Continuous random variables

» Say X is a continuous random variable if there exists a
probability density function f = fx on R such that
P{X € B} = [g f(x)dx := [1p(x)f(x)dx.
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Continuous random variables

» Say X is a continuous random variable if there exists a
probability density function f = fx on R such that
P{X € B} = [g f(x)dx := [1p(x)f(x)dx.

» We may assume [ f(x)dx = [* f(x)dx =1 and f is

i — 0o
non-negative.
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Continuous random variables

» Say X is a continuous random variable if there exists a
probability density function f = fx on R such that
P{X € B} = [g f(x)dx := [1p(x)f(x)dx.

> We may assume [, f(x)dx = [*_f(x)dx =1 and f is
non-negative.

» Probability of interval [a, b] is given by fab f(x)dx, the area
under f between a and b.

18 600 | ecture 28



Continuous random variables

» Say X is a continuous random variable if there exists a
probability density function f = fx on R such that
P{X € B} = [5f(x)dx := [ 1p(x)f(x)dXx.

> We may assume [, f(x)dx = [*_f(x)dx =1 and f is
non-negative.

» Probability of interval [a, b] is given by fab f(x)dx, the area
under f between a and b.

» Probability of any single point is zero.
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Continuous random variables

» Say X is a continuous random variable if there exists a
probability density function f = fx on R such that
P{X € B} = [5f(x)dx := [ 1p(x)f(x)dXx.

> We may assume [, f(x)dx = [*_f(x)dx =1 and f is
non-negative.

» Probability of interval [a, b] is given by fab f(x)dx, the area
under f between a and b.

» Probability of any single point is zero.

» Define cumulative distribution function
F(a) = Fx(a) .= P{X <a} =P{X <a} = f f(x)dx
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Expectations of continuous random variables

» Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote

EX]= > p(x)x.

x:p(x)>0
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Expectations of continuous random variables

» Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote

EX]= > p(x)x.

x:p(x)>0

» How should we define E[X] when X is a continuous random
variable?
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Expectations of continuous random variables

» Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote

EX]= > p(x)x.
x:p(x)>0

» How should we define E[X] when X is a continuous random
variable?

> Answer: E[X] = [T f(x)xdx.
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Expectations of continuous random variables

» Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote

EX]= > p(x)x.

x:p(x)>0

» How should we define E[X] when X is a continuous random
variable?

> Answer: E[X] = [T f(x)xdx.
» Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote

Eg(X)]= Y p(x)gx).

x:p(x)>0
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Expectations of continuous random variables

» Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote

EX]= > p(x)x.
x:p(x)>0

» How should we define E[X] when X is a continuous random
variable?

> Answer: E[X] = [T f(x)xdx.

» Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote

Eg(X)]= Y p(x)gx).

x:p(x)>0

» What is the analog when X is a continuous random variable?
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Expectations of continuous random variables

» Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote

EX]= > p(x)x.

x:p(x)>0

» How should we define E[X] when X is a continuous random
variable?

> Answer: E[X] = [T f(x)xdx.

» Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote

Eg(X)]= Y p(x)gx).
x:p(x)>0

» What is the analog when X is a continuous random variable?
» Answer: we will write E[g(X)] = [ f(x)g(x)dx.
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Variance of continuous random variables

» Suppose X is a continuous random variable with mean .
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Variance of continuous random variables

» Suppose X is a continuous random variable with mean .

» We can write Var[X] = E[(X — p)?], same as in the discrete
case.
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Variance of continuous random variables

» Suppose X is a continuous random variable with mean .

» We can write Var[X] = E[(X — p)?], same as in the discrete
case.

» Next, if g = g1 + g» then
Elg(X)] = [ &(x)f(x)dx + [ g2(x)f(x)dx =
J (g1(x) + g2(x)) f(x)dx = E[g1(X)] + E[g2(X)].
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Variance of continuous random variables

» Suppose X is a continuous random variable with mean .

» We can write Var[X] = E[(X — p)?], same as in the discrete
case.

» Next, if g = g1 + g2 then
Elg(X)] = [ g1()f (x)dx + [ g2(x)f(x)dx =
J(81(x) + g2(x)) F(x)dx = E[g1(X)] + Elg2(X)].
» Furthermore, E[ag(X)] = aE[g(X)] when a is a constant.
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Variance of continuous random variables

» Suppose X is a continuous random variable with mean .

» We can write Var[X] = E[(X — p)?], same as in the discrete
case.

> Next, if g = g1 + g» then
Elg(X)] = [ &(x)f (x)dx + [ g2(x)f(x)dx =
J(81(x) + g2(x)) F(x)dx = E[g1(X)] + Elg2(X)].

» Furthermore, E[ag(X)] = aE[g(X)] when a is a constant.

» Just as in the discrete case, we can expand the variance
expression as Var[X] = E[X2 — 2uX + u?] and use additivity
of expectation to say that
Var[X] = E[X?] — 2uE[X] + E[u?] = E[X?] — 2u® + p? =
E[X?] — E[X]?.
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Variance of continuous random variables

» Suppose X is a continuous random variable with mean .

» We can write Var[X] = E[(X — p)?], same as in the discrete
case.

> Next, if g = g1 + g» then
Elg(X)] = [ &(x)f (x)dx + [ g2(x)f(x)dx =
J(81(x) + g2(x)) F(x)dx = E[g1(X)] + Elg2(X)].

» Furthermore, E[ag(X)] = aE[g(X)] when a is a constant.

» Just as in the discrete case, we can expand the variance
expression as Var[X] = E[X2 — 2uX + u?] and use additivity
of expectation to say that
Var[X] = E[X?] — 2uE[X] + E[u?] = E[X?] — 2u® + p? =
E[X?] — E[X]?.

» This formula is often useful for calculations.
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Continuous random variables
Problems motivated by coin tossing

Random variable properties
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Problems motivated by coin tossing

18 600 | ecture 28



It's the coins, stupid

» Much of what we have done in this course can be motivated
by the i.i.d. sequence X; where each X; is 1 with probability p
and 0 otherwise. Write S, = Y7, X,.
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It's the coins, stupid

» Much of what we have done in this course can be motivated
by the i.i.d. sequence X; where each X; is 1 with probability p
and 0 otherwise. Write S, = Y7, X,.

» Binomial (S, — number of heads in n tosses), geometric
(steps required to obtain one heads), negative binomial
(steps required to obtain n heads).
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It's the coins, stupid

» Much of what we have done in this course can be motivated
by the i.i.d. sequence X; where each X; is 1 with probability p
and 0 otherwise. Write S, = Y7, X,.

» Binomial (S, — number of heads in n tosses), geometric
(steps required to obtain one heads), negative binomial

(steps required to obtain n heads).

» Standard normal approximates law of SgB(ES[f)”]. Here

E[Sp] = np and SD(S,) = /Var(S,) = \/npq where
g=1-p.
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It's the coins, stupid

» Much of what we have done in this course can be motivated
by the i.i.d. sequence X; where each X; is 1 with probability p
and 0 otherwise. Write S, = Y7, X,.

» Binomial (S, — number of heads in n tosses), geometric
(steps required to obtain one heads), negative binomial
(steps required to obtain n heads).

» Standard normal approximates law of SgB(ES[f)”]. Here
E[Sp] = np and SD(S,) = /Var(S,) = \/npq where

g=1-p.
» Poisson is limit of binomial as n — oo when p = A/n.
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It's the coins, stupid

» Much of what we have done in this course can be motivated
by the i.i.d. sequence X; where each X; is 1 with probability p
and 0 otherwise. Write S, = Y7, X,.

» Binomial (S, — number of heads in n tosses), geometric
(steps required to obtain one heads), negative binomial

(steps required to obtain n heads).

» Standard normal approximates law of SgD(ES[S)] Here

E[S,] = np and SD(S,,) = +/Var(S,) = \/npq where
g=1-p.
» Poisson is limit of binomial as n — oo when p = \/n.

» Poisson point process: toss one \/n coin during each length
1/n time increment, take n — oo limit.
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It's the coins, stupid

» Much of what we have done in this course can be motivated
by the i.i.d. sequence X; where each X; is 1 with probability p
and 0 otherwise. Write S, = Y7, X,.

» Binomial (S, — number of heads in n tosses), geometric
(steps required to obtain one heads), negative binomial
(steps required to obtain n heads).

» Standard normal approximates law of SgB(ES[f)”] Here

E[S,] = np and SD(S,) = \/Var(S,) = /npq where
g=1-p
» Poisson is limit of binomial as n — oo when p = A/n.

» Poisson point process: toss one \/n coin during each length
1/n time increment, take n — oo limit.

» Exponential: time till first event in A Poisson point process.
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It's the coins, stupid

» Much of what we have done in this course can be motivated
by the i.i.d. sequence X; where each X; is 1 with probability p
and 0 otherwise. Write S, = Y7, X,.

» Binomial (S, — number of heads in n tosses), geometric
(steps required to obtain one heads), negative binomial

(steps required to obtain n heads).

