18.440: Lecture 22
 Joint distributions functions

Scott Sheffield

MIT

Outline

Distributions of functions of random variables

Joint distributions

Independent random variables

Examples

Outline

Distributions of functions of random variables

Joint distributions

Independent random variables

Examples

18.440 Lecture 22

Distribution of function of random variable

- Suppose $P\{X \leq a\}=F_{X}(a)$ is known for all a. Write $Y=X^{3}$. What is $P\{Y \leq 27\}$?

Distribution of function of random variable

- Suppose $P\{X \leq a\}=F_{X}(a)$ is known for all a. Write $Y=X^{3}$. What is $P\{Y \leq 27\}$?
- Answer: note that $Y \leq 27$ if and only if $X \leq 3$. Hence $P\{Y \leq 27\}=P\{X \leq 3\}=F_{X}(3)$.

Distribution of function of random variable

- Suppose $P\{X \leq a\}=F_{X}(a)$ is known for all a. Write $Y=X^{3}$. What is $P\{Y \leq 27\}$?
- Answer: note that $Y \leq 27$ if and only if $X \leq 3$. Hence $P\{Y \leq 27\}=P\{X \leq 3\}=F_{X}(3)$.
- Generally $F_{Y}(a)=P\{Y \leq a\}=P\left\{X \leq a^{1 / 3}\right\}=F_{X}\left(a^{1 / 3}\right)$

Distribution of function of random variable

- Suppose $P\{X \leq a\}=F_{X}(a)$ is known for all a. Write $Y=X^{3}$. What is $P\{Y \leq 27\}$?
- Answer: note that $Y \leq 27$ if and only if $X \leq 3$. Hence $P\{Y \leq 27\}=P\{X \leq 3\}=F_{X}(3)$.
- Generally $F_{Y}(a)=P\{Y \leq a\}=P\left\{X \leq a^{1 / 3}\right\}=F_{X}\left(a^{1 / 3}\right)$
- This is a general principle. If X is a continuous random variable and g is a strictly increasing function of x and $Y=g(X)$, then $F_{Y}(a)=F_{X}\left(g^{-1}(a)\right)$.

Distribution of function of random variable

- Suppose $P\{X \leq a\}=F_{X}(a)$ is known for all a. Write $Y=X^{3}$. What is $P\{Y \leq 27\}$?
- Answer: note that $Y \leq 27$ if and only if $X \leq 3$. Hence $P\{Y \leq 27\}=P\{X \leq 3\}=F_{X}(3)$.
- Generally $F_{Y}(a)=P\{Y \leq a\}=P\left\{X \leq a^{1 / 3}\right\}=F_{X}\left(a^{1 / 3}\right)$
- This is a general principle. If X is a continuous random variable and g is a strictly increasing function of x and $Y=g(X)$, then $F_{Y}(a)=F_{X}\left(g^{-1}(a)\right)$.
- How can we use this to compute the probability density function f_{Y} from f_{X} ?

Distribution of function of random variable

- Suppose $P\{X \leq a\}=F_{X}(a)$ is known for all a. Write $Y=X^{3}$. What is $P\{Y \leq 27\}$?
- Answer: note that $Y \leq 27$ if and only if $X \leq 3$. Hence $P\{Y \leq 27\}=P\{X \leq 3\}=F_{X}(3)$.
- Generally $F_{Y}(a)=P\{Y \leq a\}=P\left\{X \leq a^{1 / 3}\right\}=F_{X}\left(a^{1 / 3}\right)$
- This is a general principle. If X is a continuous random variable and g is a strictly increasing function of x and $Y=g(X)$, then $F_{Y}(a)=F_{X}\left(g^{-1}(a)\right)$.
- How can we use this to compute the probability density function f_{Y} from f_{X} ?
- If $Z=X^{2}$, then what is $P\{Z \leq 16\}$?

