18.600: Lecture 24

Conditional probability, order statistics, expectations of sums

Scott Sheffield

MIT
Outline

Conditional probability densities

Order statistics

Expectations of sums
Outline

Conditional probability densities

Order statistics

Expectations of sums
Conditional distributions

Let’s say X and Y have joint probability density function $f(x, y)$.

This amounts to restricting $f(x, y)$ to the line corresponding to the given y value (and dividing by the constant that makes the integral along that line equal to 1).

This definition assumes that $f_Y(y) = \int_{\mathbb{R}} f(x, y) \, dx < \infty$ and $f_Y(y) \neq 0$. Is that safe to assume?

Usually...
Let’s say X and Y have joint probability density function $f(x, y)$.

We can *define* the conditional probability density of X given that $Y = y$ by $f_{X|Y=y}(x) = \frac{f(x, y)}{f_Y(y)}$.

This amounts to restricting $f(x, y)$ to the line corresponding to the given y value (and dividing by the constant that makes the integral along that line equal to 1).

This definition assumes that $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, dx < \infty$ and $f_Y(y) \neq 0$. Is that safe to assume?

Usually...
Conditional distributions

Let’s say X and Y have joint probability density function $f(x, y)$.

We can define the conditional probability density of X given that $Y = y$ by $f_{X|Y=y}(x) = \frac{f(x, y)}{f_Y(y)}$.

This amounts to restricting $f(x, y)$ to the line corresponding to the given y value (and dividing by the constant that makes the integral along that line equal to 1).
Let’s say X and Y have joint probability density function $f(x, y)$.

We can define the conditional probability density of X given that $Y = y$ by

$$f_{X|Y=y}(x) = \frac{f(x, y)}{f_Y(y)}.$$

This amounts to restricting $f(x, y)$ to the line corresponding to the given y value (and dividing by the constant that makes the integral along that line equal to 1).

This definition assumes that $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, dx < \infty$ and $f_Y(y) \neq 0$. Is that safe to assume?
Let’s say X and Y have joint probability density function $f(x, y)$.

We can define the conditional probability density of X given that $Y = y$ by $f_{X|Y=y}(x) = \frac{f(x, y)}{f_Y(y)}$.

This amounts to restricting $f(x, y)$ to the line corresponding to the given y value (and dividing by the constant that makes the integral along that line equal to 1).

This definition assumes that $f_Y(y) = \int_{-\infty}^{\infty} f(x, y)dx < \infty$ and $f_Y(y) \neq 0$. Is that safe to assume?

Usually...
Remarks: conditioning on a probability zero event

- Our standard definition of conditional probability is
 \[P(A|B) = \frac{P(AB)}{P(B)}. \]
Remarks: conditioning on a probability zero event

- Our standard definition of conditional probability is
 \[P(A|B) = \frac{P(AB)}{P(B)}. \]

- Doesn’t make sense if \(P(B) = 0 \). But previous slide defines “probability conditioned on \(Y = y \)” and \(P\{Y = y\} = 0 \).
Remarks: conditioning on a probability zero event

- Our standard definition of conditional probability is $P(A|B) = P(AB)/P(B)$.
- Doesn’t make sense if $P(B) = 0$. But previous slide defines “probability conditioned on $Y = y$” and $P\{Y = y\} = 0$.
- When can we (somehow) make sense of conditioning on probability zero event?
Remarks: conditioning on a probability zero event

- Our standard definition of conditional probability is $P(A|B) = P(AB)/P(B)$.
- Doesn’t make sense if $P(B) = 0$. But previous slide defines “probability conditioned on $Y = y$” and $P\{Y = y\} = 0$.
- When can we (somehow) make sense of conditioning on probability zero event?
- Tough question in general.
Remarks: conditioning on a probability zero event

- Our standard definition of conditional probability is $P(A|B) = P(AB)/P(B)$.

- Doesn’t make sense if $P(B) = 0$. But previous slide defines “probability conditioned on $Y = y$” and $P\{Y = y\} = 0$.

- When can we (somehow) make sense of conditioning on probability zero event?

- Tough question in general.

- Consider conditional law of X given that $Y \in (y - \epsilon, y + \epsilon)$. If this has a limit as $\epsilon \to 0$, we can call that the law conditioned on $Y = y$.

