18.600: Lecture 15

Continuous random variables

Scott Sheffield

MIT

Outline

Continuous random variables

Expectation and variance of continuous random variables

Uniform random variable on $[0,1]$

Uniform random variable on $[\alpha, \beta]$

Measurable sets and a famous paradox

Outline

Continuous random variables

Expectation and variance of continuous random variables

Uniform random variable on $[0,1]$

Uniform random variable on $[\alpha, \beta]$

Measurable sets and a famous paradox

Continuous random variables

- Say X is a continuous random variable if there exists a probability density function $f=f_{X}$ on \mathbb{R} such that $P\{X \in B\}=\int_{B} f(x) d x:=\int 1_{B}(x) f(x) d x$.

Continuous random variables

- Say X is a continuous random variable if there exists a probability density function $f=f_{X}$ on \mathbb{R} such that $P\{X \in B\}=\int_{B} f(x) d x:=\int 1_{B}(x) f(x) d x$.
- We may assume $\int_{\mathbb{R}} f(x) d x=\int_{-\infty}^{\infty} f(x) d x=1$ and f is non-negative.

Continuous random variables

- Say X is a continuous random variable if there exists a probability density function $f=f_{X}$ on \mathbb{R} such that $P\{X \in B\}=\int_{B} f(x) d x:=\int 1_{B}(x) f(x) d x$.
- We may assume $\int_{\mathbb{R}} f(x) d x=\int_{-\infty}^{\infty} f(x) d x=1$ and f is non-negative.
- Probability of interval $[a, b]$ is given by $\int_{a}^{b} f(x) d x$, the area under f between a and b.

Continuous random variables

- Say X is a continuous random variable if there exists a probability density function $f=f_{X}$ on \mathbb{R} such that $P\{X \in B\}=\int_{B} f(x) d x:=\int 1_{B}(x) f(x) d x$.
- We may assume $\int_{\mathbb{R}} f(x) d x=\int_{-\infty}^{\infty} f(x) d x=1$ and f is non-negative.
- Probability of interval $[a, b]$ is given by $\int_{a}^{b} f(x) d x$, the area under f between a and b.
- Probability of any single point is zero.

Continuous random variables

- Say X is a continuous random variable if there exists a probability density function $f=f_{X}$ on \mathbb{R} such that $P\{X \in B\}=\int_{B} f(x) d x:=\int 1_{B}(x) f(x) d x$.
- We may assume $\int_{\mathbb{R}} f(x) d x=\int_{-\infty}^{\infty} f(x) d x=1$ and f is non-negative.
- Probability of interval $[a, b]$ is given by $\int_{a}^{b} f(x) d x$, the area under f between a and b.
- Probability of any single point is zero.
- Define cumulative distribution function $F(a)=F_{X}(a):=P\{X<a\}=P\{X \leq a\}=\int_{-\infty}^{a} f(x) d x$.

Simple example

- Suppose $f(x)= \begin{cases}1 / 2 & x \in[0,2] \\ 0 & x \notin[0,2] .\end{cases}$

Simple example

- Suppose $f(x)= \begin{cases}1 / 2 & x \in[0,2] \\ 0 & x \notin[0,2] .\end{cases}$
- What is $P\{X<3 / 2\}$?

Simple example

- Suppose $f(x)= \begin{cases}1 / 2 & x \in[0,2] \\ 0 & x \notin[0,2] .\end{cases}$
- What is $P\{X<3 / 2\}$?
- What is $P\{X=3 / 2\}$?

Simple example

- Suppose $f(x)= \begin{cases}1 / 2 & x \in[0,2] \\ 0 & x \notin[0,2] .\end{cases}$
- What is $P\{X<3 / 2\}$?
- What is $P\{X=3 / 2\}$?
- What is $P\{1 / 2<X<3 / 2\}$?

Simple example

- Suppose $f(x)= \begin{cases}1 / 2 & x \in[0,2] \\ 0 & x \notin[0,2] .\end{cases}$
- What is $P\{X<3 / 2\}$?
- What is $P\{X=3 / 2\}$?
- What is $P\{1 / 2<X<3 / 2\}$?
- What is $P\{X \in(0,1) \cup(3 / 2,5)\}$?

Simple example

- Suppose $f(x)= \begin{cases}1 / 2 & x \in[0,2] \\ 0 & x \notin[0,2] .\end{cases}$
- What is $P\{X<3 / 2\}$?
- What is $P\{X=3 / 2\}$?
- What is $P\{1 / 2<X<3 / 2\}$?
- What is $P\{X \in(0,1) \cup(3 / 2,5)\}$?
- What is F ?

Simple example

- Suppose $f(x)= \begin{cases}1 / 2 & x \in[0,2] \\ 0 & x \notin[0,2] .\end{cases}$
- What is $P\{X<3 / 2\}$?
- What is $P\{X=3 / 2\}$?
- What is $P\{1 / 2<X<3 / 2\}$?
- What is $P\{X \in(0,1) \cup(3 / 2,5)\}$?
- What is F ?
- $F(a)=F_{X}(a)= \begin{cases}0 & a \leq 0 \\ a / 2 & 0<a<2 \\ 1 & a \geq 2\end{cases}$

Simple example

- Suppose $f(x)= \begin{cases}1 / 2 & x \in[0,2] \\ 0 & x \notin[0,2] .\end{cases}$
- What is $P\{X<3 / 2\}$?
- What is $P\{X=3 / 2\}$?
- What is $P\{1 / 2<X<3 / 2\}$?
- What is $P\{X \in(0,1) \cup(3 / 2,5)\}$?
- What is F ?
- $F(a)=F_{X}(a)= \begin{cases}0 & a \leq 0 \\ a / 2 & 0<a<2 \\ 1 & a \geq 2\end{cases}$
- In general $P(a \leq x \leq b)=F(b)-F(x)$.