Outline

Distributions of functions of random variables

Joint distributions

Independent random variables

Examples

Outline

Distributions of functions of random variables

Joint distributions

Independent random variables

Examples

18.440 Lecture 22

Joint probability mass functions: discrete random variables

- If X and Y assume values in $\{1,2, \ldots, n\}$ then we can view $A_{i, j}=P\{X=i, Y=j\}$ as the entries of an $n \times n$ matrix.

Joint probability mass functions: discrete random variables

- If X and Y assume values in $\{1,2, \ldots, n\}$ then we can view $A_{i, j}=P\{X=i, Y=j\}$ as the entries of an $n \times n$ matrix.
- Let's say I don't care about Y. I just want to know $P\{X=i\}$. How do I figure that out from the matrix?

Joint probability mass functions: discrete random variables

- If X and Y assume values in $\{1,2, \ldots, n\}$ then we can view $A_{i, j}=P\{X=i, Y=j\}$ as the entries of an $n \times n$ matrix.
- Let's say I don't care about Y. I just want to know $P\{X=i\}$. How do I figure that out from the matrix?
- Answer: $P\{X=i\}=\sum_{j=1}^{n} A_{i, j}$.

Joint probability mass functions: discrete random variables

- If X and Y assume values in $\{1,2, \ldots, n\}$ then we can view $A_{i, j}=P\{X=i, Y=j\}$ as the entries of an $n \times n$ matrix.
- Let's say I don't care about Y. I just want to know $P\{X=i\}$. How do I figure that out from the matrix?
- Answer: $P\{X=i\}=\sum_{j=1}^{n} A_{i, j}$.
- Similarly, $P\{Y=j\}=\sum_{i=1}^{n} A_{i, j}$.

Joint probability mass functions: discrete random variables

- If X and Y assume values in $\{1,2, \ldots, n\}$ then we can view $A_{i, j}=P\{X=i, Y=j\}$ as the entries of an $n \times n$ matrix.
- Let's say I don't care about Y. I just want to know $P\{X=i\}$. How do I figure that out from the matrix?
- Answer: $P\{X=i\}=\sum_{j=1}^{n} A_{i, j}$.
- Similarly, $P\{Y=j\}=\sum_{i=1}^{n} A_{i, j}$.
- In other words, the probability mass functions for X and Y are the row and columns sums of $A_{i, j}$.

Joint probability mass functions: discrete random variables

- If X and Y assume values in $\{1,2, \ldots, n\}$ then we can view $A_{i, j}=P\{X=i, Y=j\}$ as the entries of an $n \times n$ matrix.
- Let's say I don't care about Y. I just want to know $P\{X=i\}$. How do I figure that out from the matrix?
- Answer: $P\{X=i\}=\sum_{j=1}^{n} A_{i, j}$.
- Similarly, $P\{Y=j\}=\sum_{i=1}^{n} A_{i, j}$.
- In other words, the probability mass functions for X and Y are the row and columns sums of $A_{i, j}$.
- Given the joint distribution of X and Y, we sometimes call distribution of X (ignoring Y) and distribution of Y (ignoring X) the marginal distributions.

Joint probability mass functions: discrete random variables

- If X and Y assume values in $\{1,2, \ldots, n\}$ then we can view $A_{i, j}=P\{X=i, Y=j\}$ as the entries of an $n \times n$ matrix.
- Let's say I don't care about Y. I just want to know $P\{X=i\}$. How do I figure that out from the matrix?
- Answer: $P\{X=i\}=\sum_{j=1}^{n} A_{i, j}$.
- Similarly, $P\{Y=j\}=\sum_{i=1}^{n} A_{i, j}$.
- In other words, the probability mass functions for X and Y are the row and columns sums of $A_{i, j}$.
- Given the joint distribution of X and Y, we sometimes call distribution of X (ignoring Y) and distribution of Y (ignoring X) the marginal distributions.
- In general, when X and Y are jointly defined discrete random variables, we write $p(x, y)=p_{X, Y}(x, y)=P\{X=x, Y=y\}$.