» Standard normal approximates law of SgB(ES[f)”] Here

E[S,] = np and SD(S,) = \/Var(S,) = /npq where
g=1-p
» Poisson is limit of binomial as n — oo when p = A/n.

» Poisson point process: toss one \/n coin during each length
1/n time increment, take n — oo limit.

» Exponential: time till first event in A Poisson point process.

» Gamma distribution: time till nth event in A Poisson point
process.
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Discrete random variable properties derivable from coin

toss intuition

» Sum of two independent binomial random variables with
parameters (n1, p) and (n2, p) is itself binomial (n1 + n2, p).
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Discrete random variable properties derivable from coin

toss intuition

» Sum of two independent binomial random variables with
parameters (n1, p) and (n2, p) is itself binomial (n1 + n2, p).

» Sum of n independent geometric random variables with
parameter p is negative binomial with parameter (n, p).
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Discrete random variable properties derivable from coin

toss intuition

» Sum of two independent binomial random variables with
parameters (n1, p) and (n2, p) is itself binomial (n1 + n2, p).

» Sum of n independent geometric random variables with
parameter p is negative binomial with parameter (n, p).

» Expectation of geometric random variable with parameter
pis1/p.
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Discrete random variable properties derivable from coin

toss intuition

v

Sum of two independent binomial random variables with
parameters (n1, p) and (n2, p) is itself binomial (n1 + n2, p).

v

Sum of n independent geometric random variables with
parameter p is negative binomial with parameter (n, p).

v

Expectation of geometric random variable with parameter
pis1/p.

Expectation of binomial random variable with parameters
(n,p) is np.

v
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Discrete random variable properties derivable from coin

toss intuition

» Sum of two independent binomial random variables with
parameters (n1, p) and (n2, p) is itself binomial (n1 + n2, p).

» Sum of n independent geometric random variables with
parameter p is negative binomial with parameter (n, p).

» Expectation of geometric random variable with parameter
pis1/p.

» Expectation of binomial random variable with parameters
(n,p) is np.

» Variance of binomial random variable with parameters
(n, p) is np(1 — p) = npq.
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Continuous random variable properties derivable from coin

toss intuition

» Sum of n independent exponential random variables each
with parameter \ is gamma with parameters (n, \).
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Continuous random variable properties derivable from coin

toss intuition

» Sum of n independent exponential random variables each
with parameter \ is gamma with parameters (n, \).

» Memoryless properties: given that exponential random
variable X is greater than T > 0, the conditional law of
X — T is the same as the original law of X.
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Continuous random variable properties derivable from coin

toss intuition

» Sum of n independent exponential random variables each
with parameter \ is gamma with parameters (n, \).

» Memoryless properties: given that exponential random
variable X is greater than T > 0, the conditional law of
X — T is the same as the original law of X.

» Write p = A/n. Poisson random variable expectation is
iMoo NP = lim,_ n% = A. Variance is
limp_oo np(1 — p) = limp_00 N(1 — A/n)N/n = A
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Continuous random variable properties derivable from coin

toss intuition

» Sum of n independent exponential random variables each
with parameter \ is gamma with parameters (n, \).

» Memoryless properties: given that exponential random
variable X is greater than T > 0, the conditional law of
X — T is the same as the original law of X.

» Write p = A/n. Poisson random variable expectation is
iMoo NP = lim,_ n% = A. Variance is
limp_oo np(1 — p) = limp_00 N(1 — A/n)N/n = A

» Sum of )\; Poisson and independent )\, Poisson is a
A1 + Ao Poisson.
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Continuous random variable properties derivable from coin

toss intuition

» Sum of n independent exponential random variables each
with parameter \ is gamma with parameters (n, \).

» Memoryless properties: given that exponential random
variable X is greater than T > 0, the conditional law of
X — T is the same as the original law of X.

» Write p = A/n. Poisson random variable expectation is
iMoo NP = lim,_ n% = A. Variance is
limp_oo np(1 — p) = limp_00 N(1 — A/n)N/n = A

» Sum of )\; Poisson and independent )\, Poisson is a
A1 + Ao Poisson.

» Times between successive events in A Poisson process are
independent exponentials with parameter .
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Continuous random variable properties derivable from coin

toss intuition

» Sum of n independent exponential random variables each
with parameter \ is gamma with parameters (n, \).

» Memoryless properties: given that exponential random
variable X is greater than T > 0, the conditional law of
X — T is the same as the original law of X.

» Write p = A/n. Poisson random variable expectation is
iMoo NP = lim,_ n% = A. Variance is
limp_oo np(1 — p) = limp_00 N(1 — A/n)N/n = A

» Sum of )\; Poisson and independent )\, Poisson is a
A1 + Ao Poisson.

» Times between successive events in A Poisson process are
independent exponentials with parameter .

» Minimum of independent exponentials with parameters A\;
and \; is itself exponential with parameter A1 + As.
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DeMoivre-Laplace Limit Theorem

» DeMoivre-Laplace limit theorem (special case of central
limit theorem):

. Sn—n

lim P{a< =" P

n—oo

< b} — b(b) — d(a).
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DeMoivre-Laplace Limit Theorem

» DeMoivre-Laplace limit theorem (special case of central
limit theorem):

. Sn—n

lim P{a< =" P

n—oo

< b} — b(b) — d(a).

» Thisis ®(b) — ®(a) = P{a < X < b} when X is a standard
normal random variable.
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» Toss a million fair coins. Approximate the probability that |
get more than 501, 000 heads.
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» Toss a million fair coins. Approximate the probability that |
get more than 501, 000 heads.
» Answer: well, /npg = /100 x .5 x .5 = 500. So we're asking

for probability to be over two SDs above mean. This is
approximately 1 — ®(2) = &(-2).
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» Toss a million fair coins. Approximate the probability that |
get more than 501, 000 heads.

» Answer: well, /npg = /100 x .5 x .5 = 500. So we're asking
for probability to be over two SDs above mean. This is
approximately 1 — ®(2) = &(-2).

> Roll 60000 dice. Expect to see 10000 sixes. What's the
probability to see more than 98007
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» Toss a million fair coins. Approximate the probability that |
get more than 501, 000 heads.

» Answer: well, /npg = /100 x .5 x .5 = 500. So we're asking
for probability to be over two SDs above mean. This is
approximately 1 — ®(2) = &(-2).

> Roll 60000 dice. Expect to see 10000 sixes. What's the
probability to see more than 98007

» Here \/npq = /60000 x % X % ~ 91.28.
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» Toss a million fair coins. Approximate the probability that |
get more than 501, 000 heads.

» Answer: well, /npg = /100 x .5 x .5 = 500. So we're asking
for probability to be over two SDs above mean. This is
approximately 1 — ®(2) = &(-2).

> Roll 60000 dice. Expect to see 10000 sixes. What's the
probability to see more than 98007

» Here \/npq = /60000 x % X % ~ 91.28.

» And 200/91.28 ~ 2.19. Answer is about 1 — $(—2.19).
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Properties of normal random variables

» Say X is a (standard) normal random variable if
_ 1 _—x%)2
f(x) = 7=e .
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Properties of normal random variables

» Say X is a (standard) normal random variable if
_ 1 _—x%)2
f(x) = 7=e .

» Mean zero and variance one.
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Properties of normal random variables

» Say X is a (standard) normal random variable if
f(x) = e /2,
V21
» Mean zero and variance one.

» The random variable Y = 0 X + i has variance ¢ and
expectation p.
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Properties of normal random variables

Say X is a (standard) normal random variable if
_ 1 —x2/2
f(x) = 7€ .

Mean zero and variance one.

v

v

v

The random variable Y = 0 X + i has variance ¢ and
expectation p.

» Y is said to be normal with parameters 1 and o. lts density
ion i — 1 —(x=p)?/20°
function is fy(x) € :
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Properties of normal random variables

» Say X is a (standard) normal random variable if
f(x) = e /2,
V21
» Mean zero and variance one.

» The random variable Y = 0 X + i has variance ¢ and
expectation p.

» Y is said to be normal with parameters 1 and o. lts density
ion i — 1 —(x=p)?/20°
function is fy(x) € :

» Function ®(a) = \/% . e=*/2dx can't be computed

explicitly.
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Properties of normal random variables

» Say X is a (standard) normal random variable if
f(x) = e /2,
V21
» Mean zero and variance one.

» The random variable Y = 0 X + i has variance ¢ and
expectation p.

» Y is said to be normal with parameters 1 and o. lts density
ion i — 1 —(x=p)?/20°
function is fy(x) € :

» Function ®(a) = \/% . e=*/2dx can't be computed
explicitly.
» Values: ®(—3) ~.0013, #(—2) ~ .023 and ®(—1) ~ .159.
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Properties of normal random variables

» Say X is a (standard) normal random variable if
f(x) = e /2,
V21
» Mean zero and variance one.

» The random variable Y = 0 X + i has variance ¢ and
expectation p.