Remarks: conditioning on a probability zero event

- Our standard definition of conditional probability is
 \[P(A|B) = \frac{P(AB)}{P(B)}. \]

- Doesn’t make sense if \(P(B) = 0 \). But previous slide defines
 “probability conditioned on \(Y = y \)” and \(P\{Y = y\} = 0 \).

- When can we (somehow) make sense of conditioning on
 probability zero event?

- Tough question in general.

- Consider conditional law of \(X \) given that \(Y \in (y - \epsilon, y + \epsilon) \). If
 this has a limit as \(\epsilon \to 0 \), we can call that the law conditioned
 on \(Y = y \).

- Precisely, define
 \[F_{X|Y=y}(a) := \lim_{\epsilon \to 0} P\{X \leq a | Y \in (y - \epsilon, y + \epsilon)\}. \]
Remarks: conditioning on a probability zero event

- Our standard definition of conditional probability is \(P(A|B) = \frac{P(AB)}{P(B)} \).
- Doesn’t make sense if \(P(B) = 0 \). But previous slide defines “probability conditioned on \(Y = y \)” and \(P\{ Y = y \} = 0 \).
- When can we (somehow) make sense of conditioning on probability zero event?
- Tough question in general.

Consider conditional law of \(X \) given that \(Y \in (y - \epsilon, y + \epsilon) \). If this has a limit as \(\epsilon \to 0 \), we can call that the law conditioned on \(Y = y \).

Precisely, define
\[
F_{X|Y=y}(a) := \lim_{\epsilon \to 0} P\{X \leq a | Y \in (y - \epsilon, y + \epsilon)\}.
\]

Then set \(f_{X|Y=y}(a) = F'_{X|Y=y}(a) \). Consistent with definition from previous slide.
Suppose X and Y are chosen uniformly on the semicircle $\{(x, y) : x^2 + y^2 \leq 1, x \geq 0\}$. What is $f_{X|Y=0}(x)$?
Suppose X and Y are chosen uniformly on the semicircle \[\{(x, y) : x^2 + y^2 \leq 1, x \geq 0\} \]. What is $f_{X|Y=0}(x)$?

Answer: $f_{X|Y=0}(x) = 1$ if $x \in [0, 1]$ (zero otherwise).
A word of caution

- Suppose X and Y are chosen uniformly on the semicircle $\{(x, y) : x^2 + y^2 \leq 1, x \geq 0\}$. What is $f_{X|Y=0}(x)$?

 Answer: $f_{X|Y=0}(x) = 1$ if $x \in [0, 1]$ (zero otherwise).

- Let (θ, R) be (X, Y) in polar coordinates. What is $f_{X|\theta=0}(x)$?

Both $\{\theta = 0\}$ and $\{Y = 0\}$ describe the same probability zero event. But our interpretation of what it means to condition on this event is different in these two cases.

Conditioning on (X, Y) belonging to a $\theta \in (-\epsilon, \epsilon)$ wedge is very different from conditioning on (X, Y) belonging to a $Y \in (-\epsilon, \epsilon)$ strip.
Suppose X and Y are chosen uniformly on the semicircle $\{(x, y) : x^2 + y^2 \leq 1, x \geq 0\}$. What is $f_{X|Y=0}(x)$?

Answer: $f_{X|Y=0}(x) = 1$ if $x \in [0, 1]$ (zero otherwise).

Let (θ, R) be (X, Y) in polar coordinates. What is $f_{X|\theta=0}(x)$?

Answer: $f_{X|\theta=0}(x) = 2x$ if $x \in [0, 1]$ (zero otherwise).
Suppose X and Y are chosen uniformly on the semicircle $\{(x, y) : x^2 + y^2 \leq 1, x \geq 0\}$. What is $f_{X|Y=0}(x)$?

Answer: $f_{X|Y=0}(x) = 1$ if $x \in [0, 1]$ (zero otherwise).

Let (θ, R) be (X, Y) in polar coordinates. What is $f_{X|\theta=0}(x)$?

Answer: $f_{X|\theta=0}(x) = 2x$ if $x \in [0, 1]$ (zero otherwise).

