
18.600: Lecture 1

Permutations and combinations, Pascal’s
triangle, learning to count

Scott Sheffield

MIT

My office hours: Wednesdays 3 to 5 in 2-249

Take a selfie with Norbert Wiener’s desk.
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Politics

I Suppose that, in some election, betting markets place the
probability that your favorite candidate will be elected at 58
percent. Price of a contact that pays 100 dollars if your
candidate wins is 58 dollars.

I Market seems to say that your candidate will probably win, if
“probably” means with probability greater than .5.

I The price of such a contract may fluctuate in time.
I Let X (t) denote the price at time t.
I Suppose X (t) is known to vary continuously in time. What is

probability p it reaches 59 before 57?
I If p > .5, we can make money in expecation by buying at 58

and selling when price hits 57 or 59.
I If p < .5, we can sell at 58 and buy when price hits 57 or 59.
I Efficient market hypothesis (a.k.a. “no free money just lying

around” hypothesis) suggests p = .5 (with some caveats...)
I Natural model for prices: repeatedly toss coin, adding 1 for

heads and −1 for tails, until price hits 0 or 100.

Which of these statements is “probably” true?

I 1. X (t) will go below 50 at some future point.

I 2. X (t) will get all the way below 20 at some point

I 3. X (t) will reach both 70 and 30, at different future times.

I 4. X (t) will reach both 65 and 35 at different future times.

I 5. X (t) will hit 65, then 50, then 60, then 55.

I Answers: 1, 2, 4.

I Full explanations coming toward the end of the course.

I Problem sets in this course explore applications of probability
to politics, medicine, finance, economics, science, engineering,
philosophy, dating, etc. Stories motivate the math and make
it easier to remember.

I Provocative question: what simple advice, that would greatly
benefit humanity, are we unaware of? Foods to avoid?
Exercises to do? Books to read? How would we know?

I Let’s start with easier questions.
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Permutations

I How many ways to order 52 cards?

I Answer: 52 · 51 · 50 · . . . · 1 = 52! =
80658175170943878571660636856403766975289505600883277824×
1012

I n hats, n people, how many ways to assign each person a hat?

I Answer: n!

I n hats, k < n people, how many ways to assign each person a
hat?

I n · (n − 1) · (n − 2) . . . (n − k + 1) = n!/(n − k)!

Permutation notation

I A permutation is a function from {1, 2, . . . , n} to
{1, 2, . . . , n} whose range is the whole set {1, 2, . . . , n}. If σ
is a permutation then for each j between 1 and n, the the
value σ(j) is the number that j gets mapped to.

I For example, if n = 3, then σ could be a function such that
σ(1) = 3, σ(2) = 2, and σ(3) = 1.

I If you have n cards with labels 1 through n and you shuffle
them, then you can let σ(j) denote the label of the card in the
jth position. Thus orderings of n cards are in one-to-one
correspondence with permutations of n elements.

I One way to represent σ is to list the values
σ(1), σ(2), . . . , σ(n) in order. The σ above is represented as
{3, 2, 1}.

I If σ and ρ are both permutations, write σ ◦ ρ for their
composition. That is, σ ◦ ρ(j) = σ(ρ(j)).

Cycle decomposition

I Another way to write a permutation is to describe its cycles:

I For example, taking n = 7, we write (2, 3, 5), (1, 7), (4, 6) for
the permutation σ such that σ(2) = 3, σ(3) = 5, σ(5) = 2 and
σ(1) = 7, σ(7) = 1, and σ(4) = 6, σ(6) = 4.

I If you pick some j and repeatedly apply σ to it, it will “cycle
through” the numbers in its cycle.

I Visualize this by writing down numbers 1 to n and drawing
arrow from each k to σ(k). Trace through a cycle by
following arrows.

I Generally, a function f is called an involution if f (f (x)) = x
for all x .

I A permutation is an involution if all cycles have length one or
two.

I A permutation is “fixed point free” if there are no cycles of
length one.
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Fundamental counting trick

I n ways to assign hat for the first person. No matter what
choice I make, there will remain n − 1 ways to assign hat to
the second person. No matter what choice I make there, there
will remain n− 2 ways to assign a hat to the third person, etc.

I This is a useful trick: break counting problem into a sequence
of stages so that one always has the same number of choices
to make at each stage. Then the total count becomes a
product of number of choices available at each stage.

I Easy to make mistakes. For example, maybe in your problem,
the number of choices at one stage actually does depend on
choices made during earlier stages.

Another trick: overcount by a fixed factor

I If you have 5 indistinguishable black cards, 2 indistinguishable
red cards, and three indistinguishable green cards, how many
distinct shuffle patterns of the ten cards are there?

I Answer: if the cards were distinguishable, we’d have 10!. But
we’re overcounting by a factor of 5!2!3!, so the answer is
10!/(5!2!3!).
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(
n
k

)
notation

I How many ways to choose an ordered sequence of k elements
from a list of n elements, with repeats allowed?

I Answer: nk

I How many ways to choose an ordered sequence of k elements
from a list of n elements, with repeats forbidden?

I Answer: n!/(n − k)!

I How many way to choose (unordered) k elements from a list
of n without repeats?

I Answer:
(n
k

)
:= n!

k!(n−k)!

I What is the coefficient in front of xk in the expansion of
(x + 1)n?

I Answer:
(n
k

)
.

Pascal’s triangle

I Arnold principle.

I A simple recursion:
(n
k

)
=
(n−1
k−1

)
+
(n−1

k

)
.

I What is the coefficient in front of xk in the expansion of
(x + 1)n?

I Answer:
(n
k

)
.

I (x + 1)n =
(n
0

)
· 1 +

(n
1

)
x1 +

(n
2

)
x2 + . . .+

( n
n−1

)
xn−1 +

(n
n

)
xn.

I Question: what is
∑n

k=0

(n
k

)
?

I Answer: (1 + 1)n = 2n.
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More problems

I How many full house hands in poker?

I 13
(4
3

)
· 12
(4
2

)
I How many “2 pair” hands?

I 13
(4
2

)
· 12
(4
2

)
· 11
(4
1

)
/2

I How many royal flush hands?

I 4

More problems

I How many hands that have four cards of the same suit, one
card of another suit?

I 4
(13
4

)
· 3
(13
1

)
I How many 10 digit numbers with no consecutive digits that

agree?

I If initial digit can be zero, have 10 · 99 ten-digit sequences. If
initial digit required to be non-zero, have 910.

I How many ways to assign a birthday to each of 23 distinct
people? What if no birthday can be repeated?

I 36623 if repeats allowed. 366!/343! if repeats not allowed.
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Partition problems

I You have eight distinct pieces of food. You want to choose
three for breakfast, two for lunch, and three for dinner. How
many ways to do that?

I Answer: 8!/(3!2!3!)

I One way to think of this: given any permutation of eight
elements (e.g., 12435876 or 87625431) declare first three as
breakfast, second two as lunch, last three as dinner. This
maps set of 8! permutations on to the set of food-meal
divisions in a many-to-one way: each food-meal division
comes from 3!2!3! permutations.

I How many 8-letter sequences with 3 A’s, 2 B’s, and 3 C ’s?

I Answer: 8!/(3!2!3!). Same as other problem. Imagine 8
“slots” for the letters. Choose 3 to be A’s, 2 to be B’s, and 3
to be C ’s.



Partition problems

I In general, if you have n elements you wish to divide into r
distinct piles of sizes n1, n2 . . . nr , how many ways to do that?

I Answer
( n
n1,n2,...,nr

)
:= n!

n1!n2!...nr !
.

One way to understand the binomial theorem

I Expand the product (A1 + B1)(A2 + B2)(A3 + B3)(A4 + B4).

I 16 terms correspond to 16 length-4 sequences of A’s and B’s.

A1A2A3A4 + A1A2A3B4 + A1A2B3A4 + A1A2B3B4+

A1B2A3A4 + A1B2A3B4 + A1B2B3A4 + A1B2B3B4+

B1A2A3A4 + B1A2A3B4 + B1A2B3A4 + B1A2B3B4+

B1B2A3A4 + B1B2A3B4 + B1B2B3A4 + B1B2B3B4

I What happens to this sum if we erase subscripts?

I (A + B)4 = B4 + 4AB3 + 6A2B2 + 4A3B + A4. Coefficient of
A2B2 is 6 because 6 length-4 sequences have 2 A’s and 2 B’s.

I Generally, (A + B)n =
∑n

k=0

(n
k

)
AkBn−k , because there are(n

k

)
sequences with k A’s and (n − k) B’s.

How about trinomials?

I Expand
(A1 + B1 + C1)(A2 + B2 + C2)(A3 + B3 + C3)(A4 + B4 + C4).
How many terms?

I Answer: 81, one for each length-4 sequence of A’s and B’s
and C ’s.

I We can also compute (A + B + C )4 =
A4+4A3B+6A2B2+4AB3+B4+4A3C+12A2BC+12AB2C+
4B3C + 6A2C 2 + 12ABC 2 + 6B2C 2 + 4AC 3 + 4BC 3 + C 4

I What is the sum of the coefficients in this expansion? What is
the combinatorial interpretation of coefficient of, say, ABC 2?

I Answer 81 = (1 + 1 + 1)4. ABC 2 has coefficient 12 because
there are 12 length-4 words have one A, one B, two C ’s.

Multinomial coefficients

I Is there a higher dimensional analog of binomial theorem?

I Answer: yes.

I Then what is it?

I

(x1+x2+. . .+xr )n =
∑

n1,...,nr :n1+...+nr=n

(
n

n1, . . . , nr

)
xn11 xn22 . . . xnrr

I The sum on the right is taken over all collections
(n1, n2, . . . , nr ) of r non-negative integers that add up to n.

I Pascal’s triangle gives coefficients in binomial expansions. Is
there something like a “Pascal’s pyramid” for trinomial
expansions?

I Yes (look it up) but it is a bit tricker to draw and visualize
than Pascal’s triangle.



By the way...

I If n! is the product of all integers in the interval with
endpoints 1 and n, then 0! = 0.

I Actually, we say 0! = 1. What are the reasons for that?

I Because there is one map from the empty set to itself.

I Because we want the formula
(n
k

)
= n!

k!(n−k)! to still make
sense when k = 0 and k = n. There is clearly 1 way to choose
n elements from a group of n elements. And 1 way to choose
0 elements from a group of n elements so n!

n!0! = n!
0!n! = 1.

I Because we want the recursion n(n − 1)! = n! to hold for
n = 1. (We won’t define factorials of negative integers.)

I Because we want n! =
∫∞
0 tne−tdt to hold for all

non-negative integers. (Check for positive integers by
integration by parts.) This is one of those formulas you should
just know. Can use it to define n! for non-integer n.

I Another common notation: write Γ(z) :=
∫∞
0 tz−1e−tdt and

define n! := Γ(n + 1) =
∫∞
0 tne−tdt, so that Γ(n) = (n − 1)!.
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Integer partitions

I How many sequences a1, . . . , ak of non-negative integers
satisfy a1 + a2 + . . . + ak = n?

I Answer:
(n+k−1

n

)
. Represent partition by k − 1 bars and n

stars, e.g., as ∗ ∗ | ∗ ∗|| ∗ ∗ ∗ ∗|∗.
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More counting problems

I In 18.821, a class of 27 students needs to be divided into 9
teams of three students each? How many ways are there to
do that?

I 27!
(3!)99!

I You teach a class with 90 students. In a rather severe effort to
combat grade inflation, your department chair insists that you
assign the students exactly 10 A’s, 20 B’s, 30 C’s, 20 D’s, and
10 F’s. How many ways to do this?

I
( 90
10,20,30,20,10

)
= 90!

10!20!30!20!10!

I You have 90 (indistinguishable) pieces of pizza to divide
among the 90 (distinguishable) students. How many ways to
do that (giving each student a non-negative integer number of
slices)?

I
(179
90

)
=
(179
89

)

More counting problems

I How many 13-card bridge hands have 4 of one suit, 3 of one
suit, 5 of one suit, 1 of one suit?

I 4!
(13
4

)(13
3

)(13
5

)(13
1

)
I How many bridge hands have at most two suits represented?

I
(4
2

)(26
13

)
− 8

I How many hands have either 3 or 4 cards in each suit?

I Need three 3-card suits, one 4-card suit, to make 13 cards
total. Answer is 4

(13
3

)3(13
4

)
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What does “I’d say there’s a thirty percent chance it will
rain tomorrow” mean?

I Neurological: When I think “it will rain tomorrow” the
“truth-sensing” part of my brain exhibits 30 percent of its
maximum electrical activity.

I Frequentist: Of the last 1000 days that meteorological
measurements looked this way, rain occurred on the
subsequent day 300 times.

I Market preference (“risk neutral probability”): The
market price of a contract that pays 100 if it rains tomorrow
agrees with the price of a contract that pays 30 tomorrow no
matter what.

I Personal belief: If you offered me a choice of these
contracts, I’d be indifferent. (If need for money is different in
two scenarios, I can replace dollars with “units of utility.”)
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Even more fundamental question: defining a set of possible
outcomes

I Roll a die n times. Define a sample space to be
{1, 2, 3, 4, 5, 6}n, i.e., the set of a1, . . . , an with each
aj ∈ {1, 2, 3, 4, 5, 6}.

I Shuffle a standard deck of cards. Sample space is the set of
52! permutations.

I Will it rain tomorrow? Sample space is {R,N}, which stand
for “rain” and “no rain.”