» Y is said to be normal with parameters 1 and o. lts density
ion i — 1 —(x=p)?/20°
function is fy(x) € :

» Function ®(a) = \/% . e=*/2dx can't be computed
explicitly.
» Values: ®(—3) ~.0013, #(—2) ~ .023 and ®(—1) ~ .159.

» Rule of thumb: “two thirds of time within one SD of mean,
95 percent of time within 2 SDs of mean.”
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Properties of exponential random variables

» Say X is an exponential random variable of parameter )
when its probability distribution function is f(x) = Ae™** for
x>0 (and f(x) =0if x <0).
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Properties of exponential random variables

» Say X is an exponential random variable of parameter )
when its probability distribution function is f(x) = Ae™** for
x>0 (and f(x) =0if x <0).

> For a > 0 have

Fx(a) = / f(x)dx = / Ae Mdx = —e ™ ; =1—e?a
0 0
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Properties of exponential random variables

» Say X is an exponential random variable of parameter )
when its probability distribution function is f(x) = Ae™** for
x>0 (and f(x) =0if x <0).

> For a > 0 have

Fx(a) = / f(x)dx = / e Mdx = —e*)‘X’; =1—e?a
0 0

» Thus P{X <a} =1—e* and P{X > a} = e 2
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Properties of exponential random variables

Say X is an exponential random variable of parameter )\
when its probability distribution function is f(x) = Ae™** for
x>0 (and f(x) =0if x <0).

For a > 0 have

v

v

Fx(a) = / f(x)dx = / e Mdx = —e*)‘X’; =1—e?a
0 0

v

Thus P{X <a} =1—e? and P{X > a} = e 2.

Formula P{X > a} = e™*? is very important in practice.

v
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Properties of exponential random variables

Say X is an exponential random variable of parameter )\
when its probability distribution function is f(x) = Ae™** for
x>0 (and f(x) =0if x <0).

For a > 0 have

v

v

Fx(a) = / f(x)dx = / e Mdx = —e*)‘X’; =1—e?a
0 0

v

Thus P{X <a} =1—e? and P{X > a} = e 2.

Formula P{X > a} = e™*? is very important in practice.

v

v

Repeated integration by parts gives E[X"] = nl/\".

18 600 | ecture 28



Properties of exponential random variables

» Say X is an exponential random variable of parameter )
when its probability distribution function is f(x) = Ae™** for
x>0 (and f(x) =0if x <0).

> For a > 0 have

Fx(a) = / f(x)dx = / e Mdx = —e*)‘X’; =1—e?a
0 0

» Thus P{X <a} =1—e* and P{X > a} = e 2
» Formula P{X > a} = e 7 is very important in practice.
» Repeated integration by parts gives E[X"] = n!/\".

» If A =1, then E[X"] = n!. Value ['(n) := E[X"~!] defined for
real n >0 and I'(n) = (n—1)!.
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Defining I distribution

» Say that random variable X has gamma distribution with
Qx)* e\ x>0

parameters (a, ) if fx(x) = (o) ="

0 x <0
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Defining I distribution

» Say that random variable X has gamma distribution with
Qx)* e\ x>0

parameters (a, ) if fx(x) = (o) ="

0 x <0

» Same as exponential distribution when o = 1. Otherwise,
multiply by x*~! and divide by [(a). The fact that '(a) is
what you need to divide by to make the total integral one just
follows from the definition of T.
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Defining I distribution

» Say that random variable X has gamma distribution with
Qx)* e\ x>0

parameters (a, ) if fx(x) = (o) ="

0 x <0

» Same as exponential distribution when o = 1. Otherwise,
multiply by x*~! and divide by [(a). The fact that '(a) is
what you need to divide by to make the total integral one just
follows from the definition of T.

» Waiting time interpretation makes sense only for integer «,
but distribution is defined for general positive a.

18 600 | ecture 28



Continuous random variables
Problems motivated by coin tossing

Random variable properties
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Random variable properties
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Properties of uniform random variables

» Suppose X is a random variable with probability density

1
function f(x) = {ﬁa x € [, ]

0 x¢[of]
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Properties of uniform random variables

» Suppose X is a random variable with probability density
1
function f(x) = {

B—a X € [Oé,ﬂ]
0 xél[a,p]
> Then E[X] = %2
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Properties of uniform random variables

» Suppose X is a random variable with probability density
1
function f(x) = {

5 XE€lof]
> Then E[X] = 212,

0 x¢[af]
» And Var[X] = Var[(f — @)Y + a] = Var[(f — a) Y] =
(8 — a)*Var[Y] = (8 — a)?/12.
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Distribution of function of random variable

» Suppose P{X < a} = Fx(a) is known for all a. Write
Y = X3. What is P{Y < 27}?
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Distribution of function of random variable

» Suppose P{X < a} = Fx(a) is known for all a. Write
Y = X3. What is P{Y < 27}?

» Answer: note that Y < 27 if and only if X < 3. Hence
P{Y <27} = P{X < 3} = Fx(3).
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Distribution of function of random variable

» Suppose P{X < a} = Fx(a) is known for all a. Write
Y = X3, What is P{Y < 27}?

» Answer: note that Y < 27 if and only if X < 3. Hence
P{Y <27} = P{X <3} = Fx(3).

» Generally Fy(a) = P{Y < a} = P{X < a'/3} = Fx(a'/?)
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Distribution of function of random variable

» Suppose P{X < a} = Fx(a) is known for all a. Write
Y = X3. What is P{Y < 27}?

» Answer: note that Y < 27 if and only if X < 3. Hence
P{Y <27} = P{X < 3} = Fx(3).

» Generally Fy(a) = P{Y < a} = P{X < a'/3} = Fx(a'/?)

» This is a general principle. If X is a continuous random
variable and g is a strictly increasing function of x and

Y = g(X), then Fy(a) = Fx(g~(a)).
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Joint probability mass functions: discrete random variables

» If X and Y assume values in {1,2,...,n} then we can view
Aij = P{X =1i,Y =j} as the entries of an n x n matrix.
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» If X and Y assume values in {1,2,...,n} then we can view
Aij = P{X =1i,Y =j} as the entries of an n x n matrix.

» Let's say | don't care about Y. | just want to know
P{X = i}. How do | figure that out from the matrix?
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Joint probability mass functions: discrete random variables

» If X and Y assume values in {1,2,...,n} then we can view
Aij = P{X =1i,Y =j} as the entries of an n x n matrix.

» Let's say | don't care about Y. | just want to know
P{X = i}. How do | figure that out from the matrix?

» Answer: P{X =i} = 27:1 Aij-
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Joint probability mass functions: discrete random variables

v

If X and Y assume values in {1,2,...,n} then we can view
Aij = P{X =1i,Y =j} as the entries of an n x n matrix.

v

Let's say | don't care about Y. | just want to know
P{X = i}. How do | figure that out from the matrix?

Answer: P{X =i} = 27:1 Aij-
Similarly, P{Y =/} =Y"" Ai).

v

v
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Joint probability mass functions: discrete random variables

» If X and Y assume values in {1,2,...,n} then we can view
Aij = P{X =1i,Y =j} as the entries of an n x n matrix.

» Let's say | don't care about Y. | just want to know
P{X = i}. How do | figure that out from the matrix?

> Answer: P{X =i} =31 A

» Similarly, P{Y =/} =31, Aij.

> In other words, the probability mass functions for X and Y
are the row and columns sums of A; ;.
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Joint probability mass functions: discrete random variables

» If X and Y assume values in {1,2,...,n} then we can view
Aij = P{X =1i,Y =j} as the entries of an n x n matrix.

» Let's say | don't care about Y. | just want to know
P{X = i}. How do | figure that out from the matrix?

> Answer: P{X =i} =31, A

» Similarly, P{Y =/} =31, Aij.

> In other words, the probability mass functions for X and Y
are the row and columns sums of A; ;.

» Given the joint distribution of X and Y, we sometimes call
distribution of X (ignoring Y') and distribution of Y (ignoring
X) the marginal distributions.
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Joint probability mass functions: discrete random variables

» If X and Y assume values in {1,2,...,n} then we can view
Aij = P{X =1i,Y =j} as the entries of an n x n matrix.

» Let's say | don't care about Y. | just want to know
P{X = i}. How do | figure that out from the matrix?

> Answer: P{X =i} =31, A

» Similarly, P{Y =/} =31, Aij.

> In other words, the probability mass functions for X and Y
are the row and columns sums of A; ;.

» Given the joint distribution of X and Y, we sometimes call
distribution of X (ignoring Y') and distribution of Y (ignoring
X) the marginal distributions.

> In general, when X and Y are jointly defined discrete random
variables, we write p(x,y) = px,v(x,y) = P{X =x,Y = y}.
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Joint distribution functions: continuous random variables

» Given random variables X and Y/, define
F(a,b) = P{X < a,Y < b}.
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Joint distribution functions: continuous random variables

» Given random variables X and Y/, define
F(a,b) = P{X < a,Y < b}.

» The region {(x,y) : x < a,y < b} is the lower left "quadrant”
centered at (a, b).
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Joint distribution functions: continuous random variables

» Given random variables X and Y/, define
F(a,b) = P{X < a,Y < b}.