Both $\{\theta = 0\}$ and $\{Y = 0\}$ describe the same probability zero event. But our interpretation of what it means to condition on this event is different in these two cases.
Suppose X and Y are chosen uniformly on the semicircle \{$(x, y) : x^2 + y^2 \leq 1, x \geq 0$\}. What is $f_{X|Y=0}(x)$?

Answer: $f_{X|Y=0}(x) = 1$ if $x \in [0, 1]$ (zero otherwise).

Let (θ, R) be (X, Y) in polar coordinates. What is $f_{X|\theta=0}(x)$?

Answer: $f_{X|\theta=0}(x) = 2x$ if $x \in [0, 1]$ (zero otherwise).

Both $\{\theta = 0\}$ and $\{Y = 0\}$ describe the same probability zero event. But our interpretation of what it means to condition on this event is different in these two cases.

Conditioning on (X, Y) belonging to a $\theta \in (-\epsilon, \epsilon)$ wedge is very different from conditioning on (X, Y) belonging to a $Y \in (-\epsilon, \epsilon)$ strip.
Outline

Conditional probability densities

Order statistics

Expectations of sums
Outline

Conditional probability densities

Order statistics

Expectations of sums
Suppose I choose \(n \) random variables \(X_1, X_2, \ldots, X_n \) uniformly at random on \([0, 1]\), independently of each other.
Suppose I choose n random variables X_1, X_2, \ldots, X_n uniformly at random on $[0, 1]$, independently of each other.

The n-tuple (X_1, X_2, \ldots, X_n) has a constant density function on the n-dimensional cube $[0, 1]^n$.
Suppose I choose \(n \) random variables \(X_1, X_2, \ldots, X_n \) uniformly at random on \([0, 1]\), independently of each other.

The \(n \)-tuple \((X_1, X_2, \ldots, X_n)\) has a constant density function on the \(n \)-dimensional cube \([0, 1]^n\).

What is the probability that the largest of the \(X_i \) is less than \(a \)?
Suppose I choose \(n \) random variables \(X_1, X_2, \ldots, X_n \) uniformly at random on \([0, 1]\), independently of each other.

The \(n \)-tuple \((X_1, X_2, \ldots, X_n)\) has a constant density function on the \(n \)-dimensional cube \([0, 1]^n\).

What is the probability that the \textit{largest} of the \(X_i \) is less than \(a \)?

\textbf{ANSWER:} \(a^n \).
Suppose I choose \(n \) random variables \(X_1, X_2, \ldots, X_n \) uniformly at random on \([0, 1]\), independently of each other.

The \(n \)-tuple \((X_1, X_2, \ldots, X_n)\) has a constant density function on the \(n \)-dimensional cube \([0, 1]^n\).

What is the probability that the \textit{largest} of the \(X_i \) is less than \(a \)?

\textbf{ANSWER:} \(a^n \).

So if \(X = \max\{X_1, \ldots, X_n\} \), then what is the probability density function of \(X \)?
Suppose I choose \(n \) random variables \(X_1, X_2, \ldots, X_n \) uniformly at random on \([0, 1]\), independently of each other.

The \(n \)-tuple \((X_1, X_2, \ldots, X_n)\) has a constant density function on the \(n \)-dimensional cube \([0, 1]^n\).

What is the probability that the largest of the \(X_i \) is less than \(a \)?

ANSWER: \(a^n \).

So if \(X = \max\{X_1, \ldots, X_n\} \), then what is the probability density function of \(X \)?

Answer:

\[
 F_X(a) = \begin{cases}
 0 & a < 0 \\
 a^n & a \in [0, 1]. \text{ And} \\
 1 & a > 1
\end{cases}
\]

\[
 f_X(a) = F_X'(a) = na^{n-1}.
\]
Consider i.i.d random variables X_1, X_2, \ldots, X_n with continuous probability density f. Let $Y_1 < Y_2 < Y_3 \ldots < Y_n$ be list obtained by sorting the X_j. In particular, $Y_1 = \min \{X_1, \ldots, X_n\}$ and $Y_n = \max \{X_1, \ldots, X_n\}$ is the maximum. What is the joint probability density of the Y_i? Answer: $f(x_1, x_2, \ldots, x_n) = \frac{n!}{\prod_{i=1}^{n} f(x_i)}$ if $x_1 < x_2 \ldots < x_n$, zero otherwise. Let $\sigma: \{1, 2, \ldots, n\} \to \{1, 2, \ldots, n\}$ be the permutation such that $X_j = Y_{\sigma(j)}$. Are σ and the vector (Y_1, \ldots, Y_n) independent of each other? Yes.
Consider i.i.d random variables X_1, X_2, \ldots, X_n with continuous probability density f.