I Randomly throw a dart at a board. Sample space is the set of
points on the board.

Event: subset of the sample space

I If a set A is comprised of some of the elements of B, say A is
a subset of B and write A ⊂ B.

I Similarly, B ⊃ A means A is a subset of B (or B is a superset
of A).

I If S is a finite sample space with n elements, then there are 2n

subsets of S .

I Denote by ∅ the set with no elements.



Intersections, unions, complements

I A ∪ B means the union of A and B, the set of elements
contained in at least one of A and B.

I A ∩ B means the intersection of A and B, the set of elements
contained on both A and B.

I Ac means complement of A, set of points in whole sample
space S but not in A.

I A \ B means “A minus B” which means the set of points in A
but not in B. In symbols, A \ B = A ∩ (Bc).

I ∪ is associative. So (A ∪ B) ∪ C = A ∪ (B ∪ C ) and can be
written A ∪ B ∪ C .

I ∩ is also associative. So (A ∩ B) ∩ C = A ∩ (B ∩ C ) and can
be written A ∩ B ∩ C .

Venn diagrams

A B

Venn diagrams

A B

Ac ∩Bc

Ac ∩BA ∩B

A ∩Bc
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DeMorgan’s laws

I “It will not snow or rain” means “It will not snow and it will
not rain.”

I If S is event that it snows, R is event that it rains, then
(S ∪ R)c = Sc ∩ Rc

I More generally: (∪ni=1Ei )
c = ∩ni=1(Ei )

c

I “It will not both snow and rain” means “Either it will not
snow or it will not rain.”

I (S ∩ R)c = Sc ∪ Rc

I (∩ni=1Ei )
c = ∪ni=1(Ei )

c
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Axioms of probability

I P(A) ∈ [0, 1] for all A ⊂ S .

I P(S) = 1.

I Finite additivity: P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅.
I Countable additivity: P(∪∞i=1Ei ) =

∑∞
i=1 P(Ei ) if Ei ∩ Ej = ∅

for each pair i and j .

I Neurological: When I think “it will rain tomorrow” the
“truth-sensing” part of my brain exhibits 30 percent of its
maximum electrical activity. Should have P(A) ∈ [0, 1] and
presumably P(S) = 1 but not necessarily
P(A ∪ B) = P(A) + P(B) when A ∩ B = ∅.

I Frequentist: P(A) is the fraction of times A occurred during
the previous (large number of) times we ran the experiment.
Seems to satisfy axioms...

I Market preference (“risk neutral probability”): P(A) is
price of contract paying dollar if A occurs divided by price of
contract paying dollar regardless. Seems to satisfy axioms,
assuming no arbitrage, no bid-ask spread, complete market...

I Personal belief: P(A) is amount such that I’d be indifferent
between contract paying 1 if A occurs and contract paying
P(A) no matter what. Seems to satisfy axioms with some
notion of utility units, strong assumption of “rationality”...
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Axioms of probability

I P(A) ∈ [0, 1] for all A ⊂ S .

I P(S) = 1.

I Finite additivity: P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅.
I Countable additivity: P(∪∞i=1Ei ) =

∑∞
i=1 P(Ei ) if Ei ∩ Ej = ∅

for each pair i and j .



I Neurological: When I think “it will rain tomorrow” the
“truth-sensing” part of my brain exhibits 30 percent of its
maximum electrical activity.

I Frequentist: P(A) is the fraction of times A occurred during
the previous (large number of) times we ran the experiment.

I Market preference (“risk neutral probability”): P(A) is
price of contract paying dollar if A occurs divided by price of
contract paying dollar regardless.

I Personal belief: P(A) is amount such that I’d be indifferent
between contract paying 1 if A occurs and contract paying
P(A) no matter what.

Axiom breakdown

I What if personal belief function doesn’t satisfy axioms?

I Consider an A-contract (pays 10 if candidate A wins election)
a B-contract (pays 10 dollars if candidate B wins) and an
A-or-B contract (pays 10 if either A or B wins).

I Friend: “I’d say A-contract is worth 1 dollar, B-contract is
worth 1 dollar, A-or-B contract is worth 7 dollars.”

I Amateur response: “Dude, that is, like, so messed up.
Haven’t you heard of the axioms of probability?”

I Cynical professional response: “I fully understand and
respect your opinions. In fact, let’s do some business. You sell
me an A contract and a B contract for 1.50 each, and I sell
you an A-or-B contract for 6.50.”

I Friend: “Wow... you’ve beat by suggested price by 50 cents
on each deal. Yes, sure! You’re a great friend!”

I Axioms breakdowns are money-making opportunities.

I Neurological: When I think “it will rain tomorrow” the
“truth-sensing” part of my brain exhibits 30 percent of its
maximum electrical activity. Should have P(A) ∈ [0, 1],
maybe P(S) = 1, not necessarily P(A ∪ B) = P(A) + P(B)
when A ∩ B = ∅.

I Frequentist: P(A) is the fraction of times A occurred during
the previous (large number of) times we ran the experiment.
Seems to satisfy axioms...

I Market preference (“risk neutral probability”): P(A) is
price of contract paying dollar if A occurs divided by price of
contract paying dollar regardless. Seems to satisfy axioms,
assuming no arbitrage, no bid-ask spread, complete market...

I Personal belief: P(A) is amount such that I’d be indifferent
between contract paying 1 if A occurs and contract paying
P(A) no matter what. Seems to satisfy axioms with some
notion of utility units, strong assumption of “rationality”...
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Intersection notation

I We will sometimes write AB to denote the event A ∩ B.

Consequences of axioms

I Can we show from the axioms that P(Ac) = 1− P(A)?

I Can we show from the axioms that if A ⊂ B then
P(A) ≤ P(B)?

I Can we show from the axioms that
P(A ∪ B) = P(A) + P(B)− P(AB)?

I Can we show from the axioms that P(AB) ≤ P(A)?

I Can we show from the axioms that if S contains finitely many
elements x1, . . . , xk , then the values(
P({x1}),P({x2}), . . . ,P({xk})

)
determine the value of P(A)

for any A ⊂ S?

I What k-tuples of values are consistent with the axioms?

Famous 1982 Tversky-Kahneman study (see wikipedia)

I People are told “Linda is 31 years old, single, outspoken, and
very bright. She majored in philosophy. As a student, she was
deeply concerned with issues of discrimination and social
justice, and also participated in anti-nuclear demonstrations.”

I They are asked: Which is more probable?
I Linda is a bank teller.
I Linda is a bank teller and is active in the feminist movement.

I 85 percent chose the second option.

I Could be correct using neurological/emotional definition. Or a
“which story would you believe” interpretation (if witnesses
offering more details are considered more credible).

I But axioms of probability imply that second option cannot be
more likely than first.
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Inclusion-exclusion identity

I Imagine we have n events, E1,E2, . . . ,En.

I How do we go about computing something like
P(E1 ∪ E2 ∪ . . . ∪ En)?

I It may be quite difficult, depending on the application.

I There are some situations in which computing
P(E1 ∪ E2 ∪ . . . ∪ En) is a priori difficult, but it is relatively
easy to compute probabilities of intersections of any collection
of Ei . That is, we can easily compute quantities like
P(E1E3E7) or P(E2E3E6E7E8).

I In these situations, the inclusion-exclusion rule helps us
compute unions. It gives us a way to express
P(E1 ∪ E2 ∪ . . . ∪ En) in terms of these intersection
probabilities.

Inclusion-exclusion identity

I Can we show from the axioms that
P(A ∪ B) = P(A) + P(B)− P(AB)?

I How about P(E ∪ F ∪ G ) =
P(E ) + P(F ) + P(G )−P(EF )−P(EG )−P(FG ) + P(EFG )?

I More generally,

P(∪ni=1Ei ) =
n∑

i=1

P(Ei )−
∑
i1<i2

P(Ei1Ei2) + . . .

+ (−1)(r+1)
∑

i1<i2<...<ir

P(Ei1Ei2 . . .Eir )

+ . . . + (−1)n+1P(E1E2 . . .En).

I The notation
∑

i1<i2<...<ir
means a sum over all of the

(n
r

)
subsets of size r of the set {1, 2, . . . , n}.



Inclusion-exclusion proof idea

I Consider a region of the Venn diagram contained in exactly
m > 0 subsets. For example, if m = 3 and n = 8 we could
consider the region E1E2E

c
3 E

c
4 E5E

c
6 E

c
7 E

c
8 .

I This region is contained in three single intersections (E1, E2,
and E5). It’s contained in 3 double-intersections (E1E2, E1E5,
and E2E5). It’s contained in only 1 triple-intersection
(E1E2E5).

I It is counted
(m
1

)
−
(m
2

)
+
(m
3

)
+ . . .±

(m
m

)
times in the

inclusion exclusion sum.

I How many is that?

I Answer: 1. (Follows from binomial expansion of (1− 1)m.)

I Thus each region in E1 ∪ . . . ∪ En is counted exactly once in
the inclusion exclusion sum, which implies the identity.
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Equal likelihood

I If a sample space S has n elements, and all of them are
equally likely, then each one has to have probability 1/n

I What is P(A) for a general set A ⊂ S?

I Answer: |A|/|S |, where |A| is the number of elements in A.
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Problems

I Roll two dice. What is the probability that their sum is three?

I 2/36 = 1/18

I Toss eight coins. What is the probability that exactly five of
them are heads?

I
(8
5

)
/28

I In a class of 100 people with cell phone numbers, what is the
probability that nobody has a number ending in 37?

I (99/100)100 ≈ 1/e

I Roll ten dice. What is the probability that a 6 appears on
exactly five of the dice?

I
(10
5

)
55/610

I In a room of 23 people, what is the probability that two of
them have a birthday in common?

I 1−
∏22

i=0
365−i
365
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Recall the inclusion-exclusion identity

I

P(∪ni=1Ei ) =
n∑

i=1

P(Ei )−
∑
i1<i2

P(Ei1Ei2) + . . .

+ (−1)(r+1)
∑

i1<i2<...<ir

P(Ei1Ei2 . . .Eir )

= + . . . + (−1)n+1P(E1E2 . . .En).

I The notation
∑

i1<i2<ir
means a sum over all of the

(n
r

)
subsets of size r of the set {1, 2, . . . , n}.

Famous hat problem

I n people toss hats into a bin, randomly shuffle, return one hat
to each person. Find probability nobody gets own hat.

I Inclusion-exclusion. Let Ei be the event that ith person gets
own hat.

I What is P(Ei1Ei2 . . .Eir )?

I Answer: (n−r)!
n! .

I There are
(n
r

)
terms like that in the inclusion exclusion sum.

What is
(n
r

) (n−r)!
n! ?

I Answer: 1
r ! .

I P(∪ni=1Ei ) = 1− 1
2! + 1

3! −
1
4! + . . .± 1

n!

I 1−P(∪ni=1Ei ) = 1−1 + 1
2! −

1
3! + 1

4! − . . .± 1
n! ≈ 1/e ≈ .36788
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Problems

I What’s the probability of a full house in poker (i.e., in a five
card hand, 2 have one value and three have another)?

I Answer 1:

# ordered distinct-five-card sequences giving full house

# ordered distinct-five-card sequences

I That’s(5
2

)
∗13∗12∗(4∗3∗2)∗(4∗3)/(52∗51∗50∗49∗48) = 6/4165.

I Answer 2:

# unordered distinct-five-card sets giving full house

# unordered distinct-five-card sets

I That’s 13 ∗ 12 ∗
(4
3

)
∗
(4
2

)
/
(52
5

)
= 6/4165.

I What is the probability of a two-pair hand in poker?
I Fix suit breakdown, then face values:

(4
2

)
· 2 ·

(13
2

)(13
2

)
· 13/

(52
5

)
I How about bridge hand with 3 of one suit, 3 of one suit, 2 of

one suit, 5 of another suit?
I
(4
2

)
· 2 ·

(13
3

)(13
3

)(13
2

)(13
5

)
/
(52
13

)
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Conditional probability

I Suppose I have a sample space S with n equally likely
elements, representing possible outcomes of an experiment.

I Experiment is performed, but I don’t know outcome. For
some F ⊂ S , I ask, “Was the outcome in F?” and receive
answer yes.

I I think of F as a “new sample space” with all elements
equally likely.

I Definition: P(E |F ) = P(EF )/P(F ).

I Call P(E |F ) the “conditional probability of E given F” or
“probability of E conditioned on F”.

I Definition makes sense even without “equally likely”
assumption.
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More examples

I Probability have rare disease given positive result to test with
90 percent accuracy.

I Say probability to have disease is p.

I S = {disease,no disease} × {positive, negative}.
I P(positive) = .9p + .1(1− p) and P(disease, positive) = .9p.

I P(disease|positive) = .9p
.9p+.1(1−p) . If p is tiny, this is about 9p.

I Probability suspect guilty of murder given a particular
suspicious behavior.

I Probability plane will come eventually, given plane not here
yet.

Another famous Tversky/Kahneman study (Wikipedia)

I Imagine you are a member of a jury judging a hit-and-run
driving case. A taxi hit a pedestrian one night and fled the
scene. The entire case against the taxi company rests on the
evidence of one witness, an elderly man who saw the accident
from his window some distance away. He says that he saw the
pedestrian struck by a blue taxi. In trying to establish her
case, the lawyer for the injured pedestrian establishes the
following facts:

I There are only two taxi companies in town, ”Blue Cabs” and
”Green Cabs.” On the night in question, 85 percent of all taxis
on the road were green and 15 percent were blue.

