Counting tricks and basic principles of probability

Discrete random variables
Outline

Counting tricks and basic principles of probability

Discrete random variables
Break “choosing one of the items to be counted” into a sequence of stages so that one always has the same number of choices to make at each stage. Then the total count becomes a product of number of choices available at each stage.
Selected counting tricks

- Break “choosing one of the items to be counted” into a sequence of stages so that one always has the same number of choices to make at each stage. Then the total count becomes a product of number of choices available at each stage.

- Overcount by a fixed factor.
Selected counting tricks

- Break “choosing one of the items to be counted” into a sequence of stages so that one always has the same number of choices to make at each stage. Then the total count becomes a product of number of choices available at each stage.
- Overcount by a fixed factor.
- If you have n elements you wish to divide into r distinct piles of sizes $n_1, n_2 \ldots n_r$, how many ways to do that?
Selected counting tricks

- Break “choosing one of the items to be counted” into a sequence of stages so that one always has the same number of choices to make at each stage. Then the total count becomes a product of number of choices available at each stage.

- Overcount by a fixed factor.

- If you have \(n \) elements you wish to divide into \(r \) distinct piles of sizes \(n_1, n_2 \ldots n_r \), how many ways to do that?

- Answer: \(\binom{n}{n_1,n_2,\ldots,n_r} := \frac{n!}{n_1!n_2!\ldots n_r!} \).
Selected counting tricks

- Break “choosing one of the items to be counted” into a sequence of stages so that one always has the same number of choices to make at each stage. Then the total count becomes a product of number of choices available at each stage.
- Overcount by a fixed factor.
- If you have n elements you wish to divide into r distinct piles of sizes $n_1, n_2 \ldots n_r$, how many ways to do that?
- Answer $\binom{n}{n_1,n_2,\ldots,n_r} := \frac{n!}{n_1!n_2!\ldots n_r!}$.
- How many sequences a_1, \ldots, a_k of non-negative integers satisfy $a_1 + a_2 + \ldots + a_k = n$?
Selected counting tricks

- Break “choosing one of the items to be counted” into a sequence of stages so that one always has the same number of choices to make at each stage. Then the total count becomes a product of number of choices available at each stage.
- Overcount by a fixed factor.
- If you have n elements you wish to divide into r distinct piles of sizes $n_1, n_2 \ldots n_r$, how many ways to do that?
 - Answer: \(\binom{n}{n_1, n_2, \ldots, n_r} := \frac{n!}{n_1!n_2!\ldots n_r!} \).
- How many sequences a_1, \ldots, a_k of non-negative integers satisfy $a_1 + a_2 + \ldots + a_k = n$?
 - Answer: \(\binom{n+k-1}{n} \). Represent partition by $k-1$ bars and n stars, e.g., as **|** || **|** **|** *.
Axioms of probability

- Have a set S called *sample space.*
Axioms of probability

- Have a set S called *sample space*.
- $P(A) \in [0, 1]$ for all (measurable) $A \subset S$.
Axioms of probability

- Have a set S called *sample space*.
- $P(A) \in [0, 1]$ for all (measurable) $A \subset S$.
- $P(S) = 1$.
Axioms of probability

- Have a set S called *sample space*.
- $P(A) \in [0, 1]$ for all (measurable) $A \subset S$.
- $P(S) = 1$.
- Finite additivity: $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$.

Axioms of probability

- Have a set S called **sample space**.
- $P(A) \in [0, 1]$ for all (measurable) $A \subset S$.
- $P(S) = 1$.
- Finite additivity: $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$.
- Countable additivity: $P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$ if $E_i \cap E_j = \emptyset$ for each pair i and j.
Consequences of axioms

\[P(A^c) = 1 - P(A) \]
Consequences of axioms

- \(P(A^c) = 1 - P(A) \)
- \(A \subset B \) implies \(P(A) \leq P(B) \)
Consequences of axioms

- $P(A^c) = 1 - P(A)$
- $A \subseteq B$ implies $P(A) \leq P(B)$
- $P(A \cup B) = P(A) + P(B) - P(AB)$
Consequences of axioms

- \(P(A^c) = 1 - P(A)\)
- \(A \subset B\) implies \(P(A) \leq P(B)\)
- \(P(A \cup B) = P(A) + P(B) - P(AB)\)
- \(P(AB) \leq P(A)\)
Observe \(P(A \cup B) = P(A) + P(B) - P(AB) \).

More generally, \(P(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} P(E_i) - \sum_{1 < i_1 < i_2} P(E_{i_1} E_{i_2}) + \ldots + (-1)^{r+1} \sum_{1 < i_1 < \ldots < i_r} P(E_{i_1} \cap \ldots \cap E_{i_r}) = \ldots + (-1)^{n+1} P(E_1 \cap \ldots \cap E_n). \)

The notation \(P_{i_1 < i_2 < \ldots < i_r} \) means a sum over all of the \(\binom{n}{r} \) subsets of size \(r \) of the set \(\{1, 2, \ldots, n\} \).
Observe \(P(A \cup B) = P(A) + P(B) - P(AB) \).