» The region {(x,y) : x < a,y < b} is the lower left "quadrant”
centered at (a, b).

» Refer to Fx(a) = P{X < a} and Fy(b) = P{Y < b} as
marginal cumulative distribution functions.
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Joint distribution functions: continuous random variables

» Given random variables X and Y/, define
F(a,b) = P{X < a,Y < b}.

» The region {(x,y) : x < a,y < b} is the lower left "quadrant”
centered at (a, b).

» Refer to Fx(a) = P{X < a} and Fy(b) = P{Y < b} as
marginal cumulative distribution functions.

» Question: if | tell you the two parameter function F, can you
use it to determine the marginals Fx and Fy?
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Joint distribution functions: continuous random variables

» Given random variables X and Y/, define
F(a,b) = P{X < a,Y < b}.

» The region {(x,y) : x < a,y < b} is the lower left "quadrant”
centered at (a, b).

» Refer to Fx(a) = P{X < a} and Fy(b) = P{Y < b} as
marginal cumulative distribution functions.

» Question: if | tell you the two parameter function F, can you
use it to determine the marginals Fx and Fy?

» Answer: Yes. Fx(a) = limp_~ F(a, b) and
Fy(b) = lim,,o F(a, b).
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Joint distribution functions: continuous random variables

» Given random variables X and Y/, define
F(a,b) = P{X < a,Y < b}.

» The region {(x,y) : x < a,y < b} is the lower left "quadrant”
centered at (a, b).

» Refer to Fx(a) = P{X < a} and Fy(b) = P{Y < b} as
marginal cumulative distribution functions.

» Question: if | tell you the two parameter function F, can you
use it to determine the marginals Fx and Fy?

» Answer: Yes. Fx(a) = limp_~ F(a, b) and
Fy(b) = lim,,o F(a, b).
» Density: f(x,y) = %(%F(x,y).

18 600 | ecture 28



Independent random variables

» We say X and Y are independent if for any two (measurable)
sets A and B of real numbers we have

P{X €AY € B} =P{X € A}P{Y € B}.
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Independent random variables

» We say X and Y are independent if for any two (measurable)
sets A and B of real numbers we have

P{X €AY € B} =P{X € A}P{Y € B}.
» When X and Y are discrete random variables, they are

independent if P{X =x,Y =y} = P{X = x}P{Y =y} for
all x and y for which P{X = x} and P{Y = y} are non-zero.
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Independent random variables

» We say X and Y are independent if for any two (measurable)
sets A and B of real numbers we have

P{X €AY € B} =P{X € A}P{Y € B}.

» When X and Y are discrete random variables, they are
independent if P{X =x,Y =y} =P{X =x}P{Y =y} for
all x and y for which P{X = x} and P{Y = y} are non-zero.

» When X and Y are continuous, they are independent if

f(x,y) = tx(x)fr(y).
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Summing two random variables

» Say we have independent random variables X and Y and we
know their density functions fx and fy.
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» Say we have independent random variables X and Y and we
know their density functions fx and fy.

» Now let's try to find Fxyy(a) = P{X + Y < a}.
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Summing two random variables

» Say we have independent random variables X and Y and we
know their density functions fx and fy.

» Now let's try to find Fxyy(a) = P{X + Y < a}.

» This is the integral over {(x,y) : x+y < a} of
f(x,y) = &x(x)fy(y). Thus,

18 600 | ecture 28



Summing two random variables

» Say we have independent random variables X and Y and we
know their density functions fx and fy.

» Now let's try to find Fxyy(a) = P{X + Y < a}.

» This is the integral over {(x,y) : x+y < a} of
f(x,y) = &x(x)fy(y). Thus,

P{X+Y <a}= / / y)dxdy

:/_ Fx(a— )fy( )d .
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Summing two random variables

» Say we have independent random variables X and Y and we
know their density functions fx and fy.

» Now let's try to find Fxyy(a) = P{X + Y < a}.
» This is the integral over {(x,y) : x+y < a} of

f(x,y) = fx(x)fy(y). Thus,
P{X+Y<a}= / / y)dxdy

:/_ Fx(a— )fy( )d .

» Differentiating both sides gives
fxiy(a) = & [* Fx(a—y)fy(y)dy = [°2 fx(a—y)fy(y)dy
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Summing two random variables

» Say we have independent random variables X and Y and we
know their density functions fx and fy.

» Now let's try to find Fxyy(a) = P{X + Y < a}.

» This is the integral over {(x,y) : x+y < a} of
f(x,y) = &x(x)fy(y). Thus,

P{X+Y <a}= / / y)dxdy

:/_ Fx(a— )fy( )d .

» Differentiating both sides gives
fxiv(a) = & oo Fx(a=y)fy(y)dy = [, fx(a=y)fy(y)dy
> Latter formula makes some intuitive sense. We're integrating
over the set of x, y pairs that add up to a.
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Conditional distributions

» Let's say X and Y have joint probability density function
f(x,y).
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Conditional distributions

» Let's say X and Y have joint probability density function

f(x,y)-

» We can define the conditional probability density of X given
that Y = y by fjy—y(x) = fc(yx(v;)).
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Conditional distributions

» Let's say X and Y have joint probability density function
f(x,y)-

» We can define the conditional probability density of X given
that Y =y by fjy_, (x) = 224,

» This amounts to restricting f(x, y) to the line corresponding
to the given y value (and dividing by the constant that makes

the integral along that line equal to 1).
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Maxima: pick five job candidates at random, choose best

» Suppose | choose n random variables X1, X5, ..., X, uniformly
at random on [0, 1], independently of each other.
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Maxima: pick five job candidates at random, choose best

» Suppose | choose n random variables X1, X5, ..., X, uniformly
at random on [0, 1], independently of each other.

» The n-tuple (X1, X2, ..., X,) has a constant density function
on the n-dimensional cube [0, 1]".
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Maxima: pick five job candidates at random, choose best

» Suppose | choose n random variables X1, X5, ..., X, uniformly
at random on [0, 1], independently of each other.

» The n-tuple (X1, X2, ..., X,) has a constant density function
on the n-dimensional cube [0, 1]".

» What is the probability that the /argest of the X; is less than
a?
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Maxima: pick five job candidates at random, choose best

» Suppose | choose n random variables X1, X5, ..., X, uniformly
at random on [0, 1], independently of each other.

» The n-tuple (X1, X2, ..., X,) has a constant density function
on the n-dimensional cube [0, 1]".

» What is the probability that the /argest of the X; is less than
a?

» ANSWER: a".
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Maxima: pick five job candidates at random, choose best

» Suppose | choose n random variables X1, X5, ..., X, uniformly
at random on [0, 1], independently of each other.

» The n-tuple (X1, X2, ..., X,) has a constant density function
on the n-dimensional cube [0, 1]".

» What is the probability that the /argest of the X; is less than
a?
» ANSWER: a".

» So if X = max{Xi,...,X,}, then what is the probability
density function of X7
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Maxima: pick five job candidates at random, choose best

» Suppose | choose n random variables X1, X5, ..., X, uniformly
at random on [0, 1], independently of each other.

» The n-tuple (X1, X2, ..., X,) has a constant density function
on the n-dimensional cube [0, 1]".

» What is the probability that the /argest of the X; is less than
a?

» ANSWER: a".

» So if X = max{Xi,...,X,}, then what is the probability
density function of X7

0 a<o
> Answer: Fx(a) =< a" a€]0,1]. And
1 a>1

f(a) = Fi(a) = na" L.
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General order statistics

» Consider i.i.d random variables X1, Xo, ..., X, with continuous
probability density f.
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General order statistics

» Consider i.i.d random variables X1, Xo, ..., X, with continuous
probability density f.

» Let Y1 < Y2 < Y3...< Y, be list obtained by sorting the X;.
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General order statistics

» Consider i.i.d random variables X1, Xo, ..., X, with continuous
probability density f.

» Let Y1 < Y2 < Y3...< Y, be list obtained by sorting the X;.

» In particular, Y13 = min{Xy,..., X,} and
Y, = max{Xi,..., X} is the maximum.
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General order statistics

Consider i.i.d random variables X1, Xo, ..., X, with continuous
probability density f.

Let Y1 < Y2 < Y3... <Y} be list obtained by sorting the X;.
In particular, Y1 = min{Xi,...,X,} and

Y, = max{Xi,..., X} is the maximum.

What is the joint probability density of the Y;?

v

v

v

v
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General order statistics

» Consider i.i.d random variables X1, Xo, ..., X, with continuous
probability density f.

» Let Y1 < Y2 < Y3...< Y, be list obtained by sorting the X;.

» In particular, Y13 = min{Xy,..., X,} and

Y, = max{Xi,..., X} is the maximum.
> What is the joint probability density of the Y;?
» Answer: f(x1,x2,...,xp) = n![]7_; F(x;) if x1 < x2...< Xp,

zero otherwise.
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General order statistics

» Consider i.i.d random variables X1, Xo, ..., X, with continuous
probability density f.

