
18.600 Midterm 2, Spring 2022: Solutions

1. (10 points) Alice is organizing a trivia night at her local pub, for which she needs 36 working pens.
She looks in her various drawers and discovers that, over the years, she has accumulated 2500 pens. But
many are old and dry so that each pen works with probability 1

50 independently from one pen to the
next. Let X be the total number of working pens.

(a) Compute the mean and variance of X. ANSWER: E[X] = np = 2500 · 1
50 = 50 and

Var(X) = npq = 2500 · 1
50 · 49

50 = 49.

(b) Use a normal random variable to estimate the probability P (X ≥ 36). You may use the function

Φ(a) =

∫ a

−∞

1√
2π

e−x2/2dx

in your answer. ANSWER: Standard deviation of X is 7, so 36 is two standard deviations below
mean. By CLT probability is approximately

∫∞
−2

1√
2π
e−x2/2dx = 1− Φ(−2) = Φ(2) ≈ .977.

2. (15 points) Consider the “infinite corridor” C = {(x, y) : |y| ≤ 1}. In other words, C is the set of
points in the plane that lie between the horizontal line y = −1 and the parallel line y = 1. Imagine that a
student stands in the middle of the corridor at location (0, 0). The student puts on a blindfold and spins
around until the student is facing in a random direction (chosen uniformly from the full 2π-radian range
of possible angles). The student then walks in that direction, starting from (0, 0), until reaching a point
(X,Y ) on the boundary of C, where the student hangs a flier for an a capella concert. Note that X is a
random real number in the range (−∞,∞) while Y is a random integer with P (Y = 1) = 1/2 and
P (Y = −1) = 1/2.

(a) Are X and Y independent? Explain in a sentence why or why not. ANSWER: Yes, because given
Y = 1 the conditional law of X is Cauchy, and given Y = −1 the conditional law of X is also
Cauchy—so the conditional law of X given Y = y does not depend on y.

(b) Suppose 8 choir members independently follow the procedure above, and let
(X1, Y1), (X2, Y2), . . . , (X8, Y8) be the points on the boundary of C that they reach. Let
(X,Y ) := 1

8

∑8
i=1(Xi, Yi) denote the average of this set of points. Compute P (X > 1).

ANSWER: Since X is Cauchy, the mean X is Cauchy also, and P (X > 1) = 1/4.

(c) Compute P (Y = 0). ANSWER: We have Y = 0 if four people hit upper wall and four hit lower
wall, which has probability

(
8
4

)
/28 = 70/256.

3. (20 points) Suppose that X1, X2, . . . are independent identically distributed random variables with
each Xi equal to 1 with probability 1/2 and 2 with probability 1/2. Write An = 1

n

∑n
i=1Xi. Compute

each limit below, and alongside each answer write SLLN if the answer follows most directly from the
strong law of large numbers, WLLN if it follows most directly from the weak law of large numbers, CLT
if it follows most directly from the central limit theorem and OTHER if you are not using one of the
above to derive the conclusion. If it helps you may use the function

Φ(a) =

∫ a

−∞

1√
2π

e−x2/2dx.

(a) lim
n→∞

P (An > 1.6) ANSWER: 0 because WLLN says lim
n→∞

P (1.4 < An < 1.6) = 1.



(b) lim
n→∞

P (An = 1.5) ANSWER: 0. By CLT the probability that Xn lies within ϵ standard deviations

of its mean converges to Φ(ϵ)− Φ(−ϵ), which can be made arbitrarily small by choosing small
ϵ > 0. Hence the n → ∞ limit of the probability that Xn is exactly equal to its mean must be zero.

(c) P ( lim
n→∞

An = 1.5) ANSWER: 1 by SLLN

(d) lim
n→∞

P (An > 1.5 +
1√
n
) ANSWER: Var(Xn) =

1
4

√
n and SD(Xn) =

1
2

√
n. So

P (An > 1.5 + 1√
n
) = P (Xn − E[Xn] >

√
n) is the probability that Xn is at least 2 standard

deviations above its mean, which converges to 1− Φ(2) by CLT.

(e) lim
n→∞

P (
n∑

j=1

X2
j > 2n) ANSWER: E[X2

1 ] =
1
21 +

1
24 = 2.5. WLLN then says

lim
n→∞

P (2 <
1

n

n∑
j=1

X2
j < 3) = 1. Hence lim

n→∞
P (2n <

n∑
j=1

X2
j < 3n) = 1, so the answer is 1.