Also, \(P(E \cup F \cup G) = \)
\[
P(E) + P(F) + P(G) - P(EF) - P(EG) - P(FG) + P(EFG).
\]
Inclusion-exclusion identity

- Observe \(P(A \cup B) = P(A) + P(B) - P(AB) \).
- Also, \(P(E \cup F \cup G) = P(E) + P(F) + P(G) - P(EF) - P(EG) - P(FG) + P(EFG) \).
- More generally,

\[
P(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} P(E_i) - \sum_{i_1<i_2} P(E_{i_1}E_{i_2}) + \ldots \\
+ (-1)^{(r+1)} \sum_{i_1<i_2<\ldots<i_r} P(E_{i_1}E_{i_2}\ldots E_{i_r}) \\
= + \ldots + (-1)^{n+1} P(E_1E_2\ldots E_n).
\]
Inclusion-exclusion identity

- Observe $P(A \cup B) = P(A) + P(B) - P(AB)$.
- Also, $P(E \cup F \cup G) = P(E) + P(F) + P(G) - P(EF) - P(EG) - P(FG) + P(EFG)$.
- More generally,

\[
P(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} P(E_i) - \sum_{i_1 < i_2} P(E_{i_1} E_{i_2}) + \ldots + (-1)^{r+1} \sum_{i_1 < i_2 < \ldots < i_r} P(E_{i_1} E_{i_2} \ldots E_{i_r})
= + \ldots + (-1)^{n+1} P(E_1 E_2 \ldots E_n).
\]

- The notation $\sum_{i_1 < i_2 < \ldots < i_r}$ means a sum over all of the $\binom{n}{r}$ subsets of size r of the set $\{1, 2, \ldots, n\}$.
Famous hat problem

▶ \(n \) people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.

Inclusion-exclusion. Let \(E_i \) be the event that \(i \)th person gets own hat.

▶ What is \(P(\bigcup_{i=1}^{n} E_i) \)?

Answer:

\[
\frac{(n-r)!}{n!}
\]

There are \(\binom{n}{r} \) terms like that in the inclusion exclusion sum.

▶ What is \(\binom{n}{r} \frac{(n-r)!}{n!} \)?

Answer:

\[
\frac{1}{r!}
\]

\[
1 - P(\bigcup_{i=1}^{n} E_i) = 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \cdots \pm \frac{1}{n!} \approx 1/e \approx 0.36788
\]
Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_i be the event that ith person gets own hat.
Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_i be the event that ith person gets own hat.
- What is $P(E_{i_1}E_{i_2}\ldots E_{i_r})$?
Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.

- Inclusion-exclusion. Let E_i be the event that ith person gets own hat.

- What is $P(E_{i_1}E_{i_2}\ldots E_{i_r})$?

- Answer: $\frac{(n-r)!}{n!}$.
Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_i be the event that ith person gets own hat.
- What is $P(E_{i_1}E_{i_2}\ldots E_{i_r})$?
- Answer: $\frac{(n-r)!}{n!}$.
- There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum.
- What is $\binom{n}{r} \frac{(n-r)!}{n!}$?

$1 - P(\bigcup_{i=1}^{n} E_i) = 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \ldots \pm \frac{1}{n!} \approx \frac{1}{e} \approx 0.36788$
Famous hat problem

- \(n \) people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let \(E_i \) be the event that \(i \)th person gets own hat.
- What is \(P(E_{i_1} E_{i_2} \ldots E_{i_r}) \)?
- Answer: \(\frac{(n-r)!}{n!} \).
- There are \(\binom{n}{r} \) terms like that in the inclusion exclusion sum.
- What is \(\binom{n}{r} \frac{(n-r)!}{n!} \)?
- Answer: \(\frac{1}{r!} \).
Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_i be the event that ith person gets own hat.
- What is $P(E_{i_1}E_{i_2}\ldots E_{i_r})$?
- Answer: $\frac{(n-r)!}{n!}$.
- There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum.
- What is $\binom{n}{r}\frac{(n-r)!}{n!}$?
- Answer: $\frac{1}{r!}$.
- $P(\cup_{i=1}^{n}E_i) = 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \ldots \pm \frac{1}{n!}$
Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_i be the event that ith person gets own hat.
- What is $P(E_{i_1} E_{i_2} \ldots E_{i_r})$?
- Answer: $\frac{(n-r)!}{n!}$.
- There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r} \frac{(n-r)!}{n!}$?
- Answer: $\frac{1}{r!}$.
- $P(\bigcup_{i=1}^{n} E_i) = 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \ldots \pm \frac{1}{n!}$
- $1 - P(\bigcup_{i=1}^{n} E_i) = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \ldots \pm \frac{1}{n!} \approx \frac{1}{e} \approx 0.36788$
Definition: $P(E|F) = \frac{P(EF)}{P(F)}$.
Conditional probability

- Definition: $P(E|F) = \frac{P(EF)}{P(F)}$.
- Call $P(E|F)$ the “conditional probability of E given F” or “probability of E conditioned on F”.

Nice fact:

\[
P(E_1E_2E_3\ldots E_n) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)\ldots P(E_n|E_1E_2\ldots E_{n-1}).
\]

Useful when we think about multi-step experiments.

For example, let E_i be event ith person gets own hat in the n-hat shuffle problem.
Conditional probability

Definition: $P(E|F) = \frac{P(EF)}{P(F)}$.

Call $P(E|F)$ the “conditional probability of E given F” or “probability of E conditioned on F”.

Nice fact: $P(E_1E_2E_3\ldots E_n) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)\ldots P(E_n|E_1\ldots E_{n-1})$
Definition: \(P(E|F) = \frac{P(EF)}{P(F)} \).

Call \(P(E|F) \) the “conditional probability of \(E \) given \(F \)” or “probability of \(E \) conditioned on \(F \)”.

Nice fact: \(P(E_1E_2E_3\ldots E_n) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)\ldots P(E_n|E_1\ldots E_{n-1}) \)

Useful when we think about multi-step experiments.
Conditional probability

- Definition: \(P(E|F) = \frac{P(EF)}{P(F)} \).
- Call \(P(E|F) \) the “conditional probability of \(E \) given \(F \)” or “probability of \(E \) conditioned on \(F \)”.
- Nice fact: \(P(E_1 E_2 E_3 \ldots E_n) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)\ldots P(E_n|E_1\ldots E_{n-1}) \)
- Useful when we think about multi-step experiments.
- For example, let \(E_i \) be event \(i \)th person gets own hat in the \(n \)-hat shuffle problem.
Dividing probability into two cases

\[P(E) = P(EF) + P(EF^c) \]
\[= P(E|F)P(F) + P(E|F^c)P(F^c) \]
Dividing probability into two cases

\[P(E) = P(EF) + P(EF^c) \]
\[= P(E|F)P(F) + P(E|F^c)P(F^c) \]

In words: want to know the probability of \(E \). There are two scenarios \(F \) and \(F^c \). If I know the probabilities of the two scenarios and the probability of \(E \) conditioned on each scenario, I can work out the probability of \(E \).
Bayes’ theorem

Bayes’ theorem/law/rule states the following:

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]
Bayes’ theorem

Bayes’ theorem/law/rule states the following:

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \].