Let $Y_1 < Y_2 < Y_3 \ldots < Y_n$ be list obtained by sorting the X_j.

What is the joint probability density of the Y_i?

Answer: $f(x_1, x_2, \ldots, x_n) = \frac{n!}{\prod_{i=1}^n f(x_i)}$ if $x_1 < x_2 \ldots < x_n$, zero otherwise.

Let $\sigma: \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, n\}$ be the permutation such that $X_j = Y_{\sigma(j)}$.

Are σ and the vector (Y_1, \ldots, Y_n) independent of each other?

Yes.
Consider i.i.d random variables X_1, X_2, \ldots, X_n with continuous probability density f.

Let $Y_1 < Y_2 < Y_3 \ldots < Y_n$ be list obtained by sorting the X_j.

In particular, $Y_1 = \min\{X_1, \ldots, X_n\}$ and $Y_n = \max\{X_1, \ldots, X_n\}$ is the maximum.

What is the joint probability density of the Y_i?

Answer: $f(x_1, x_2, \ldots, x_n) = \frac{n!}{\prod_{i=1}^{n} f(x_i)}$ if $x_1 < x_2 < \ldots < x_n$, zero otherwise.

Let $\sigma: \{1, 2, \ldots, n\} \to \{1, 2, \ldots, n\}$ be the permutation such that $X_j = Y_{\sigma(j)}$.

Are σ and the vector (Y_1, \ldots, Y_n) independent of each other?

Yes.
General order statistics

- Consider i.i.d random variables X_1, X_2, \ldots, X_n with continuous probability density f.
- Let $Y_1 < Y_2 < Y_3 \ldots < Y_n$ be list obtained by sorting the X_j.
- In particular, $Y_1 = \min\{X_1, \ldots, X_n\}$ and $Y_n = \max\{X_1, \ldots, X_n\}$ is the maximum.
- What is the joint probability density of the Y_i?
Consider i.i.d random variables X_1, X_2, \ldots, X_n with continuous probability density f.

Let $Y_1 < Y_2 < Y_3 \ldots < Y_n$ be list obtained by sorting the X_j.

In particular, $Y_1 = \min\{X_1, \ldots, X_n\}$ and $Y_n = \max\{X_1, \ldots, X_n\}$ is the maximum.

What is the joint probability density of the Y_i?

Answer: $f(x_1, x_2, \ldots, x_n) = n! \prod_{i=1}^{n} f(x_i)$ if $x_1 < x_2 \ldots < x_n$, zero otherwise.
General order statistics

- Consider i.i.d random variables X_1, X_2, \ldots, X_n with continuous probability density f.
- Let $Y_1 < Y_2 < Y_3 \ldots < Y_n$ be list obtained by sorting the X_j.
- In particular, $Y_1 = \min\{X_1, \ldots, X_n\}$ and $Y_n = \max\{X_1, \ldots, X_n\}$ is the maximum.
- What is the joint probability density of the Y_i?
- Answer: $f(x_1, x_2, \ldots, x_n) = n! \prod_{i=1}^{n} f(x_i)$ if $x_1 < x_2 \ldots < x_n$, zero otherwise.
- Let $\sigma : \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, n\}$ be the permutation such that $X_j = Y_{\sigma(j)}$
Consider i.i.d random variables X_1, X_2, \ldots, X_n with continuous probability density f.

Let $Y_1 < Y_2 < Y_3 \ldots < Y_n$ be list obtained by sorting the X_j.

In particular, $Y_1 = \min\{X_1, \ldots, X_n\}$ and $Y_n = \max\{X_1, \ldots, X_n\}$ is the maximum.

What is the joint probability density of the Y_i?

Answer: $f(x_1, x_2, \ldots, x_n) = n! \prod_{i=1}^{n} f(x_i)$ if $x_1 < x_2 \ldots < x_n$, zero otherwise.