Simple example

- Suppose $f(x)= \begin{cases}1 / 2 & x \in[0,2] \\ 0 & x \notin[0,2] .\end{cases}$
- What is $P\{X<3 / 2\}$?
- What is $P\{X=3 / 2\}$?
- What is $P\{1 / 2<X<3 / 2\}$?
- What is $P\{X \in(0,1) \cup(3 / 2,5)\}$?
- What is F ?
- $F(a)=F_{X}(a)= \begin{cases}0 & a \leq 0 \\ a / 2 & 0<a<2 \\ 1 & a \geq 2\end{cases}$
- In general $P(a \leq x \leq b)=F(b)-F(x)$.
- We say that X is uniformly distributed on $[0,2]$.

Another example

- Suppose $f(x)= \begin{cases}x / 2 & x \in[0,2] \\ 0 & 0 \notin[0,2] .\end{cases}$

Another example

- Suppose $f(x)= \begin{cases}x / 2 & x \in[0,2] \\ 0 & 0 \notin[0,2] .\end{cases}$
- What is $P\{X<3 / 2\}$?

Another example

- Suppose $f(x)= \begin{cases}x / 2 & x \in[0,2] \\ 0 & 0 \notin[0,2] .\end{cases}$
- What is $P\{X<3 / 2\}$?
- What is $P\{X=3 / 2\}$?

Another example

- Suppose $f(x)= \begin{cases}x / 2 & x \in[0,2] \\ 0 & 0 \notin[0,2]\end{cases}$
- What is $P\{X<3 / 2\}$?
- What is $P\{X=3 / 2\}$?
- What is $P\{1 / 2<X<3 / 2\}$?

Another example

- Suppose $f(x)= \begin{cases}x / 2 & x \in[0,2] \\ 0 & 0 \notin[0,2]\end{cases}$
- What is $P\{X<3 / 2\}$?
- What is $P\{X=3 / 2\}$?
- What is $P\{1 / 2<X<3 / 2\}$?
- What is F ?

Another example

- Suppose $f(x)= \begin{cases}x / 2 & x \in[0,2] \\ 0 & 0 \notin[0,2]\end{cases}$
- What is $P\{X<3 / 2\}$?
- What is $P\{X=3 / 2\}$?
- What is $P\{1 / 2<X<3 / 2\}$?
- What is F ?
- $F_{X}(a)= \begin{cases}0 & a \leq 0 \\ a^{2} / 4 & 0<a<2 \\ 1 & a \geq 2\end{cases}$

Outline

Continuous random variables

Expectation and variance of continuous random variables

Uniform random variable on $[0,1]$

Uniform random variable on $[\alpha, \beta]$

Measurable sets and a famous paradox

Outline

Continuous random variables

Expectation and variance of continuous random variables

Uniform random variable on $[0,1]$

Uniform random variable on $[\alpha, \beta]$

Measurable sets and a famous paradox

Expectations of continuous random variables

- Recall that when X was a discrete random variable, with $p(x)=P\{X=x\}$, we wrote

$$
E[X]=\sum_{x: p(x)>0} p(x) x .
$$

Expectations of continuous random variables

- Recall that when X was a discrete random variable, with $p(x)=P\{X=x\}$, we wrote

$$
E[X]=\sum_{x: p(x)>0} p(x) x
$$

- How should we define $E[X]$ when X is a continuous random variable?

Expectations of continuous random variables

- Recall that when X was a discrete random variable, with $p(x)=P\{X=x\}$, we wrote

$$
E[X]=\sum_{x: p(x)>0} p(x) x
$$

- How should we define $E[X]$ when X is a continuous random variable?
- Answer: $E[X]=\int_{-\infty}^{\infty} f(x) x d x$.

Expectations of continuous random variables

- Recall that when X was a discrete random variable, with $p(x)=P\{X=x\}$, we wrote

$$
E[X]=\sum_{x: p(x)>0} p(x) x
$$

- How should we define $E[X]$ when X is a continuous random variable?
- Answer: $E[X]=\int_{-\infty}^{\infty} f(x) x d x$.
- Recall that when X was a discrete random variable, with $p(x)=P\{X=x\}$, we wrote

$$
E[g(X)]=\sum_{x: p(x)>0} p(x) g(x)
$$

Expectations of continuous random variables

- Recall that when X was a discrete random variable, with $p(x)=P\{X=x\}$, we wrote

$$
E[X]=\sum_{x: p(x)>0} p(x) x
$$

- How should we define $E[X]$ when X is a continuous random variable?
- Answer: $E[X]=\int_{-\infty}^{\infty} f(x) x d x$.
- Recall that when X was a discrete random variable, with $p(x)=P\{X=x\}$, we wrote

$$
E[g(X)]=\sum_{x: p(x)>0} p(x) g(x)
$$

- What is the analog when X is a continuous random variable?

Expectations of continuous random variables

- Recall that when X was a discrete random variable, with $p(x)=P\{X=x\}$, we wrote

$$
E[X]=\sum_{x: p(x)>0} p(x) x
$$

- How should we define $E[X]$ when X is a continuous random variable?
- Answer: $E[X]=\int_{-\infty}^{\infty} f(x) x d x$.
- Recall that when X was a discrete random variable, with $p(x)=P\{X=x\}$, we wrote

$$
E[g(X)]=\sum_{x: p(x)>0} p(x) g(x)
$$

- What is the analog when X is a continuous random variable?
- Answer: we will write $E[g(X)]=\int_{-\infty}^{\infty} f(x) g(x) d x$.

Variance of continuous random variables

- Suppose X is a continuous random variable with mean μ.