Follows from definition of conditional probability:

\[P(AB) = P(B)P(A|B) = P(A)P(B|A). \]
Bayes’ theorem

Bayes’ theorem/law/rule states the following:
\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \, . \]

Follows from definition of conditional probability:
\[P(AB) = P(B)P(A|B) = P(A)P(B|A) \, . \]

 Tells how to update estimate of probability of \(A \) when new evidence restricts your sample space to \(B \).
Bayes’ theorem

- Bayes’ theorem/law/rule states the following:
 \[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \].

- Follows from definition of conditional probability:
 \[P(AB) = P(B)P(A|B) = P(A)P(B|A) \].

- Tells how to update estimate of probability of \(A \) when new evidence restricts your sample space to \(B \).

- So \(P(A|B) \) is \(\frac{P(B|A)}{P(B)} \) times \(P(A) \).
Bayes’ theorem

Bayes’ theorem/law/rule states the following:
\[P(A|B) = \frac{P(B|A)P(A)}{P(B)}. \]

Follows from definition of conditional probability:
\[P(AB) = P(B)P(A|B) = P(A)P(B|A). \]

Tells how to update estimate of probability of \(A \) when new evidence restricts your sample space to \(B \).

So \(P(A|B) \) is \(\frac{P(B|A)}{P(B)} \) times \(P(A) \).

Ratio \(\frac{P(B|A)}{P(B)} \) determines “how compelling new evidence is”.
$P(\cdot|F)$ is a probability measure

- We can check the probability axioms: $0 \leq P(E|F) \leq 1$, $P(S|F) = 1$, and $P(\cup E_i) = \sum P(E_i|F)$, if i ranges over a countable set and the E_i are disjoint.
$P(\cdot|F)$ is a probability measure

- We can check the probability axioms: $0 \leq P(E|F) \leq 1$, $P(S|F) = 1$, and $P(\bigcup E_i) = \sum P(E_i|F)$, if i ranges over a countable set and the E_i are disjoint.
- The probability measure $P(\cdot|F)$ is related to $P(\cdot)$.

To get former from latter, we set probabilities of elements outside of F to zero and multiply probabilities of events inside of F by $1/P(F)$. $P(\cdot)$ is the prior probability measure and $P(\cdot|F)$ is the posterior measure (revised after discovering that F occurs).
We can check the probability axioms: $0 \leq P(E|F) \leq 1$, $P(S|F) = 1$, and $P(\bigcup E_i) = \sum P(E_i|F)$, if i ranges over a countable set and the E_i are disjoint.

The probability measure $P(\cdot|F)$ is related to $P(\cdot)$.

To get former from latter, we set probabilities of elements outside of F to zero and multiply probabilities of events inside of F by $1/P(F)$.

$P(\cdot|F)$ is a probability measure.
We can check the probability axioms: $0 \leq P(E|F) \leq 1$, $P(S|F) = 1$, and $P(\cup E_i) = \sum P(E_i|F)$, if i ranges over a countable set and the E_i are disjoint.

The probability measure $P(\cdot|F)$ is related to $P(\cdot)$.

To get former from latter, we set probabilities of elements outside of F to zero and multiply probabilities of events inside of F by $1/P(F)$.

$P(\cdot)$ is the *prior* probability measure and $P(\cdot|F)$ is the *posterior* measure (revised after discovering that F occurs).
Say E and F are independent if $P(EF) = P(E)P(F)$.

▶ Equivalent statement: $P(E|F) = P(E)$.

▶ Also equivalent: $P(F|E) = P(F)$.

Independence
Say E and F are **independent** if $P(EF) = P(E)P(F)$.

Equivalent statement: $P(E|F) = P(E)$. Also equivalent: $P(F|E) = P(F)$.
Independence of multiple events

Say $E_1 \ldots E_n$ are independent if for each
\[
\{i_1, i_2, \ldots, i_k\} \subset \{1, 2, \ldots n\} \quad \text{we have}
\]
\[
P(E_{i_1}E_{i_2} \ldots E_{i_k}) = P(E_{i_1})P(E_{i_2}) \ldots P(E_{i_k}).
\]
Independence of multiple events

- Say $E_1 \ldots E_n$ are independent if for each
 $\{i_1, i_2, \ldots, i_k\} \subset \{1, 2, \ldots, n\}$ we have
 $P(E_{i_1} E_{i_2} \ldots E_{i_k}) = P(E_{i_1}) P(E_{i_2}) \ldots P(E_{i_k})$.

- In other words, the product rule works.

- Independence implies
 $P(E_1 E_2 E_3 | E_4 E_5 E_6) = P(E_1) P(E_2) P(E_3) P(E_4) P(E_5) P(E_6)$,
 and other similar statements.

- Does pairwise independence imply independence?
 No. Consider these three events: first coin heads, second coin heads, odd number heads. Pairwise independent, not independent.
Independence of multiple events

Say \(E_1 \ldots E_n \) are independent if for each \(\{i_1, i_2, \ldots, i_k\} \subset \{1, 2, \ldots, n\} \) we have
\[
P(E_{i_1}E_{i_2}\ldots E_{i_k}) = P(E_{i_1})P(E_{i_2})\ldots P(E_{i_k}).
\]
In other words, the product rule works.

