Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach
Outline

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach
Markov’s and Chebyshev’s inequalities

- **Markov’s inequality:** Let \(X \) be a random variable taking only non-negative values. Fix a constant \(a > 0 \). Then \(P\{X \geq a\} \leq \frac{E[X]}{a} \).

- **Proof:** Consider a random variable \(Y \) defined by:

 \[
 Y = \begin{cases} \ aX & \text{if } X \geq a \\ \ 0 & \text{if } X < a \end{cases}
 \]

 Since \(X \geq Y \) with probability one, it follows that \(E[X] \geq E[Y] = aP\{X \geq a\} \). Divide both sides by \(a \) to get Markov’s inequality.

- **Chebyshev’s inequality:** If \(X \) has finite mean \(\mu \), variance \(\sigma^2 \), and \(k > 0 \) then \(P\{|X - \mu| \geq k\} \leq \frac{\sigma^2}{k^2} \).

- **Proof:** Note that \((X - \mu)^2 \) is a non-negative random variable and \(P\{|X - \mu| \geq k\} = P\{(X - \mu)^2 \geq k^2\} \). Now apply Markov’s inequality with \(a = k^2 \).
Markov’s and Chebyshev’s inequalities

- **Markov’s inequality:** Let X be a random variable taking only non-negative values. Fix a constant $a > 0$. Then $P\{X \geq a\} \leq \frac{E[X]}{a}$.

- **Proof:** Consider a random variable Y defined by
 \[Y = \begin{cases}
 a & X \geq a \\
 0 & X < a
 \end{cases} \]
 Since $X \geq Y$ with probability one, it follows that $E[X] \geq E[Y] = aP\{X \geq a\}$. Divide both sides by a to get Markov’s inequality.

- **Chebyshev’s inequality:** If X has finite mean μ, variance σ^2, and $k > 0$ then $P\{|X - \mu| \geq k\} \leq \frac{\sigma^2}{k^2}$.

- **Proof:** Note that $(X - \mu)^2$ is a non-negative random variable and $P\{|X - \mu| \geq k\} = P\{(X - \mu)^2 \geq k^2\}$. Now apply Markov’s inequality with $a = k^2$.
Markov’s and Chebyshev’s inequalities

▶ **Markov’s inequality:** Let X be a random variable taking only non-negative values. Fix a constant $a > 0$. Then $P\{X \geq a\} \leq \frac{E[X]}{a}$.

▶ **Proof:** Consider a random variable Y defined by

$$Y = \begin{cases}
 a & X \geq a \\
 0 & X < a
\end{cases}.$$

Since $X \geq Y$ with probability one, it follows that $E[X] \geq E[Y] = aP\{X \geq a\}$. Divide both sides by a to get Markov’s inequality.

▶ **Chebyshev’s inequality:** If X has finite mean μ, variance σ^2, and $k > 0$ then

$$P\{|X - \mu| \geq k\} \leq \frac{\sigma^2}{k^2}.$$
Markov’s and Chebyshev’s inequalities

▶ **Markov’s inequality:** Let X be a random variable taking only non-negative values. Fix a constant $a > 0$. Then $P\{X \geq a\} \leq \frac{E[X]}{a}$.

▶ **Proof:** Consider a random variable Y defined by

$$Y = \begin{cases} a & X \geq a \\ 0 & X < a \end{cases}.$$ Since $X \geq Y$ with probability one, it follows that $E[X] \geq E[Y] = aP\{X \geq a\}$. Divide both sides by a to get Markov’s inequality.

▶ **Chebyshev’s inequality:** If X has finite mean μ, variance σ^2, and $k > 0$ then

$$P\{|X - \mu| \geq k\} \leq \frac{\sigma^2}{k^2}.$$

▶ **Proof:** Note that $(X - \mu)^2$ is a non-negative random variable and $P\{|X - \mu| \geq k\} = P\{(X - \mu)^2 \geq k^2\}$. Now apply Markov’s inequality with $a = k^2$.
Markov and Chebyshev: rough idea

- **Markov’s inequality:** Let X be a random variable taking only non-negative values with finite mean. Fix a constant $a > 0$. Then $P\{X \geq a\} \leq \frac{E[X]}{a}$.