Joint distribution functions: continuous random variables

- Given random variables X and Y, define $F(a, b)=P\{X \leq a, Y \leq b\}$.

Joint distribution functions: continuous random variables

- Given random variables X and Y, define $F(a, b)=P\{X \leq a, Y \leq b\}$.
- The region $\{(x, y): x \leq a, y \leq b\}$ is the lower left "quadrant" centered at (a, b).

Joint distribution functions: continuous random variables

- Given random variables X and Y, define $F(a, b)=P\{X \leq a, Y \leq b\}$.
- The region $\{(x, y): x \leq a, y \leq b\}$ is the lower left "quadrant" centered at (a, b).
- Refer to $F_{X}(a)=P\{X \leq a\}$ and $F_{Y}(b)=P\{Y \leq b\}$ as marginal cumulative distribution functions.

Joint distribution functions: continuous random variables

- Given random variables X and Y, define $F(a, b)=P\{X \leq a, Y \leq b\}$.
- The region $\{(x, y): x \leq a, y \leq b\}$ is the lower left "quadrant" centered at (a, b).
- Refer to $F_{X}(a)=P\{X \leq a\}$ and $F_{Y}(b)=P\{Y \leq b\}$ as marginal cumulative distribution functions.
- Question: if I tell you the two parameter function F, can you use it to determine the marginals F_{X} and F_{Y} ?

Joint distribution functions: continuous random variables

- Given random variables X and Y, define $F(a, b)=P\{X \leq a, Y \leq b\}$.
- The region $\{(x, y): x \leq a, y \leq b\}$ is the lower left "quadrant" centered at (a, b).
- Refer to $F_{X}(a)=P\{X \leq a\}$ and $F_{Y}(b)=P\{Y \leq b\}$ as marginal cumulative distribution functions.
- Question: if I tell you the two parameter function F, can you use it to determine the marginals F_{X} and F_{Y} ?
- Answer: Yes. $F_{X}(a)=\lim _{b \rightarrow \infty} F(a, b)$ and $F_{Y}(b)=\lim _{a \rightarrow \infty} F(a, b)$.

Joint density functions: continuous random variables

- Suppose we are given the joint distribution function $F(a, b)=P\{X \leq a, Y \leq b\}$.

Joint density functions: continuous random variables

- Suppose we are given the joint distribution function $F(a, b)=P\{X \leq a, Y \leq b\}$.
- Can we use F to construct a "two-dimensional probability density function"? Precisely, is there a function f such that $P\{(X, Y) \in A\}=\int_{A} f(x, y) d x d y$ for each (measurable) $A \subset \mathbb{R}^{2}$?

Joint density functions: continuous random variables

- Suppose we are given the joint distribution function $F(a, b)=P\{X \leq a, Y \leq b\}$.
- Can we use F to construct a "two-dimensional probability density function"? Precisely, is there a function f such that $P\{(X, Y) \in A\}=\int_{A} f(x, y) d x d y$ for each (measurable) $A \subset \mathbb{R}^{2}$?
- Let's try defining $f(x, y)=\frac{\partial}{\partial x} \frac{\partial}{\partial y} F(x, y)$. Does that work?

Joint density functions: continuous random variables

- Suppose we are given the joint distribution function $F(a, b)=P\{X \leq a, Y \leq b\}$.
- Can we use F to construct a "two-dimensional probability density function"? Precisely, is there a function f such that $P\{(X, Y) \in A\}=\int_{A} f(x, y) d x d y$ for each (measurable) $A \subset \mathbb{R}^{2}$?
- Let's try defining $f(x, y)=\frac{\partial}{\partial x} \frac{\partial}{\partial y} F(x, y)$. Does that work?
- Suppose first that $A=\{(x, y): x \leq a, \leq b\}$. By definition of F, fundamental theorem of calculus, fact that $F(a, b)$ vanishes as either a or b tends to $-\infty$, we indeed find $\int_{-\infty}^{b} \int_{-\infty}^{a} \frac{\partial}{\partial x} \frac{\partial}{\partial y} F(x, y) d x d y=\int_{-\infty}^{b} \frac{\partial}{\partial y} F(a, y) d y=F(a, b)$.