Let $\sigma : \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, n\}$ be the permutation such that $X_j = Y_{\sigma(j)}$

Are σ and the vector (Y_1, \ldots, Y_n) independent of each other?
Consider i.i.d random variables X_1, X_2, \ldots, X_n with continuous probability density f.

Let $Y_1 < Y_2 < Y_3 \ldots < Y_n$ be list obtained by sorting the X_j.

In particular, $Y_1 = \min\{X_1, \ldots, X_n\}$ and $Y_n = \max\{X_1, \ldots, X_n\}$ is the maximum.

What is the joint probability density of the Y_i?

Answer: $f(x_1, x_2, \ldots, x_n) = n! \prod_{i=1}^{n} f(x_i)$ if $x_1 < x_2 \ldots < x_n$, zero otherwise.

Let $\sigma : \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, n\}$ be the permutation such that $X_j = Y_{\sigma(j)}$

Are σ and the vector (Y_1, \ldots, Y_n) independent of each other?

Yes.
Example

- Let \(X_1, \ldots, X_n \) be i.i.d. uniform random variables on \([0, 1]\).
Let X_1, \ldots, X_n be i.i.d. uniform random variables on $[0, 1]$.

Example: say $n = 10$ and condition on X_1 being the third largest of the X_j.

Given this, what is the conditional probability density function for X_1?

Write $p = X_1$. This kind of like choosing a random p and then conditioning on 7 heads and 2 tails.

Answer is beta distribution with parameters $(a, b) = (8, 3)$.

Up to a constant, $f(x) = x^7(1-x)^2$.

General beta (a, b) expectation is $a / (a + b) = 8 / 11$. Mode is $\frac{a - 1}{a - 1} + \frac{b - 1}{b} = 2 / 9$.

Example 24
Example

Let X_1, \ldots, X_n be i.i.d. uniform random variables on $[0, 1]$. Example: say $n = 10$ and condition on X_1 being the third largest of the X_j.

Given this, what is the conditional probability density function for X_1?

- Write $p = X_1$. This kind of like choosing a random p and then conditioning on 7 heads and 2 tails.
- Answer is beta distribution with parameters $(a, b) = (8, 3)$.
- Up to a constant, $f(x) = x^7(1-x)^2$.
- General beta (a, b) expectation is $a/(a + b) = 8/11$. Mode is $(a-1)/(a+b-1) = 2/9$.

18.600 Lecture 24
Let X_1, \ldots, X_n be i.i.d. uniform random variables on $[0, 1]$.

Example: say $n = 10$ and condition on X_1 being the third largest of the X_j.

Given this, what is the conditional probability density function for X_1?

Write $p = X_1$. This kind of like choosing a random p and then conditioning on 7 heads and 2 tails.
Example

Let X_1, \ldots, X_n be i.i.d. uniform random variables on $[0, 1]$.

Example: say $n = 10$ and condition on X_1 being the third largest of the X_j.

Given this, what is the conditional probability density function for X_1?

Write $p = X_1$. This kind of like choosing a random p and then conditioning on 7 heads and 2 tails.

Answer is beta distribution with parameters $(a, b) = (8, 3)$.
Example

Let \(X_1, \ldots, X_n \) be i.i.d. uniform random variables on \([0, 1]\).

Example: say \(n = 10 \) and condition on \(X_1 \) being the third largest of the \(X_j \).

Given this, what is the conditional probability density function for \(X_1 \)?

Write \(p = X_1 \). This kind of like choosing a random \(p \) and then conditioning on 7 heads and 2 tails.

Answer is beta distribution with parameters \((a, b) = (8, 3)\).

Up to a constant, \(f(x) = x^7(1 - x)^2 \).
Example

Let X_1, \ldots, X_n be i.i.d. uniform random variables on $[0, 1]$.

Example: say $n = 10$ and condition on X_1 being the third largest of the X_j.

Given this, what is the conditional probability density function for X_1?

Write $p = X_1$. This kind of like choosing a random p and then conditioning on 7 heads and 2 tails.

Answer is beta distribution with parameters $(a, b) = (8, 3)$.

Up to a constant, $f(x) = x^7(1 - x)^2$.