I The witness has undergone an extensive vision test under
conditions similar to those on the night in question, and has
demonstrated that he can successfully distinguish a blue taxi
from a green taxi 80 percent of the time.

I Study participants believe blue taxi at fault, say witness
correct with 80 percent probability.
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Multiplication rule

I P(E1E2E3 . . .En) =
P(E1)P(E2|E1)P(E3|E1E2) . . .P(En|E1 . . .En−1)

I Useful when we think about multi-step experiments.

I For example, let Ei be event ith person gets own hat in the
n-hat shuffle problem.

I Another example: roll die and let Ei be event that the roll
does not lie in {1, 2, . . . , i}. Then P(Ei ) = (6− i)/6 for
i ∈ {1, 2, . . . , 6}.

I What is P(E4|E1E2E3) in this case?

Monty Hall problem

I Prize behind one of three doors, all equally likely.

I You point to door one. Host opens either door two or three
and shows you that it doesn’t have a prize. (If neither door
two nor door three has a prize, host tosses coin to decide
which to open.)

I You then get to open a door and claim what’s behind it.
Should you stick with door one or choose other door?

I Sample space is {1, 2, 3} × {2, 3} (door containing prize, door
host points to).

I We have P
(
(1, 2)

)
= P

(
(1, 3)

)
= 1/6 and

P
(
(2, 3)

)
= P

(
(3, 2)

)
= 1/3. Given host points to door 2,

probability prize behind 3 is 2/3.



Another popular puzzle (see Tanya Khovanova’s blog)

I Given that your friend has exactly two children, one of whom
is a son born on a Tuesday, what is the probability the second
child is a son.

I Make the obvious (though not quite correct) assumptions.
Every child is either boy or girl, and equally likely to be either
one, and all days of week for birth equally likely, etc.

I Make state space matrix of 196 = 14 × 14 elements

I Easy to see answer is 13/27.
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Independence

Recall definition: conditional probability

I Definition: P(E |F ) = P(EF )/P(F ).

I Equivalent statement: P(EF ) = P(F )P(E |F ).

I Call P(E |F ) the “conditional probability of E given F” or
“probability of E conditioned on F”.



Dividing probability into two cases

I

P(E ) = P(EF ) + P(EF c)

= P(E |F )P(F ) + P(E |F c)P(F c)

I In words: want to know the probability of E . There are two
scenarios F and F c . If I know the probabilities of the two
scenarios and the probability of E conditioned on each
scenario, I can work out the probability of E .

I Example: D = “have disease”, T = “positive test.”

I If P(D) = p, P(T |D) = .9, and P(T |Dc) = .1, then
P(T ) = .9p + .1(1− p).

I What is P(D|T )?

Bayes’ theorem

I Bayes’ theorem/law/rule states the following:

P(A|B) = P(B|A)P(A)
P(B) .

I Follows from definition of conditional probability:
P(AB) = P(B)P(A|B) = P(A)P(B|A).

I Tells how to update estimate of probability of A when new
evidence restricts your sample space to B.

I So P(A|B) is P(B|A)
P(B) times P(A).

I Ratio P(B|A)
P(B) determines “how compelling new evidence is”.

I What does it mean if ratio is zero?

I What if ratio is 1/P(A)?

Bayes’ theorem

I Bayes’ formula P(A|B) = P(B|A)P(A)
P(B) is often invoked as tool

to guide intuition.

I Example: A is event that suspect stole the $10, 000 under my
mattress, B is event that suspect deposited several thousand
dollars in cash in bank last week.

I Begin with subjective estimates of P(A), P(B|A), and
P(B|Ac). Compute P(B). Check whether B occurred.
Update estimate.

I Repeat procedure as new evidence emerges.

I Caution required. My idea to check whether B occurred, or is
a lawyer selecting the provable events B1,B2,B3, . . . that
maximize P(A|B1B2B3 . . .)? Where did my probability
estimates come from? What is my state space? What
assumptions am I making?

“Bayesian” sometimes used to describe philosophical view

I Philosophical idea: we assign subjective probabilities to
questions we can’t answer. Will candidate win election? Will
Red Sox win world series? Will stock prices go up this year?

I Bayes essentially described probability of event as

value of right to get some thing if event occurs

value of thing
.

I Philosophical questions: do we have subjective
probabilities/hunches for questions we can’t base enforceable
contracts on? Do there exist other universes? Are there other
intelligent beings? Are there beings smart enough to simulate
universes like ours? Are we part of such a simulation?...

I Do we use Bayes subconsciously to update hunches?

I Should we think of Bayesian priors and updates as part of the
epistemological foundation of science and statistics?



Updated “odds”

I Define “odds” of A to be P(A)/P(Ac).

I Define “conditional odds” of A given B to be
P(A|B)/P(Ac |B).

I Is there nice way to describe ratio between odds and
conditional odds?

I P(A|B)/P(Ac |B)
P(A)/P(Ac ) =?

I By Bayes P(A|B)/P(A) = P(B|A)/P(B).

I After some algebra, P(A|B)/P(Ac |B)
P(A)/P(Ac ) = P(B|A)/P(B|Ac)

I Say I think A is 5 times as likely as Ac , and
P(B|A) = 3P(B|Ac). Given B, I think A is 15 times as likely
as Ac .

I Gambling sites (look at oddschecker.com) often list
P(Ac)/P(A), which is basically amount house puts up for bet
on Ac when you put up one dollar for bet on A.

P(·|F ) is a probability measure

I We can check the probability axioms: 0 ≤ P(E |F ) ≤ 1,
P(S |F ) = 1, and P(∪Ei |F ) =

∑
P(Ei |F ), if i ranges over a

countable set and the Ei are disjoint.

I The probability measure P(·|F ) is related to P(·).

I To get former from latter, we set probabilities of elements
outside of F to zero and multiply probabilities of events inside
of F by 1/P(F ).

I It P(·) is the prior probability measure and P(·|F ) is the
posterior measure (revised after discovering that F occurs).
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Independence

I Say E and F are independent if P(EF ) = P(E )P(F ).

I Equivalent statement: P(E |F ) = P(E ). Also equivalent:
P(F |E ) = P(F ).

I Example: toss two coins. Sample space contains four equally
likely elements (H,H), (H,T ), (T ,H), (T ,T ).

I Is event that first coin is heads independent of event that
second coin heads.

I Yes: probability of each event is 1/2 and probability of both is
1/4.

I Is event that first coin is heads independent of event that
number of heads is odd?

I Yes: probability of each event is 1/2 and probability of both is
1/4...

I despite fact that (in everyday English usage of the word)
oddness of the number of heads “depends” on the first coin.

Independence of multiple events

I Say E1 . . .En are independent if for each
{i1, i2, . . . , ik} ⊂ {1, 2, . . . n} we have
P(Ei1Ei2 . . .Eik ) = P(Ei1)P(Ei2) . . .P(Eik ).

I In other words, the product rule works.

I Independence implies P(E1E2E3|E4E5E6) =
P(E1)P(E2)P(E3)P(E4)P(E5)P(E6)

P(E4)P(E5)P(E6)
= P(E1E2E3), and other similar

statements.

I Does pairwise independence imply independence?

I No. Consider these three events: first coin heads, second coin
heads, odd number heads. Pairwise independent, not
independent.

Independence: another example

I Shuffle 4 cards with labels 1 through 4. Let Ej ,k be event that
card j comes before card k. Is E1,2 independent of E3,4?

I Is E1,2 independent of E1,3?

I No. In fact, what is P(E1,2|E1,3)?

I 2/3

I Generalize to n > 7 cards. What is
P(E1,7|E1,2E1,3E1,4E1,5E1,6)?

I 6/7
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Random variables

I A random variable X is a function from the state space to the
real numbers.

I Can interpret X as a quantity whose value depends on the
outcome of an experiment.

I Example: toss n coins (so state space consists of the set of all
2n possible coin sequences) and let X be number of heads.

I Question: What is P{X = k} in this case?

I Answer:
(n
k

)
/2n, if k ∈ {0, 1, 2, . . . , n}.



Independence of multiple events

I In n coin toss example, knowing the values of some coin
tosses tells us nothing about the others.

I Say E1 . . .En are independent if for each
{i1, i2, . . . , ik} ⊂ {1, 2, . . . n} we have
P(Ei1Ei2 . . .Eik ) = P(Ei1)P(Ei2) . . .P(Eik ).

I In other words, the product rule works.

I Independence implies P(E1E2E3|E4E5E6) =
P(E1)P(E2)P(E3)P(E4)P(E5)P(E6)

P(E4)P(E5)P(E6)
= P(E1E2E3), and other similar

statements.

I Does pairwise independence imply independence?

I No. Consider these three events: first coin heads, second coin
heads, odd number heads. Pairwise independent, not
independent.

Examples

I Shuffle n cards, and let X be the position of the jth card.
State space consists of all n! possible orderings. X takes
values in {1, 2, . . . , n} depending on the ordering.

I Question: What is P{X = k} in this case?

I Answer: 1/n, if k ∈ {1, 2, . . . , n}.
I Now say we roll three dice and let Y be sum of the values on

the dice. What is P{Y = 5}?
I 6/216

Indicators

I Given any event E , can define an indicator random variable,
i.e., let X be random variable equal to 1 on the event E and 0
otherwise. Write this as X = 1E .

I The value of 1E (either 1 or 0) indicates whether the event
has occurred.

I If E1,E2, . . .Ek are events then X =
∑k

i=1 1Ei
is the number

of these events that occur.

I Example: in n-hat shuffle problem, let Ei be the event ith
person gets own hat.

I Then
∑n

i=1 1Ei
is total number of people who get own hats.

I Writing random variable as sum of indicators: frequently
useful, sometimes confusing.
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Probability mass function

I Say X is a discrete random variable if (with probability one)
it takes one of a countable set of values.

I For each a in this countable set, write p(a) := P{X = a}.
Call p the probability mass function.

I For the cumulative distribution function, write
F (a) = P{X ≤ a} =

∑
x≤a p(x).

I Example: Let T1,T2,T3, . . . be sequence of independent fair
coin tosses (each taking values in {H,T}) and let X be the
smallest j for which Tj = H.

I What is p(k) = P{X = k} (for k ∈ Z) in this case?

I p(k) = (1/2)k

I What about FX (k)?

I 1− (1/2)k

Another example

I Another example: let X be non-negative integer such that
p(k) = P{X = k} = e−λλk/k!.

I Recall Taylor expansion
∑∞

k=0 λ
k/k! = eλ.

I In this example, X is called a Poisson random variable with
intensity λ.

I Question: what is the state space in this example?

I Answer: Didn’t specify. One possibility would be to define
state space as S = {0, 1, 2, . . .} and define X (as a function
on S) by X (j) = j . The probability function would be
determined by P(S) =

∑
k∈S e

−λλk/k!.

I Are there other choices of S and P — and other functions X
from S to P — for which the values of P{X = k} are the
same?

I Yes. “X is a Poisson random variable with intensity λ” is
statement only about the probability mass function of X .
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Using Bayes’ rule to set up recursions

I Gambler one has positive integer m dollars, gambler two has
positive integer n dollars. Take turns making one dollar bets
until one runs out of money. What is probability first gambler
runs out of money first?

I n/(m + n)

I Gambler’s ruin: what if gambler one has an unlimited
amount of money?

I Wins eventually with probability one.

I Problem of points: in sequence of independent fair coin
tosses, what is probability Pn,m to see n heads before seeing m
tails?

I Observe: Pn,m is equivalent to the probability of having n or
more heads in first m + n − 1 trials.

I Probability of exactly n heads in m + n − 1 trials is
(m+n−1

n

)
.

I Famous correspondence by Fermat and Pascal. Led Pascal to
write Le Triangle Arithmétique.
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Expectation of a discrete random variable

I Recall: a random variable X is a function from the state space
to the real numbers.

I Can interpret X as a quantity whose value depends on the
outcome of an experiment.

I Say X is a discrete random variable if (with probability one)
it takes one of a countable set of values.

I For each a in this countable set, write p(a) := P{X = a}.
Call p the probability mass function.

I The expectation of X , written E [X ], is defined by

E [X ] =
∑

x :p(x)>0

xp(x).

I Represents weighted average of possible values X can take,
each value being weighted by its probability.



Simple examples

I Suppose that a random variable X satisfies P{X = 1} = .5,
P{X = 2} = .25 and P{X = 3} = .25.

I What is E [X ]?

I Answer: .5× 1 + .25× 2 + .25× 3 = 1.75.

I Suppose P{X = 1} = p and P{X = 0} = 1− p. Then what
is E [X ]?

I Answer: p.

I Roll a standard six-sided die. What is the expectation of
number that comes up?

I Answer: 1
61 + 1

62 + 1
63 + 1

64 + 1
65 + 1

66 = 21
6 = 3.5.

Expectation when state space is countable

I If the state space S is countable, we can give SUM OVER
STATE SPACE definition of expectation:

E [X ] =
∑
s∈S

P{s}X (s).

I Compare this to the SUM OVER POSSIBLE X VALUES
definition we gave earlier:

E [X ] =
∑

x :p(x)>0

xp(x).

I Example: toss two coins. If X is the number of heads, what is
E [X ]?

I State space is {(H,H), (H,T ), (T ,H), (T ,T )} and summing
over state space gives E [X ] = 1

42 + 1
41 + 1

41 + 1
40 = 1.

A technical point

I If the state space S is countable, is it possible that the sum
E [X ] =

∑
s∈S P({s})X (s) somehow depends on the order in

which s ∈ S are enumerated?