Joint density functions: continuous random variables

- Suppose we are given the joint distribution function $F(a, b)=P\{X \leq a, Y \leq b\}$.
- Can we use F to construct a "two-dimensional probability density function"? Precisely, is there a function f such that $P\{(X, Y) \in A\}=\int_{A} f(x, y) d x d y$ for each (measurable) $A \subset \mathbb{R}^{2}$?
- Let's try defining $f(x, y)=\frac{\partial}{\partial x} \frac{\partial}{\partial y} F(x, y)$. Does that work?
- Suppose first that $A=\{(x, y): x \leq a, \leq b\}$. By definition of F, fundamental theorem of calculus, fact that $F(a, b)$ vanishes as either a or b tends to $-\infty$, we indeed find $\int_{-\infty}^{b} \int_{-\infty}^{a} \frac{\partial}{\partial x} \frac{\partial}{\partial y} F(x, y) d x d y=\int_{-\infty}^{b} \frac{\partial}{\partial y} F(a, y) d y=F(a, b)$.
- From this, we can show that it works for strips, rectangles, general open sets, etc.

Outline

Distributions of functions of random variables

Joint distributions

Independent random variables

Examples

Outline

Distributions of functions of random variables

Joint distributions

Independent random variables

Examples

18.440 Lecture 22

Independent random variables

- We say X and Y are independent if for any two (measurable) sets A and B of real numbers we have

$$
P\{X \in A, Y \in B\}=P\{X \in A\} P\{Y \in B\}
$$

Independent random variables

- We say X and Y are independent if for any two (measurable) sets A and B of real numbers we have

$$
P\{X \in A, Y \in B\}=P\{X \in A\} P\{Y \in B\}
$$

- Intuition: knowing something about X gives me no information about Y, and vice versa.

Independent random variables

- We say X and Y are independent if for any two (measurable) sets A and B of real numbers we have

$$
P\{X \in A, Y \in B\}=P\{X \in A\} P\{Y \in B\}
$$

- Intuition: knowing something about X gives me no information about Y, and vice versa.
- When X and Y are discrete random variables, they are independent if $P\{X=x, Y=y\}=P\{X=x\} P\{Y=y\}$ for all x and y for which $P\{X=x\}$ and $P\{Y=y\}$ are non-zero.

Independent random variables

- We say X and Y are independent if for any two (measurable) sets A and B of real numbers we have

$$
P\{X \in A, Y \in B\}=P\{X \in A\} P\{Y \in B\}
$$

- Intuition: knowing something about X gives me no information about Y, and vice versa.
- When X and Y are discrete random variables, they are independent if $P\{X=x, Y=y\}=P\{X=x\} P\{Y=y\}$ for all x and y for which $P\{X=x\}$ and $P\{Y=y\}$ are non-zero.
- What is the analog of this statement when X and Y are continuous?

Independent random variables

- We say X and Y are independent if for any two (measurable) sets A and B of real numbers we have

$$
P\{X \in A, Y \in B\}=P\{X \in A\} P\{Y \in B\}
$$

- Intuition: knowing something about X gives me no information about Y, and vice versa.
- When X and Y are discrete random variables, they are independent if $P\{X=x, Y=y\}=P\{X=x\} P\{Y=y\}$ for all x and y for which $P\{X=x\}$ and $P\{Y=y\}$ are non-zero.
- What is the analog of this statement when X and Y are continuous?
- When X and Y are continuous, they are independent if $f(x, y)=f_{X}(x) f_{Y}(y)$.

Sample problem: independent normal random variables

- Suppose that X and Y are independent normal random variables with mean zero and variance one.