- **Chebyshev’s inequality:** If X has finite mean μ, variance σ^2, and $k > 0$ then $P\{|X - \mu| \geq k\} \leq \frac{\sigma^2}{k^2}$.

Inequalities allow us to deduce limited information about a distribution when we know only the mean (Markov) or the mean and variance (Chebyshev).

- **Markov:** if $E[X]$ is small, then it is not too likely that X is large.

- **Chebyshev:** if $\sigma^2 = \text{Var}[X]$ is small, then it is not too likely that X is far from its mean.
Markov’s inequality: Let X be a random variable taking only non-negative values with finite mean. Fix a constant $a > 0$. Then $P\{X \geq a\} \leq \frac{E[X]}{a}$.

Chebyshev’s inequality: If X has finite mean μ, variance σ^2, and $k > 0$ then

$$P\{|X - \mu| \geq k\} \leq \frac{\sigma^2}{k^2}.$$
Markov's inequality: Let X be a random variable taking only non-negative values with finite mean. Fix a constant $a > 0$. Then $P\{X \geq a\} \leq \frac{E[X]}{a}$.

Chebyshev's inequality: If X has finite mean μ, variance σ^2, and $k > 0$ then

$$P\{|X - \mu| \geq k\} \leq \frac{\sigma^2}{k^2}.$$

Inequalities allow us to deduce limited information about a distribution when we know only the mean (Markov) or the mean and variance (Chebyshev).
Markov and Chebyshev: rough idea

- **Markov’s inequality:** Let X be a random variable taking only non-negative values with finite mean. Fix a constant $a > 0$. Then $P\{X \geq a\} \leq \frac{E[X]}{a}$.

- **Chebyshev’s inequality:** If X has finite mean μ, variance σ^2, and $k > 0$ then

$$P\{|X - \mu| \geq k\} \leq \frac{\sigma^2}{k^2}.$$

- Inequalities allow us to deduce limited information about a distribution when we know only the mean (Markov) or the mean and variance (Chebyshev).

- **Markov:** if $E[X]$ is small, then it is not too likely that X is large.
Markov and Chebyshev: rough idea

- **Markov’s inequality:** Let X be a random variable taking only non-negative values with finite mean. Fix a constant $a > 0$. Then $P\{X \geq a\} \leq \frac{E[X]}{a}$.

- **Chebyshev’s inequality:** If X has finite mean μ, variance σ^2, and $k > 0$ then

 $$P\{|X - \mu| \geq k\} \leq \frac{\sigma^2}{k^2}.$$

- Inequalities allow us to deduce limited information about a distribution when we know only the mean (Markov) or the mean and variance (Chebyshev).

- **Markov:** if $E[X]$ is small, then it is not too likely that X is large.

- **Chebyshev:** if $\sigma^2 = \text{Var}[X]$ is small, then it is not too likely that X is far from its mean.
Statement of weak law of large numbers

- Suppose X_i are i.i.d. random variables with mean μ.

- $A_n := X_1 + X_2 + ... + X_n$ is called the empirical average of the first n trials.

- We'd guess that when n is large, A_n is typically close to μ.

- Indeed, weak law of large numbers states that for all $\epsilon > 0$ we have $\lim_{n \to \infty} P\{|A_n - \mu| > \epsilon\} = 0$.

- Example: as n tends to infinity, the probability of seeing more than $0.50001n$ heads in n fair coin tosses tends to zero.
Suppose X_i are i.i.d. random variables with mean μ.

Then the value $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$ is called the empirical average of the first n trials.
Statement of weak law of large numbers

- Suppose X_i are i.i.d. random variables with mean μ.
- Then the value $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$ is called the empirical average of the first n trials.
- We’d guess that when n is large, A_n is typically close to μ.

Indeed, weak law of large numbers states that for all $\epsilon > 0$ we have $\lim_{n \to \infty} P\{|A_n - \mu| > \epsilon\} = 0$.

Example: as n tends to infinity, the probability of seeing more than $\frac{1}{2}$ heads in n fair coin tosses tends to zero.
Suppose X_i are i.i.d. random variables with mean μ.