» Let Y1 < Y2 < Y3...< Y, be list obtained by sorting the X;.
» In particular, Y13 = min{Xy,..., X,} and

Y, = max{Xi,..., X} is the maximum.
> What is the joint probability density of the Y;?
» Answer: f(x1,x2,...,xp) = n![]7_; F(x;) if x1 < x2...< Xp,

zero otherwise.
» Let o :{1,2,...,n} — {1,2,...,n} be the permutation such
that Xl = Ys())
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General order statistics

» Consider i.i.d random variables X1, Xo, ..., X, with continuous
probability density f.

» Let Y1 < Y2 < Y3...< Y, be list obtained by sorting the X;.
» In particular, Y13 = min{Xy,..., X,} and

Y, = max{Xi,..., X} is the maximum.
> What is the joint probability density of the Y;?
» Answer: f(x1,x2,...,xp) = n![]7_; F(x;) if x1 < x2...< Xp,

zero otherwise.

» Let o :{1,2,...,n} — {1,2,...,n} be the permutation such
that )<J = Ys())
» Are o and the vector (Y1,...,Y,) independent of each other?
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General order statistics

» Consider i.i.d random variables X1, Xo, ..., X, with continuous
probability density f.

» Let Y1 < Y2 < Y3...< Y, be list obtained by sorting the X;.
» In particular, Y13 = min{Xy,..., X,} and

Y, = max{Xi,..., X} is the maximum.
> What is the joint probability density of the Y;?
» Answer: f(x1,x2,...,xp) = n![]7_; F(x;) if x1 < x2...< Xp,

zero otherwise.

» Let o :{1,2,...,n} — {1,2,...,n} be the permutation such
that )<J = Ys())

» Are o and the vector (Y1,...,Y,) independent of each other?

> Yes.
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Properties of expectation

» Several properties we derived for discrete expectations
continue to hold in the continuum.
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Properties of expectation

» Several properties we derived for discrete expectations
continue to hold in the continuum.

» If X is discrete with mass function p(x) then
EIX] = ¥, p(x)x.
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Properties of expectation

» Several properties we derived for discrete expectations
continue to hold in the continuum.

» If X is discrete with mass function p(x) then
EIX] = 2. p(x)x.

» Similarly, if X is continuous with density function f(x) then
E[X] = [ f(x)xdx.
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Properties of expectation

» Several properties we derived for discrete expectations
continue to hold in the continuum.

» If X is discrete with mass function p(x) then
EIX] = ¥, p(x)x.
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E[X] = [ f(x)xdx.

» If X is discrete with mass function p(x) then

Elg(x)] = >, p(x)g(x).
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Properties of expectation

» Several properties we derived for discrete expectations
continue to hold in the continuum.

» If X is discrete with mass function p(x) then
EIX] = 2. p(x)x.

» Similarly, if X is continuous with density function f(x) then
E[X] = [ f(x)xdx.

» If X is discrete with mass function p(x) then
Elg(x)] = >, p(x)g(x).

> Similarly, X if is continuous with density function f(x) then
E[g(X)] = [ f(x)g(x)dx.
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Properties of expectation

» Several properties we derived for discrete expectations
continue to hold in the continuum.

» If X is discrete with mass function p(x) then
EIX] = ¥, p(x)x.

» Similarly, if X is continuous with density function f(x) then
E[X] = [ f(x)xdx.

» If X is discrete with mass function p(x) then
Elg(x)] = >, p(x)g(x).

> Similarly, X if is continuous with density function f(x) then
E[g(X)] = [ f(x)g(x)dx.

» If X and Y have joint mass function p(x,y) then

Elg(X; )=, >« 8(xy)p(x, y).
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Properties of expectation

» Several properties we derived for discrete expectations
continue to hold in the continuum.

» If X is discrete with mass function p(x) then
EIX] = 3, p()x.

» Similarly, if X is continuous with density function f(x) then
E[X] = [ f(x)xdx.

» If X is discrete with mass function p(x) then
Elg(x)] = >, p(x)g(x).

> Similarly, X if is continuous with density function f(x) then
E[g(X)] = [ f(x)g(x)dx.

» If X and Y have joint mass function p(x,y) then
Elg(X, )] =2, > &(x,y)p(x,y).

» If X and Y have joint probability density function f(x,y) then
Elg(X,Y)] = [7, J7o &(x,¥)f(x, y)dxdy.
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Properties of expectation

» For both discrete and continuous random variables X and Y
we have E[X + Y] = E[X] + E[Y].
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Properties of expectation

» For both discrete and continuous random variables X and Y
we have E[X + Y] = E[X] + E[Y].

> In both discrete and continuous settings, E[aX] = aE[X]
when a is a constant. And E[>_ a;X;] = >_ a;E[Xi].
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Properties of expectation

> For both discrete and continuous random variables X and Y
we have E[X + Y] = E[X] + E[Y].

> In both discrete and continuous settings, E[aX] = aE[X]
when a is a constant. And E[>_ a;X;] = >_ a;E[Xi].

» But what about that delightful “area under 1 — Fx" formula
for the expectation?
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Properties of expectation

> For both discrete and continuous random variables X and Y
we have E[X + Y] = E[X] + E[Y].

> In both discrete and continuous settings, E[aX] = aE[X]
when a is a constant. And E[>_ a;X;] = >_ a;E[Xi].

» But what about that delightful “area under 1 — Fx" formula
for the expectation?

» When X is non-negative with probability one, do we always
have E[X] = [;° P{X > x}, in both discrete and continuous

settings?

18 600 | ecture 28



Properties of expectation

> For both discrete and continuous random variables X and Y
we have E[X + Y] = E[X] + E[Y].

> In both discrete and continuous settings, E[aX] = aE[X]
when a is a constant. And E[>_ a;X;] = >_ a;E[Xi].

» But what about that delightful “area under 1 — Fx" formula
for the expectation?

» When X is non-negative with probability one, do we always
have E[X] = [;° P{X > x}, in both discrete and continuous
settings?

» Define g(y) so that 1 — Fx(g(y)) = y. (Draw horizontal line
at height y and look where it hits graph of 1 — Fx.)
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Properties of expectation

> For both discrete and continuous random variables X and Y
we have E[X + Y] = E[X] + E[Y].

> In both discrete and continuous settings, E[aX] = aE[X]
when a is a constant. And E[>_ a;X;] = >_ a;E[Xi].

» But what about that delightful “area under 1 — Fx" formula
for the expectation?

» When X is non-negative with probability one, do we always
have E[X] = [;° P{X > x}, in both discrete and continuous
settings?

» Define g(y) so that 1 — Fx(g(y)) = y. (Draw horizontal line
at height y and look where it hits graph of 1 — Fx.)

» Choose Y uniformly on [0, 1] and note that g(Y’) has the
same probability distribution as X.
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Properties of expectation

> For both discrete and continuous random variables X and Y
we have E[X + Y] = E[X] + E[Y].

> In both discrete and continuous settings, E[aX] = aE[X]
when a is a constant. And E[>_ a;X;] = >_ a;E[Xi].

» But what about that delightful “area under 1 — Fx" formula
for the expectation?

» When X is non-negative with probability one, do we always
have E[X] = [;° P{X > x}, in both discrete and continuous
settings?

» Define g(y) so that 1 — Fx(g(y)) = y. (Draw horizontal line
at height y and look where it hits graph of 1 — Fx.)

» Choose Y uniformly on [0, 1] and note that g(Y’) has the
same probability distribution as X.

» So E[X]=E[g(Y)] = fol g(y)dy, which is indeed the area
under the graph of 1 — Fx.
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A property of independence

» If X and Y are independent then
E[g(X)h(Y)] = E[g(X)]E[A(Y)].
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A property of independence

» If X and Y are independent then
E[g(X)h(Y)] = E[g( )IE[A(Y)].
» Just write E[g(X)h(Y)] = [T [T g(x)h(y)f(x, y)dxdy.
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A property of independence

» If X and Y are independent then

E[g(X)h(Y)] = E[g( JIE[A(Y)]-
» Just write E[g(X)h(Y)] = [T [T g(x)h(y)f(x, y)dxdy.
» Since f(x,y) = fx(x)fy( ) this factors as

JZoe RN (y)dy [22, g(x)fx (x)dx = E[h(Y)]E[g(X)].
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Defining covariance and correlation

> Now define covariance of X and Y by
Cov(X,Y) = E[(X — E[X])(Y — E[Y)).
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Defining covariance and correlation

> Now define covariance of X and Y by
Cov(X,Y) = E[(X — E[X])(Y — E[Y)).
» Note: by definition Var(X) = Cov(X, X).
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Defining covariance and correlation

> Now define covariance of X and Y by
Cov(X,Y) = E[(X — E[X])(Y — E[Y)).

» Note: by definition Var(X) = Cov(X, X).

» Covariance formula E[XY] — E[X]E[Y], or “expectation of
product minus product of expectations” is frequently useful.
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Defining covariance and correlation

v

Now define covariance of X and Y by

Cov(X,Y) = E[(X — E[X])(Y — E[Y)).