Variance of continuous random variables

- Suppose X is a continuous random variable with mean μ.
- We can write $\operatorname{Var}[X]=E\left[(X-\mu)^{2}\right]$, same as in the discrete case.

Variance of continuous random variables

- Suppose X is a continuous random variable with mean μ.
- We can write $\operatorname{Var}[X]=E\left[(X-\mu)^{2}\right]$, same as in the discrete case.
- Next, if $g=g_{1}+g_{2}$ then

$$
\begin{aligned}
& E[g(X)]=\int g_{1}(x) f(x) d x+\int g_{2}(x) f(x) d x= \\
& \int\left(g_{1}(x)+g_{2}(x)\right) f(x) d x=E\left[g_{1}(X)\right]+E\left[g_{2}(X)\right] .
\end{aligned}
$$

Variance of continuous random variables

- Suppose X is a continuous random variable with mean μ.
- We can write $\operatorname{Var}[X]=E\left[(X-\mu)^{2}\right]$, same as in the discrete case.
- Next, if $g=g_{1}+g_{2}$ then $E[g(X)]=\int g_{1}(x) f(x) d x+\int g_{2}(x) f(x) d x=$ $\int\left(g_{1}(x)+g_{2}(x)\right) f(x) d x=E\left[g_{1}(X)\right]+E\left[g_{2}(X)\right]$.
- Furthermore, $E[a g(X)]=a E[g(X)]$ when a is a constant.

Variance of continuous random variables

- Suppose X is a continuous random variable with mean μ.
- We can write $\operatorname{Var}[X]=E\left[(X-\mu)^{2}\right]$, same as in the discrete case.
- Next, if $g=g_{1}+g_{2}$ then $E[g(X)]=\int g_{1}(x) f(x) d x+\int g_{2}(x) f(x) d x=$ $\int\left(g_{1}(x)+g_{2}(x)\right) f(x) d x=E\left[g_{1}(X)\right]+E\left[g_{2}(X)\right]$.
- Furthermore, $E[a g(X)]=a E[g(X)]$ when a is a constant.
- Just as in the discrete case, we can expand the variance expression as $\operatorname{Var}[X]=E\left[X^{2}-2 \mu X+\mu^{2}\right]$ and use additivity of expectation to say that
$\operatorname{Var}[X]=E\left[X^{2}\right]-2 \mu E[X]+E\left[\mu^{2}\right]=E\left[X^{2}\right]-2 \mu^{2}+\mu^{2}=$ $E\left[X^{2}\right]-E[X]^{2}$.

Variance of continuous random variables

- Suppose X is a continuous random variable with mean μ.
- We can write $\operatorname{Var}[X]=E\left[(X-\mu)^{2}\right]$, same as in the discrete case.
- Next, if $g=g_{1}+g_{2}$ then $E[g(X)]=\int g_{1}(x) f(x) d x+\int g_{2}(x) f(x) d x=$ $\int\left(g_{1}(x)+g_{2}(x)\right) f(x) d x=E\left[g_{1}(X)\right]+E\left[g_{2}(X)\right]$.
- Furthermore, $E[a g(X)]=a E[g(X)]$ when a is a constant.
- Just as in the discrete case, we can expand the variance expression as $\operatorname{Var}[X]=E\left[X^{2}-2 \mu X+\mu^{2}\right]$ and use additivity of expectation to say that
$\operatorname{Var}[X]=E\left[X^{2}\right]-2 \mu E[X]+E\left[\mu^{2}\right]=E\left[X^{2}\right]-2 \mu^{2}+\mu^{2}=$ $E\left[X^{2}\right]-E[X]^{2}$.
- This formula is often useful for calculations.

Outline

Continuous random variables

Expectation and variance of continuous random variables

Uniform random variable on $[0,1]$

Uniform random variable on $[\alpha, \beta]$

Measurable sets and a famous paradox

Outline

Continuous random variables
 Expectation and variance of continuous random variables

Uniform random variable on $[0,1]$

Uniform random variable on $[\alpha, \beta]$

Measurable sets and a famous paradox

Uniform random variables on $[0,1]$

- Suppose X is a random variable with probability density function $f(x)= \begin{cases}1 & x \in[0,1] \\ 0 & x \notin[0,1] .\end{cases}$

Uniform random variables on $[0,1]$

- Suppose X is a random variable with probability density function $f(x)= \begin{cases}1 & x \in[0,1] \\ 0 & x \notin[0,1] .\end{cases}$
- Then for any $0 \leq a \leq b \leq 1$ we have $P\{X \in[a, b]\}=b-a$.

Uniform random variables on $[0,1]$

- Suppose X is a random variable with probability density function $f(x)= \begin{cases}1 & x \in[0,1] \\ 0 & x \notin[0,1] .\end{cases}$
- Then for any $0 \leq a \leq b \leq 1$ we have $P\{X \in[a, b]\}=b-a$.
- Intuition: all locations along the interval $[0,1]$ equally likely.

Uniform random variables on $[0,1]$

- Suppose X is a random variable with probability density function $f(x)= \begin{cases}1 & x \in[0,1] \\ 0 & x \notin[0,1] .\end{cases}$
- Then for any $0 \leq a \leq b \leq 1$ we have $P\{X \in[a, b]\}=b-a$.
- Intuition: all locations along the interval $[0,1]$ equally likely.
- Say that X is a uniform random variable on $[0,1]$ or that X is sampled uniformly from $[0,1]$.