Then the value $A_n := \frac{1}{n} X_1 + X_2 + \ldots + X_n$ is called the empirical average of the first n trials.

We’d guess that when n is large, A_n is typically close to μ.

Indeed, **weak law of large numbers** states that for all $\epsilon > 0$ we have $\lim_{n \to \infty} P\{|A_n - \mu| > \epsilon\} = 0$.
Statement of weak law of large numbers

- Suppose X_i are i.i.d. random variables with mean μ.
- Then the value $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$ is called the empirical average of the first n trials.
- We’d guess that when n is large, A_n is typically close to μ.
- Indeed, **weak law of large numbers** states that for all $\epsilon > 0$ we have $\lim_{n \to \infty} P\{|A_n - \mu| > \epsilon\} = 0$.
- Example: as n tends to infinity, the probability of seeing more than $.50001n$ heads in n fair coin tosses tends to zero.
As above, let X_i be i.i.d. random variables with mean μ and write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$. By additivity of expectation, $E[A_n] = \mu$. Similarly, $\text{Var}[A_n] = \frac{n \sigma^2}{n^2} = \frac{\sigma^2}{n}$. By Chebyshev, $P\{ |A_n - \mu| \geq \epsilon \} \leq \frac{\text{Var}[A_n]}{\epsilon^2} = \frac{\sigma^2}{n \epsilon^2}$. No matter how small ϵ is, RHS will tend to zero as n gets large.
As above, let X_i be i.i.d. random variables with mean μ and write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$.

By additivity of expectation, $\mathbb{E}[A_n] = \mu$.
Proof of weak law of large numbers in finite variance case

- As above, let X_i be i.i.d. random variables with mean μ and write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$.
- By additivity of expectation, $\mathbb{E}[A_n] = \mu$.
- Similarly, $\text{Var}[A_n] = \frac{n\sigma^2}{n^2} = \sigma^2 / n$.
As above, let X_i be i.i.d. random variables with mean μ and write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$.

By additivity of expectation, $\mathbb{E}[A_n] = \mu$.

Similarly, $\text{Var}[A_n] = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$.

By Chebyshev $P\left\{ |A_n - \mu| \geq \epsilon \right\} \leq \frac{\text{Var}[A_n]}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$.

No matter how small ϵ is, RHS will tend to zero as n gets large.
Proof of weak law of large numbers in finite variance case

As above, let X_i be i.i.d. random variables with mean μ and write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$.

By additivity of expectation, $\mathbb{E}[A_n] = \mu$.

Similarly, $\text{Var}[A_n] = \frac{n\sigma^2}{n^2} = \sigma^2 / n$.

By Chebyshev

$\text{P}\{ |A_n - \mu| \geq \epsilon \} \leq \frac{\text{Var}[A_n]}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$.

No matter how small ϵ is, RHS will tend to zero as n gets large.
Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach
Outline

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach
Question: does the weak law of large numbers apply no matter what the probability distribution for \(X \) is?

What if \(X \) is Cauchy?

Recall that in this strange case \(A_n \) actually has the same probability distribution as \(X \). In particular, the \(A_n \) are not tightly concentrated around any particular value even when \(n \) is very large.

But in this case \(\mathbb{E}[|X|] \) was infinite. Does the weak law hold as long as \(\mathbb{E}[|X|] \) is finite, so that \(\mu \) is well defined?

Yes. Can prove this using characteristic functions.
Question: does the weak law of large numbers apply no matter what the probability distribution for X is?

Is it always the case that if we define $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$ then A_n is typically close to some fixed value when n is large?

What if X is Cauchy?

Recall that in this strange case A_n actually has the same probability distribution as X.

In particular, the A_n are not tightly concentrated around any particular value even when n is very large.

But in this case $E[|X|]$ was infinite. Does the weak law hold as long as $E[|X|]$ is finite, so that μ is well defined?

Yes. Can prove this using characteristic functions.
Question: does the weak law of large numbers apply no matter what the probability distribution for X is?