Note: by definition Var(X) = Cov(X, X).

» Covariance formula E[XY] — E[X]E[Y], or “expectation of
product minus product of expectations” is frequently useful.
If X and Y are independent then Cov(X,Y) =0.

v

v
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Defining covariance and correlation

> Now define covariance of X and Y by
Cov(X,Y) = E[(X — E[X])(Y — E[Y)).

» Note: by definition Var(X) = Cov(X, X).

» Covariance formula E[XY] — E[X]E[Y], or “expectation of
product minus product of expectations” is frequently useful.

» If X and Y are independent then Cov(X,Y) =0.

» Converse is not true.
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Basic covariance facts

» Cov(X,Y)=Cov(Y,X)
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Basic covariance facts

» Cov(X,Y)=Cov(Y,X)
» Cov(X, X) = Var(X)

18 600 | ecture 28



Basic covariance facts

» Cov(X,Y)=Cov(Y,X)
» Cov(X, X) = Var(X)
» Cov(aX,Y) = aCov(X,Y).
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Basic covariance facts

Cov(X,Y) = Cov(Y,X)

Cov(X, X) = Var(X)

Cov(aX, Y) = aCov(X,Y).

Cov(Xy + X2, Y) = Cov(X1, Y) + Cov(Xa, Y).

v

v

v

v
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Basic covariance facts

Cov(X,Y) = Cov(Y,X)

Cov(X, X) = Var(X)

Cov(aX,Y) = aCov(X,Y).

Cov(X1 + X2, Y) = Cov(Xy, Y) + Cov(Xz, Y).
General statement of bilinearity of covariance:

Cov() " aiX;, ) bY;) = i Z aibjCov(X;, Y)).
i=1 j=1

i=1 j=1

v

v

v

v

v
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Basic covariance facts

Cov(X,Y) = Cov(Y,X)

Cov(X, X) = Var(X)

Cov(aX,Y) = aCov(X,Y).

Cov(X1 + X2, Y) = Cov(Xy, Y) + Cov(Xz, Y).
General statement of bilinearity of covariance:

Cov(D " aiXi, Y bYj) =YY aibjCov(X; Y)).
i=1 j=1

i=1 j=1

v

v

v

v

v

v

Special case:

Var(zn:X ZVarX)—i—Z > Cov(X;, X)).
i=1

(ig):i<j
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Defining correlation

» Again, by definition Cov(X, Y) = E[XY] — E[X]E[Y].
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Defining correlation

» Again, by definition Cov(X, Y) = E[XY] — E[X]E[Y].
» Correlation of X and Y defined by
Cov(X,Y)

V/Var(X)Var(Y)

p(X,Y) =
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Defining correlation

» Again, by definition Cov(X, Y) = E[XY] — E[X]E[Y].
» Correlation of X and Y defined by
Cov(X,Y)

V/Var(X)Var(Y)

» Correlation doesn't care what units you use for X and Y. If
a>0and c > 0 then p(aX + b,cY +d) = p(X,Y).

p(X,Y) =
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Defining correlation

Again, by definition Cov(X, Y) = E[XY] — E[X]E[Y].
Correlation of X and Y defined by

v

v

Cov(X,Y)
V/Var(X)Var(Y)
Correlation doesn't care what units you use for X and Y. If
a>0and c > 0 then p(aX + b,cY +d) = p(X,Y).
Satisfies —1 < p(X,Y) < 1.

p(X,Y) =

v

v
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Defining correlation

Again, by definition Cov(X, Y) = E[XY] — E[X]E[Y].
Correlation of X and Y defined by

v

v

Cov(X,Y)
V/Var(X)Var(Y)
Correlation doesn't care what units you use for X and Y. If
a>0and c > 0 then p(aX + b,cY +d) = p(X,Y).
Satisfies —1 < p(X,Y) < 1.

If a and b are positive constants and a > 0 then
p(aX + b, X) = 1.

p(X,Y) =

v

v

v

18 600 | ecture 28



Defining correlation

» Again, by definition Cov(X, Y) = E[XY] — E[X]E[Y].
» Correlation of X and Y defined by

Cov(X,Y)
V/Var(X)Var(Y)
» Correlation doesn't care what units you use for X and Y. If
a>0and c > 0 then p(aX + b,cY +d) = p(X,Y).
» Satisfies —1 < p(X,Y) < 1.
» If a and b are positive constants and a > 0 then
p(aX + b, X) = 1.
» If a and b are positive constants and a < 0 then
p(aX + b, X) = —1.

p(X,Y) =
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Conditional probability distributions

» It all starts with the definition of conditional probability:
P(A|B) = P(AB)/P(B).
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Conditional probability distributions

» It all starts with the definition of conditional probability:
P(A|B) = P(AB)/P(B).

» If X and Y are jointly discrete random variables, we can use
this to define a probability mass function for X given Y = y.
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Conditional probability distributions

» It all starts with the definition of conditional probability:
P(A|B) = P(AB)/P(B).

» If X and Y are jointly discrete random variables, we can use
this to define a probability mass function for X given Y =y.

> That is, we write px|y(x|y) = P{X =x|Y =y} = Pv ;/))
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Conditional probability distributions

» It all starts with the definition of conditional probability:
P(A|B) = P(AB)/P(B).

» If X and Y are jointly discrete random variables, we can use
this to define a probability mass function for X given Y =y.

> That is, we write px|y(x|y) = P{X =x|Y =y} = Pv ;/))

» In words: first restrict sample space to pairs (x, y) with given
y value. Then divide the original mass function by py(y) to
obtain a probability mass function on the restricted space.
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Conditional probability distributions

» It all starts with the definition of conditional probability:
P(A|B) = P(AB)/P(B).

» If X and Y are jointly discrete random variables, we can use
this to define a probability mass function for X given Y =y.

> That is, we write px|y(x|y) = P{X =x|Y =y} = Pv ;/))

» In words: first restrict sample space to pairs (x, y) with given
y value. Then divide the original mass function by py(y) to
obtain a probability mass function on the restricted space.

> We do something similar when X and Y are continuous

random variables. In that case we write fy|y(x]y) = fcg(;/))
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Conditional probability distributions

» It all starts with the definition of conditional probability:
P(A|B) = P(AB)/P(B).

» If X and Y are jointly discrete random variables, we can use
this to define a probability mass function for X given Y =y.

> That is, we write px|y(x|y) = P{X =x|Y =y} = py ;/))

» In words: first restrict sample space to pairs (x, y) with given
y value. Then divide the original mass function by py(y) to
obtain a probability mass function on the restricted space.

> We do something similar when X and Y are continuous

random variables. In that case we write fy|y(x]y) = fcg(;/))

» Often useful to think of sampling (X, Y) as a two-stage
process. First sample Y from its marginal distribution, obtain
Y = y for some particular y. Then sample X from its
probability distribution given Y = y.
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Conditional expectation

» Now, what do we mean by E[X|Y = y]? This should just be
the expectation of X in the conditional probability measure
for X given that Y = y.

18 600 | ecture 28



Conditional expectation

» Now, what do we mean by E[X|Y = y]? This should just be
the expectation of X in the conditional probability measure
for X given that Y = y.

» Can write this as
EX|Y =y]=> xP{X =x|Y =y} = Zxxpx‘y(x|y).
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Conditional expectation

» Now, what do we mean by E[X|Y = y]? This should just be
the expectation of X in the conditional probability measure
for X given that Y = y.

» Can write this as
EX|Y =y]=> xP{X =x|Y =y} = Zxxpx‘y(x|y).
» Can make sense of this in the continuum setting as well.
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Conditional expectation

» Now, what do we mean by E[X|Y = y]? This should just be
the expectation of X in the conditional probability measure
for X given that Y = y.

» Can write this as
EX|Y =y]=> xP{X =x|Y =y} = Zxxpx‘y(x|y).
» Can make sense of this in the continuum setting as well.

> In continuum setting we had fx|y(x|y) = fer) g

fr(y) -
EX|Y = y] = [ xTxX) gy

—o00 X Fy(y)
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Conditional expectation as a random variable

» Can think of E[X]|Y] as a function of the random variable Y.
When Y = y it takes the value E[X|Y = y].
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Conditional expectation as a random variable

» Can think of E[X]|Y] as a function of the random variable Y.
When Y = y it takes the value E[X|Y = y].

» So E[X]Y] is itself a random variable. It happens to depend
only on the value of Y.
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Conditional expectation as a random variable

» Can think of E[X]|Y] as a function of the random variable Y.
When Y = y it takes the value E[X|Y = y].

» So E[X]Y] is itself a random variable. It happens to depend
only on the value of Y.

» Thinking of E[X|Y] as a random variable, we can ask what its
expectation is. What is E[E[X]|Y]]?
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Conditional expectation as a random variable

» Can think of E[X]|Y] as a function of the random variable Y.
When Y = y it takes the value E[X|Y = y].

» So E[X]Y] is itself a random variable. It happens to depend
only on the value of Y.