General beta (a, b) expectation is $a/(a + b) = 8/11$. Mode is $\frac{(a-1)}{(a-1)+(b-1)} = 2/9$.
Outline

Conditional probability densities

Order statistics

Expectations of sums
Outline

Conditional probability densities

Order statistics

Expectations of sums
Several properties we derived for discrete expectations continue to hold in the continuum.

- If X is discrete with mass function $p(x)$ then $E[X] = \sum x p(x)$.
- Similarly, if X is continuous with density function $f(x)$ then $E[X] = \int f(x) dx$.
- If X is discrete with mass function $p(x)$ then $E[g(X)] = \sum x p(x) g(x)$.
- Similarly, if X is continuous with density function $f(x)$ then $E[g(X)] = \int f(x) g(x) dx$.
- If X and Y have joint mass function $p(x, y)$ then $E[g(X, Y)] = \sum y \sum x g(x, y) p(x, y)$.
- If X and Y have joint probability density function $f(x, y)$ then $E[g(X, Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f(x, y) dx dy$.
Several properties we derived for discrete expectations continue to hold in the continuum.

If X is discrete with mass function $p(x)$ then

$$E[X] = \sum_x p(x)x.$$
Several properties we derived for discrete expectations continue to hold in the continuum.

If X is discrete with mass function $p(x)$ then
\[E[X] = \sum_x p(x)x. \]

Similarly, if X is continuous with density function $f(x)$ then
\[E[X] = \int f(x)xdx. \]
Several properties we derived for discrete expectations continue to hold in the continuum.

- If X is discrete with mass function $p(x)$ then
 \[E[X] = \sum_x p(x)x. \]

- Similarly, if X is continuous with density function $f(x)$ then
 \[E[X] = \int f(x)x\,dx. \]

- If X is discrete with mass function $p(x)$ then
 \[E[g(x)] = \sum_x p(x)g(x). \]
Properties of expectation

- Several properties we derived for discrete expectations continue to hold in the continuum.
- If X is discrete with mass function $p(x)$ then
 \[E[X] = \sum_x p(x)x. \]
- Similarly, if X is continuous with density function $f(x)$ then
 \[E[X] = \int f(x)x\,dx. \]
- If X is discrete with mass function $p(x)$ then
 \[E[g(X)] = \sum_x p(x)g(x). \]
- Similarly, if X is continuous with density function $f(x)$ then
 \[E[g(X)] = \int f(x)g(x)\,dx. \]
Properties of expectation

▶ Several properties we derived for discrete expectations continue to hold in the continuum.
▶ If X is discrete with mass function $p(x)$ then
 $$E[X] = \sum_x p(x)x.$$
▶ Similarly, if X is continuous with density function $f(x)$ then
 $$E[X] = \int f(x)x \, dx.$$
▶ If X is discrete with mass function $p(x)$ then
 $$E[g(x)] = \sum_x p(x)g(x).$$
▶ Similarly, if X is continuous with density function $f(x)$ then
 $$E[g(X)] = \int f(x)g(x) \, dx.$$
▶ If X and Y have joint mass function $p(x, y)$ then
 $$E[g(X, Y)] = \sum_y \sum_x g(x, y)p(x, y).$$
Properties of expectation

Several properties we derived for discrete expectations continue to hold in the continuum.

If X is discrete with mass function $p(x)$ then
$$E[X] = \sum_x p(x)x.$$
Similarly, if X is continuous with density function $f(x)$ then
$$E[X] = \int f(x)x \, dx.$$

If X is discrete with mass function $p(x)$ then
$$E[g(x)] = \sum_x p(x)g(x).$$
Similarly, X if is continuous with density function $f(x)$ then
$$E[g(X)] = \int f(x)g(x) \, dx.$$

If X and Y have joint mass function $p(x, y)$ then
$$E[g(X, Y)] = \sum_y \sum_x g(x, y)p(x, y).$$
If X and Y have joint probability density function $f(x, y)$ then
$$E[g(X, Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y)f(x, y) \, dxdy.$$
Properties of expectation

For both discrete and continuous random variables \(X \) and \(Y \) we have \(E[X + Y] = E[X] + E[Y] \).

But what about that delightful "area under \(1 - F_X \)" formula for the expectation?