Is it always the case that if we define $A_n := \frac{X_1+X_2+...+X_n}{n}$ then A_n is typically close to some fixed value when n is large?

What if X is Cauchy?
Question: does the weak law of large numbers apply no matter what the probability distribution for \(X\) is?

Is it always the case that if we define \(A_n := \frac{X_1+X_2+...+X_n}{n}\) then \(A_n\) is typically close to some fixed value when \(n\) is large?

What if \(X\) is Cauchy?

Recall that in this strange case \(A_n\) actually has the same probability distribution as \(X\).
Question: does the weak law of large numbers apply no matter what the probability distribution for X is?

Is it always the case that if we define $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$ then A_n is typically close to some fixed value when n is large?

What if X is Cauchy?

Recall that in this strange case A_n actually has the same probability distribution as X.

In particular, the A_n are not tightly concentrated around any particular value even when n is very large.
Question: does the weak law of large numbers apply no matter what the probability distribution for X is?

Is it always the case that if we define $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$ then A_n is typically close to some fixed value when n is large?

What if X is Cauchy?

Recall that in this strange case A_n actually has the same probability distribution as X.

In particular, the A_n are not tightly concentrated around any particular value even when n is very large.

But in this case $E[|X|]$ was infinite. Does the weak law hold as long as $E[|X|]$ is finite, so that μ is well defined?
Question: does the weak law of large numbers apply no matter what the probability distribution for X is?

Is it always the case that if we define $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$ then A_n is typically close to some fixed value when n is large?

What if X is Cauchy?

Recall that in this strange case A_n actually has the same probability distribution as X.

In particular, the A_n are not tightly concentrated around any particular value even when n is very large.

But in this case $E[|X|]$ was infinite. Does the weak law hold as long as $E[|X|]$ is finite, so that μ is well defined?

Yes. Can prove this using characteristic functions.
Let X be a random variable.

The characteristic function of X is defined by

$$\phi(t) = \phi_X(t) := \mathbb{E}[e^{itX}].$$

Like $M(t)$ except with i thrown in.

Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.

Characteristic functions are similar to moment generating functions in some ways.

For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.

And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.

And if X has an mth moment then $\mathbb{E}[X^m] = i^m \phi_X^{(m)}(0)$.

But characteristic functions have an advantage: they are well defined at all t for all random variables X.
Let X be a random variable.

The **characteristic function** of X is defined by

$$\phi(t) = \phi_X(t) := E[e^{itX}].$$

Like $M(t)$ except with i thrown in.

Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.

Characteristic functions are similar to moment generating functions in some ways.

For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.

And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.

And if X has an mth moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.

But characteristic functions have an advantage: they are well defined at all t for all random variables X.
Let X be a random variable.

The **characteristic function** of X is defined by
\[
\phi(t) = \phi_X(t) := E[e^{itX}].
\]
Like $M(t)$ except with i thrown in.

Recall that by definition $e^{it} = \cos(t) + i \sin(t)$.
Characteristic functions

- Let X be a random variable.
- The **characteristic function** of X is defined by
 \[\phi(t) = \phi_X(t) := E[e^{itX}] \]. Like $M(t)$ except with i thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
Let X be a random variable.

The **characteristic function** of X is defined by

$$
\phi(t) = \phi_X(t) := E[e^{itX}].
$$

Like $M(t)$ except with i thrown in.

Recall that by definition $e^{it} = \cos(t) + i \sin(t)$.

Characteristic functions are similar to moment generating functions in some ways.

For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.
Let X be a random variable.

The **characteristic function** of X is defined by

$$\phi(t) = \phi_X(t) := E[e^{itX}].$$

Like $M(t)$ except with i thrown in.

Recall that by definition $e^{it} = \cos(t) + i \sin(t)$.

Characteristic functions are similar to moment generating functions in some ways.

For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.

And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.
Characteristic functions

- Let X be a random variable.
- The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like $M(t)$ except with i thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.
- And if X has an mth moment then $E[X^m] = im\phi_X^{(m)}(0)$.
Let X be a random variable.

The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like $M(t)$ except with i thrown in.

Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.

Characteristic functions are similar to moment generating functions in some ways.