Independence implies
\[
P(E_1E_2E_3|E_4E_5E_6) = \\
\frac{P(E_1)P(E_2)P(E_3)P(E_4)P(E_5)P(E_6)}{P(E_4)P(E_5)P(E_6)} = P(E_1E_2E_3), \text{ and other similar statements.}
\]
Say $E_1 \ldots E_n$ are independent if for each
\[\{i_1, i_2, \ldots, i_k\} \subset \{1, 2, \ldots n\} \] we have
\[P(E_{i_1}E_{i_2}\ldots E_{i_k}) = P(E_{i_1})P(E_{i_2})\ldots P(E_{i_k}). \]
In other words, the product rule works.

Independence implies
\[P(E_1E_2E_3|E_4E_5E_6) = \frac{P(E_1)P(E_2)P(E_3)P(E_4)P(E_5)P(E_6)}{P(E_4)P(E_5)P(E_6)} = P(E_1E_2E_3), \] and other similar statements.

Does pairwise independence imply independence?
Say $E_1 \ldots E_n$ are independent if for each
\[
\{i_1, i_2, \ldots, i_k\} \subset \{1, 2, \ldots n\}
\]
we have
\[
P(E_{i_1} E_{i_2} \ldots E_{i_k}) = P(E_{i_1})P(E_{i_2})\ldots P(E_{i_k}).
\]
In other words, the product rule works.

Independence implies
\[
P(E_1 E_2 E_3 | E_4 E_5 E_6) = \frac{P(E_1)P(E_2)P(E_3)P(E_4)P(E_5)P(E_6)}{P(E_4)P(E_5)P(E_6)} = P(E_1 E_2 E_3),
\]
and other similar statements.

Does pairwise independence imply independence?

No. Consider these three events: first coin heads, second coin heads, odd number heads. Pairwise independent, not independent.
Outline

Counting tricks and basic principles of probability

Discrete random variables
Counting tricks and basic principles of probability

Discrete random variables
Random variables

- A random variable X is a function from the state space to the real numbers.
A random variable X is a function from the state space to the real numbers.

Can interpret X as a quantity whose value depends on the outcome of an experiment.
A random variable X is a function from the state space to the real numbers.

Can interpret X as a quantity whose value depends on the outcome of an experiment.

Say X is a **discrete** random variable if (with probability one) it takes one of a countable set of values.
Random variables

- A random variable X is a function from the state space to the real numbers.
- Can interpret X as a quantity whose value depends on the outcome of an experiment.
- Say X is a **discrete** random variable if (with probability one) if it takes one of a countable set of values.
- For each a in this countable set, write $p(a) := P\{X = a\}$. Call p the **probability mass function**.
A random variable X is a function from the state space to the real numbers.

Can interpret X as a quantity whose value depends on the outcome of an experiment.

Say X is a **discrete** random variable if (with probability one) if it takes one of a countable set of values.

For each a in this countable set, write $p(a) := P\{X = a\}$. Call p the **probability mass function**.

Write $F(a) = P\{X \leq a\} = \sum_{x \leq a} p(x)$. Call F the **cumulative distribution function**.
Given any event E, can define an **indicator** random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as $X = 1_E$.
Given any event E, can define an **indicator** random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as $X = 1_E$.

The value of 1_E (either 1 or 0) *indicates* whether the event has occurred.
Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as $X = 1_E$.

The value of 1_E (either 1 or 0) indicates whether the event has occurred.

If E_1, E_2, \ldots, E_k are events then $X = \sum_{i=1}^{k} 1_{E_i}$ is the number of these events that occur.
Given any event E, can define an \textbf{indicator} random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as $X = 1_E$.

The value of 1_E (either 1 or 0) \emph{indicates} whether the event has occurred.

If E_1, E_2, \ldots, E_k are events then $X = \sum_{i=1}^{k} 1_{E_i}$ is the number of these events that occur.

Example: in n-hat shuffle problem, let E_i be the event ith person gets own hat.
Indicators

Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as $X = 1_E$.

The value of 1_E (either 1 or 0) indicates whether the event has occurred.

If E_1, E_2, \ldots, E_k are events then $X = \sum_{i=1}^{k} 1_{E_i}$ is the number of these events that occur.

Example: in n-hat shuffle problem, let E_i be the event ith person gets own hat.

Then $\sum_{i=1}^{n} 1_{E_i}$ is total number of people who get own hats.
Say X is a **discrete** random variable if (with probability one) it takes one of a countable set of values.
Say X is a **discrete** random variable if (with probability one) it takes one of a countable set of values.

For each a in this countable set, write $p(a) := P\{X = a\}$. Call p the **probability mass function**.
Say X is a **discrete** random variable if (with probability one) it takes one of a countable set of values.

For each a in this countable set, write $p(a) := P\{X = a\}$. Call p the **probability mass function**.

The **expectation** of X, written $E[X]$, is defined by

$$E[X] = \sum_{x: p(x) > 0} xp(x).$$
Expectation of a discrete random variable

Say X is a **discrete** random variable if (with probability one) it takes one of a countable set of values.

For each a in this countable set, write $p(a) := P\{X = a\}$. Call p the **probability mass function**.