Sample problem: independent normal random variables

- Suppose that X and Y are independent normal random variables with mean zero and variance one.
- What is the probability that (X, Y) lies in the unit circle? That is, what is $P\left\{X^{2}+Y^{2} \leq 1\right\}$?

Sample problem: independent normal random variables

- Suppose that X and Y are independent normal random variables with mean zero and variance one.
- What is the probability that (X, Y) lies in the unit circle? That is, what is $P\left\{X^{2}+Y^{2} \leq 1\right\}$?
- First, any guesses?

Sample problem: independent normal random variables

- Suppose that X and Y are independent normal random variables with mean zero and variance one.
- What is the probability that (X, Y) lies in the unit circle? That is, what is $P\left\{X^{2}+Y^{2} \leq 1\right\}$?
- First, any guesses?
- Probability X is within one standard deviation of its mean is about .68. So $(.68)^{2}$ is an upper bound.

Sample problem: independent normal random variables

- Suppose that X and Y are independent normal random variables with mean zero and variance one.
- What is the probability that (X, Y) lies in the unit circle? That is, what is $P\left\{X^{2}+Y^{2} \leq 1\right\}$?
- First, any guesses?
- Probability X is within one standard deviation of its mean is about .68. So $(.68)^{2}$ is an upper bound.
- $f(x, y)=f_{X}(x) f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}=\frac{1}{2 \pi} e^{-r^{2} / 2}$

Sample problem: independent normal random variables

- Suppose that X and Y are independent normal random variables with mean zero and variance one.
- What is the probability that (X, Y) lies in the unit circle? That is, what is $P\left\{X^{2}+Y^{2} \leq 1\right\}$?
- First, any guesses?
- Probability X is within one standard deviation of its mean is about .68. So $(.68)^{2}$ is an upper bound.
- $f(x, y)=f_{X}(x) f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}=\frac{1}{2 \pi} e^{-r^{2} / 2}$
- Using polar coordinates, we want

$$
\int_{0}^{1}(2 \pi r) \frac{1}{2 \pi} e^{-r^{2} / 2} d r=-\left.e^{-r^{2} / 2}\right|_{0} ^{1}=1-e^{-1 / 2} \approx .39 .
$$

Outline

Distributions of functions of random variables

Joint distributions

Independent random variables

Examples

Outline

Distributions of functions of random variables

Joint distributions

Independent random variables

Examples

18.440 Lecture 22

Repeated die roll

- Roll a die repeatedly and let X be such that the first even number (the first 2,4 , or 6) appears on the X th roll.

Repeated die roll

- Roll a die repeatedly and let X be such that the first even number (the first 2, 4, or 6) appears on the X th roll.
- Let Y be the the number that appears on the X th roll.

Repeated die roll

- Roll a die repeatedly and let X be such that the first even number (the first 2, 4, or 6) appears on the X th roll.
- Let Y be the the number that appears on the X th roll.
- Are X and Y independent? What is their joint law?

Repeated die roll

- Roll a die repeatedly and let X be such that the first even number (the first 2, 4, or 6) appears on the X th roll.
- Let Y be the the number that appears on the X th roll.
- Are X and Y independent? What is their joint law?
- If $j \geq 1$, then

$$
\begin{gathered}
P\{X=j, Y=2\}=P\{X=j, Y=4\} \\
=P\{X=j, Y=6\}=(1 / 2)^{j-1}(1 / 6)=(1 / 2)^{j}(1 / 3) .
\end{gathered}
$$

Repeated die roll

- Roll a die repeatedly and let X be such that the first even number (the first 2, 4, or 6) appears on the X th roll.
- Let Y be the the number that appears on the X th roll.
- Are X and Y independent? What is their joint law?
- If $j \geq 1$, then

$$
\begin{gathered}
P\{X=j, Y=2\}=P\{X=j, Y=4\} \\
=P\{X=j, Y=6\}=(1 / 2)^{j-1}(1 / 6)=(1 / 2)^{j}(1 / 3) .
\end{gathered}
$$

- Can we get the marginals from that?