Properties of uniform random variable on $[0,1]$

- Suppose X is a random variable with probability density function $f(x)=\left\{\begin{array}{ll}1 & x \in[0,1] \\ 0 & x \notin[0,1],\end{array}\right.$ which implies

$$
F_{X}(a)= \begin{cases}0 & a<0 \\ a & a \in[0,1] \\ 1 & a>1\end{cases}
$$

Properties of uniform random variable on $[0,1]$

- Suppose X is a random variable with probability density function $f(x)=\left\{\begin{array}{ll}1 & x \in[0,1] \\ 0 & x \notin[0,1],\end{array}\right.$ which implies

$$
F_{X}(a)= \begin{cases}0 & a<0 \\ a & a \in[0,1] \\ 1 & a>1\end{cases}
$$

- What is $E[X]$?

Properties of uniform random variable on $[0,1]$

- Suppose X is a random variable with probability density function $f(x)=\left\{\begin{array}{ll}1 & x \in[0,1] \\ 0 & x \notin[0,1],\end{array}\right.$ which implies

$$
F_{X}(a)= \begin{cases}0 & a<0 \\ a & a \in[0,1] \\ 1 & a>1\end{cases}
$$

- What is $E[X]$?
- Guess $1 / 2$ (since $1 / 2$ is, you know, in the middle).

Properties of uniform random variable on $[0,1]$

- Suppose X is a random variable with probability density function $f(x)=\left\{\begin{array}{ll}1 & x \in[0,1] \\ 0 & x \notin[0,1],\end{array}\right.$ which implies

$$
F_{X}(a)= \begin{cases}0 & a<0 \\ a & a \in[0,1] \\ 1 & a>1\end{cases}
$$

- What is $E[X]$?
- Guess $1 / 2$ (since $1 / 2$ is, you know, in the middle).
- Indeed, $\int_{-\infty}^{\infty} f(x) x d x=\int_{0}^{1} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{1}=1 / 2$.

Properties of uniform random variable on $[0,1]$

- Suppose X is a random variable with probability density function $f(x)=\left\{\begin{array}{ll}1 & x \in[0,1] \\ 0 & x \notin[0,1],\end{array}\right.$ which implies

$$
F_{X}(a)= \begin{cases}0 & a<0 \\ a & a \in[0,1] \\ 1 & a>1\end{cases}
$$

- What is $E[X]$?
- Guess $1 / 2$ (since $1 / 2$ is, you know, in the middle).
- Indeed, $\int_{-\infty}^{\infty} f(x) x d x=\int_{0}^{1} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{1}=1 / 2$.
- What is the general moment $E\left[X^{k}\right]$ for $k \geq 0$?

Properties of uniform random variable on $[0,1]$

- Suppose X is a random variable with probability density function $f(x)=\left\{\begin{array}{ll}1 & x \in[0,1] \\ 0 & x \notin[0,1],\end{array}\right.$ which implies

$$
F_{X}(a)= \begin{cases}0 & a<0 \\ a & a \in[0,1] \\ 1 & a>1\end{cases}
$$

- What is $E[X]$?
- Guess $1 / 2$ (since $1 / 2$ is, you know, in the middle).
- Indeed, $\int_{-\infty}^{\infty} f(x) x d x=\int_{0}^{1} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{1}=1 / 2$.
- What is the general moment $E\left[X^{k}\right]$ for $k \geq 0$?
- Answer: $1 /(k+1)$.

Properties of uniform random variable on $[0,1]$

- Suppose X is a random variable with probability density function $f(x)=\left\{\begin{array}{ll}1 & x \in[0,1] \\ 0 & x \notin[0,1],\end{array}\right.$ which implies

$$
F_{X}(a)= \begin{cases}0 & a<0 \\ a & a \in[0,1] \\ 1 & a>1\end{cases}
$$

- What is $E[X]$?
- Guess $1 / 2$ (since $1 / 2$ is, you know, in the middle).
- Indeed, $\int_{-\infty}^{\infty} f(x) x d x=\int_{0}^{1} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{1}=1 / 2$.
- What is the general moment $E\left[X^{k}\right]$ for $k \geq 0$?
- Answer: $1 /(k+1)$.
- What would you guess the variance is? Expected square of distance from $1 / 2$?

Properties of uniform random variable on $[0,1]$

- Suppose X is a random variable with probability density function $f(x)=\left\{\begin{array}{ll}1 & x \in[0,1] \\ 0 & x \notin[0,1],\end{array}\right.$ which implies

$$
F_{X}(a)= \begin{cases}0 & a<0 \\ a & a \in[0,1] \\ 1 & a>1\end{cases}
$$

- What is $E[X]$?
- Guess $1 / 2$ (since $1 / 2$ is, you know, in the middle).
- Indeed, $\int_{-\infty}^{\infty} f(x) x d x=\int_{0}^{1} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{1}=1 / 2$.
- What is the general moment $E\left[X^{k}\right]$ for $k \geq 0$?
- Answer: $1 /(k+1)$.
- What would you guess the variance is? Expected square of distance from $1 / 2$?
- It's obviously less than $1 / 4$, but how much less?

Properties of uniform random variable on $[0,1]$

- Suppose X is a random variable with probability density function $f(x)=\left\{\begin{array}{ll}1 & x \in[0,1] \\ 0 & x \notin[0,1]\end{array}\right.$ which implies

$$
F_{X}(a)= \begin{cases}0 & a<0 \\ a & a \in[0,1] \\ 1 & a>1\end{cases}
$$

- What is $E[X]$?
- Guess $1 / 2$ (since $1 / 2$ is, you know, in the middle).
- Indeed, $\int_{-\infty}^{\infty} f(x) x d x=\int_{0}^{1} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{1}=1 / 2$.
- What is the general moment $E\left[X^{k}\right]$ for $k \geq 0$?
- Answer: $1 /(k+1)$.
- What would you guess the variance is? Expected square of distance from $1 / 2$?
- It's obviously less than $1 / 4$, but how much less?
$-\operatorname{Var} E\left[X^{2}\right]-E[X]^{2}=1 / 3-1 / 4=1 / 12$.