I In principle, yes... We only say expectation is defined when∑
s∈S P({x})|X (s)| <∞, in which case it turns out that the

sum does not depend on the order.
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Expectation of a function of a random variable

I If X is a random variable and g is a function from the real
numbers to the real numbers then g(X ) is also a random
variable.

I How can we compute E [g(X )]?

I SUM OVER STATE SPACE:

E [g(X )] =
∑
s∈S

P({s})g(X (s)).

I SUM OVER X VALUES:

E [g(X )] =
∑

x :p(x)>0

g(x)p(x).

I Suppose that constants a, b, µ are given and that E [X ] = µ.

I What is E [X + b]?

I How about E [aX ]?

I Generally, E [aX + b] = aE [X ] + b = aµ+ b.

More examples

I Let X be the number that comes up when you roll a standard
six-sided die. What is E [X 2]?

I 1
6(1 + 4 + 9 + 16 + 25 + 36) = 91/12

I Let Xj be 1 if the jth coin toss is heads and 0 otherwise.
What is the expectation of X =

∑n
i=1 Xj?

I Can compute this directly as
∑n

k=0 P{X = k}k .

I Alternatively, use symmetry. Expected number of heads
should be same as expected number of tails.

I This implies E [X ] = E [n − X ]. Applying
E [aX + b] = aE [X ] + b formula (with a = −1 and b = n), we
obtain E [X ] = n − E [X ] and conclude that E [X ] = n/2.

Additivity of expectation

I If X and Y are distinct random variables, then can one say
that E [X + Y ] = E [X ] + E [Y ]?

I Yes. In fact, for real constants a and b, we have
E [aX + bY ] = aE [X ] + bE [Y ].

I This is called the linearity of expectation.

I Another way to state this fact: given sample space S and
probability measure P, the expectation E [·] is a linear
real-valued function on the space of random variables.

I Can extend to more variables
E [X1 + X2 + . . .+ Xn] = E [X1] + E [X2] + . . .+ E [Xn].



More examples

I Now can we compute expected number of people who get
own hats in n hat shuffle problem?

I Let Xi be 1 if ith person gets own hat and zero otherwise.

I What is E [Xi ], for i ∈ {1, 2, . . . , n}?
I Answer: 1/n.

I Can write total number with own hat as
X = X1 + X2 + . . .+ Xn.

I Linearity of expectation gives
E [X ] = E [X1] + E [X2] + . . .+ E [Xn] = n × 1/n = 1.
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Why should we care about expectation?

I Laws of large numbers: choose lots of independent random
variables with same probability distribution as X — their
average tends to be close to E [X ].

I Example: roll N = 106 dice, let Y be the sum of the numbers
that come up. Then Y /N is probably close to 3.5.

I Economic theory of decision making: Under “rationality”
assumptions, each of us has utility function and tries to
optimize its expectation.

I Financial contract pricing: under “no arbitrage/interest”
assumption, price of derivative equals its expected value in
so-called risk neutral probability.

I Comes up everywhere probability is applied.



Expected utility when outcome only depends on wealth

I Contract one: I’ll toss 10 coins, and if they all come up heads
(probability about one in a thousand), I’ll give you 20 billion
dollars.

I Contract two: I’ll just give you ten million dollars.

I What are expectations of the two contracts? Which would
you prefer?

I Can you find a function u(x) such that given two random
wealth variables W1 and W2, you prefer W1 whenever
E [u(W1)] < E [u(W2)]?

I Let’s assume u(0) = 0 and u(1) = 1. Then u(x) = y means
that you are indifferent between getting 1 dollar no matter
what and getting x dollars with probability 1/y .
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Recall definitions for expectation

I Recall: a random variable X is a function from the state space
to the real numbers.

I Can interpret X as a quantity whose value depends on the
outcome of an experiment.

I Say X is a discrete random variable if (with probability one)
it takes one of a countable set of values.

I For each a in this countable set, write p(a) := P{X = a}.
Call p the probability mass function.

I The expectation of X , written E [X ], is defined by

E [X ] =
∑

x :p(x)>0

xp(x).

I Also,
E [g(X )] =

∑
x :p(x)>0

g(x)p(x).



Defining variance

I Let X be a random variable with mean µ.

I The variance of X , denoted Var(X ), is defined by
Var(X ) = E [(X − µ)2].

I Taking g(x) = (x − µ)2, and recalling that
E [g(X )] =

∑
x :p(x)>0 g(x)p(x), we find that

Var[X ] =
∑

x :p(x)>0

(x − µ)2p(x).

I Variance is one way to measure the amount a random variable
“varies” from its mean over successive trials.

Very important alternatative formula

I Let X be a random variable with mean µ.

I We introduced above the formula Var(X ) = E [(X − µ)2].

I This can be written Var[X ] = E [X 2 − 2Xµ+ µ2].

I By additivity of expectation, this is the same as
E [X 2]− 2µE [X ] + µ2 = E [X 2]− µ2.

I This gives us our very important alternative formula:
Var[X ] = E [X 2]− (E [X ])2.

I Seven words to remember: “expectation of square minus
square of expectation.”

I Original formula gives intuitive idea of what variance is
(expected square of difference from mean). But we will often
use this alternative formula when we have to actually compute
the variance.
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Variance examples

I If X is number on a standard die roll, what is Var[X ]?

I Var[X ] = E [X 2]− E [X ]2 =
1
612 + 1

622 + 1
632 + 1

642 + 1
652 + 1

662 − (7/2)2 = 91
6 −

49
4 = 35

12 .

I Let Y be number of heads in two fair coin tosses. What is
Var[Y ]?

I Recall P{Y = 0} = 1/4 and P{Y = 1} = 1/2 and
P{Y = 2} = 1/4.

I Then Var[Y ] = E [Y 2]− E [Y ]2 = 1
402 + 1

212 + 1
422 − 12 = 1

2 .

More variance examples

I You buy a lottery ticket that gives you a one in a million
chance to win a million dollars.

I Let X be the amount you win. What’s the expectation of X?

I How about the variance?

I Variance is more sensitive than expectation to rare “outlier”
events.

I At a particular party, there are four five-foot-tall people, five
six-foot-tall people, and one seven-foot-tall person. You pick
one of these people uniformly at random. What is the
expected height of the person you pick?

I E [X ] = .4 · 5 + .5 · 6 + .1 · 7 = 5.7

I Variance?

I .4 · 25 + .5 · 36 + .1 · 49− (5.7)2 = 32.9− 32.49 = .41,
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Identity

I If Y = X + b, where b is constant, then does it follow that
Var[Y ] = Var[X ]?

I Yes.

I We showed earlier that E [aX ] = aE [X ]. We claim that
Var[aX ] = a2Var[X ].

I Proof: Var[aX ] = E [a2X 2]− E [aX ]2 = a2E [X 2]− a2E [X ]2 =
a2Var[X ].

Standard deviation

I Write SD[X ] =
√
Var[X ].

I Satisfies identity SD[aX ] = aSD[X ].

I Uses the same units as X itself.

I If we switch from feet to inches in our “height of randomly
chosen person” example, then X , E [X ], and SD[X ] each get
multiplied by 12, but Var[X ] gets multiplied by 144.
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Number of aces

I Choose five cards from a standard deck of 52 cards. Let A be
the number of aces you see.

I Let’s compute E [A] and Var[A].

I To start with, how many five card hands total?

I Answer:
(52
5

)
.

I How many such hands have k aces?

I Answer:
(4
k

)( 48
5−k

)
.

I So P{A = k} =
(4
k)( 48

5−k)
(525 )

.

I So E [A] =
∑4

k=0 kP{A = k},
I and Var[A] =

∑4
k=0 k

2P{A = k} − E [A]2.

Number of aces revisited

I Choose five cards from a standard deck of 52 cards. Let A be
the number of aces you see.

I Choose five cards in order, and let Ai be 1 if the ith card
chosen is an ace and zero otherwise.

I Then A =
∑5

i=1 Ai . And E [A] =
∑5

i=1 E [Ai ] = 5/13.

I Now A2 = (A1 + A2 + . . .+ A5)2 can be expanded into 25
terms: A2 =

∑5
i=1

∑5
j=1 AiAj .

I So E [A2] =
∑5

i=1

∑5
j=1 E [AiAj ].

I Five terms of form E [AiAj ] with i = j five with i 6= j . First
five contribute 1/13 each. How about other twenty?

I E [AiAj ] = (1/13)(3/51) = (1/13)(1/17). So
E [A2] = 5

13 + 20
13×17 = 105

13×17 .

I Var[A] = E [A2]− E [A]2 = 105
13×17 −

25
13×13 .

Hat problem variance

I In the n-hat shuffle problem, let X be the number of people
who get their own hat. What is Var[X ]?

I We showed earlier that E [X ] = 1. So Var[X ] = E [X 2]− 1.

I But how do we compute E [X 2]?

I Decomposition trick: write variable as sum of simple variables.

I Let Xi be one if ith person gets own hat and zero otherwise.
Then X = X1 + X2 + . . .+ Xn =

∑n
i=1 Xi .

I We want to compute E [(X1 + X2 + . . .+ Xn)2].

I Expand this out and using linearity of expectation:

E [
n∑

i=1

Xi

n∑
j=1

Xj ] =
n∑

i=1

n∑
j=1

E [XiXj ] = n·1
n

+n(n−1)
1

n(n − 1)
= 2.

I So Var[X ] = E [X 2]− (E [X ])2 = 2− 1 = 1.
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Bernoulli random variables

I Toss fair coin n times. (Tosses are independent.) What is the
probability of k heads?

I Answer:
(n
k

)
/2n.

I What if coin has p probability to be heads?

I Answer:
(n
k

)
pk(1− p)n−k .

I Writing q = 1− p, we can write this as
(n
k

)
pkqn−k

I Can use binomial theorem to show probabilities sum to one:

I 1 = 1n = (p + q)n =
∑n

k=0

(n
k

)
pkqn−k .

I Number of heads is binomial random variable with
parameters (n, p).



Examples

I Toss 6 fair coins. Let X be number of heads you see. Then X
is binomial with parameters (n, p) given by (6, 1/2).

I Probability mass function for X can be computed using the
6th row of Pascal’s triangle.

I If coin is biased (comes up heads with probability p 6= 1/2),
we can still use the 6th row of Pascal’s triangle, but the
probability that X = i gets multiplied by pi (1− p)n−i .

Other examples

I Room contains n people. What is the probability that exactly
i of them were born on a Tuesday?

I Answer: use binomial formula
(n
i

)
piqn−i with p = 1/7 and

q = 1− p = 6/7.

I Let n = 100. Compute the probability that nobody was born
on a Tuesday.

I What is the probability that exactly 15 people were born on a
Tuesday?
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Expectation

I Let X be a binomial random variable with parameters (n, p).

I What is E [X ]?

I Direct approach: by definition of expectation,
E [X ] =

∑n
i=0 P{X = i}i .

I What happens if we modify the nth row of Pascal’s triangle by
multiplying the i term by i?

I For example, replace the 5th row (1, 5, 10, 10, 5, 1) by
(0, 5, 20, 30, 20, 5). Does this remind us of an earlier row in
the triangle?

I Perhaps the prior row (1, 4, 6, 4, 1)?

Useful Pascal’s triangle identity

I Recall that
(n
i

)
= n×(n−1)×...×(n−i+1)

i×(i−1)×...×(1) . This implies a simple

but important identity: i
(n
i

)
= n

(n−1
i−1

)
.

I Using this identity (and q = 1− p), we can write

E [X ] =
n∑

i=0

i

(
n

i

)
piqn−i =

n∑
i=1

n

(
n − 1

i − 1

)
piqn−i .

I Rewrite this as E [X ] = np
∑n

i=1

(n−1
i−1

)
p(i−1)q(n−1)−(i−1).

I Substitute j = i − 1 to get

E [X ] = np
n−1∑
j=0

(
n − 1

j

)
pjq(n−1)−j = np(p + q)n−1 = np.

Decomposition approach to computing expectation

I Let X be a binomial random variable with parameters (n, p).
Here is another way to compute E [X ].

I Think of X as representing number of heads in n tosses of
coin that is heads with probability p.

I Write X =
∑n

j=1 Xj , where Xj is 1 if the jth coin is heads, 0
otherwise.

I In other words, Xj is the number of heads (zero or one) on the
jth toss.

I Note that E [Xj ] = p · 1 + (1− p) · 0 = p for each j .

I Conclude by additivity of expectation that

E [X ] =
n∑

j=1

E [Xj ] =
n∑

j=1

p = np.

Interesting moment computation

I Let X be binomial (n, p) and fix k ≥ 1. What is E [X k ]?

I Recall identity: i
(n
i

)
= n

(n−1
i−1

)
.

I Generally, E [X k ] can be written as

n∑
i=0

i

(
n

i

)
pi (1− p)n−i ik−1.

I Identity gives

E [X k ] = np
n∑

i=1

(
n − 1

i − 1

)
pi−1(1− p)n−i ik−1 =

np
n−1∑
j=0

(
n − 1

j

)
pj(1− p)n−1−j(j + 1)k−1.

I Thus E [X k ] = npE [(Y + 1)k−1] where Y is binomial with
parameters (n − 1, p).



Computing the variance

I Let X be binomial (n, p). What is E [X ]?

I We know E [X ] = np.

I We computed identity E [X k ] = npE [(Y + 1)k−1] where Y is
binomial with parameters (n − 1, p).