Continuous time variant of repeated die roll

- On a certain hiking trail, it is well known that the lion, tiger, and bear attacks are independent Poisson processes with respective λ values of .1 hour, $.2 /$ hour, and $.3 /$ hour.

Continuous time variant of repeated die roll

- On a certain hiking trail, it is well known that the lion, tiger, and bear attacks are independent Poisson processes with respective λ values of $.1 /$ hour, $.2 /$ hour, and $.3 /$ hour .
- Let $T \in \mathbb{R}$ be the amount of time until the first animal attacks. Let $A \in\{$ lion, tiger, bear $\}$ be the species of the first attacking animal.

Continuous time variant of repeated die roll

- On a certain hiking trail, it is well known that the lion, tiger, and bear attacks are independent Poisson processes with respective λ values of $.1 /$ hour, $.2 /$ hour, and $.3 /$ hour .
- Let $T \in \mathbb{R}$ be the amount of time until the first animal attacks. Let $A \in\{$ lion, tiger, bear $\}$ be the species of the first attacking animal.
- What is the probability density function for T ? How about $E[T]$?

Continuous time variant of repeated die roll

- On a certain hiking trail, it is well known that the lion, tiger, and bear attacks are independent Poisson processes with respective λ values of $.1 /$ hour, $.2 /$ hour, and $.3 /$ hour .
- Let $T \in \mathbb{R}$ be the amount of time until the first animal attacks. Let $A \in\{$ lion, tiger, bear $\}$ be the species of the first attacking animal.
- What is the probability density function for T ? How about $E[T]$?
- Are T and A independent?

Continuous time variant of repeated die roll

- On a certain hiking trail, it is well known that the lion, tiger, and bear attacks are independent Poisson processes with respective λ values of .1 hour, $.2 /$ hour, and $.3 /$ hour.
- Let $T \in \mathbb{R}$ be the amount of time until the first animal attacks. Let $A \in\{$ lion, tiger, bear $\}$ be the species of the first attacking animal.
- What is the probability density function for T ? How about $E[T]$?
- Are T and A independent?
- Let T_{1} be the time until the first attack, T_{2} the subsequent time until the second attack, etc., and let A_{1}, A_{2}, \ldots be the corresponding species.

Continuous time variant of repeated die roll

- On a certain hiking trail, it is well known that the lion, tiger, and bear attacks are independent Poisson processes with respective λ values of .1 /hour, $.2 /$ hour, and $.3 /$ hour.
- Let $T \in \mathbb{R}$ be the amount of time until the first animal attacks. Let $A \in\{$ lion, tiger, bear $\}$ be the species of the first attacking animal.
- What is the probability density function for T ? How about $E[T]$?
- Are T and A independent?
- Let T_{1} be the time until the first attack, T_{2} the subsequent time until the second attack, etc., and let A_{1}, A_{2}, \ldots be the corresponding species.
- Are all of the T_{i} and A_{i} independent of each other? What are their probability distributions?

More lions, tigers, bears

- Lion, tiger, and bear attacks are independent Poisson processes with λ values .1 hour, $.2 /$ hour, and $.3 /$ hour.

More lions, tigers, bears

- Lion, tiger, and bear attacks are independent Poisson processes with λ values .1 hour, $.2 /$ hour, and $.3 /$ hour.
- Distribution of time $T_{\text {tiger }}$ till first tiger attack?

More lions, tigers, bears

- Lion, tiger, and bear attacks are independent Poisson processes with λ values .1 hour, $.2 /$ hour, and $.3 /$ hour.
- Distribution of time $T_{\text {tiger }}$ till first tiger attack?
- Exponential $\lambda_{\text {tiger }}=.2 /$ hour. So $P\left\{T_{\text {tiger }}>a\right\}=e^{-.2 a}$.