Outline

Continuous random variables

Expectation and variance of continuous random variables

Uniform random variable on $[0,1]$

Uniform random variable on $[\alpha, \beta]$

Measurable sets and a famous paradox

Outline

> Continuous random variables

> Expectation and variance of continuous random variables

> Uniform random variable on $[0,1]$

Uniform random variable on $[\alpha, \beta]$

Measurable sets and a famous paradox

Uniform random variables on $[\alpha, \beta]$

- Fix $\alpha<\beta$ and suppose X is a random variable with probability density function $f(x)= \begin{cases}\frac{1}{\beta-\alpha} & x \in[\alpha, \beta] \\ 0 & x \notin[\alpha, \beta] .\end{cases}$

Uniform random variables on $[\alpha, \beta]$

- Fix $\alpha<\beta$ and suppose X is a random variable with probability density function $f(x)= \begin{cases}\frac{1}{\beta-\alpha} & x \in[\alpha, \beta] \\ 0 & x \notin[\alpha, \beta] .\end{cases}$
- Then for any $\alpha \leq a \leq b \leq \beta$ we have $P\{X \in[a, b]\}=\frac{b-a}{\beta-\alpha}$.

Uniform random variables on $[\alpha, \beta]$

- Fix $\alpha<\beta$ and suppose X is a random variable with probability density function $f(x)= \begin{cases}\frac{1}{\beta-\alpha} & x \in[\alpha, \beta] \\ 0 & x \notin[\alpha, \beta] .\end{cases}$
- Then for any $\alpha \leq a \leq b \leq \beta$ we have $P\{X \in[a, b]\}=\frac{b-a}{\beta-\alpha}$.
- Intuition: all locations along the interval $[\alpha, \beta]$ are equally likely.

Uniform random variables on $[\alpha, \beta]$

- Fix $\alpha<\beta$ and suppose X is a random variable with probability density function $f(x)= \begin{cases}\frac{1}{\beta-\alpha} & x \in[\alpha, \beta] \\ 0 & x \notin[\alpha, \beta] .\end{cases}$
- Then for any $\alpha \leq a \leq b \leq \beta$ we have $P\{X \in[a, b]\}=\frac{b-a}{\beta-\alpha}$.
- Intuition: all locations along the interval $[\alpha, \beta]$ are equally likely.
- Say that \boldsymbol{X} is a uniform random variable on $[\alpha, \beta]$ or that X is sampled uniformly from $[\alpha, \beta]$.

Uniform random variables on $[\alpha, \beta]$

- Suppose X is a random variable with probability density function $f(x)= \begin{cases}\frac{1}{\beta-\alpha} & x \in[\alpha, \beta] \\ 0 & x \notin[\alpha, \beta] .\end{cases}$

Uniform random variables on $[\alpha, \beta]$

- Suppose X is a random variable with probability density function $f(x)= \begin{cases}\frac{1}{\beta-\alpha} & x \in[\alpha, \beta] \\ 0 & x \notin[\alpha, \beta] .\end{cases}$
- What is $E[X]$?

Uniform random variables on $[\alpha, \beta]$

- Suppose X is a random variable with probability density function $f(x)= \begin{cases}\frac{1}{\beta-\alpha} & x \in[\alpha, \beta] \\ 0 & x \notin[\alpha, \beta] .\end{cases}$
- What is $E[X]$?
- Intuitively, we'd guess the midpoint $\frac{\alpha+\beta}{2}$.

Uniform random variables on $[\alpha, \beta]$

- Suppose X is a random variable with probability density function $f(x)= \begin{cases}\frac{1}{\beta-\alpha} & x \in[\alpha, \beta] \\ 0 & x \notin[\alpha, \beta] .\end{cases}$
- What is $E[X]$?
- Intuitively, we'd guess the midpoint $\frac{\alpha+\beta}{2}$.
- What's the cleanest way to prove this?

Uniform random variables on $[\alpha, \beta]$

- Suppose X is a random variable with probability density function $f(x)= \begin{cases}\frac{1}{\beta-\alpha} & x \in[\alpha, \beta] \\ 0 & x \notin[\alpha, \beta] .\end{cases}$
- What is $E[X]$?
- Intuitively, we'd guess the midpoint $\frac{\alpha+\beta}{2}$.
- What's the cleanest way to prove this?
- One approach: let Y be uniform on $[0,1]$ and try to show that $X=(\beta-\alpha) Y+\alpha$ is uniform on $[\alpha, \beta]$.

Uniform random variables on $[\alpha, \beta]$

- Suppose X is a random variable with probability density function $f(x)= \begin{cases}\frac{1}{\beta-\alpha} & x \in[\alpha, \beta] \\ 0 & x \notin[\alpha, \beta] .\end{cases}$
- What is $E[X]$?
- Intuitively, we'd guess the midpoint $\frac{\alpha+\beta}{2}$.
- What's the cleanest way to prove this?
- One approach: let Y be uniform on $[0,1]$ and try to show that $X=(\beta-\alpha) Y+\alpha$ is uniform on $[\alpha, \beta]$.
- Then expectation linearity gives

$$
E[X]=(\beta-\alpha) E[Y]+\alpha=(1 / 2)(\beta-\alpha)+\alpha=\frac{\alpha+\beta}{2} .
$$

Uniform random variables on $[\alpha, \beta]$

- Suppose X is a random variable with probability density function $f(x)= \begin{cases}\frac{1}{\beta-\alpha} & x \in[\alpha, \beta] \\ 0 & x \notin[\alpha, \beta] .\end{cases}$
- What is $E[X]$?
- Intuitively, we'd guess the midpoint $\frac{\alpha+\beta}{2}$.
- What's the cleanest way to prove this?
- One approach: let Y be uniform on $[0,1]$ and try to show that $X=(\beta-\alpha) Y+\alpha$ is uniform on $[\alpha, \beta]$.
- Then expectation linearity gives

$$
E[X]=(\beta-\alpha) E[Y]+\alpha=(1 / 2)(\beta-\alpha)+\alpha=\frac{\alpha+\beta}{2} .
$$

- Using similar logic, what is the variance $\operatorname{Var}[X]$?