» Thinking of E[X|Y] as a random variable, we can ask what its
expectation is. What is E[E[X]|Y]]?
» Very useful fact: E[E[X|Y]] = E[X].
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Conditional expectation as a random variable

» Can think of E[X]|Y] as a function of the random variable Y.
When Y = y it takes the value E[X|Y = y].

» So E[X]Y] is itself a random variable. It happens to depend
only on the value of Y.

» Thinking of E[X|Y] as a random variable, we can ask what its
expectation is. What is E[E[X]|Y]]?

» Very useful fact: E[E[X|Y]] = E[X].

» In words: what you expect to expect X to be after learning Y
is same as what you now expect X to be.
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Conditional expectation as a random variable

» Can think of E[X]|Y] as a function of the random variable Y.
When Y = y it takes the value E[X|Y = y].

» So E[X]Y] is itself a random variable. It happens to depend
only on the value of Y.

» Thinking of E[X|Y] as a random variable, we can ask what its
expectation is. What is E[E[X]|Y]]?

» Very useful fact: E[E[X|Y]] = E[X].

» In words: what you expect to expect X to be after learning Y
is same as what you now expect X to be.

» Proof in discrete case:

I _ _ _ p(x.y)
EX]Y =yl = X xP{X =x]Y =y} = 3, xZ53.
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Conditional expectation as a random variable

» Can think of E[X]|Y] as a function of the random variable Y.
When Y = y it takes the value E[X|Y = y].

» So E[X]Y] is itself a random variable. It happens to depend
only on the value of Y.

» Thinking of E[X|Y] as a random variable, we can ask what its
expectation is. What is E[E[X]|Y]]?

» Very useful fact: E[E[X|Y]] = E[X].

» In words: what you expect to expect X to be after learning Y
is same as what you now expect X to be.

» Proof in discrete case:
EIX|Y =y] =3, xP{X = x|Y =y} = 3 x2xx)

py(y)”
> Recall that, in general, E[g(Y)] = >_, pv(y)g(y)-
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Conditional expectation as a random variable

» Can think of E[X]|Y] as a function of the random variable Y.
When Y = y it takes the value E[X|Y = y].

» So E[X]Y] is itself a random variable. It happens to depend
only on the value of Y.

» Thinking of E[X|Y] as a random variable, we can ask what its
expectation is. What is E[E[X]|Y]]?

» Very useful fact: E[E[X|Y]] = E[X].

» In words: what you expect to expect X to be after learning Y
is same as what you now expect X to be.

> Proof in discrete case:

I _ _ _ p(x.y)
EX]Y =yl = X xP{X =x]Y =y} = 3, xZ53.

> Recall that, in general, E[g(Y)] = >_, pv(y)g(y)-

> E[EIX]Y =yl = X, pv(y) S xB8H = 5 %, p(x, y)x =
E[X].
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Conditional variance

» Definition:
Var(X|Y) = E[(X — E[X|Y])?|Y] = E[X? — E[X|Y]?|Y].
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Conditional variance

> Definition:
Var(X|Y) = E[(X — E[X|Y])?|Y] = E[X? — E[X|Y]?|Y].
» Var(X|Y) is a random variable that depends on Y. It is the
variance of X in the conditional distribution for X given Y.
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Conditional variance

» Definition:
Var(X|Y) = E[(X — E[X|Y])?|Y] = E[X? — E[X|Y]?|Y].
» Var(X|Y) is a random variable that depends on Y. It is the
variance of X in the conditional distribution for X given Y.
» Note E[Var(X|Y)] = E[E[X?|Y]] — E[E[X|Y]?|Y] =
E[X?] — E[E[X|Y]?].
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Conditional variance

» Definition:
Var(X|Y) = E[(X — E[X|Y])?|Y] = E[X? — E[X|Y]?|Y].
» Var(X|Y) is a random variable that depends on Y. It is the
variance of X in the conditional distribution for X given Y.
» Note E[Var(X|Y)] = E[E[X?|Y]] — E[E[X|Y]?|Y] =
E[X?] — E[E[X|YT?].
> If we subtract E[X]? from first term and add equivalent value

E[E[X|Y]]? to the second, RHS becomes
Var[X] — Var[E[X]| Y]], which implies following:
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Conditional variance

» Definition:
Var(X|Y) = E[(X — E[X|Y])?|Y] = E[X? — E[X|Y]?|Y].
» Var(X|Y) is a random variable that depends on Y. It is the
variance of X in the conditional distribution for X given Y.
» Note E[Var(X|Y)] = E[E[X?|Y]] — E[E[X|Y]?|Y] =
E[X?] — E[E[X|YT?].
> If we subtract E[X]? from first term and add equivalent value
E[E[X|Y]]? to the second, RHS becomes
Var[X] — Var[E[X]| Y]], which implies following:
» Useful fact: Var(X) = Var(E[X]|Y]) + E[Var(X]|Y)].
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Conditional variance

> Definition:
Var(X|Y) = E[(X — E[X|Y])?|Y] = E[X? — E[X|Y]?|Y].

» Var(X|Y) is a random variable that depends on Y. It is the
variance of X in the conditional distribution for X given Y.

» Note E[Var(X|Y)] = E[E[X?|Y]] — E[E[X|Y]?|Y] =
E[X?] - E[E[X|YP].

> If we subtract E[X]? from first term and add equivalent value
E[E[X|Y]]? to the second, RHS becomes
Var[X] — Var[E[X]| Y]], which implies following:

» Useful fact: Var(X) = Var(E[X]|Y]) + E[Var(X]|Y)].

» One can discover X in two stages: first sample Y from
marginal and compute E[X|Y], then sample X from
distribution given Y value.
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Conditional variance

> Definition:
Var(X|Y) = E[(X — E[X|Y])?|Y] = E[X? — E[X|Y]?|Y].

» Var(X|Y) is a random variable that depends on Y. It is the
variance of X in the conditional distribution for X given Y.

» Note E[Var(X|Y)] = E[E[X?|Y]] — E[E[X|Y]?|Y] =
E[X?] - E[E[X|YP].

> If we subtract E[X]? from first term and add equivalent value
E[E[X|Y]]? to the second, RHS becomes
Var[X] — Var[E[X]| Y]], which implies following:

» Useful fact: Var(X) = Var(E[X]|Y]) + E[Var(X]|Y)].

» One can discover X in two stages: first sample Y from
marginal and compute E[X|Y], then sample X from
distribution given Y value.

» Above fact breaks variance into two parts, corresponding to
these two stages.
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» Let X be a random variable of variance O')2< and Y an
independent random variable of variance a%, and write
Z=X+Y. Assume E[X] = E[Y] =0.
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> Let X be a random variable of variance O')2< and Y an
independent random variable of variance o%, and write
Z=X+Y. Assume E[X] = E[Y] =0.

» What are the covariances Cov(X, Y) and Cov(X, Z)?
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> Let X be a random variable of variance O')2< and Y an
independent random variable of variance o%, and write
Z=X+Y. Assume E[X] = E[Y] =0.

» What are the covariances Cov(X, Y) and Cov(X, Z)?

» How about the correlation coefficients p(X, Y) and p(X, Z)?
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Let X be a random variable of variance O')2< and Y an
independent random variable of variance o%, and write
Z=X+Y. Assume E[X] = E[Y] =0.

What are the covariances Cov(X, Y) and Cov(X, Z)?

How about the correlation coefficients p(X, Y) and p(X, Z)?

What is E[Z|X]? And how about Var(Z|X)?
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> Let X be a random variable of variance O')2< and Y an
independent random variable of variance o%, and write
Z=X+Y. Assume E[X] = E[Y] =0.

» What are the covariances Cov(X, Y) and Cov(X, Z)?

» How about the correlation coefficients p(X, Y) and p(X, Z)?

» What is E[Z|X]? And how about Var(Z|X)?

» Both of these values are functions of X. Former is just X.
Latter happens to be a constant-valued function of X, i.e.,
happens not to actually depend on X. We have
Var(Z|X) = o%,.
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> Let X be a random variable of variance O')2< and Y an
independent random variable of variance o%, and write
Z=X+Y. Assume E[X] = E[Y] =0.

» What are the covariances Cov(X, Y) and Cov(X, Z)?

» How about the correlation coefficients p(X, Y) and p(X, Z)?

» What is E[Z|X]? And how about Var(Z|X)?

» Both of these values are functions of X. Former is just X.
Latter happens to be a constant-valued function of X, i.e.,
happens not to actually depend on X. We have
Var(Z|X) = o%,.

» Can we check the formula
Var(Z) = Var(E[Z|X]) + E[Var(Z|X)] in this case?
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Moment generating functions

» Let X be a random variable and M(t) = E[e*X].
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Moment generating functions

» Let X be a random variable and M(t) = E[e*X].
» Then M'(0) = E[X] and M"(0) = E[X?]. Generally, nth
derivative of M at zero is E[X"].
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Moment generating functions

» Let X be a random variable and M(t) = E[e*X].
» Then M'(0) = E[X] and M"(0) = E[X?]. Generally, nth
derivative of M at zero is E[X"].