4. (15 points) Bob has Olivia Rodrigo’s song “Good for you” stuck in his head. He is trying to focus on
his Course 6 problem set, but every few minutes a line from that song comes to mind. The times
T1, T2, . . . at which this occurs (measured in minutes, starting at time zero when Bob first begins to
study) form a Poisson point process with parameter λ = 1/3. So the song pops into his head on average
once every three minutes. Compute the following:

(a) The probability density function for T3. ANSWER: This is gamma distribution with parameters

n = 3 and λ = 1/3, given by 1
3(

1
3x)

2e−
1
3
x/2!

(b) The probability that the song pops into Bob’s head exactly 20 times during the first hour of study.
ANSWER: This is Poisson: e−λλk/k! with λ = 20 and k = 20. So e−202020/20!.

(c) The expectation E[T 3
1 ]. ANSWER: T1 has same law as 3X where exponential with λ = 1. So

E[T 3
1 ] = 27E[X3] = 27

∫∞
0 e−xx3 = 27 · 3! = 162.

5. (10 points) Alice, Bob, Carol, David and Eve are all taking a placement exam together. Denote their
respective scores respectively by A, B, C, D and E. They do not a priori know much about the exam or
their preparation levels, and they view their scores as independent uniform random variables on [0, 1].
Alice then asks the test administrator what her class rank was (first, second, third, fourth or fifth) and is
told that she was second highest—i.e., that A is the second largest of the five random variables.

(a) Given this new information, give a revised probability density function fA for A (i.e., a Bayesian
posterior). NOTE: If you remember what this means, you may use the fact that a Beta (a, b)
random variable has expectation a/(a+ b) and density xa−1(1− x)b−1/B(a, b), where
B(a, b) = (a− 1)!(b− 1)!/(a+ b− 1)!. ANSWER: Alice knows one person scored above her and
three scored below her. So the conditional law is Beta with parameters (a− 1) = 3 and (b− 1) = 1.
This comes to x3(1− x)/B(4, 2) = 20x3(1− x).

(b) According to your Bayesian prior, the expected value of A was 1/2. Given that A was the second
largest of the random variables, what is your revised expectation of the value A? ANSWER:
Using the hint, we have a/(a+ b) = 4/6 = 2/3.



6. (10 points) Suppose that the pair (X,Y ) is uniformly distributed on the triangle
T = {(x, y) : 0 ≤ x, 0 ≤ y, 2x+ y ≤ 2}. That is, the joint density function is given by

fX,Y (x, y) =

{
1 (x, y) ∈ T

0 (x, y) ̸∈ T
.

(a) Compute the marginal density function fY . ANSWER: By definition fY (y) =
∫∞
−∞ fX,Y (x, y)dx.

This is 0 unless y ∈ [0, 2]. For y ∈ [0, 2] this sums to
∫ (2−y)/2
0 1dx = 1− y/2.

(b) Compute the probability P (X + Y < 1/2). ANSWER: The set {(x, y) : x+ y < 1/2, (x, y) ∈ T} is
a small triangle with area 1/8 and T has area 1 so the probability is 1/8.

7. (20 points) Suppose that X1, X2, X3, X4 are independent exponential random variables, each with
parameter λ = 1.

(a) Compute the the probability density function for A = min{X1, X2, X3, X4}. ANSWER: This is
exponential with parameter λ = 4, density 4e−4x on [0,∞).

(b) Compute the variance of B = max{X1, X2, X3, X4}. ANSWER: This is the “radioactive decay”
problem. Here B is the sum of an exponential with parameter 4, an exponential with parameter 3,
an exponential with parameter 2 and an exponential with parameter 1. Variance is additive for
independent random variables, so answer is 1

16 + 1
9 + 1

4 + 1.

(c) Write C = X1 +X2 +X3 +X4 and express the random variable E[X1 +X2 +X3|C] as a function
of C. ANSWER: We know E[X1 +X2 +X3 +X4|C] = E[C|C] = C. Since E[Xi|C] is the same
for each i we must have E[Xi|C] = 1

4C for each i and hence answer is 3
4C.

(d) Compute the correlation coefficient ρ(X1 +X2 +X3, X2 +X3 +X4). ANSWER:
Var(X1 +X2 +X3) = Var(X2 +X3 +X4) = 3 and bilinearity of covariance gives
Cov(X1 +X2 +X3, X2 +X3 +X4) = 2. Hence answer is 2√

3·
√
3
= 2/3.