The **expectation** of X, written $E[X]$, is defined by

$$E[X] = \sum_{x: p(x) > 0} xp(x).$$

Represents weighted average of possible values X can take, each value being weighted by its probability.
If the state space S is countable, we can give \textbf{SUM OVER STATE SPACE} definition of expectation:

$$E[X] = \sum_{s \in S} P\{s\} X(s).$$
If the state space S is countable, we can give \textbf{SUM OVER STATE SPACE} definition of expectation:

$$E[X] = \sum_{s \in S} P\{s\} X(s).$$

Agrees with the \textbf{SUM OVER POSSIBLE X VALUES} definition:

$$E[X] = \sum_{x : p(x) > 0} xp(x).$$
If X is a random variable and g is a function from the real numbers to the real numbers then $g(X)$ is also a random variable.

$$E[g(X)] = \sum_{x} g(x) \cdot p(x).$$
Expectation of a function of a random variable

- If X is a random variable and g is a function from the real numbers to the real numbers then $g(X)$ is also a random variable.
- How can we compute $E[g(X)]$?
If X is a random variable and g is a function from the real numbers to the real numbers then $g(X)$ is also a random variable.

How can we compute $E[g(X)]$?

Answer:

$$E[g(X)] = \sum_{x : p(x) > 0} g(x) p(x).$$
If X and Y are distinct random variables, then

This is called the linearity of expectation.

Can extend to more variables
$E[X_1 + X_2 + \ldots + X_n] = E[X_1] + E[X_2] + \ldots + E[X_n]$.

Additivity of expectation
If X and Y are distinct random variables, then
\[E[X + Y] = E[X] + E[Y] \].

In fact, for real constants a and b, we have
\[E[aX + bY] = aE[X] + bE[Y]. \]
Additivity of expectation

- If X and Y are distinct random variables, then $E[X + Y] = E[X] + E[Y]$.
- In fact, for real constants a and b, we have $E[aX + bY] = aE[X] + bE[Y]$.
- This is called the **linearity of expectation**.
Additivity of expectation

- If X and Y are distinct random variables, then
 \[E[X + Y] = E[X] + E[Y]. \]
- In fact, for real constants a and b, we have
 \[E[aX + bY] = aE[X] + bE[Y]. \]
- This is called the **linearity of expectation**.
- Can extend to more variables
 \[E[X_1 + X_2 + \ldots + X_n] = E[X_1] + E[X_2] + \ldots + E[X_n]. \]
Defining variance in discrete case

- Let X be a random variable with mean μ.

Variance is one way to measure the amount a random variable "varies" from its mean over successive trials.

Very important alternate formula:

$$\text{Var}[X] = E[X^2] - (E[X])^2.$$
Let X be a random variable with mean μ.

The variance of X, denoted $\text{Var}(X)$, is defined by $\text{Var}(X) = E[(X - \mu)^2]$.

Variance is one way to measure the amount a random variable "varies" from its mean over successive trials.

Very important alternate formula: $\text{Var}(X) = E[X^2] - (E[X])^2$.
Let X be a random variable with mean μ.

The variance of X, denoted $\text{Var}(X)$, is defined by

$$\text{Var}(X) = E[(X - \mu)^2].$$

Taking $g(x) = (x - \mu)^2$, and recalling that

$$E[g(X)] = \sum_{x: p(x) > 0} g(x)p(x),$$

we find that

$$\text{Var}[X] = \sum_{x: p(x) > 0} (x - \mu)^2 p(x).$$
Let X be a random variable with mean μ.

The variance of X, denoted $\text{Var}(X)$, is defined by

$$\text{Var}(X) = E[(X - \mu)^2].$$

Taking $g(x) = (x - \mu)^2$, and recalling that $E[g(X)] = \sum_{x:p(x)>0} g(x)p(x)$, we find that

$$\text{Var}[X] = \sum_{x:p(x)>0} (x - \mu)^2 p(x).$$

Variance is one way to measure the amount a random variable “varies” from its mean over successive trials.
Let X be a random variable with mean μ.

The variance of X, denoted $\text{Var}(X)$, is defined by

$$\text{Var}(X) = E[(X - \mu)^2].$$

Taking $g(x) = (x - \mu)^2$, and recalling that

$$E[g(X)] = \sum_{x: p(x) > 0} g(x) p(x),$$

we find that

$$\text{Var}[X] = \sum_{x: p(x) > 0} (x - \mu)^2 p(x).$$

Variance is one way to measure the amount a random variable "varies" from its mean over successive trials.

Very important alternate formula: $\text{Var}[X] = E[X^2] - (E[X])^2$.
If $Y = X + b$, where b is constant, then $\text{Var}[Y] = \text{Var}[X]$.
Identity

- If $Y = X + b$, where b is constant, then $\text{Var}[Y] = \text{Var}[X]$.
- Also, $\text{Var}[aX] = a^2 \text{Var}[X]$.
Identity

- If $Y = X + b$, where b is constant, then $\text{Var}[Y] = \text{Var}[X]$.
- Also, $\text{Var}[aX] = a^2 \text{Var}[X]$.
Standard deviation

- Write $SD[X] = \sqrt{\text{Var}[X]}$.
Standard deviation

- Write $SD[X] = \sqrt{Var[X]}$.
- Satisfies identity $SD[aX] = aSD[X]$.

Uses the same units as X itself.
If we switch from feet to inches in our "height of randomly chosen person" example, then X, $E[X]$, and $SD[X]$ each get multiplied by 12, but $Var[X]$ gets multiplied by 144.
Standard deviation

- Write $SD[X] = \sqrt{Var[X]}$.
- Satisfies identity $SD[aX] = aSD[X]$.
- Uses the same units as X itself.
Standard deviation

- Write $\text{SD}[X] = \sqrt{\text{Var}[X]}$.
- Satisfies identity $\text{SD}[aX] = a\text{SD}[X]$.
- Uses the same units as X itself.
- If we switch from feet to inches in our “height of randomly chosen person” example, then X, $E[X]$, and $\text{SD}[X]$ each get multiplied by 12, but $\text{Var}[X]$ gets multiplied by 144.
Bernoulli random variables

- Toss fair coin \(n \) times. (Tosses are independent.) What is the probability of \(k \) heads?

Answer:

\[
\frac{n^k}{2^n}
\]

What if coin has \(p \) probability to be heads?