Uniform random variables on $[\alpha, \beta]$

- Suppose X is a random variable with probability density
function $f(x)= \begin{cases}\frac{1}{\beta-\alpha} & x \in[\alpha, \beta] \\ 0 & x \notin[\alpha, \beta] .\end{cases}$
- What is $E[X]$?
- Intuitively, we'd guess the midpoint $\frac{\alpha+\beta}{2}$.
- What's the cleanest way to prove this?
- One approach: let Y be uniform on $[0,1]$ and try to show that $X=(\beta-\alpha) Y+\alpha$ is uniform on $[\alpha, \beta]$.
- Then expectation linearity gives

$$
E[X]=(\beta-\alpha) E[Y]+\alpha=(1 / 2)(\beta-\alpha)+\alpha=\frac{\alpha+\beta}{2} .
$$

- Using similar logic, what is the variance $\operatorname{Var}[X]$?
- Answer: $\operatorname{Var}[X]=\operatorname{Var}[(\beta-\alpha) Y+\alpha]=\operatorname{Var}[(\beta-\alpha) Y]=$ $(\beta-\alpha)^{2} \operatorname{Var}[Y]=(\beta-\alpha)^{2} / 12$.

Outline

Continuous random variables

Expectation and variance of continuous random variables

Uniform random variable on $[0,1]$

Uniform random variable on $[\alpha, \beta]$

Measurable sets and a famous paradox

Outline

Continuous random variables

Expectation and variance of continuous random variables

Uniform random variable on $[0,1]$

Uniform random variable on $[\alpha, \beta]$

Measurable sets and a famous paradox

Uniform measure: is probability defined for all subsets?

- One of the very simplest probability density functions is

$$
f(x)= \begin{cases}1 & x \in[0,1] \\ 0 & 0 \notin[0,1]\end{cases}
$$

Uniform measure: is probability defined for all subsets?

- One of the very simplest probability density functions is

$$
f(x)= \begin{cases}1 & x \in[0,1] \\ 0 & 0 \notin[0,1]\end{cases}
$$

- If $B \subset[0,1]$ is an interval, then $P\{X \in B\}$ is the length of that interval.

Uniform measure: is probability defined for all subsets?

- One of the very simplest probability density functions is

$$
f(x)= \begin{cases}1 & x \in[0,1] \\ 0 & 0 \notin[0,1]\end{cases}
$$

- If $B \subset[0,1]$ is an interval, then $P\{X \in B\}$ is the length of that interval.
- Generally, if $B \subset[0,1]$ then $P\{X \in B\}=\int_{B} 1 d x=\int 1_{B}(x) d x$ is the "total volume" or "total length" of the set B.

Uniform measure: is probability defined for all subsets?

- One of the very simplest probability density functions is

$$
f(x)= \begin{cases}1 & x \in[0,1] \\ 0 & 0 \notin[0,1]\end{cases}
$$

- If $B \subset[0,1]$ is an interval, then $P\{X \in B\}$ is the length of that interval.
- Generally, if $B \subset[0,1]$ then $P\{X \in B\}=\int_{B} 1 d x=\int 1_{B}(x) d x$ is the "total volume" or "total length" of the set B.
- What if B is the set of all rational numbers?

Uniform measure: is probability defined for all subsets?

- One of the very simplest probability density functions is

$$
f(x)= \begin{cases}1 & x \in[0,1] \\ 0 & 0 \notin[0,1]\end{cases}
$$

- If $B \subset[0,1]$ is an interval, then $P\{X \in B\}$ is the length of that interval.
- Generally, if $B \subset[0,1]$ then $P\{X \in B\}=\int_{B} 1 d x=\int 1_{B}(x) d x$ is the "total volume" or "total length" of the set B.
- What if B is the set of all rational numbers?
- How do we mathematically define the volume of an arbitrary set B ?

Idea behind parodox

- Hypothetical: Consider the interval $[0,1)$ with the two endpoints glued together (so it looks like a circle). What if we could partition $[0,1)$ into a countably infinite collection of disjoint sets that all looked the same (up to a rotation of the circle) and thus had to have the same probability?

Idea behind parodox

- Hypothetical: Consider the interval $[0,1)$ with the two endpoints glued together (so it looks like a circle). What if we could partition $[0,1)$ into a countably infinite collection of disjoint sets that all looked the same (up to a rotation of the circle) and thus had to have the same probability?
- If that probability was zero, then (by countable additivity) probability of whole circle would be zero, a contradiction.

Idea behind parodox

- Hypothetical: Consider the interval $[0,1)$ with the two endpoints glued together (so it looks like a circle). What if we could partition $[0,1)$ into a countably infinite collection of disjoint sets that all looked the same (up to a rotation of the circle) and thus had to have the same probability?
- If that probability was zero, then (by countable additivity) probability of whole circle would be zero, a contradiction.
- But if that probability were a number greater than zero the probability of whole circle would be infinite, also a contradiction...