When \(X \) is non-negative with probability one, do we always have \(E[X] = \int_0^\infty P\{X > x\} \), in both discrete and continuous settings?

Define \(g(y) \) so that \(1 - F_X(g(y)) = y \). (Draw horizontal line at height \(y \) and look where it hits graph of \(1 - F_X \).)

Choose \(Y \) uniformly on \([0, 1]\) and note that \(g(Y) \) has the same probability distribution as \(X \).

So \(E[X] = E[g(Y)] = \int_0^1 g(y) \, dy \), which is indeed the area under the graph of \(1 - F_X \).
Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X + Y] = E[X] + E[Y]$.
- In both discrete and continuous settings, $E[aX] = aE[X]$ when a is a constant. And $E[\sum a_iX_i] = \sum a_iE[X_i]$.

But what about that delightful “area under $1 - F_X$” formula for the expectation?

When X is non-negative with probability one, do we always have $E[X] = \int_0^\infty P\{X > x\}$, in both discrete and continuous settings?

Define $g(y)$ so that $1 - F_X(g(y)) = y$. (Draw horizontal line at height y and look where it hits graph of $1 - F_X$.)

Choose Y uniformly on $[0, 1]$ and note that $g(Y)$ has the same probability distribution as X.

So $E[X] = E[g(Y)] = \int_0^1 g(y)\,dy$, which is indeed the area under the graph of $1 - F_X$.

18.600 Lecture 24
Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X + Y] = E[X] + E[Y]$.
- In both discrete and continuous settings, $E[aX] = aE[X]$ when a is a constant. And $E[\sum a_iX_i] = \sum a_iE[X_i]$.
- But what about that delightful “area under $1 - F_X$” formula for the expectation?
Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X + Y] = E[X] + E[Y]$.
- In both discrete and continuous settings, $E[aX] = aE[X]$ when a is a constant. And $E[\sum a_iX_i] = \sum a_iE[X_i]$.
- But what about that delightful “area under $1 - F_X$” formula for the expectation?
- When X is non-negative with probability one, do we always have $E[X] = \int_0^\infty P\{X > x\}$, in both discrete and continuous settings?
Properties of expectation

► For both discrete and continuous random variables X and Y we have $E[X + Y] = E[X] + E[Y]$.

► In both discrete and continuous settings, $E[aX] = aE[X]$ when a is a constant. And $E[\sum a_i X_i] = \sum a_i E[X_i]$.

► But what about that delightful “area under $1 - F_X$” formula for the expectation?

► When X is non-negative with probability one, do we always have $E[X] = \int_0^\infty P\{X > x\}$, in both discrete and continuous settings?

► Define $g(y)$ so that $1 - F_X(g(y)) = y$. (Draw horizontal line at height y and look where it hits graph of $1 - F_X$.)
Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X + Y] = E[X] + E[Y]$.

- In both discrete and continuous settings, $E[aX] = aE[X]$ when a is a constant. And $E[\sum a_iX_i] = \sum a_iE[X_i]$.

- But what about that delightful “area under $1 - F_X$” formula for the expectation?

- When X is non-negative with probability one, do we always have $E[X] = \int_0^\infty P\{X > x\}$, in both discrete and continuous settings?

- Define $g(y)$ so that $1 - F_X(g(y)) = y$. (Draw horizontal line at height y and look where it hits graph of $1 - F_X$.)

- Choose Y uniformly on $[0, 1]$ and note that $g(Y)$ has the same probability distribution as X.
Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X + Y] = E[X] + E[Y]$.
- In both discrete and continuous settings, $E[aX] = aE[X]$ when a is a constant. And $E[\sum a_i X_i] = \sum a_i E[X_i]$.
- But what about that delightful “area under $1 - F_X$” formula for the expectation?
- When X is non-negative with probability one, do we always have $E[X] = \int_0^\infty P\{X > x\}$, in both discrete and continuous settings?
- Define $g(y)$ so that $1 - F_X(g(y)) = y$. (Draw horizontal line at height y and look where it hits graph of $1 - F_X$.)
- Choose Y uniformly on $[0, 1]$ and note that $g(Y)$ has the same probability distribution as X.
- So $E[X] = E[g(Y)] = \int_0^1 g(y)dy$, which is indeed the area under the graph of $1 - F_X$.