Answer:

\[
\frac{n^k p^k (1 - p)^{n-k}}{n^k}
\]

Writing \(q = 1 - p \), we can write this as:

\[
\frac{n^k p^k q^{n-k}}{n^k}
\]

Can use binomial theorem to show probabilities sum to one:

\[
1 = \left(p + q \right)^n = \sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k}
\]

Number of heads is binomial random variable with parameters \((n, p)\).
Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?

Answer: $\binom{n}{k}/2^n$.

What if coin has p probability to be heads?

Answer: $\binom{n}{k}p^k(1-p)^{n-k}$.

Writing $q = 1-p$, we can write this as

$\binom{n}{k}p^kq^{n-k}$.

Can use binomial theorem to show probabilities sum to one:

$1 = \binom{n}{0}p^0q^n = \sum_{k=0}^{n} \binom{n}{k}p^kq^{n-k}$.

Number of heads is binomial random variable with parameters (n, p).

Bernoulli random variables
Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?

Answer: $\binom{n}{k}/2^n$.

What if coin has p probability to be heads?
Toss fair coin \(n \) times. (Tosses are independent.) What is the probability of \(k \) heads?

Answer: \(\binom{n}{k}/2^n \).

What if coin has \(p \) probability to be heads?

Answer: \(\binom{n}{k} p^k (1 - p)^{n-k} \).
Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?

Answer: $\binom{n}{k}/2^n$.

What if coin has p probability to be heads?

Answer: $\binom{n}{k}p^k(1-p)^{n-k}$.

Writing $q = 1 - p$, we can write this as $\binom{n}{k}p^kq^{n-k}$.
Bernoulli random variables

- Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?

- Answer: $\binom{n}{k}/2^n$.

- What if coin has p probability to be heads?

- Answer: $\binom{n}{k} p^k (1 - p)^{n-k}$.

- Writing $q = 1 - p$, we can write this as $\binom{n}{k} p^k q^{n-k}$.

- Can use binomial theorem to show probabilities sum to one:
Bernoulli random variables

- Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?
 - Answer: $\binom{n}{k}/2^n$.
- What if coin has p probability to be heads?
 - Answer: $\binom{n}{k} p^k (1 - p)^{n-k}$.
 - Writing $q = 1 - p$, we can write this as $\binom{n}{k} p^k q^{n-k}$.
 - Can use binomial theorem to show probabilities sum to one:
 - $1 = 1^n = (p + q)^n = \sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k}$.

Bernoulli random variables

- Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?
- Answer: $\binom{n}{k} / 2^n$.
- What if coin has p probability to be heads?
- Answer: $\binom{n}{k} p^k (1 - p)^{n-k}$.
- Writing $q = 1 - p$, we can write this as $\binom{n}{k} p^k q^{n-k}$.
- Can use binomial theorem to show probabilities sum to one:
 - $1 = 1^n = (p + q)^n = \sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k}$.
- Number of heads is binomial random variable with parameters (n, p).
Let X be a binomial random variable with parameters (n, p). Here is one way to compute $E[X]$.

Think of X as representing number of heads in n tosses of a coin that is heads with probability p.

Write $X = \sum_{j=1}^{n} X_j$, where X_j is 1 if the jth coin is heads, 0 otherwise.

In other words, X_j is the number of heads (zero or one) on the jth toss.

Note that $E[X_j] = p \cdot 1 + (1-p) \cdot 0 = p$ for each j.

Conclude by additivity of expectation that $E[X] = \sum_{j=1}^{n} E[X_j] = np$.

Decomposition approach to computing expectation
Let X be a binomial random variable with parameters (n, p). Here is one way to compute $E[X]$.

Think of X as representing number of heads in n tosses of coin that is heads with probability p.
Let X be a binomial random variable with parameters (n, p). Here is one way to compute $E[X]$.

Think of X as representing number of heads in n tosses of coin that is heads with probability p.

Write $X = \sum_{j=1}^{n} X_j$, where X_j is 1 if the jth coin is heads, 0 otherwise.
Let X be a binomial random variable with parameters (n, p). Here is one way to compute $E[X]$.

Think of X as representing number of heads in n tosses of coin that is heads with probability p.

Write $X = \sum_{j=1}^{n} X_j$, where X_j is 1 if the jth coin is heads, 0 otherwise.

In other words, X_j is the number of heads (zero or one) on the jth toss.
Let X be a binomial random variable with parameters (n, p). Here is one way to compute $E[X]$.

Think of X as representing number of heads in n tosses of coin that is heads with probability p.

Write $X = \sum_{j=1}^{n} X_j$, where X_j is 1 if the jth coin is heads, 0 otherwise.

In other words, X_j is the number of heads (zero or one) on the jth toss.

Note that $E[X_j] = p \cdot 1 + (1 - p) \cdot 0 = p$ for each j.
Decomposition approach to computing expectation

Let X be a binomial random variable with parameters (n, p). Here is one way to compute $E[X]$.

Think of X as representing number of heads in n tosses of coin that is heads with probability p.

Write $X = \sum_{j=1}^{n} X_j$, where X_j is 1 if the jth coin is heads, 0 otherwise.

In other words, X_j is the number of heads (zero or one) on the jth toss.

Note that $E[X_j] = p \cdot 1 + (1 - p) \cdot 0 = p$ for each j.