I In particular E [X 2] = npE [Y + 1] = np[(n − 1)p + 1].

I So Var[X ] = E [X 2]− E [X ]2 = np(n − 1)p + np − (np)2 =
np(1− p) = npq, where q = 1− p.

I Commit to memory: variance of binomial (n, p) random
variable is npq.

I This is n times the variance you’d get with a single coin.
Coincidence?

Compute variance with decomposition trick

I X =
∑n

j=1 Xj , so

E [X 2] = E [
∑n

i=1 Xi
∑n

j=1 Xj ] =
∑n

i=1

∑n
j=1 E [XiXj ]

I E [XiXj ] is p if i = j , p2 otherwise.

I
∑n

i=1

∑n
j=1 E [XiXj ] has n terms equal to p and (n − 1)n

terms equal to p2.

I So E [X 2] = np + (n − 1)np2 = np + (np)2 − np2.

I Thus
Var[X ] = E [X 2]− E [X ]2 = np − np2 = np(1− p) = npq.
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More examples

I An airplane seats 200, but the airline has sold 205 tickets.
Each person, independently, has a .05 chance of not showing
up for the flight. What is the probability that more than 200
people will show up for the flight?

I
∑205

j=201

(205
j

)
.95j .05205−j

I In a 100 person senate, forty people always vote for the
Republicans’ position, forty people always for the Democrats’
position and 20 people just toss a coin to decide which way to
vote. What is the probability that a given vote is tied?

I
(20
10

)
/220

I You invite 50 friends to a party. Each one, independently, has
a 1/3 chance of showing up. What is the probability that
more than 25 people will show up?

I
∑50

j=26

(50
j

)
(1/3)j(2/3)50−j
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Poisson random variables: motivating questions

I How many raindrops hit a given square inch of sidewalk
during a ten minute period?

I How many people fall down the stairs in a major city on a
given day?

I How many plane crashes in a given year?

I How many radioactive particles emitted during a time period
in which the expected number emitted is 5?

I How many calls to call center during a given minute?

I How many goals scored during a 90 minute soccer game?

I How many notable gaffes during 90 minute debate?

I Key idea for all these examples: Divide time into large
number of small increments. Assume that during each
increment, there is some small probability of thing happening
(independently of other increments).



Remember what e is?

I The number e is defined by e = limn→∞(1 + 1/n)n.

I It’s the amount of money that one dollar grows to over a year
when you have an interest rate of 100 percent, continuously
compounded.

I Similarly, eλ = limn→∞(1 + λ/n)n.

I It’s the amount of money that one dollar grows to over a year
when you have an interest rate of 100λ percent, continuously
compounded.

I It’s also the amount of money that one dollar grows to over λ
years when you have an interest rate of 100 percent,
continuously compounded.

I Can also change sign: e−λ = limn→∞(1− λ/n)n.

Bernoulli random variable with n large and np = λ

I Let λ be some moderate-sized number. Say λ = 2 or λ = 3.
Let n be a huge number, say n = 106.

I Suppose I have a coin that comes up heads with probability
λ/n and I toss it n times.

I How many heads do I expect to see?

I Answer: np = λ.

I Let k be some moderate sized number (say k = 4). What is
the probability that I see exactly k heads?

I Binomial formula:(n
k

)
pk(1− p)n−k = n(n−1)(n−2)...(n−k+1)

k! pk(1− p)n−k .

I This is approximately λk

k! (1− p)n−k ≈ λk

k! e
−λ.

I A Poisson random variable X with parameter λ satisfies
P{X = k} = λk

k! e
−λ for integer k ≥ 0.
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Probabilities sum to one

I A Poisson random variable X with parameter λ satisfies
p(k) = P{X = k} = λk

k! e
−λ for integer k ≥ 0.

I How can we show that
∑∞

k=0 p(k) = 1?

I Use Taylor expansion eλ =
∑∞

k=0
λk

k! .

Expectation

I A Poisson random variable X with parameter λ satisfies
P{X = k} = λk

k! e
−λ for integer k ≥ 0.

I What is E [X ]?

I We think of a Poisson random variable as being (roughly) a
Bernoulli (n, p) random variable with n very large and
p = λ/n.

I This would suggest E [X ] = λ. Can we show this directly from
the formula for P{X = k}?

I By definition of expectation

E [X ] =
∞∑
k=0

P{X = k}k =
∞∑
k=0

k
λk

k!
e−λ =

∞∑
k=1

λk

(k − 1)!
e−λ.

I Setting j = k − 1, this is λ
∑∞

j=0
λj

j! e
−λ = λ.

Variance

I Given P{X = k} = λk

k! e
−λ for integer k ≥ 0, what is Var[X ]?

I Think of X as (roughly) a Bernoulli (n, p) random variable
with n very large and p = λ/n.

I This suggests Var[X ] ≈ npq ≈ λ (since np ≈ λ and
q = 1− p ≈ 1). Can we show directly that Var[X ] = λ?

I Compute

E [X 2] =
∞∑
k=0

P{X = k}k2 =
∞∑
k=0

k2
λk

k!
e−λ = λ

∞∑
k=1

k
λk−1

(k − 1)!
e−λ.

I Setting j = k − 1, this is

λ

 ∞∑
j=0

(j + 1)
λj

j!
e−λ

 = λE [X + 1] = λ(λ+ 1).

I Then Var[X ] = E [X 2]− E [X ]2 = λ(λ+ 1)− λ2 = λ.
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I A country has an average of 2 plane crashes per year.
I How reasonable is it to assume the number of crashes is

Poisson with parameter 2?
I Assuming this, what is the probability of exactly 2 crashes?

Of zero crashes? Of four crashes?
I e−λλk/k! with λ = 2 and k set to 2 or 0 or 4
I A city has an average of five major earthquakes a century.

What is the probability that there is at least one major
earthquake in a given decade (assuming the number of
earthquakes per decade is Poisson)?

I 1− e−λλk/k! with λ = .5 and k = 0
I A casino deals one million five-card poker hands per year.

Approximate the probability that there are exactly 2 royal
flush hands during a given year.

I Expected number of royal flushes is λ = 106 · 4/
(52
5

)
≈ 1.54.

Answer is e−λλk/k! with k = 2.
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Selected counting tricks

I Break “choosing one of the items to be counted” into a
sequence of stages so that one always has the same number of
choices to make at each stage. Then the total count becomes
a product of number of choices available at each stage.

I Overcount by a fixed factor.

I If you have n elements you wish to divide into r distinct piles
of sizes n1, n2 . . . nr , how many ways to do that?

I Answer
( n
n1,n2,...,nr

)
:= n!

n1!n2!...nr !
.

I How many sequences a1, . . . , ak of non-negative integers
satisfy a1 + a2 + . . .+ ak = n?

I Answer:
(n+k−1

n

)
. Represent partition by k − 1 bars and n

stars, e.g., as ∗ ∗ | ∗ ∗|| ∗ ∗ ∗ ∗|∗.



Axioms of probability

I Have a set S called sample space.

I P(A) ∈ [0, 1] for all (measurable) A ⊂ S .

I P(S) = 1.

I Finite additivity: P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅.
I Countable additivity: P(∪∞i=1Ei ) =

∑∞
i=1 P(Ei ) if Ei ∩ Ej = ∅

for each pair i and j .

Consequences of axioms

I P(Ac) = 1− P(A)

I A ⊂ B implies P(A) ≤ P(B)

I P(A ∪ B) = P(A) + P(B)− P(AB)

I P(AB) ≤ P(A)

Inclusion-exclusion identity

I Observe P(A ∪ B) = P(A) + P(B)− P(AB).

I Also, P(E ∪ F ∪ G ) =
P(E ) + P(F ) + P(G )− P(EF )− P(EG )− P(FG ) + P(EFG ).

I More generally,

P(∪ni=1Ei ) =
n∑

i=1

P(Ei )−
∑
i1<i2

P(Ei1Ei2) + . . .

+ (−1)(r+1)
∑

i1<i2<...<ir

P(Ei1Ei2 . . .Eir )

= + . . .+ (−1)n+1P(E1E2 . . .En).

I The notation
∑

i1<i2<...<ir
means a sum over all of the

(n
r

)
subsets of size r of the set {1, 2, . . . , n}.

Famous hat problem

I n people toss hats into a bin, randomly shuffle, return one hat
to each person. Find probability nobody gets own hat.

I Inclusion-exclusion. Let Ei be the event that ith person gets
own hat.

I What is P(Ei1Ei2 . . .Eir )?

I Answer: (n−r)!
n! .

I There are
(n
r

)
terms like that in the inclusion exclusion sum.

What is
(n
r

) (n−r)!
n! ?

I Answer: 1
r ! .

I P(∪ni=1Ei ) = 1− 1
2! + 1

3! −
1
4! + . . .± 1

n!

I 1−P(∪ni=1Ei ) = 1−1 + 1
2! −

1
3! + 1

4! − . . .±
1
n! ≈ 1/e ≈ .36788



Conditional probability

I Definition: P(E |F ) = P(EF )/P(F ).

I Call P(E |F ) the “conditional probability of E given F” or
“probability of E conditioned on F”.

I Nice fact: P(E1E2E3 . . .En) =
P(E1)P(E2|E1)P(E3|E1E2) . . .P(En|E1 . . .En−1)

I Useful when we think about multi-step experiments.

I For example, let Ei be event ith person gets own hat in the
n-hat shuffle problem.

Dividing probability into two cases

I

P(E ) = P(EF ) + P(EF c)

= P(E |F )P(F ) + P(E |F c)P(F c)

I In words: want to know the probability of E . There are two
scenarios F and F c . If I know the probabilities of the two
scenarios and the probability of E conditioned on each
scenario, I can work out the probability of E .

Bayes’ theorem

I Bayes’ theorem/law/rule states the following:

P(A|B) = P(B|A)P(A)
P(B) .

I Follows from definition of conditional probability:
P(AB) = P(B)P(A|B) = P(A)P(B|A).

I Tells how to update estimate of probability of A when new
evidence restricts your sample space to B.

I So P(A|B) is P(B|A)
P(B) times P(A).

I Ratio P(B|A)
P(B) determines “how compelling new evidence is”.

P(·|F ) is a probability measure

I We can check the probability axioms: 0 ≤ P(E |F ) ≤ 1,
P(S |F ) = 1, and P(∪Ei ) =

∑
P(Ei |F ), if i ranges over a

countable set and the Ei are disjoint.

I The probability measure P(·|F ) is related to P(·).

I To get former from latter, we set probabilities of elements
outside of F to zero and multiply probabilities of events inside
of F by 1/P(F ).

I P(·) is the prior probability measure and P(·|F ) is the
posterior measure (revised after discovering that F occurs).



Independence

I Say E and F are independent if P(EF ) = P(E )P(F ).

I Equivalent statement: P(E |F ) = P(E ). Also equivalent:
P(F |E ) = P(F ).

Independence of multiple events

I Say E1 . . .En are independent if for each
{i1, i2, . . . , ik} ⊂ {1, 2, . . . n} we have
P(Ei1Ei2 . . .Eik ) = P(Ei1)P(Ei2) . . .P(Eik ).

I In other words, the product rule works.

I Independence implies P(E1E2E3|E4E5E6) =
P(E1)P(E2)P(E3)P(E4)P(E5)P(E6)

P(E4)P(E5)P(E6)
= P(E1E2E3), and other similar

statements.

I Does pairwise independence imply independence?

I No. Consider these three events: first coin heads, second coin
heads, odd number heads. Pairwise independent, not
independent.
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Random variables

I A random variable X is a function from the state space to the
real numbers.

I Can interpret X as a quantity whose value depends on the
outcome of an experiment.

I Say X is a discrete random variable if (with probability one)
if it takes one of a countable set of values.

I For each a in this countable set, write p(a) := P{X = a}.
Call p the probability mass function.

I Write F (a) = P{X ≤ a} =
∑

x≤a p(x). Call F the
cumulative distribution function.

Indicators

I Given any event E , can define an indicator random variable,
i.e., let X be random variable equal to 1 on the event E and 0
otherwise. Write this as X = 1E .

I The value of 1E (either 1 or 0) indicates whether the event
has occurred.

I If E1,E2, . . . ,Ek are events then X =
∑k

i=1 1Ei
is the number

of these events that occur.

I Example: in n-hat shuffle problem, let Ei be the event ith
person gets own hat.

I Then
∑n

i=1 1Ei
is total number of people who get own hats.

Expectation of a discrete random variable

I Say X is a discrete random variable if (with probability one)
it takes one of a countable set of values.

I For each a in this countable set, write p(a) := P{X = a}.
Call p the probability mass function.

I The expectation of X , written E [X ], is defined by

E [X ] =
∑

x :p(x)>0

xp(x).

I Represents weighted average of possible values X can take,
each value being weighted by its probability.

Expectation when state space is countable

I If the state space S is countable, we can give SUM OVER
STATE SPACE definition of expectation:

E [X ] =
∑
s∈S

P{s}X (s).

I Agrees with the SUM OVER POSSIBLE X VALUES
definition:

E [X ] =
∑

x :p(x)>0

xp(x).



Expectation of a function of a random variable

I If X is a random variable and g is a function from the real
numbers to the real numbers then g(X ) is also a random
variable.

I How can we compute E [g(X )]?

I Answer:
E [g(X )] =

∑
x :p(x)>0

g(x)p(x).

Additivity of expectation

I If X and Y are distinct random variables, then
E [X + Y ] = E [X ] + E [Y ].