» Let X and Y be independent random variables and
Z=X+Y.
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Moment generating functions

>

Let X be a random variable and M(t) = E[eX].
Then M’(0) = E[X] and M"(0) = E[X?]. Generally, nth
derivative of M at zero is E[X"].

Let X and Y be independent random variables and
Z=X+Y.

Write the moment generating functions as Mx(t) = E[e™X]
and My(t) = E[etY] and Mz(t) = E[et*].

v

v

v
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Moment generating functions

» Let X be a random variable and M(t) = E[e*X].
» Then M'(0) = E[X] and M"(0) = E[X?]. Generally, nth
derivative of M at zero is E[X"].

» Let X and Y be independent random variables and
Z=X+Y.

» Write the moment generating functions as Mx(t) = E[e%X]
and My(t) = E[etY] and Mz(t) = E[et*].
» If you knew Mx and My, could you compute M,?

18 600 | ecture 28



Moment generating functions

» Let X be a random variable and M(t) = E[e*X].
» Then M'(0) = E[X] and M"(0) = E[X?]. Generally, nth
derivative of M at zero is E[X"].

» Let X and Y be independent random variables and
Z=X+Y.

» Write the moment generating functions as Mx(t) = E[e%X]
and My(t) = E[etY] and Mz(t) = E[et*].

» If you knew Mx and My, could you compute M,?

» By independence, Mz(t) = E[etX+Y)] = E[eXetY] =
E[e™X]E[etY] = Mx(t)My(t) for all t.
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Moment generating functions

Let X be a random variable and M(t) = E[eX].

Then M’(0) = E[X] and M"(0) = E[X?]. Generally, nth
derivative of M at zero is E[X"].

Let X and Y be independent random variables and
Z=X+Y.

Write the moment generating functions as Mx(t) = E[e™X]
and My(t) = E[etY] and Mz(t) = E[et*].

If you knew Mx and My, could you compute Mz?

By independence, Mz(t) = E[efX+Y)] = E[eXetY] =
E[e™X]E[etY] = Mx(t)My(t) for all t.

In other words, adding independent random variables
corresponds to multiplying moment generating functions.
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Moment generating functions for sums of i.i.d. random

variables

» We showed that if Z =X+ Y and X and Y are independent,
then /\/Iz(t) = Mx(t)/\/ly(t)
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Moment generating functions for sums of i.i.d. random

variables

» We showed that if Z =X+ Y and X and Y are independent,
then /\/Iz(t) = Mx(t)/\/ly(t)

> If X1...X, are i.i.d. copies of X and Z = X1 + ...+ X, then
what is Mz?
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Moment generating functions for sums of i.i.d. random

variables

» We showed that if Z =X+ Y and X and Y are independent,
then /\/Iz(t) = Mx(t)/\/ly(t)

> If X1...X, are i.i.d. copies of X and Z = X1 + ...+ X, then
what is Mz?

> Answer: Mg. Follows by repeatedly applying formula above.
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Moment generating functions for sums of i.i.d. random

variables

» We showed that if Z =X+ Y and X and Y are independent,
then /\/Iz(t) = Mx(t)/\/]y(t)

> If X1...X, are i.i.d. copies of X and Z = X1 + ...+ X, then
what is Mz?

> Answer: Mg. Follows by repeatedly applying formula above.

» This a big reason for studying moment generating functions.
It helps us understand what happens when we sum up a lot of
independent copies of the same random variable.
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Moment generating functions for sums of i.i.d. random

variables

» We showed that if Z =X+ Y and X and Y are independent,
then /\/Iz(t) = Mx(t)/\/]y(t)

> If X1...X, are i.i.d. copies of X and Z = X1 + ...+ X, then
what is Mz?

> Answer: Mg. Follows by repeatedly applying formula above.

» This a big reason for studying moment generating functions.
It helps us understand what happens when we sum up a lot of
independent copies of the same random variable.

» If Z = aX then Mz(t) = E[e??] = E[e®™X] = Mx(at).
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Moment generating functions for sums of i.i.d. random

variables

» We showed that if Z =X+ Y and X and Y are independent,
then /\/Iz(t) = Mx(t)/\/]y(t)

> If X1...X, are i.i.d. copies of X and Z = X1 + ...+ X, then
what is Mz?

> Answer: Mg. Follows by repeatedly applying formula above.

» This a big reason for studying moment generating functions.
It helps us understand what happens when we sum up a lot of
independent copies of the same random variable.

» If Z = aX then Mz(t) = E[e??] = E[e®™X] = Mx(at).
> If Z= X + b then Mz(t) = E[et?] = E[eX+Pt] = eP*Mx(t).
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» If X is binomial with parameters (p, n) then
Mx(t) = (pe* +1— p)".
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» If X is binomial with parameters (p, n) then
Mx(t) = (pe +1— p)".

» If X is Poisson with parameter A > 0 then
M (t) = exp[A(e! — 1)].
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» If X is binomial with parameters (p, n) then
Mx(t) = (pe +1— p)".

» If X is Poisson with parameter A > 0 then
M (t) = exp[A(e! — 1)].

» If X is normal with mean 0, variance 1, then Mx(t) = et’/2.
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» If X is binomial with parameters (p, n) then
Mx(t) = (pet +1— p)".
» If X is Poisson with parameter A > 0 then
Mx(t) = exp[A(ef — 1))
» If X is normal with mean 0, variance 1, then Mx(t) = et’/2.

» If X is normal with mean p, variance o2, then
My (t) = e t"/2tnt,
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» If X is binomial with parameters (p, n) then
Mx(t) = (pet +1— p)"
» If X is Poisson with parameter A > 0 then
M (t) = exp[A(e! — 1)].
» If X is normal with mean 0, variance 1, then Mx(t) = et’/2.
» If X is normal with mean p, variance o2, then
Mx(t) = 7" t'/2+nt,

» If X is exponential with parameter A\ > 0 then Mx(t) = ﬁ
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Cauchy distribution

» A standard Cauchy random variable is a random real
number with probability density f(x) = %1

T 1x2;
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Cauchy distribution

» A standard Cauchy random variable is a random real

number with probability density f(x) = %1+1x2'

> There is a “spinning flashlight” interpretation. Put a flashlight
at (0,1), spin it to a uniformly random angle in [—7/2,7/2],
and consider point X where light beam hits the x-axis.

18 600 | ecture 28



Cauchy distribution

» A standard Cauchy random variable is a random real

number with probability density f(x) = %1+1x2'

> There is a “spinning flashlight” interpretation. Put a flashlight
at (0,1), spin it to a uniformly random angle in [—7/2,7/2],
and consider point X where light beam hits the x-axis.

> Fx(x) = P{X < x} = P{tanf < x} = P{# < tan"1x} =
1+ Ltanlx
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Cauchy distribution

v

A standard Cauchy random variable is a random real
number with probability density f(x) = %1+1x2'
> There is a “spinning flashlight” interpretation. Put a flashlight
t (0,1), spin it to a uniformly random angle in [—7/2,7/2],
and consider point X where light beam hits the x-axis.
> Fx(x) = P{X < x} = P{tanf < x} = P{# < tan"1x} =
1+ Ltanlx

» Find fx(x) = dX F(x) :%

_1
1+x2
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Beta distribution

» Two part experiment: first let p be uniform random variable
[0, 1], then let X be binomial (n, p) (number of heads when
we toss n p-coins).
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Beta distribution

» Two part experiment: first let p be uniform random variable
[0, 1], then let X be binomial (n, p) (number of heads when
we toss n p-coins).

» Given that X =a—1 and n— X = b — 1 the conditional law
of p is called the § distribution.
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Beta distribution

» Two part experiment: first let p be uniform random variable
[0, 1], then let X be binomial (n, p) (number of heads when
we toss n p-coins).

» Given that X = a—1 and n— X = b — 1 the conditional law
of p is called the § distribution.

» The density function is a constant (that doesn’t depend on x)
times x?~ (1 — x)P~L.
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Beta distribution

» Two part experiment: first let p be uniform random variable
[0, 1], then let X be binomial (n, p) (number of heads when
we toss n p-coins).

» Given that X = a—1 and n— X = b — 1 the conditional law
of p is called the § distribution.

» The density function is a constant (that doesn’t depend on x)
times x?~ (1 — x)P~L.

» Thatis f(x) = B(; b)x"_l(l —x)P~1 on [0, 1], where B(a, b)
is constant chosen to make integral one. Can show

B(a.b) = {5
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Beta distribution

» Two part experiment: first let p be uniform random variable
[0, 1], then let X be binomial (n, p) (number of heads when
we toss n p-coins).

» Given that X = a—1 and n— X = b — 1 the conditional law
of p is called the § distribution.

» The density function is a constant (that doesn’t depend on x)
times x?~ (1 — x)P~L.

» Thatis f(x) = B(; DRl 1(1 — x)P~1 on [0, 1], where B(a, b)
is constant chosen to make integral one. Can show

B(a,b) = 255

» Turns out that E[X] = ;?; and the mode of X is %.
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