Conclude by additivity of expectation that

$$E[X] = \sum_{j=1}^{n} E[X_j] = \sum_{j=1}^{n} p = np.$$
Compute variance with decomposition trick

\[X = \sum_{j=1}^{n} X_j, \text{ so} \]
\[E[X^2] = E[\sum_{i=1}^{n} X_i \sum_{j=1}^{n} X_j] = \sum_{i=1}^{n} \sum_{j=1}^{n} E[X_iX_j] \]
Compute variance with decomposition trick

- $X = \sum_{j=1}^{n} X_j$, so

 $E[X^2] = E[\sum_{i=1}^{n} X_i \sum_{j=1}^{n} X_j] = \sum_{i=1}^{n} \sum_{j=1}^{n} E[X_i X_j]$

- $E[X_i X_j]$ is p if $i = j$, p^2 otherwise.
Compute variance with decomposition trick

- \(X = \sum_{j=1}^{n} X_j \), so
 \[
 E[X^2] = E[\sum_{i=1}^{n} X_i \sum_{j=1}^{n} X_j] = \sum_{i=1}^{n} \sum_{j=1}^{n} E[X_i X_j]
 \]
- \(E[X_i X_j] \) is \(p \) if \(i = j \), \(p^2 \) otherwise.
- \(\sum_{i=1}^{n} \sum_{j=1}^{n} E[X_i X_j] \) has \(n \) terms equal to \(p \) and \((n - 1)n \) terms equal to \(p^2 \).
Compute variance with decomposition trick

- \(X = \sum_{j=1}^{n} X_j \), so
 \[E[X^2] = E[\sum_{i=1}^{n} X_i \sum_{j=1}^{n} X_j] = \sum_{i=1}^{n} \sum_{j=1}^{n} E[X_i X_j] \]

- \(E[X_i X_j] \) is \(p \) if \(i = j \), \(p^2 \) otherwise.

- \(\sum_{i=1}^{n} \sum_{j=1}^{n} E[X_i X_j] \) has \(n \) terms equal to \(p \) and \((n - 1)n \) terms equal to \(p^2 \).

- So \(E[X^2] = np + (n - 1)np^2 = np + (np)^2 - np^2 \).
Compute variance with decomposition trick

- $X = \sum_{j=1}^{n} X_j$, so

 $E[X^2] = E[\sum_{i=1}^{n} X_i \sum_{j=1}^{n} X_j] = \sum_{i=1}^{n} \sum_{j=1}^{n} E[X_i X_j]$

- $E[X_i X_j]$ is p if $i = j$, p^2 otherwise.

- $\sum_{i=1}^{n} \sum_{j=1}^{n} E[X_i X_j]$ has n terms equal to p and $(n - 1)n$ terms equal to p^2.

- So $E[X^2] = np + (n - 1)np^2 = np + (np)^2 - np^2$.

- Thus

Compute variance with decomposition trick

- \(X = \sum_{j=1}^{n} X_j \), so
 \[
 E[X^2] = E[\sum_{i=1}^{n} X_i \sum_{j=1}^{n} X_j] = \sum_{i=1}^{n} \sum_{j=1}^{n} E[X_i X_j]
 \]
- \(E[X_i X_j] \) is \(p \) if \(i = j \), \(p^2 \) otherwise.
- \(\sum_{i=1}^{n} \sum_{j=1}^{n} E[X_i X_j] \) has \(n \) terms equal to \(p \) and \((n-1)n \) terms equal to \(p^2 \).
- So \(E[X^2] = np + (n-1)np^2 = np + (np)^2 - np^2 \).
- Thus
 \[
 \]
- Can show generally that if \(X_1, \ldots, X_n \) independent then
 \[
 \text{Var}[\sum_{j=1}^{n} X_j] = \sum_{j=1}^{n} \text{Var}[X_j]
 \]
Let λ be some moderate-sized number. Say $\lambda = 2$ or $\lambda = 3$. Let n be a huge number, say $n = 10^6$.

A Poisson random variable X with parameter λ satisfies $P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}$ for integer $k \geq 0$.

$\text{Let } \lambda \text{ be some moderate-sized number. Say } \lambda = 2 \text{ or } \lambda = 3. \text{ Let } n \text{ be a huge number, say } n = 10^6.$
Let λ be some moderate-sized number. Say $\lambda = 2$ or $\lambda = 3$. Let n be a huge number, say $n = 10^6$.

Suppose I have a coin that comes on heads with probability λ/n and I toss it n times.
Let λ be some moderate-sized number. Say $\lambda = 2$ or $\lambda = 3$. Let n be a huge number, say $n = 10^6$.

Suppose I have a coin that comes on heads with probability λ/n and I toss it n times.

How many heads do I expect to see?
Let \(\lambda \) be some moderate-sized number. Say \(\lambda = 2 \) or \(\lambda = 3 \). Let \(n \) be a huge number, say \(n = 10^6 \).

Suppose I have a coin that comes on heads with probability \(\lambda/n \) and I toss it \(n \) times.

How many heads do I expect to see?

Answer: \(np = \lambda \).
Let λ be some moderate-sized number. Say $\lambda = 2$ or $\lambda = 3$. Let n be a huge number, say $n = 10^6$.

Suppose I have a coin that comes on heads with probability λ/n and I toss it n times.

How many heads do I expect to see?

Answer: $np = \lambda$.

Let k be some moderate sized number (say $k = 4$). What is the probability that I see exactly k heads?
Let λ be some moderate-sized number. Say $\lambda = 2$ or $\lambda = 3$. Let n be a huge number, say $n = 10^6$. Suppose I have a coin that comes on heads with probability λ/n and I toss it n times. How many heads do I expect to see? Answer: $np = \lambda$. Let k be some moderate sized number (say $k = 4$). What is the probability that I see exactly k heads?

Binomial formula:

$$\binom{n}{k} p^k (1 - p)^{n-k} = \frac{n(n-1)(n-2)\ldots(n-k+1)}{k!} p^k (1 - p)^{n-k}.$$
Let λ be some moderate-sized number. Say $\lambda = 2$ or $\lambda = 3$. Let n be a huge number, say $n = 10^6$.

Suppose I have a coin that comes on heads with probability λ/n and I toss it n times.

How many heads do I expect to see?

Answer: $np = \lambda$.