I In fact, for real constants a and b, we have
E [aX + bY ] = aE [X ] + bE [Y ].

I This is called the linearity of expectation.

I Can extend to more variables
E [X1 + X2 + . . .+ Xn] = E [X1] + E [X2] + . . .+ E [Xn].

Defining variance in discrete case

I Let X be a random variable with mean µ.

I The variance of X , denoted Var(X ), is defined by
Var(X ) = E [(X − µ)2].

I Taking g(x) = (x − µ)2, and recalling that
E [g(X )] =

∑
x :p(x)>0 g(x)p(x), we find that

Var[X ] =
∑

x :p(x)>0

(x − µ)2p(x).

I Variance is one way to measure the amount a random variable
“varies” from its mean over successive trials.

I Very important alternate formula: Var[X ] = E [X 2]− (E [X ])2.

Identity

I If Y = X + b, where b is constant, then Var[Y ] = Var[X ].

I Also, Var[aX ] = a2Var[X ].

I Proof: Var[aX ] = E [a2X 2]− E [aX ]2 = a2E [X 2]− a2E [X ]2 =
a2Var[X ].



Standard deviation

I Write SD[X ] =
√
Var[X ].

I Satisfies identity SD[aX ] = aSD[X ].

I Uses the same units as X itself.

I If we switch from feet to inches in our “height of randomly
chosen person” example, then X , E [X ], and SD[X ] each get
multiplied by 12, but Var[X ] gets multiplied by 144.

Bernoulli random variables

I Toss fair coin n times. (Tosses are independent.) What is the
probability of k heads?

I Answer:
(n
k

)
/2n.

I What if coin has p probability to be heads?

I Answer:
(n
k

)
pk(1− p)n−k .

I Writing q = 1− p, we can write this as
(n
k

)
pkqn−k

I Can use binomial theorem to show probabilities sum to one:

I 1 = 1n = (p + q)n =
∑n

k=0

(n
k

)
pkqn−k .

I Number of heads is binomial random variable with
parameters (n, p).

Decomposition approach to computing expectation

I Let X be a binomial random variable with parameters (n, p).
Here is one way to compute E [X ].

I Think of X as representing number of heads in n tosses of
coin that is heads with probability p.

I Write X =
∑n

j=1 Xj , where Xj is 1 if the jth coin is heads, 0
otherwise.

I In other words, Xj is the number of heads (zero or one) on the
jth toss.

I Note that E [Xj ] = p · 1 + (1− p) · 0 = p for each j .

I Conclude by additivity of expectation that

E [X ] =
n∑

j=1

E [Xj ] =
n∑

j=1

p = np.

Compute variance with decomposition trick

I X =
∑n

j=1 Xj , so

E [X 2] = E [
∑n

i=1 Xi
∑n

j=1 Xj ] =
∑n

i=1

∑n
j=1 E [XiXj ]

I E [XiXj ] is p if i = j , p2 otherwise.

I
∑n

i=1

∑n
j=1 E [XiXj ] has n terms equal to p and (n − 1)n

terms equal to p2.

I So E [X 2] = np + (n − 1)np2 = np + (np)2 − np2.

I Thus
Var[X ] = E [X 2]− E [X ]2 = np − np2 = np(1− p) = npq.

I Can show generally that if X1, . . . ,Xn independent then
Var[

∑n
j=1 Xj ] =

∑n
j=1Var[Xj ]



Bernoulli random variable with n large and np = λ

I Let λ be some moderate-sized number. Say λ = 2 or λ = 3.
Let n be a huge number, say n = 106.

I Suppose I have a coin that comes on heads with probability
λ/n and I toss it n times.

I How many heads do I expect to see?

I Answer: np = λ.

I Let k be some moderate sized number (say k = 4). What is
the probability that I see exactly k heads?

I Binomial formula:(n
k

)
pk(1− p)n−k = n(n−1)(n−2)...(n−k+1)

k! pk(1− p)n−k .

I This is approximately λk

k! (1− p)n−k ≈ λk

k! e
−λ.

I A Poisson random variable X with parameter λ satisfies
P{X = k} = λk

k! e
−λ for integer k ≥ 0.

Expectation and variance

I A Poisson random variable X with parameter λ satisfies
P{X = k} = λk

k! e
−λ for integer k ≥ 0.

I Clever computation tricks yield E [X ] = λ and Var[X ] = λ.

I We think of a Poisson random variable as being (roughly) a
Bernoulli (n, p) random variable with n very large and
p = λ/n.

I This also suggests E [X ] = np = λ and Var[X ] = npq ≈ λ.

Poisson point process

I A Poisson point process is a random function N(t) called a
Poisson process of rate λ.

I For each t > s ≥ 0, the value N(t)− N(s) describes the
number of events occurring in the time interval (s, t) and is
Poisson with rate (t − s)λ.

I The numbers of events occurring in disjoint intervals are
independent random variables.

I Probability to see zero events in first t time units is e−λt .

I Let Tk be time elapsed, since the previous event, until the kth
event occurs. Then the Tk are independent random variables,
each of which is exponential with parameter λ.

Geometric random variables

I Consider an infinite sequence of independent tosses of a coin
that comes up heads with probability p.

I Let X be such that the first heads is on the X th toss.

I Answer: P{X = k} = (1− p)k−1p = qk−1p, where q = 1− p
is tails probability.

I Say X is a geometric random variable with parameter p.

I Some cool calculation tricks show that E [X ] = 1/p.

I And Var[X ] = q/p2.



Negative binomial random variables

I Consider an infinite sequence of independent tosses of a coin
that comes up heads with probability p.

I Let X be such that the rth heads is on the X th toss.

I Then P{X = k} =
(k−1
r−1
)
pr−1(1− p)k−rp.

I Call X negative binomial random variable with
parameters (r , p).

I So E [X ] = r/p.

I And Var[X ] = rq/p2.
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Properties from last time...

I A Poisson random variable X with parameter λ satisfies
P{X = k} = λk

k! e
−λ for integer k ≥ 0.

I The probabilities are approximately those of a binomial with
parameters (n, λ/n) when n is very large.

I Indeed,(
n

k

)
pk(1−p)n−k =

n(n − 1)(n − 2) . . . (n − k + 1)

k!
pk(1−p)n−k ≈

λk

k!
(1− p)n−k ≈ λk

k!
e−λ.

I General idea: if you have a large number of unlikely events
that are (mostly) independent of each other, and the expected
number that occur is λ, then the total number that occur
should be (approximately) a Poisson random variable with
parameter λ.



Properties from last time...

I Many phenomena (number of phone calls or customers
arriving in a given period, number of radioactive emissions in
a given time period, number of major hurricanes in a given
time period, etc.) can be modeled this way.

I A Poisson random variable X with parameter λ has
expectation λ and variance λ.

I Special case: if λ = 1, then P{X = k} = 1
k!e .

I Note how quickly this goes to zero, as a function of k .

I Example: number of royal flushes in a million five-card poker
hands is approximately Poisson with parameter
106/649739 ≈ 1.54.

I Example: if a country expects 2 plane crashes in a year, then
the total number might be approximately Poisson with
parameter λ = 2.

A cautionary tail

I Example: Joe works for a bank and notices that his town sees
an average of one mortgage foreclosure per month.

I Moreover, looking over five years of data, it seems that the
number of foreclosures per month follows a rate 1 Poisson
distribution.

I That is, roughly a 1/e fraction of months has 0 foreclosures, a
1/e fraction has 1, a 1/(2e) fraction has 2, a 1/(6e) fraction
has 3, and a 1/(24e) fraction has 4.

I Joe concludes that the probability of seeing 10 foreclosures
during a given month is only 1/(10!e). Probability to see 10
or more (an extreme tail event that would destroy the bank) is∑∞

k=10 1/(k!e), less than one in million.

I Investors are impressed. Joe receives large bonus.

I But probably shouldn’t....
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How should we define the Poisson process?

I Whatever his faults, Joe was a good record keeper. He kept
track of the precise times at which the foreclosures occurred
over the whole five years (not just the total numbers of
foreclosures). We could try this for other problems as well.

I Let’s encode this information with a function. We’d like a
random function N(t) that describe the number of events
that occur during the first t units of time. (This could be a
model for the number of plane crashes in first t years, or the
number of royal flushes in first 106t poker hands.)

I So N(t) is a random non-decreasing integer-valued
function of t with N(0) = 0.

I For each t, N(t) is a random variable, and the N(t) are
functions on the same sample space.
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Poisson process axioms

I Let’s back up and give a precise and minimal list of properties
we want the random function N(t) to satisfy.

I 1. N(0) = 0.

I 2. Independence: Number of events (jumps of N) in disjoint
time intervals are independent.

I 3. Homogeneity: Prob. distribution of # events in interval
depends only on length. (Deduce: E [N(h)] = λh for some λ.)

I 4. Non-concurrence: P{N(h) ≥ 2} << P{N(h) = 1} when
h is small. Precisely:

I P{N(h) = 1} = λh + o(h). (Here f (h) = o(h) means
limh→0 f (h)/h = 0.)

I P{N(h) ≥ 2} = o(h).

I A random function N(t) with these properties is a Poisson
process with rate λ.
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Consequences of axioms: time till first event

I Can we work out the probability of no events before time t?

I We assumed P{N(h) = 1} = λh + o(h) and
P{N(h) ≥ 2} = o(h). Taken together, these imply that
P{N(h) = 0} = 1− λh + o(h).

I Fix λ and t. Probability of no events in interval of length t/n
is (1− λt/n) + o(1/n).

I Probability of no events in first n such intervals is about(
1− λt/n + o(1/n)

)n ≈ e−λt .

I Taking limit as n→∞, can show that probability of no event
in interval of length t is e−λt .

I P{N(t) = 0} = e−λt .

I Let T1 be the time of the first event. Then
P{T1 ≥ t} = e−λt . We say that T1 is an exponential
random variable with rate λ.

Consequences of axioms: time till second, third events

I Let T2 be time between first and second event. Generally, Tk

is time between (k − 1)th and kth event.

I Then the T1,T2, . . . are independent of each other (informally
this means that observing some of the random variables Tk

gives you no information about the others). Each is an
exponential random variable with rate λ.

I This finally gives us a way to construct N(t). It is determined
by the sequence Tj of independent exponential random
variables.

I Axioms can be readily verified from this description.



Back to Poisson distribution

I Axioms should imply that P{N(t) = k} = e−λt(λt)k/k!.

I One way to prove this: divide time into n intervals of length
t/n. In each, probability to see an event is p = λt/n+ o(1/n).

I Use binomial theorem to describe probability to see event in
exactly k intervals.

I Binomial formula:(n
k

)
pk(1− p)n−k = n(n−1)(n−2)...(n−k+1)

k! pk(1− p)n−k .

I This is approximately (λt)k

k! (1− p)n−k ≈ (λt)k

k! e−λt .

I Take n to infinity, and use fact that expected number of
intervals with two or more points tends to zero (thus
probability to see any intervals with two more points tends to
zero).

Summary

I We constructed a random function N(t) called a Poisson
process of rate λ.

I For each t > s ≥ 0, the value N(t)− N(s) describes the
number of events occurring in the time interval (s, t) and is
Poisson with rate (t − s)λ.

I The numbers of events occurring in disjoint intervals are
independent random variables.

I Let Tk be time elapsed, since the previous event, until the kth
event occurs. Then the Tk are independent random variables,
each of which is exponential with parameter λ.
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Geometric random variables

I Consider an infinite sequence of independent tosses of a coin
that comes up heads with probability p.

I Let X be such that the first heads is on the X th toss.

I For example, if the coin sequence is T ,T ,H,T ,H,T , . . . then
X = 3.

I Then X is a random variable. What is P{X = k}?
I Answer: P{X = k} = (1− p)k−1p = qk−1p, where q = 1− p

is tails probability.

I Can you prove directly that these probabilities sum to one?

I Say X is a geometric random variable with parameter p.



Geometric random variable expectation

I Let X be a geometric with parameter p, i.e.,
P{X = k} = (1− p)k−1p = qk−1p for k ≥ 1.

I What is E [X ]?

I By definition E [X ] =
∑∞

k=1 q
k−1pk.

I There’s a trick to computing sums like this.

I Note E [X − 1] =
∑∞

k=1 q
k−1p(k − 1). Setting j = k − 1, we

have E [X − 1] = q
∑∞

j=0 q
j−1pj = qE [X ].

I Kind of makes sense. X − 1 is “number of extra tosses after
first.” Given first coin heads (probability p), X − 1 is 0. Given
first coin tails (probability q), conditional law of X − 1 is
geometric with parameter p. In latter case, conditional
expectation of X − 1 is same as a priori expectation of X .

I Thus E [X ]− 1 = E [X − 1] = p · 0 + qE [X ] = qE [X ] and
solving for E [X ] gives E [X ] = 1/(1− q) = 1/p.

Geometric random variable variance

I Let X be a geometric random variable with parameter p.
Then P{X = k} = qk−1p.

I What is E [X 2]?

I By definition E [X 2] =
∑∞

k=1 q
k−1pk2.

I Let’s try to come up with a similar trick.

I Note E [(X − 1)2] =
∑∞

k=1 q
k−1p(k − 1)2. Setting j = k − 1,

we have E [(X − 1)2] = q
∑∞

j=0 q
j−1pj2 = qE [X 2].

I Thus E [(X − 1)2] = E [X 2 − 2X + 1] = E [X 2]− 2E [X ] + 1 =
E [X 2]− 2/p + 1 = qE [X 2].

