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Continuous random variables

▶ Say X is a continuous random variable if there exists a
probability density function f = fX on R such that
P{X ∈ B} =

∫
B f (x)dx :=

∫
1B(x)f (x)dx .

▶ We may assume
∫
R f (x)dx =

∫∞
−∞ f (x)dx = 1 and f is

non-negative.

▶ Probability of interval [a, b] is given by
∫ b
a f (x)dx , the area

under f between a and b.

▶ Probability of any single point is zero.

▶ Define cumulative distribution function
F (a) = FX (a) := P{X < a} = P{X ≤ a} =

∫ a
−∞ f (x)dx .
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Simple example

▶ Suppose f (x) =

{
1/2 x ∈ [0, 2]

0 x ̸∈ [0, 2].

▶ What is P{X < 3/2}?
▶ What is P{X = 3/2}?
▶ What is P{1/2 < X < 3/2}?
▶ What is P{X ∈ (0, 1) ∪ (3/2, 5)}?
▶ What is F?

▶ F (a) = FX (a) =


0 a ≤ 0

a/2 0 < a < 2

1 a ≥ 2

▶ In general P(a ≤ x ≤ b) = F (b)− F (x).

▶ We say that X is uniformly distributed on [0, 2].
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Expectations of continuous random variables

▶ Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote

E [X ] =
∑

x :p(x)>0

p(x)x .

▶ How should we define E [X ] when X is a continuous random
variable?

▶ Answer: E [X ] =
∫∞
−∞ f (x)xdx .

▶ Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote

E [g(X )] =
∑

x :p(x)>0

p(x)g(x).

▶ What is the analog when X is a continuous random variable?

▶ Answer: we will write E [g(X )] =
∫∞
−∞ f (x)g(x)dx .
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Variance of continuous random variables

▶ Suppose X is a continuous random variable with mean µ.

▶ We can write Var[X ] = E [(X − µ)2], same as in the discrete
case.

▶ Next, if g = g1 + g2 then
E [g(X )] =

∫
g1(x)f (x)dx +

∫
g2(x)f (x)dx =∫ (

g1(x) + g2(x)
)
f (x)dx = E [g1(X )] + E [g2(X )].

▶ Furthermore, E [ag(X )] = aE [g(X )] when a is a constant.

▶ Just as in the discrete case, we can expand the variance
expression as Var[X ] = E [X 2 − 2µX + µ2] and use additivity
of expectation to say that
Var[X ] = E [X 2]− 2µE [X ] + E [µ2] = E [X 2]− 2µ2 + µ2 =
E [X 2]− E [X ]2.

▶ This formula is often useful for calculations.
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Uniform random variables on [0, 1]

▶ Suppose X is a random variable with probability density

function f (x) =

{
1 x ∈ [0, 1]

0 x ̸∈ [0, 1].

▶ Then for any 0 ≤ a ≤ b ≤ 1 we have P{X ∈ [a, b]} = b − a.

▶ Intuition: all locations along the interval [0, 1] equally likely.

▶ Say that X is a uniform random variable on [0, 1] or that X
is sampled uniformly from [0, 1].
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Properties of uniform random variable on [0, 1]

▶ Suppose X is a random variable with probability density

function f (x) =

{
1 x ∈ [0, 1]

0 x ̸∈ [0, 1],
which implies

FX (a) =


0 a < 0

a a ∈ [0, 1]

1 a > 1

.

▶ What is E [X ]?
▶ Guess 1/2 (since 1/2 is, you know, in the middle).

▶ Indeed,
∫∞
−∞ f (x)xdx =

∫ 1
0 xdx = x2

2

∣∣∣1
0
= 1/2.

▶ What is the general moment E [X k ] for k ≥ 0?
▶ Answer: 1/(k + 1).
▶ What would you guess the variance is? Expected square of

distance from 1/2?
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Uniform random variables on [α, β]

▶ Fix α < β and suppose X is a random variable with

probability density function f (x) =

{
1

β−α x ∈ [α, β]

0 x ̸∈ [α, β].

▶ Then for any α ≤ a ≤ b ≤ β we have P{X ∈ [a, b]} = b−a
β−α .

▶ Intuition: all locations along the interval [α, β] are equally
likely.