Let k be some moderate sized number (say $k = 4$). What is the probability that I see exactly k heads?

Binomial formula:

$$\binom{n}{k} p^k (1 - p)^{n-k} = \frac{n(n-1)(n-2)\ldots(n-k+1)}{k!} p^k (1 - p)^{n-k}.$$

This is approximately $\frac{\lambda^k}{k!} (1 - p)^{n-k} \approx \frac{\lambda^k}{k!} e^{-\lambda}$.

A Poisson random variable X with parameter λ satisfies

$\Pr\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}$ for integer $k \geq 0$.
Let λ be some moderate-sized number. Say $\lambda = 2$ or $\lambda = 3$. Let n be a huge number, say $n = 10^6$.

Suppose I have a coin that comes on heads with probability λ/n and I toss it n times.

How many heads do I expect to see?

Answer: $np = \lambda$.

Let k be some moderate sized number (say $k = 4$). What is the probability that I see exactly k heads?

Binomial formula:

$$\binom{n}{k} p^k (1 - p)^{n-k} = \frac{n(n-1)(n-2)\ldots(n-k+1)}{k!} p^k (1 - p)^{n-k}.$$

This is approximately $\frac{\lambda^k}{k!} (1 - p)^{n-k} \approx \frac{\lambda^k}{k!} e^{-\lambda}$.

A Poisson random variable X with parameter λ satisfies $P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}$ for integer $k \geq 0$.
A Poisson random variable X with parameter λ satisfies
\[P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda} \text{ for integer } k \geq 0. \]
A Poisson random variable X with parameter λ satisfies
\[P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda} \] for integer $k \geq 0$.

Clever computation tricks yield $E[X] = \lambda$ and $\text{Var}[X] = \lambda$.
A Poisson random variable X with parameter λ satisfies $P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}$ for integer $k \geq 0$.

clever computation tricks yield $E[X] = \lambda$ and $\text{Var}[X] = \lambda$.

We think of a Poisson random variable as being (roughly) a Bernoulli (n, p) random variable with n very large and $p = \lambda/n$.
A Poisson random variable X with parameter λ satisfies $P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}$ for integer $k \geq 0$.

Clever computation tricks yield $E[X] = \lambda$ and $\text{Var}[X] = \lambda$.

We think of a Poisson random variable as being (roughly) a Bernoulli (n, p) random variable with n very large and $p = \lambda/n$.

This also suggests $E[X] = np = \lambda$ and $\text{Var}[X] = npq \approx \lambda$.
A Poisson point process is a random function $N(t)$ called a Poisson process of rate λ.

- For each $t > s \geq 0$, the value $N(t) - N(s)$ describes the number of events occurring in the time interval (s, t) and is Poisson with rate $(t - s)\lambda$.
- The numbers of events occurring in disjoint intervals are independent random variables.
- Probability to see zero events in first t time units is $e^{-\lambda t}$.
- Let T_k be time elapsed, since the previous event, until the kth event occurs. Then the T_k are independent random variables, each of which is exponential with parameter λ.
A Poisson point process is a random function \(N(t) \) called a Poisson process of rate \(\lambda \).

For each \(t > s \geq 0 \), the value \(N(t) - N(s) \) describes the number of events occurring in the time interval \((s, t)\) and is Poisson with rate \((t - s)\lambda\).
A Poisson point process is a random function $N(t)$ called a Poisson process of rate λ.

For each $t > s \geq 0$, the value $N(t) - N(s)$ describes the number of events occurring in the time interval (s, t) and is Poisson with rate $(t - s)\lambda$.

The numbers of events occurring in disjoint intervals are independent random variables.
A Poisson point process is a random function $N(t)$ called a Poisson process of rate λ.

For each $t > s \geq 0$, the value $N(t) - N(s)$ describes the number of events occurring in the time interval (s, t) and is Poisson with rate $(t - s)\lambda$.

The numbers of events occurring in disjoint intervals are independent random variables.

Probability to see zero events in first t time units is $e^{-\lambda t}$.

Let T_k be time elapsed, since the previous event, until the kth event occurs. Then the T_k are independent random variables, each of which is exponential with parameter λ.

More card problems

- What’s the probability of a full house in poker (i.e., in a five card hand, 2 have one value and three have another)?
More card problems

- What’s the probability of a full house in poker (i.e., in a five card hand, 2 have one value and three have another)?
- What is the probability of a two-pair hand in poker?
More card problems

- What’s the probability of a full house in poker (i.e., in a five card hand, 2 have one value and three have another)?
- What is the probability of a two-pair hand in poker?
- What is the probability of a bridge hand with 3 of one suit, 3 of one suit, 2 of one suit, 5 of another suit?
Probability have rare disease given positive result to test with 90 percent accuracy.
Disease problems

- Probability have rare disease given positive result to test with 90 percent accuracy.
- Say probability to have disease is p.
Probability have rare disease given positive result to test with 90 percent accuracy.

Say probability to have disease is p.

$S = \{\text{disease, no disease}\} \times \{\text{positive, negative}\}$.
Disease problems

- Probability have rare disease given positive result to test with 90 percent accuracy.
- Say probability to have disease is p.
- $S = \{\text{disease, no disease}\} \times \{\text{positive, negative}\}$.
- $P(\text{positive}) = .9p + .1(1 - p)$ and $P(\text{disease, positive}) = .9p$.
▶ Probability have rare disease given positive result to test with 90 percent accuracy.
▶ Say probability to have disease is p.
▶ $S = \{\text{disease, no disease}\} \times \{\text{positive, negative}\}$.
▶ $P(\text{positive}) = .9p + .1(1 - p)$ and $P(\text{disease, positive}) = .9p$.
▶ $P(\text{disease|positive}) = \frac{.9p}{.9p + .1(1 - p)}$. If p is tiny, this is about $9p$.