I Solving for E [X 2] gives (1− q)E [X 2] = pE [X 2] = 2/p − 1, so
E [X 2] = (2− p)/p2.

I Var[X ] = (2−p)/p2−1/p2 = (1−p)/p2 = 1/p2−1/p = q/p2.

Example

I Toss die repeatedly. Say we get 6 for first time on X th toss.

I What is P{X = k}?
I Answer: (5/6)k−1(1/6).

I What is E [X ]?

I Answer: 6.

I What is Var[X ]?

I Answer: 1/p2 − 1/p = 36− 6 = 30.

I Takes 1/p coin tosses on average to see a heads.
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Negative binomial random variables

I Consider an infinite sequence of independent tosses of a coin
that comes up heads with probability p.

I Let X be such that the rth heads is on the X th toss.

I For example, if r = 3 and the coin sequence is
T ,T ,H,H,T ,T ,H,T ,T , . . . then X = 7.

I Then X is a random variable. What is P{X = k}?
I Answer: need exactly r − 1 heads among first k − 1 tosses

and a heads on the kth toss.

I So P{X = k} =
(k−1
r−1
)
pr−1(1− p)k−rp. Can you prove these

sum to 1?

I Call X negative binomial random variable with
parameters (r , p).

Expectation of binomial random variable

I Consider an infinite sequence of independent tosses of a coin
that comes up heads with probability p.

I Let X be such that the rth heads is on the X th toss.

I Then X is a negative binomial random variable with
parameters (r , p).

I What is E [X ]?

I Write X = X1 + X2 + . . .+ Xr where Xk is number of tosses
(following (k − 1)th head) required to get kth head. Each Xk

is geometric with parameter p.

I So E [X ] = E [X1 + X2 + . . .+ Xr ] =
E [X1] + E [X2] + . . .+ E [Xr ] = r/p.

I How about Var[X ]?

I Turns out that Var[X ] = Var[X1] + Var[X2] + . . .+ Var[Xr ].
So Var[X ] = rq/p2.
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Problems

I Nate and Natasha have beautiful new baby. Each minute with
.01 probability (independent of all else) baby cries.

I Additivity of expectation: How many times do they expect
the baby to cry between 9 p.m. and 6 a.m.?

I Geometric random variables: What’s the probability baby is
quiet from midnight to three, then cries at exactly three?

I Geometric random variables: What’s the probability baby is
quiet from midnight to three?

I Negative binomial: Probability fifth cry is at midnight?

I Negative binomial expectation: How many minutes do I
expect to wait until the fifth cry?

I Poisson approximation: Approximate the probability there
are exactly five cries during the night.

I Exponential random variable approximation: Approximate
probability baby quiet all night.

More fun problems

I Suppose two soccer teams play each other. One team’s
number of points is Poisson with parameter λ1 and other’s is
independently Poisson with parameter λ2. (You can google
“soccer” and “Poisson” to see the academic literature on the
use of Poisson random variables to model soccer scores.)
Using Mathematica (or similar software) compute the
probability that the first team wins if λ1 = 2 and λ2 = 1.
What if λ1 = 2 and λ2 = .5?

I Imagine you start with the number 60. Then you toss a fair
coin to decide whether to add 5 to your number or subtract 5
from it. Repeat this process with independent coin tosses
until the number reaches 100 or 0. What is the expected
number of tosses needed until this occurs?
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Continuous random variables

I Say X is a continuous random variable if there exists a
probability density function f = fX on R such that
P{X ∈ B} =

∫
B f (x)dx :=

∫
1B(x)f (x)dx .

I We may assume
∫
R f (x)dx =

∫∞
−∞ f (x)dx = 1 and f is

non-negative.

I Probability of interval [a, b] is given by
∫ b
a f (x)dx , the area

under f between a and b.

I Probability of any single point is zero.

I Define cumulative distribution function
F (a) = FX (a) := P{X < a} = P{X ≤ a} =

∫ a
−∞ f (x)dx .



Simple example

I Suppose f (x) =

{
1/2 x ∈ [0, 2]

0 x 6∈ [0, 2].

I What is P{X < 3/2}?
I What is P{X = 3/2}?
I What is P{1/2 < X < 3/2}?
I What is P{X ∈ (0, 1) ∪ (3/2, 5)}?
I What is F?

I We say that X is uniformly distributed on the interval
[0, 2].

Another example

I Suppose f (x) =

{
x/2 x ∈ [0, 2]

0 0 6∈ [0, 2].

I What is P{X < 3/2}?
I What is P{X = 3/2}?
I What is P{1/2 < X < 3/2}?
I What is F?
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Expectations of continuous random variables

I Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote

E [X ] =
∑

x :p(x)>0

p(x)x .

I How should we define E [X ] when X is a continuous random
variable?

I Answer: E [X ] =
∫∞
−∞ f (x)xdx .

I Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote

E [g(X )] =
∑

x :p(x)>0

p(x)g(x).

I What is the analog when X is a continuous random variable?

I Answer: we will write E [g(X )] =
∫∞
−∞ f (x)g(x)dx .

Variance of continuous random variables

I Suppose X is a continuous random variable with mean µ.

I We can write Var[X ] = E [(X − µ)2], same as in the discrete
case.

I Next, if g = g1 + g2 then
E [g(X )] =

∫
g1(x)f (x)dx +

∫
g2(x)f (x)dx =∫ (

g1(x) + g2(x)
)
f (x)dx = E [g1(X )] + E [g2(X )].

I Furthermore, E [ag(X )] = aE [g(X )] when a is a constant.

I Just as in the discrete case, we can expand the variance
expression as Var[X ] = E [X 2 − 2µX + µ2] and use additivity
of expectation to say that
Var[X ] = E [X 2]− 2µE [X ] + E [µ2] = E [X 2]− 2µ2 + µ2 =
E [X 2]− E [X ]2.

I This formula is often useful for calculations.
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Recall continuous random variable definitions

I Say X is a continuous random variable if there exists a
probability density function f = fX on R such that
P{X ∈ B} =

∫
B f (x)dx :=

∫
1B(x)f (x)dx .

I We may assume
∫
R f (x)dx =

∫∞
−∞ f (x)dx = 1 and f is

non-negative.

I Probability of interval [a, b] is given by
∫ b
a f (x)dx , the area

under f between a and b.

I Probability of any single point is zero.

I Define cumulative distribution function
F (a) = FX (a) := P{X < a} = P{X ≤ a} =

∫ a
−∞ f (x)dx .

Uniform random variables on [0, 1]

I Suppose X is a random variable with probability density

function f (x) =

{
1 x ∈ [0, 1]

0 x 6∈ [0, 1].

I Then for any 0 ≤ a ≤ b ≤ 1 we have P{X ∈ [a, b]} = b − a.

I Intuition: all locations along the interval [0, 1] equally likely.

I Say that X is a uniform random variable on [0, 1] or that X
is sampled uniformly from [0, 1].

Properties of uniform random variable on [0, 1]

I Suppose X is a random variable with probability density

function f (x) =

{
1 x ∈ [0, 1]

0 x 6∈ [0, 1],
which implies

FX (a) =


0 a < 0

a a ∈ [0, 1]

1 a > 1

.

I What is E [X ]?
I Guess 1/2 (since 1/2 is, you know, in the middle).

I Indeed,
∫∞
−∞ f (x)xdx =

∫ 1
0 xdx = x2

2

∣∣∣1
0

= 1/2.

I What is the general moment E [X k ] for k ≥ 0?
I Answer: 1/(k + 1).
I What would you guess the variance is? Expected square of

distance from 1/2?
I It’s obviously less than 1/4, but how much less?
I VarE [X 2]− E [X ]2 = 1/3− 1/4 = 1/12.
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Uniform random variables on [α, β]

I Fix α < β and suppose X is a random variable with

probability density function f (x) =

{
1

β−α x ∈ [α, β]

0 x 6∈ [α, β].

I Then for any α ≤ a ≤ b ≤ β we have P{X ∈ [a, b]} = b−a
β−α .

I Intuition: all locations along the interval [α, β] are equally
likely.

I Say that X is a uniform random variable on [α, β] or that
X is sampled uniformly from [α, β].

Uniform random variables on [α, β]

I Suppose X is a random variable with probability density

function f (x) =

{
1

β−α x ∈ [α, β]

0 x 6∈ [α, β].

I What is E [X ]?

I Intuitively, we’d guess the midpoint α+β
2 .

I What’s the cleanest way to prove this?

I One approach: let Y be uniform on [0, 1] and try to show that
X = (β − α)Y + α is uniform on [α, β].

I Then expectation linearity gives
E [X ] = (β − α)E [Y ] + α = (1/2)(β − α) + α = α+β

2 .

I Using similar logic, what is the variance Var[X ]?

I Answer: Var[X ] = Var[(β − α)Y + α] = Var[(β − α)Y ] =
(β − α)2Var[Y ] = (β − α)2/12.
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Uniform measure on [0, 1]

I One of the very simplest probability density functions is

f (x) =

{
1 x ∈ [0, 1]

0 0 6∈ [0, 1].
.

I If B ⊂ [0, 1] is an interval, then P{X ∈ B} is the length of
that interval.

I Generally, if B ⊂ [0, 1] then P{X ∈ B} =
∫
B 1dx =

∫
1B(x)dx

is the “total volume” or “total length” of the set B.

I What if B is the set of all rational numbers?

I How do we mathematically define the volume of an arbitrary
set B?

Idea behind parodox

I What if we could partition [0, 1] into a countably infinite
collection of disjoint sets that all looked the same (up to a
translation, say) and thus all had to have the same
probability?

I Well, if that probability was zero, then (by countable
additivity) probability of whole interval would be zero, a
contradiction.

I But if that probability were a number greater than zero the
probability of whole interval would be infinite, also a
contradiction...

I Related problem: if you can cut a cake into countably
infinitely many pieces all of the same weight, how much does
each piece weigh?

Formulating the paradox precisely

I Uniform probability measure on [0, 1) should satisfy
translation invariance: If B and a horizontal translation of B
are both subsets [0, 1), their probabilities should be equal.

I Consider wrap-around translations τr (x) = (x + r) mod 1.

I By translation invariance, τr (B) has same probability as B.

I Call x , y “equivalent modulo rationals” if x − y is rational
(e.g., x = π − 3 and y = π − 9/4). An equivalence class is
the set of points in [0, 1) equivalent to some given point.

I There are uncountably many of these classes.

I Let A ⊂ [0, 1) contain one point from each class. For each
x ∈ [0, 1), there is one a ∈ A such that r = x − a is rational.

I Then each x in [0, 1) lies in τr (A) for one rational r ∈ [0, 1).

I Thus [0, 1) = ∪τr (A) as r ranges over rationals in [0, 1).

I If P(A) = 0, then P(S) =
∑

r P(τr (A)) = 0. If P(A) > 0 then
P(S) =

∑
r P(τr (A)) =∞. Contradicts P(S) = 1 axiom.



Three ways to get around this

I 1. Re-examine axioms of mathematics: the very existence
of a set A with one element from each equivalence class is
consequence of so-called axiom of choice. Removing that
axiom makes paradox goes away, since one can just suppose
(pretend?) these kinds of sets don’t exist.

I 2. Re-examine axioms of probability: Replace countable
additivity with finite additivity? (Doesn’t fully solve problem:
look up Banach-Tarski.)

I 3. Keep the axiom of choice and countable additivity but
don’t define probabilities of all sets: Instead of defining
P(B) for every subset B of sample space, restrict attention to
a family of so-called “measurable” sets.

I Most mainstream probability and analysis takes the third
approach.

I In practice, sets we care about (e.g., countable unions of
points and intervals) tend to be measurable.

Perspective

I More advanced courses in probability and analysis (such as
18.125 and 18.175) spend a significant amount of time
rigorously constructing a class of so-called measurable sets
and the so-called Lebesgue measure, which assigns a real
number (a measure) to each of these sets.

I These courses also replace the Riemann integral with the
so-called Lebesgue integral.

I We will not treat these topics any further in this course.

I We usually limit our attention to probability density functions
f and sets B for which the ordinary Riemann integral∫

1B(x)f (x)dx is well defined.

I Riemann integration is a mathematically rigorous theory. It’s
just not as robust as Lebesgue integration.
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Tossing coins

I Suppose we toss a million fair coins. How many heads will we
get?

I About half a million, yes, but how close to that? Will we be
off by 10 or 1000 or 100,000?

I How can we describe the error?

I Let’s try this out.



Tossing coins

I Toss n coins. What is probability to see k heads?

I Answer: 2−k
(n
k

)
.

I Let’s plot this for a few values of n.

I Seems to look like it’s converging to a curve.

I If we replace fair coin with p coin, what’s probability to see k
heads.

I Answer: pk(1− p)n−k
(n
k

)
.

I Let’s plot this for p = 2/3 and some values of n.

I What does limit shape seem to be?
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Standard normal random variable

I Say X is a (standard) normal random variable if
fX (x) = f (x) = 1√

2π
e−x

2/2.

I Clearly f is always non-negative for real values of x , but how
do we show that

∫∞
−∞ f (x)dx = 1?

I Looks kind of tricky.

I Happens to be a nice trick. Write I =
∫∞
−∞ e−x

2/2dx . Then

try to compute I 2 as a two dimensional integral.

I That is, write

I 2 =

∫ ∞
−∞

e−x
2/2dx

∫ ∞
−∞

e−y
2/2dy =

∫ ∞
−∞

∫ ∞
−∞

e−x
2/2dxe−y

2/2dy .