▶ Say that X is a uniform random variable on [α, β] or that
X is sampled uniformly from [α, β].
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Uniform random variables on [α, β]

▶ Suppose X is a random variable with probability density

function f (x) =

{
1

β−α x ∈ [α, β]

0 x ̸∈ [α, β].

▶ What is E [X ]?

▶ Intuitively, we’d guess the midpoint α+β
2 .

▶ What’s the cleanest way to prove this?

▶ One approach: let Y be uniform on [0, 1] and try to show that
X = (β − α)Y + α is uniform on [α, β].

▶ Then expectation linearity gives
E [X ] = (β − α)E [Y ] + α = (1/2)(β − α) + α = α+β

2 .

▶ Using similar logic, what is the variance Var[X ]?

▶ Answer: Var[X ] = Var[(β − α)Y + α] = Var[(β − α)Y ] =
(β − α)2Var[Y ] = (β − α)2/12.
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Uniform measure: is probability defined for all subsets?

▶ One of the very simplest probability density functions is

f (x) =

{
1 x ∈ [0, 1]

0 0 ̸∈ [0, 1].
.

▶ If B ⊂ [0, 1] is an interval, then P{X ∈ B} is the length of
that interval.

▶ Generally, if B ⊂ [0, 1] then P{X ∈ B} =
∫
B 1dx =

∫
1B(x)dx

is the “total volume” or “total length” of the set B.

▶ What if B is the set of all rational numbers?

▶ How do we mathematically define the volume of an arbitrary
set B?
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Idea behind parodox

▶ Hypothetical: Consider the interval [0, 1) with the two
endpoints glued together (so it looks like a circle). What if we
could partition [0, 1) into a countably infinite collection of
disjoint sets that all looked the same (up to a rotation of the
circle) and thus had to have the same probability?

▶ If that probability was zero, then (by countable additivity)
probability of whole circle would be zero, a contradiction.

▶ But if that probability were a number greater than zero the
probability of whole circle would be infinite, also a
contradiction...

▶ Related problem: if (in a non-atomic world, where mass was
infinitely divisible) you could cut a donut into countably
infinitely many pieces all of the same weight, how much would
each piece weigh?

▶ Question: Is it really possible to partition [0, 1) into
countably many identical (up to rotation) pieces?
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Cutting donut into countably many identical “pieces”
▶ Call two points “equivalent” if you can get from one to the

other by a 0, 90, 180, or 270 degree rotation.

▶ “Equivalence class” consists of four points obtained by thus
rotating given point. In images below, red set has exactly one
point of each equivalence class.

▶ Whole donut is disjoint union of the four sets obtained as
0/90/180/270 degree rotations of red set.

▶ What if we eplace “0/90/180/270-degree rotations” by
“rational-degree-number rotations”? If red set has one point
from each equivalence class, whole donut is disjoint union of
countably many sets obtained as rational rotations of red set.
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Formulating the paradox more formally

▶ Consider wrap-around translations τr (x) = (x + r) mod 1.

▶ We expect τr (B) to have same probability as B.

▶ Call x , y “equivalent modulo rationals” if x − y is rational
(e.g., x = π − 3 and y = π − 9/4). An equivalence class is
the set of points in [0, 1) equivalent to some given point.

▶ There are uncountably many of these classes.

▶ Let A ⊂ [0, 1) contain one point from each class. For each
x ∈ [0, 1), there is one a ∈ A such that r = x − a is rational.

▶ Then each x in [0, 1) lies in τr (A) for one rational r ∈ [0, 1).

▶ Thus [0, 1) = ∪τr (A) as r ranges over rationals in [0, 1).

▶ If P(A) = 0, then P(S) =
∑

r P(τr (A)) = 0. If P(A) > 0 then
P(S) =

∑
r P(τr (A)) = ∞. Contradicts P(S) = 1 axiom.
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Three ways to get around this

▶ 1. Re-examine axioms of mathematics: the very existence
of a set A with one element from each equivalence class is
consequence of so-called axiom of choice. Removing that
axiom makes paradox goes away, since one can just suppose
(pretend?) these kinds of sets don’t exist.

▶ 2. Re-examine axioms of probability: Replace countable
additivity with finite additivity? (Doesn’t fully solve problem:
look up Banach-Tarski.)