More lions, tigers, bears

- Lion, tiger, and bear attacks are independent Poisson processes with λ values .1 hour, $.2 /$ hour, and $.3 /$ hour.
- Distribution of time $T_{\text {tiger }}$ till first tiger attack?
- Exponential $\lambda_{\text {tiger }}=.2 /$ hour. So $P\left\{T_{\text {tiger }}>a\right\}=e^{-.2 a}$.
- How about $E\left[T_{\text {tiger }}\right]$ and $\operatorname{Var}\left[T_{\text {tiger }}\right]$?

More lions, tigers, bears

- Lion, tiger, and bear attacks are independent Poisson processes with λ values .1 hour, $.2 /$ hour, and $.3 /$ hour.
- Distribution of time $T_{\text {tiger }}$ till first tiger attack?
- Exponential $\lambda_{\text {tiger }}=.2 /$ hour. So $P\left\{T_{\text {tiger }}>a\right\}=e^{-.2 a}$.
- How about $E\left[T_{\text {tiger }}\right]$ and $\operatorname{Var}\left[T_{\text {tiger }}\right]$?
- $E\left[T_{\text {tiger }}\right]=1 / \lambda_{\text {tiger }}=5$ hours, $\operatorname{Var}\left[T_{\text {tiger }}\right]=1 / \lambda_{\text {tiger }}^{2}=25$ hours squared.

More lions, tigers, bears

- Lion, tiger, and bear attacks are independent Poisson processes with λ values .1 hour, $.2 /$ hour, and $.3 /$ hour.
- Distribution of time $T_{\text {tiger }}$ till first tiger attack?
- Exponential $\lambda_{\text {tiger }}=.2 /$ hour. So $P\left\{T_{\text {tiger }}>a\right\}=e^{-.2 a}$.
- How about $E\left[T_{\text {tiger }}\right]$ and $\operatorname{Var}\left[T_{\text {tiger }}\right]$?
- $E\left[T_{\text {tiger }}\right]=1 / \lambda_{\text {tiger }}=5$ hours, $\operatorname{Var}\left[T_{\text {tiger }}\right]=1 / \lambda_{\text {tiger }}^{2}=25$ hours squared.
- Time until 5th attack by any animal?

More lions, tigers, bears

- Lion, tiger, and bear attacks are independent Poisson processes with λ values .1 hour, $.2 /$ hour, and $.3 /$ hour.
- Distribution of time $T_{\text {tiger }}$ till first tiger attack?
- Exponential $\lambda_{\text {tiger }}=.2 /$ hour. So $P\left\{T_{\text {tiger }}>a\right\}=e^{-.2 a}$.
- How about $E\left[T_{\text {tiger }}\right]$ and $\operatorname{Var}\left[T_{\text {tiger }}\right]$?
- $E\left[T_{\text {tiger }}\right]=1 / \lambda_{\text {tiger }}=5$ hours, $\operatorname{Var}\left[T_{\text {tiger }}\right]=1 / \lambda_{\text {tiger }}^{2}=25$ hours squared.
- Time until 5th attack by any animal?
- 「 distribution with $\alpha=5$ and $\lambda=.6$.

More lions, tigers, bears

- Lion, tiger, and bear attacks are independent Poisson processes with λ values .1 hour, $.2 /$ hour, and $.3 /$ hour.
- Distribution of time $T_{\text {tiger }}$ till first tiger attack?
- Exponential $\lambda_{\text {tiger }}=.2 /$ hour. So $P\left\{T_{\text {tiger }}>a\right\}=e^{-.2 a}$.
- How about $E\left[T_{\text {tiger }}\right]$ and $\operatorname{Var}\left[T_{\text {tiger }}\right]$?
- $E\left[T_{\text {tiger }}\right]=1 / \lambda_{\text {tiger }}=5$ hours, $\operatorname{Var}\left[T_{\text {tiger }}\right]=1 / \lambda_{\text {tiger }}^{2}=25$ hours squared.
- Time until 5th attack by any animal?
- 「 distribution with $\alpha=5$ and $\lambda=.6$.
- X, where X th attack is 5 th bear attack?