For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.

And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.

And if X has an mth moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.

But characteristic functions have an advantage: they are well defined at all t for all random variables X.
Let X be a random variable and X_n a sequence of random variables.
Continuity theorems

- Let X be a random variable and X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if $\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$ at all $x \in \mathbb{R}$ at which F_X is continuous.

- The weak law of large numbers can be rephrased as the statement that A_n converges in law to μ (i.e., to the random variable that is equal to μ with probability one).

- Lévy's continuity theorem (see Wikipedia): if $\lim_{n \to \infty} \phi_{X_n}(t) = \phi_X(t)$ for all t, then X_n converge in law to X.

- By this theorem, we can prove the weak law of large numbers by showing $\lim_{n \to \infty} \phi_{A_n}(t) = \phi_{\mu}(t) = e^{it\mu}$ for all t. In the special case that $\mu = 0$, this amounts to showing $\lim_{n \to \infty} \phi_{A_n}(t) = 1$ for all t.
Let X be a random variable and X_n a sequence of random variables.

Say X_n converge in distribution or converge in law to X if
\[\lim_{n \to \infty} F_{X_n}(x) = F_X(x) \]
at all $x \in \mathbb{R}$ at which F_X is continuous.

The weak law of large numbers can be rephrased as the statement that A_n converges in law to μ (i.e., to the random variable that is equal to μ with probability one).
Let X be a random variable and X_n a sequence of random variables.

Say X_n converge in distribution or converge in law to X if \(\lim_{n \to \infty} F_{X_n}(x) = F_X(x) \) at all $x \in \mathbb{R}$ at which F_X is continuous.

The weak law of large numbers can be rephrased as the statement that A_n converges in law to μ (i.e., to the random variable that is equal to μ with probability one).

Lévy’s continuity theorem (see Wikipedia): if

\[
\lim_{n \to \infty} \phi_{X_n}(t) = \phi_X(t)
\]

for all t, then X_n converge in law to X.

Let X be a random variable and X_n a sequence of random variables.

Say X_n converge in distribution or converge in law to X if
\[\lim_{n \to \infty} F_{X_n}(x) = F_X(x) \]
for all $x \in \mathbb{R}$ at which F_X is continuous.

The weak law of large numbers can be rephrased as the statement that A_n converges in law to μ (i.e., to the random variable that is equal to μ with probability one).

Lévy’s continuity theorem (see Wikipedia): if
\[\lim_{n \to \infty} \phi_{X_n}(t) = \phi_X(t) \]
for all t, then X_n converge in law to X.

By this theorem, we can prove the weak law of large numbers by showing
\[\lim_{n \to \infty} \phi_{A_n}(t) = \phi_{\mu}(t) = e^{it\mu} \]
for all t. In the special case that $\mu = 0$, this amounts to showing
\[\lim_{n \to \infty} \phi_{A_n}(t) = 1 \]
for all t.
Proof of weak law of large numbers in finite mean case

As above, let X_i be i.i.d. instances of random variable X with mean zero. Write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X - \mu$. Thus it suffices to prove the weak law in the mean zero case.
Proof of weak law of large numbers in finite mean case

As above, let X_i be i.i.d. instances of random variable X with mean zero. Write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X - \mu$. Thus it suffices to prove the weak law in the mean zero case.

Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.

\[\phi_X(t) = E[e^{itX}] \]
Proof of weak law of large numbers in finite mean case

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X - \mu$. Thus it suffices to prove the weak law in the mean zero case.

- Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.

- Since $E[X] = 0$, we have $\phi'_X(0) = E[\frac{\partial}{\partial t} e^{itX}]_{t=0} = iE[X] = 0$.

Proof of weak law of large numbers in finite mean case

As above, let X_i be i.i.d. instances of random variable X with mean zero. Write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X - \mu$. Thus it suffices to prove the weak law in the mean zero case.

Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.

Since $E[X] = 0$, we have $\phi_X'(0) = E[\frac{\partial}{\partial t} e^{itX}]_{t=0} = iE[X] = 0$.