▶ 3. Keep the axiom of choice and countable additivity but
don’t define probabilities of all sets: Instead of defining
P(B) for every subset B of sample space, restrict attention to
a family of so-called “measurable” sets.

▶ Most mainstream probability and analysis takes the third
approach.

▶ In practice, sets we care about (e.g., countable unions of
points and intervals) tend to be measurable.



Three ways to get around this

▶ 1. Re-examine axioms of mathematics: the very existence
of a set A with one element from each equivalence class is
consequence of so-called axiom of choice. Removing that
axiom makes paradox goes away, since one can just suppose
(pretend?) these kinds of sets don’t exist.

▶ 2. Re-examine axioms of probability: Replace countable
additivity with finite additivity? (Doesn’t fully solve problem:
look up Banach-Tarski.)

▶ 3. Keep the axiom of choice and countable additivity but
don’t define probabilities of all sets: Instead of defining
P(B) for every subset B of sample space, restrict attention to
a family of so-called “measurable” sets.

▶ Most mainstream probability and analysis takes the third
approach.

▶ In practice, sets we care about (e.g., countable unions of
points and intervals) tend to be measurable.



Three ways to get around this

▶ 1. Re-examine axioms of mathematics: the very existence
of a set A with one element from each equivalence class is
consequence of so-called axiom of choice. Removing that
axiom makes paradox goes away, since one can just suppose
(pretend?) these kinds of sets don’t exist.

▶ 2. Re-examine axioms of probability: Replace countable
additivity with finite additivity? (Doesn’t fully solve problem:
look up Banach-Tarski.)

▶ 3. Keep the axiom of choice and countable additivity but
don’t define probabilities of all sets: Instead of defining
P(B) for every subset B of sample space, restrict attention to
a family of so-called “measurable” sets.

▶ Most mainstream probability and analysis takes the third
approach.

▶ In practice, sets we care about (e.g., countable unions of
points and intervals) tend to be measurable.



Three ways to get around this

▶ 1. Re-examine axioms of mathematics: the very existence
of a set A with one element from each equivalence class is
consequence of so-called axiom of choice. Removing that
axiom makes paradox goes away, since one can just suppose
(pretend?) these kinds of sets don’t exist.

▶ 2. Re-examine axioms of probability: Replace countable
additivity with finite additivity? (Doesn’t fully solve problem:
look up Banach-Tarski.)

▶ 3. Keep the axiom of choice and countable additivity but
don’t define probabilities of all sets: Instead of defining
P(B) for every subset B of sample space, restrict attention to
a family of so-called “measurable” sets.

▶ Most mainstream probability and analysis takes the third
approach.

▶ In practice, sets we care about (e.g., countable unions of
points and intervals) tend to be measurable.



Three ways to get around this

▶ 1. Re-examine axioms of mathematics: the very existence
of a set A with one element from each equivalence class is
consequence of so-called axiom of choice. Removing that
axiom makes paradox goes away, since one can just suppose
(pretend?) these kinds of sets don’t exist.

▶ 2. Re-examine axioms of probability: Replace countable
additivity with finite additivity? (Doesn’t fully solve problem:
look up Banach-Tarski.)

▶ 3. Keep the axiom of choice and countable additivity but
don’t define probabilities of all sets: Instead of defining
P(B) for every subset B of sample space, restrict attention to
a family of so-called “measurable” sets.

▶ Most mainstream probability and analysis takes the third
approach.

▶ In practice, sets we care about (e.g., countable unions of
points and intervals) tend to be measurable.



Perspective

▶ More advanced courses in probability and analysis (such as
18.125 and 18.675) spend a significant amount of time
rigorously constructing a class of so-called measurable sets
and the so-called Lebesgue measure, which assigns a real
number (a measure) to each of these sets.

▶ These courses also replace the Riemann integral with the
so-called Lebesgue integral.

▶ We will not treat these topics any further in this course.

▶ We usually limit our attention to probability density functions
f and sets B for which the ordinary Riemann integral∫
1B(x)f (x)dx is well defined.

▶ Riemann integration is a mathematically rigorous theory. It’s
just not as robust as Lebesgue integration.
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