More lions, tigers, bears

- Lion, tiger, and bear attacks are independent Poisson processes with λ values .1 hour, $.2 /$ hour, and $.3 /$ hour.
- Distribution of time $T_{\text {tiger }}$ till first tiger attack?
- Exponential $\lambda_{\text {tiger }}=.2 /$ hour. So $P\left\{T_{\text {tiger }}>a\right\}=e^{-.2 a}$.
- How about $E\left[T_{\text {tiger }}\right]$ and $\operatorname{Var}\left[T_{\text {tiger }}\right]$?
- $E\left[T_{\text {tiger }}\right]=1 / \lambda_{\text {tiger }}=5$ hours, $\operatorname{Var}\left[T_{\text {tiger }}\right]=1 / \lambda_{\text {tiger }}^{2}=25$ hours squared.
- Time until 5th attack by any animal?
- 「 distribution with $\alpha=5$ and $\lambda=.6$.
- X, where X th attack is 5 th bear attack?
- Negative binomial with parameters $p=1 / 2$ and $n=5$.

More lions, tigers, bears

- Lion, tiger, and bear attacks are independent Poisson processes with λ values .1 hour, $.2 /$ hour, and $.3 /$ hour.
- Distribution of time $T_{\text {tiger }}$ till first tiger attack?
- Exponential $\lambda_{\text {tiger }}=.2 /$ hour. So $P\left\{T_{\text {tiger }}>a\right\}=e^{-.2 a}$.
- How about $E\left[T_{\text {tiger }}\right]$ and $\operatorname{Var}\left[T_{\text {tiger }}\right]$?
- $E\left[T_{\text {tiger }}\right]=1 / \lambda_{\text {tiger }}=5$ hours, $\operatorname{Var}\left[T_{\text {tiger }}\right]=1 / \lambda_{\text {tiger }}^{2}=25$ hours squared.
- Time until 5th attack by any animal?
- 「 distribution with $\alpha=5$ and $\lambda=.6$.
- X, where X th attack is 5 th bear attack?
- Negative binomial with parameters $p=1 / 2$ and $n=5$.
- Can hiker breathe sigh of relief after 5 attack-free hours?

Buffon's needle problem

- Drop a needle of length one on a large sheet of paper (with evenly spaced horizontal lines spaced at all integer heights).

Buffon's needle problem

- Drop a needle of length one on a large sheet of paper (with evenly spaced horizontal lines spaced at all integer heights).
- What's the probability the needle crosses a line?

Buffon's needle problem

- Drop a needle of length one on a large sheet of paper (with evenly spaced horizontal lines spaced at all integer heights).
- What's the probability the needle crosses a line?
- Need some assumptions. Let's say vertical position X of lowermost endpoint of needle modulo one is uniform in $[0,1]$ and independent of angle θ, which is uniform in $[0, \pi]$. Crosses line if and only there is an integer between the numbers X and $X+\sin \theta$, i.e., $X \leq 1 \leq X+\sin \theta$.

Buffon's needle problem

- Drop a needle of length one on a large sheet of paper (with evenly spaced horizontal lines spaced at all integer heights).
- What's the probability the needle crosses a line?
- Need some assumptions. Let's say vertical position X of lowermost endpoint of needle modulo one is uniform in $[0,1]$ and independent of angle θ, which is uniform in $[0, \pi]$. Crosses line if and only there is an integer between the numbers X and $X+\sin \theta$, i.e., $X \leq 1 \leq X+\sin \theta$.
- Draw the box $[0,1] \times[0, \pi]$ on which (X, θ) is uniform. What's the area of the subset where $X \geq 1-\sin \theta$?

