# 18.600: Lecture 39 <br> Review: practice problems 

Scott Sheffield

MIT

## Martingales

- Let $X_{i}$ be independent random variables with mean zero. In which of the cases below is the sequence $Y_{i}$ necessarily a martingale?


## Martingales

- Let $X_{i}$ be independent random variables with mean zero. In which of the cases below is the sequence $Y_{i}$ necessarily a martingale?
- $Y_{n}=\sum_{i=1}^{n} i X_{i}$


## Martingales

- Let $X_{i}$ be independent random variables with mean zero. In which of the cases below is the sequence $Y_{i}$ necessarily a martingale?
- $Y_{n}=\sum_{i=1}^{n} i X_{i}$
- $Y_{n}=\sum_{i=1}^{n} X_{i}^{2}-n$


## Martingales

- Let $X_{i}$ be independent random variables with mean zero. In which of the cases below is the sequence $Y_{i}$ necessarily a martingale?
$\begin{aligned}-Y_{n} & =\sum_{i=1}^{n} i X_{i} \\ -Y_{n} & =\sum_{i=1}^{n} X_{i}^{2}-n \\ -Y_{n} & =\prod_{i=1}^{n}\left(1+X_{i}\right)\end{aligned}$


## Martingales

- Let $X_{i}$ be independent random variables with mean zero. In which of the cases below is the sequence $Y_{i}$ necessarily a martingale?
$\begin{aligned} &-Y_{n}=\sum_{i=1}^{n} i X_{i} \\ &-Y_{n}=\sum_{i=1}^{n} X_{i}^{2}-n \\ &-Y_{n}=\prod_{i=1}^{n}\left(1+X_{i}\right) \\ &-Y_{n}=\prod_{i=1}^{n}\left(X_{i}-1\right)\end{aligned}$


## Martingales

- Yes, no, yes, no.


## Calculations like those needed for Black-Scholes derivation

- Let $X$ be a normal random variable with mean 0 and variance 1. Compute the following (you may use the function $\Phi(a):=\int_{-\infty}^{a} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x$ in your answers):


## Calculations like those needed for Black-Scholes derivation

- Let $X$ be a normal random variable with mean 0 and variance 1. Compute the following (you may use the function $\Phi(a):=\int_{-\infty}^{a} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x$ in your answers):
- $E\left[e^{3 X-3}\right]$.


## Calculations like those needed for Black-Scholes derivation

- Let $X$ be a normal random variable with mean 0 and variance 1. Compute the following (you may use the function $\Phi(a):=\int_{-\infty}^{a} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x$ in your answers):
- $E\left[e^{3 X-3}\right]$.
- $E\left[e^{X} 1_{X \in(a, b)}\right]$ for fixed constants $a<b$.


## Calculations like those needed for Black-Scholes derivation - answers

$$
\begin{aligned}
E\left[e^{3 X-3}\right] & =\int_{-\infty}^{\infty} e^{3 x-3} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}-6 x+6}{2}} d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}-6 x+9}{2}} e^{3 / 2} d x \\
& =e^{3 / 2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(x-3)^{2}}{2}} d x \\
& =e^{3 / 2}
\end{aligned}
$$

## Calculations like those needed for Black-Scholes derivation - answers

$$
\begin{aligned}
E\left[e^{X} 1_{X \in(a, b)}\right] & =\int_{a}^{b} e^{x} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x \\
& =\int_{a}^{b} e^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x \\
& =\int_{a}^{b} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}-2 x+1-1}{2}} d x \\
& =e^{1 / 2} \int_{a}^{b} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(x-1)^{2}}{2}} d x \\
& =e^{1 / 2} \int_{a-1}^{b-1} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x \\
& =e^{1 / 2}(\Phi(b-1)-\Phi(a-1))
\end{aligned}
$$

## Call functions

Let $X$ be a uniform random variable on the interval $[0,1]$. For each real number $K$ write $C(K)=E[\max \{X-K, 0\}]$.

- Compute $C(K)$ as a function of $K$ for $K \in[0,1]$.


## Call functions

Let $X$ be a uniform random variable on the interval $[0,1]$. For each real number $K$ write $C(K)=E[\max \{X-K, 0\}]$.

- Compute $C(K)$ as a function of $K$ for $K \in[0,1]$.
- Compute the derivatives $C^{\prime}$ and $C^{\prime \prime}$ on the interval $[0,1]$.


## Call functions - answers

- $C(K)=\int_{0}^{1} \max \{x-K, 0\} d x=\int_{K}^{1}(x-K) d x=(1-K)^{2} / 2$.