Idea behind parodox

- Hypothetical: Consider the interval $[0,1)$ with the two endpoints glued together (so it looks like a circle). What if we could partition $[0,1)$ into a countably infinite collection of disjoint sets that all looked the same (up to a rotation of the circle) and thus had to have the same probability?
- If that probability was zero, then (by countable additivity) probability of whole circle would be zero, a contradiction.
- But if that probability were a number greater than zero the probability of whole circle would be infinite, also a contradiction...
- Related problem: if (in a non-atomic world, where mass was infinitely divisible) you could cut a donut into countably infinitely many pieces all of the same weight, how much would each piece weigh?

Idea behind parodox

- Hypothetical: Consider the interval $[0,1)$ with the two endpoints glued together (so it looks like a circle). What if we could partition $[0,1)$ into a countably infinite collection of disjoint sets that all looked the same (up to a rotation of the circle) and thus had to have the same probability?
- If that probability was zero, then (by countable additivity) probability of whole circle would be zero, a contradiction.
- But if that probability were a number greater than zero the probability of whole circle would be infinite, also a contradiction...
- Related problem: if (in a non-atomic world, where mass was infinitely divisible) you could cut a donut into countably infinitely many pieces all of the same weight, how much would each piece weigh?
- Question: Is it really possible to partition $[0,1)$ into countably many identical (up to rotation) pieces?

Cutting donut into countably many identical "pieces"

- Call two points "equivalent" if you can get from one to the other by a $0,90,180$, or 270 degree rotation.

Cutting donut into countably many identical "pieces"

- Call two points "equivalent" if you can get from one to the other by a $0,90,180$, or 270 degree rotation.
- "Equivalence class" consists of four points obtained by thus rotating given point. In images below, red set has exactly one point of each equivalence class.

Cutting donut into countably many identical "pieces"

- Call two points "equivalent" if you can get from one to the other by a $0,90,180$, or 270 degree rotation.
- "Equivalence class" consists of four points obtained by thus rotating given point. In images below, red set has exactly one point of each equivalence class.

- Whole donut is disjoint union of the four sets obtained as 0/90/180/270 degree rotations of red set.

Cutting donut into countably many identical "pieces"

- Call two points "equivalent" if you can get from one to the other by a $0,90,180$, or 270 degree rotation.
- "Equivalence class" consists of four points obtained by thus rotating given point. In images below, red set has exactly one point of each equivalence class.

- Whole donut is disjoint union of the four sets obtained as 0/90/180/270 degree rotations of red set.
- What if we eplace "0/90/180/270-degree rotations" by "rational-degree-number rotations"? If red set has one point from each equivalence class, whole donut is disjoint union of countably many sets obtained as rational rotations of red set.

Formulating the paradox more formally

- Consider wrap-around translations $\tau_{r}(x)=(x+r) \bmod 1$.

Formulating the paradox more formally

- Consider wrap-around translations $\tau_{r}(x)=(x+r) \bmod 1$.
- We expect $\tau_{r}(B)$ to have same probability as B.

Formulating the paradox more formally

- Consider wrap-around translations $\tau_{r}(x)=(x+r) \bmod 1$.
- We expect $\tau_{r}(B)$ to have same probability as B.
- Call x, y "equivalent modulo rationals" if $x-y$ is rational (e.g., $x=\pi-3$ and $y=\pi-9 / 4$). An equivalence class is the set of points in $[0,1)$ equivalent to some given point.

Formulating the paradox more formally

- Consider wrap-around translations $\tau_{r}(x)=(x+r) \bmod 1$.
- We expect $\tau_{r}(B)$ to have same probability as B.
- Call x, y "equivalent modulo rationals" if $x-y$ is rational (e.g., $x=\pi-3$ and $y=\pi-9 / 4$). An equivalence class is the set of points in $[0,1)$ equivalent to some given point.
- There are uncountably many of these classes.

Formulating the paradox more formally

- Consider wrap-around translations $\tau_{r}(x)=(x+r) \bmod 1$.
- We expect $\tau_{r}(B)$ to have same probability as B.
- Call x, y "equivalent modulo rationals" if $x-y$ is rational (e.g., $x=\pi-3$ and $y=\pi-9 / 4$). An equivalence class is the set of points in $[0,1)$ equivalent to some given point.
- There are uncountably many of these classes.
- Let $A \subset[0,1)$ contain one point from each class. For each $x \in[0,1)$, there is one $a \in A$ such that $r=x-a$ is rational.

Formulating the paradox more formally

- Consider wrap-around translations $\tau_{r}(x)=(x+r) \bmod 1$.
- We expect $\tau_{r}(B)$ to have same probability as B.
- Call x, y "equivalent modulo rationals" if $x-y$ is rational (e.g., $x=\pi-3$ and $y=\pi-9 / 4$). An equivalence class is the set of points in $[0,1)$ equivalent to some given point.
- There are uncountably many of these classes.
- Let $A \subset[0,1)$ contain one point from each class. For each $x \in[0,1)$, there is one $a \in A$ such that $r=x-a$ is rational.
- Then each x in $[0,1)$ lies in $\tau_{r}(A)$ for one rational $r \in[0,1)$.

Formulating the paradox more formally

- Consider wrap-around translations $\tau_{r}(x)=(x+r) \bmod 1$.
- We expect $\tau_{r}(B)$ to have same probability as B.
- Call x, y "equivalent modulo rationals" if $x-y$ is rational (e.g., $x=\pi-3$ and $y=\pi-9 / 4$). An equivalence class is the set of points in $[0,1)$ equivalent to some given point.
- There are uncountably many of these classes.
- Let $A \subset[0,1)$ contain one point from each class. For each $x \in[0,1)$, there is one $a \in A$ such that $r=x-a$ is rational.
- Then each x in $[0,1)$ lies in $\tau_{r}(A)$ for one rational $r \in[0,1)$.
- Thus $[0,1)=\cup \tau_{r}(A)$ as r ranges over rationals in $[0,1)$.