Write $g(t) = \log \phi_X(t)$ so $\phi_X(t) = e^{g(t)}$. Then $g(0) = 0$ and (by chain rule) $g'(0) = \lim_{\epsilon \to 0} \frac{g(\epsilon) - g(0)}{\epsilon} = \lim_{\epsilon \to 0} \frac{g(\epsilon)}{\epsilon} = 0$.

By Lévy's continuity theorem, the A_n converge in law to 0 (i.e., to the random variable that is 0 with probability one).
Proof of weak law of large numbers in finite mean case

As above, let X_i be i.i.d. instances of random variable X with mean zero. Write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X - \mu$. Thus it suffices to prove the weak law in the mean zero case.

Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.

Since $E[X] = 0$, we have $\phi_X'(0) = E[\frac{\partial}{\partial t} e^{itX}]_{t=0} = iE[X] = 0$.

Write $g(t) = \log \phi_X(t)$ so $\phi_X(t) = e^{g(t)}$. Then $g(0) = 0$ and (by chain rule) $g'(0) = \lim_{\epsilon \to 0} \frac{g(\epsilon) - g(0)}{\epsilon} = \lim_{\epsilon \to 0} \frac{g(\epsilon)}{\epsilon} = 0$.

Now $\phi_{A_n}(t) = \phi_X(t/n)^n = e^{ng(t/n)}$. Since $g(0) = g'(0) = 0$ we have $\lim_{n \to \infty} ng(t/n) = \lim_{n \to \infty} t \frac{g(t/n)}{t/n} = 0$ if t is fixed. Thus $\lim_{n \to \infty} e^{ng(t/n)} = 1$ for all t.

By Lévy's continuity theorem, the A_n converge in law to 0 (i.e., to the random variable that is 0 with probability one).
As above, let X_i be i.i.d. instances of random variable X with mean zero. Write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X - \mu$. Thus it suffices to prove the weak law in the mean zero case.

Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.

Since $E[X] = 0$, we have $\phi'_X(0) = E[\frac{\partial}{\partial t} e^{itX}]_{t=0} = iE[X] = 0$.

Write $g(t) = \log \phi_X(t)$ so $\phi_X(t) = e^{g(t)}$. Then $g(0) = 0$ and (by chain rule) $g'(0) = \lim_{\epsilon \to 0} \frac{g(\epsilon) - g(0)}{\epsilon} = \lim_{\epsilon \to 0} \frac{g(\epsilon)}{\epsilon} = 0$.

Now $\phi_{A_n}(t) = \phi_X(t/n)^n = e^{ng(t/n)}$. Since $g(0) = g'(0) = 0$ we have $\lim_{n \to \infty} ng(t/n) = \lim_{n \to \infty} t \frac{g(t/n)}{t} = 0$ if t is fixed. Thus $\lim_{n \to \infty} e^{ng(t/n)} = 1$ for all t. By Lévy's continuity theorem, the A_n converge in law to 0 (i.e., to the random variable that is 0 with probability one).
As above, let X_i be i.i.d. instances of random variable X with mean zero. Write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X - \mu$. Thus it suffices to prove the weak law in the mean zero case.

Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.

Since $E[X] = 0$, we have $\phi'_X(0) = E[\frac{\partial}{\partial t} e^{itX}]_{t=0} = iE[X] = 0$.

Write $g(t) = \log \phi_X(t)$ so $\phi_X(t) = e^{g(t)}$. Then $g(0) = 0$ and (by chain rule) $g'(0) = \lim_{\epsilon \to 0} \frac{g(\epsilon) - g(0)}{\epsilon} = \lim_{\epsilon \to 0} \frac{g(\epsilon)}{\epsilon} = 0$.

Now $\phi_{A_n}(t) = \phi_X(t/n)^n = e^{ng(t/n)}$. Since $g(0) = g'(0) = 0$ we have $\lim_{n \to \infty} ng(t/n) = \lim_{n \to \infty} t \frac{g(t/n)}{n} = 0$ if t is fixed. Thus $\lim_{n \to \infty} e^{ng(t/n)} = 1$ for all t.

By Lévy’s continuity theorem, the A_n converge in law to 0 (i.e., to the random variable that is 0 with probability one).