## Call functions - answers

- $C(K)=\int_{0}^{1} \max \{x-K, 0\} d x=\int_{K}^{1}(x-K) d x=(1-K)^{2} / 2$.
- Taking derivative directly gives $C^{\prime}(x)=-(1-x)=x-1$ and $C^{\prime \prime}(x)=1$. Alternatively, one could remember the call function formulas derived in lecture: $C^{\prime}(x)=F_{X}(x)-1$ and $C^{\prime \prime}(x)=f_{X}(x)$.


## If you want more probability and statistics...

- UNDERGRADUATE:
(a) 18.615 Introduction to Stochastic Processes
(b) 18.642 Topics in Math with Applications in Finance
(c) 18.650 Statistics for Applications
(d) 18.???/6.265/15.070 Advanced Stochastic Processes


## If you want more probability and statistics...

- UNDERGRADUATE:
(a) 18.615 Introduction to Stochastic Processes
(b) 18.642 Topics in Math with Applications in Finance
(c) 18.650 Statistics for Applications
(d) 18.???/6.265/15.070 Advanced Stochastic Processes
- GRADUATE LEVEL PROBABILITY
(a) 18.675 (formerly 18.175) Theory of Probability
(b) 18.676 (formerly 18.176) Stochastic calculus
(c) 18.677 (formerly 18.177) Topics in stochastic processes (topics vary, can be pretty much anything in probability, repeatable)


## If you want more probability and statistics...

- UNDERGRADUATE:
(a) 18.615 Introduction to Stochastic Processes
(b) 18.642 Topics in Math with Applications in Finance
(c) 18.650 Statistics for Applications
(d) 18.???/6.265/15.070 Advanced Stochastic Processes
- GRADUATE LEVEL PROBABILITY
(a) 18.675 (formerly 18.175) Theory of Probability
(b) 18.676 (formerly 18.176) Stochastic calculus
(c) 18.677 (formerly 18.177) Topics in stochastic processes (topics vary, can be pretty much anything in probability, repeatable)
- GRADUATE LEVEL STATISTICS
(a) 18.655 Mathematical statistics
(b) 18.657 Topics in statistics (topics vary, repeatable)


## If you want more probability and statistics...

- UNDERGRADUATE:
(a) 18.615 Introduction to Stochastic Processes
(b) 18.642 Topics in Math with Applications in Finance
(c) 18.650 Statistics for Applications
(d) 18.???/6.265/15.070 Advanced Stochastic Processes
- GRADUATE LEVEL PROBABILITY
(a) 18.675 (formerly 18.175) Theory of Probability
(b) 18.676 (formerly 18.176) Stochastic calculus
(c) 18.677 (formerly 18.177) Topics in stochastic processes (topics vary, can be pretty much anything in probability, repeatable)
- GRADUATE LEVEL STATISTICS
(a) 18.655 Mathematical statistics
(b) 18.657 Topics in statistics (topics vary, repeatable)
- OUTSIDE OF MATH DEPARTMENT
(a) Look up MIT minor in statistics and data sciences.
(b) Look up longer lists of probability/statistics courses at https:
//stat.mit.edu/academics/minor-in-statistics/
(c) Ask MIT faculty how they use probability/statistics in research.


## Thanks for taking the course!

- Considering previous generations of mathematically inclined MIT students, and adopting a frequentist point of view...


## Thanks for taking the course!

- Considering previous generations of mathematically inclined MIT students, and adopting a frequentist point of view...
- You will probably do some important things with your lives.


## Thanks for taking the course!

- Considering previous generations of mathematically inclined MIT students, and adopting a frequentist point of view...
- You will probably do some important things with your lives.
- I hope your probabilistic shrewdness serves you well.


## Thanks for taking the course!

- Considering previous generations of mathematically inclined MIT students, and adopting a frequentist point of view...
- You will probably do some important things with your lives.
- I hope your probabilistic shrewdness serves you well.
- Thinking more short term...


## Thanks for taking the course!

- Considering previous generations of mathematically inclined MIT students, and adopting a frequentist point of view...
- You will probably do some important things with your lives.
- I hope your probabilistic shrewdness serves you well.
- Thinking more short term...
- Happy exam day!


## Thanks for taking the course!

- Considering previous generations of mathematically inclined MIT students, and adopting a frequentist point of view...
- You will probably do some important things with your lives.
- I hope your probabilistic shrewdness serves you well.
- Thinking more short term...
- Happy exam day!
- And may the odds be ever in your favor.