Formulating the paradox more formally

- Consider wrap-around translations $\tau_{r}(x)=(x+r) \bmod 1$.
- We expect $\tau_{r}(B)$ to have same probability as B.
- Call x, y "equivalent modulo rationals" if $x-y$ is rational (e.g., $x=\pi-3$ and $y=\pi-9 / 4$). An equivalence class is the set of points in $[0,1)$ equivalent to some given point.
- There are uncountably many of these classes.
- Let $A \subset[0,1)$ contain one point from each class. For each $x \in[0,1)$, there is one $a \in A$ such that $r=x-a$ is rational.
- Then each x in $[0,1)$ lies in $\tau_{r}(A)$ for one rational $r \in[0,1)$.
- Thus $[0,1)=\cup \tau_{r}(A)$ as r ranges over rationals in $[0,1)$.
- If $P(A)=0$, then $P(S)=\sum_{r} P\left(\tau_{r}(A)\right)=0$. If $P(A)>0$ then $P(S)=\sum_{r} P\left(\tau_{r}(A)\right)=\infty$. Contradicts $P(S)=1$ axiom.

Three ways to get around this

- 1. Re-examine axioms of mathematics: the very existence of a set A with one element from each equivalence class is consequence of so-called axiom of choice. Removing that axiom makes paradox goes away, since one can just suppose (pretend?) these kinds of sets don't exist.

Three ways to get around this

- 1. Re-examine axioms of mathematics: the very existence of a set A with one element from each equivalence class is consequence of so-called axiom of choice. Removing that axiom makes paradox goes away, since one can just suppose (pretend?) these kinds of sets don't exist.
- 2. Re-examine axioms of probability: Replace countable additivity with finite additivity? (Doesn't fully solve problem: look up Banach-Tarski.)

Three ways to get around this

- 1. Re-examine axioms of mathematics: the very existence of a set A with one element from each equivalence class is consequence of so-called axiom of choice. Removing that axiom makes paradox goes away, since one can just suppose (pretend?) these kinds of sets don't exist.
- 2. Re-examine axioms of probability: Replace countable additivity with finite additivity? (Doesn't fully solve problem: look up Banach-Tarski.)
- 3. Keep the axiom of choice and countable additivity but don't define probabilities of all sets: Instead of defining $P(B)$ for every subset B of sample space, restrict attention to a family of so-called "measurable" sets.

Three ways to get around this

- 1. Re-examine axioms of mathematics: the very existence of a set A with one element from each equivalence class is consequence of so-called axiom of choice. Removing that axiom makes paradox goes away, since one can just suppose (pretend?) these kinds of sets don't exist.
- 2. Re-examine axioms of probability: Replace countable additivity with finite additivity? (Doesn't fully solve problem: look up Banach-Tarski.)
- 3. Keep the axiom of choice and countable additivity but don't define probabilities of all sets: Instead of defining $P(B)$ for every subset B of sample space, restrict attention to a family of so-called "measurable" sets.
- Most mainstream probability and analysis takes the third approach.

Three ways to get around this

- 1. Re-examine axioms of mathematics: the very existence of a set A with one element from each equivalence class is consequence of so-called axiom of choice. Removing that axiom makes paradox goes away, since one can just suppose (pretend?) these kinds of sets don't exist.
- 2. Re-examine axioms of probability: Replace countable additivity with finite additivity? (Doesn't fully solve problem: look up Banach-Tarski.)
- 3. Keep the axiom of choice and countable additivity but don't define probabilities of all sets: Instead of defining $P(B)$ for every subset B of sample space, restrict attention to a family of so-called "measurable" sets.
- Most mainstream probability and analysis takes the third approach.
- In practice, sets we care about (e.g., countable unions of points and intervals) tend to be measurable.

Perspective

- More advanced courses in probability and analysis (such as 18.125 and 18.675) spend a significant amount of time rigorously constructing a class of so-called measurable sets and the so-called Lebesgue measure, which assigns a real number (a measure) to each of these sets.

Perspective

- More advanced courses in probability and analysis (such as 18.125 and 18.675) spend a significant amount of time rigorously constructing a class of so-called measurable sets and the so-called Lebesgue measure, which assigns a real number (a measure) to each of these sets.
- These courses also replace the Riemann integral with the so-called Lebesgue integral.

Perspective

- More advanced courses in probability and analysis (such as 18.125 and 18.675) spend a significant amount of time rigorously constructing a class of so-called measurable sets and the so-called Lebesgue measure, which assigns a real number (a measure) to each of these sets.
- These courses also replace the Riemann integral with the so-called Lebesgue integral.
- We will not treat these topics any further in this course.

Perspective

- More advanced courses in probability and analysis (such as 18.125 and 18.675) spend a significant amount of time rigorously constructing a class of so-called measurable sets and the so-called Lebesgue measure, which assigns a real number (a measure) to each of these sets.
- These courses also replace the Riemann integral with the so-called Lebesgue integral.
- We will not treat these topics any further in this course.
- We usually limit our attention to probability density functions f and sets B for which the ordinary Riemann integral $\int 1_{B}(x) f(x) d x$ is well defined.

Perspective

- More advanced courses in probability and analysis (such as 18.125 and 18.675) spend a significant amount of time rigorously constructing a class of so-called measurable sets and the so-called Lebesgue measure, which assigns a real number (a measure) to each of these sets.
- These courses also replace the Riemann integral with the so-called Lebesgue integral.
- We will not treat these topics any further in this course.
- We usually limit our attention to probability density functions f and sets B for which the ordinary Riemann integral $\int 1_{B}(x) f(x) d x$ is well defined.
- Riemann integration is a mathematically rigorous theory. It's just not as robust as Lebesgue integration.