I Then switch to polar coordinates.

I 2 =

∫ ∞
0

∫ 2π

0
e−r

2/2rdθdr = 2π

∫ ∞
0

re−r
2/2dr = −2πe−r

2/2
∣∣∣∞
0
,

so I =
√

2π.



Standard normal random variable mean and variance

I Say X is a (standard) normal random variable if
f (x) = 1√

2π
e−x

2/2.

I Question: what are mean and variance of X?

I E [X ] =
∫∞
−∞ xf (x)dx . Can see by symmetry that this zero.

I Or can compute directly:

E [X ] =

∫ ∞
−∞

1√
2π

e−x
2/2xdx =

1√
2π

e−x
2/2
∣∣∣∞
−∞

= 0.

I How would we compute
Var[X ] =

∫
f (x)x2dx =

∫∞
−∞

1√
2π
e−x

2/2x2dx?

I Try integration by parts with u = x and dv = xe−x
2/2dx .

Find that Var[X ] = 1√
2π

(−xe−x2/2
∣∣∣∞
−∞

+
∫∞
−∞ e−x

2/2dx) = 1.

General normal random variables

I Again, X is a (standard) normal random variable if
f (x) = 1√

2π
e−x

2/2.

I What about Y = σX + µ? Can we “stretch out” and
“translate” the normal distribution (as we did last lecture for
the uniform distribution)?

I Say Y is normal with parameters µ and σ2 if
f (x) = 1√

2πσ
e−(x−µ)

2/2σ2
.

I What are the mean and variance of Y ?

I E [Y ] = E [X ] + µ = µ and Var[Y ] = σ2Var[X ] = σ2.

Cumulative distribution function

I Again, X is a standard normal random variable if
f (x) = 1√

2π
e−x

2/2.

I What is the cumulative distribution function?

I Write this as FX (a) = P{X ≤ a} = 1√
2π

∫ a
−∞ e−x

2/2dx .

I How can we compute this integral explicitly?

I Can’t. Let’s just give it a name. Write
Φ(a) = 1√

2π

∫ a
−∞ e−x

2/2dx .

I Values: Φ(−3) ≈ .0013, Φ(−2) ≈ .023 and Φ(−1) ≈ .159.

I Rough rule of thumb: “two thirds of time within one SD of
mean, 95 percent of time within 2 SDs of mean.”
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DeMoivre-Laplace Limit Theorem

I Let Sn be number of heads in n tosses of a p coin.

I What’s the standard deviation of Sn?

I Answer:
√
npq (where q = 1− p).

I The special quantity Sn−np√
npq describes the number of standard

deviations that Sn is above or below its mean.

I What’s the mean and variance of this special quantity? Is it
roughly normal?

I DeMoivre-Laplace limit theorem (special case of central
limit theorem):

lim
n→∞

P{a ≤ Sn − np
√
npq

≤ b} → Φ(b)− Φ(a).

I This is Φ(b)− Φ(a) = P{a ≤ X ≤ b} when X is a standard
normal random variable.

Problems

I Toss a million fair coins. Approximate the probability that I
get more than 501, 000 heads.

I Answer: well,
√
npq =

√
106 × .5× .5 = 500. So we’re asking

for probability to be over two SDs above mean. This is
approximately 1− Φ(2) = Φ(−2) ≈ .159.

I Roll 60000 dice. Expect to see 10000 sixes. What’s the
probability to see more than 9800?

I Here
√
npq =

√
60000× 1

6 ×
5
6 ≈ 91.28.

I And 200/91.28 ≈ 2.19. Answer is about 1− Φ(−2.19).
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Exponential random variables

I Say X is an exponential random variable of parameter λ
when its probability distribution function is

f (x) =

{
λe−λx x ≥ 0

0 x < 0
.

I For a > 0 have

FX (a) =

∫ a

0
f (x)dx =

∫ a

0
λe−λxdx = −e−λx

∣∣a
0

= 1− e−λa.

I Thus P{X < a} = 1− e−λa and P{X > a} = e−λa.

I Formula P{X > a} = e−λa is very important in practice.



Moment formula

I Suppose X is exponential with parameter λ, so
fX (x) = λe−λx when x ≥ 0.

I What is E [X n]? (Say n ≥ 1.)

I Write E [X n] =
∫∞
0 xnλe−λxdx .

I Integration by parts gives
E [X n] = −

∫∞
0 nxn−1λ e−λx

−λ dx + xnλ e−λx

−λ
∣∣∞
0

.

I We get E [X n] = n
λE [X n−1].

I E [X 0] = E [1] = 1, E [X ] = 1/λ, E [X 2] = 2/λ2,
E [X n] = n!/λn.

I If λ = 1, then E [X n] = n!. Could take this as definition of n!.
It makes sense for n = 0 and for non-integer n.

I Variance: Var[X ] = E [X 2]− (E [X ])2 = 1/λ2.
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Minimum of independent exponentials is exponential

I CLAIM: If X1 and X2 are independent and exponential with
parameters λ1 and λ2 then X = min{X1,X2} is exponential
with parameter λ = λ1 + λ2.

I How could we prove this?

I Have various ways to describe random variable Y : via density
function fY (x), or cumulative distribution function
FY (a) = P{Y ≤ a}, or function P{Y > a} = 1− FY (a).

I Last one has simple form for exponential random variables.
We have P{Y > a} = e−λa for a ∈ [0,∞).

I Note: X > a if and only if X1 > a and X2 > a.

I X1 and X2 are independent, so
P{X > a} = P{X1 > a}P{X2 > a} = e−λ1ae−λ2a = e−λa.

I If X1, . . . ,Xn are independent exponential with λ1, . . . λn, then
min{X1, . . .Xn} is exponential with λ = λ1 + . . .+ λn.
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Memoryless property

I Suppose X is exponential with parameter λ.

I Memoryless property: If X represents the time until an
event occurs, then given that we have seen no event up to
time b, the conditional distribution of the remaining time till
the event is the same as it originally was.

I To make this precise, we ask what is the probability
distribution of Y = X − b conditioned on X > b?

I We can characterize the conditional law of Y , given X > b,
by computing P(Y > a|X > b) for each a.

I That is, we compute
P(X − b > a|X > b) = P(X > b + a|X > b).

I By definition of conditional probability, this is just
P{X > b + a}/P{X > b} = e−λ(b+a)/e−λb = e−λa.

I Thus, conditional law of X − b given that X > b is same as
the original law of X .

Memoryless property for geometric random variables

I Similar property holds for geometric random variables.

I If we plan to toss a coin until the first heads comes up, then
we have a .5 chance to get a heads in one step, a .25 chance
in two steps, etc.

I Given that the first 5 tosses are all tails, there is conditionally
a .5 chance we get our first heads on the 6th toss, a .25
chance on the 7th toss, etc.

I Despite our having had five tails in a row, our expectation of
the amount of time remaining until we see a heads is the
same as it originally was.



Exchange overheard on Logan airport shuttle

I Bob: There’s this really interesting problem in statistics I just
learned about. If a coin comes up heads 10 times in a row,
how likely is the next toss to be heads?

I Alice: Still fifty fifty.

I Bob: That’s a common mistake, but you’re wrong because
the 10 heads in a row increase the conditional probability that
there’s something funny going on with the coin.

I Alice: You never said it might be a funny coin.

I Bob: That’s the point. You should always suspect that there
might be something funny with the coin.

I Alice: It’s a math puzzle. You always assume a normal coin.

I Bob: No, that’s your mistake. You should never assume that,
because maybe somebody tampered with the coin.

Exchange overheard on a Logan airport shuttle

I Alice: Yeah, yeah, I get it. I can’t win here.

I Bob: No, I don’t think you get it yet. It’s a subtle point in
statistics. It’s very important.

I Exchange continued for duration of shuttle ride (Alice
increasingly irritated, Bob increasingly patronizing).

I Raises interesting question about memoryless property.

I Suppose the duration of a couple’s relationship is exponential
with λ−1 equal to two weeks.

I Given that it has lasted for 10 weeks so far, what is the
conditional probability that it will last an additional week?

I How about an additional four weeks? Ten weeks?

Remark on Alice and Bob

I Alice assumes Bob means “independent tosses of a fair coin.”
Under this assumption, all 211 outcomes of eleven-coin-toss
sequence are equally likely. Bob considers HHHHHHHHHHH
more likely than HHHHHHHHHHT, since former could result
from a faulty coin.

I Alice sees Bob’s point but considers it annoying and churlish
to ask about coin toss sequence and criticize listener for
assuming this means “independent tosses of fair coin”.

I Without that assumption, Alice has no idea what context Bob
has in mind. (An environment where two-headed novelty coins
are common? Among coin-tossing cheaters with particular
agendas?...)

I Alice: you need assumptions to convert stories into math.

I Bob: good to question assumptions.

Radioactive decay: maximum of independent exponentials

I Suppose you start at time zero with n radioactive particles.
Suppose that each one (independently of the others) will
decay at a random time, which is an exponential random
variable with parameter λ.

I Let T be amount of time until no particles are left. What are
E [T ] and Var[T ]?

I Let T1 be the amount of time you wait until the first particle
decays, T2 the amount of additional time until the second
particle decays, etc., so that T = T1 + T2 + . . .Tn.

I Claim: T1 is exponential with parameter nλ.

I Claim: T2 is exponential with parameter (n − 1)λ.

I And so forth. E [T ] =
∑n

i=1 E [Ti ] = λ−1
∑n

j=1
1
j and (by

independence) Var[T ] =
∑n

i=1Var[Ti ] = λ−2
∑n

j=1
1
j2

.
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Relationship to Poisson random variables

I Let T1,T2, . . . be independent exponential random variables
with parameter λ.

I We can view them as waiting times between “events”.

I How do you show that the number of events in the first t
units of time is Poisson with parameter λt?

I We actually did this already in the lecture on Poisson point
processes. You can break the interval [0, t] into n equal pieces
(for very large n), let Xk be number of events in kth piece, use
memoryless property to argue that the Xk are independent.

I When n is large enough, it becomes unlikely that any interval
has more than one event. Roughly speaking: each interval has
one event with probability λt/n, zero otherwise.

I Take n→∞ limit. Number of events is Poisson λt.
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Defining gamma function Γ

I Last time we found that if X is geometric with rate 1 and
n ≥ 0 then E [X n] =

∫∞
0 xne−xdx = n!.

I This expectation E [X n] is actually well defined whenever
n > −1. Set α = n + 1. The following quantity is well defined
for any α > 0:
Γ(α) := E [Xα−1] =

∫∞
0 xα−1e−xdx = (α− 1)!.

I So Γ(α) extends the function (α− 1)! (as defined for strictly
positive integers α) to the positive reals.

I Vexing notational issue: why define Γ so that Γ(α) = (α− 1)!
instead of Γ(α) = α!?

I At least it’s kind of convenient that Γ is defined on (0,∞)
instead of (−1,∞).



Recall: geometric and negative binomials

I The sum X of n independent geometric random variables of
parameter p is negative binomial with parameter (n, p).

I Waiting for the nth heads. What is P{X = k}?
I Answer:

(k−1
n−1

)
pn−1(1− p)k−np.

I What’s the continuous (Poisson point process) version of
“waiting for the nth event”?

Poisson point process limit

I Recall that we can approximate a Poisson process of rate λ by
tossing N coins per time unit and taking p = λ/N.

I Let’s fix a rational number x and try to figure out the
probability that that the nth coin toss happens at time x (i.e.,
on exactly xNth trials, assuming xN is an integer).

I Write p = λ/N and k = xN. (Note p = λx/k.)

I For large N,
(k−1
n−1

)
pn−1(1− p)k−np is

(k − 1)(k − 2) . . . (k − n + 1)

(n − 1)!
pn−1(1− p)k−np

≈ kn−1

(n − 1)!
pn−1e−xλp =

1

N

((λx)(n−1)e−λxλ

(n − 1)!

)
.

Defining Γ distribution

I The probability from previous side, 1
N

(
(λx)(n−1)e−λxλ

(n−1)!

)
suggests

the form for a continuum random variable.

I Replace n (generally integer valued) with α (which we will
eventually allow be to be any real number).

I Say that random variable X has gamma distribution with

parameters (α, λ) if fX (x) =

{
(λx)α−1e−λxλ

Γ(α) x ≥ 0

0 x < 0
.

I Waiting time interpretation makes sense only for integer α,
but distribution is defined for general positive α.
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Cauchy distribution

I A standard Cauchy random variable is a random real
number with probability density f (x) = 1

π
1

1+x2 .

I There is a “spinning flashlight” interpretation. Put a flashlight
at (0, 1), spin it to a uniformly random angle in [−π/2, π/2],
and consider point X where light beam hits the x-axis.

I FX (x) = P{X ≤ x} = P{tan θ ≤ x} = P{θ ≤ tan−1x} =
1
2 + 1

π tan−1 x .

I Find fX (x) = d
dx F (x) = 1

π
1

1+x2 .

Cauchy distribution: Brownian motion interpretation

I The light beam travels in (randomly directed) straight line.
There’s a windier random path called Brownian motion.

I If you do a simple random walk on a grid and take the grid
size to zero, then you get Brownian motion as a limit.

I We will not give a complete mathematical description of
Brownian motion here, just one nice fact.

I FACT: start Brownian motion at point (x , y) in the upper half
plane. Probability it hits negative x-axis before positive x-axis
is 1

2 + 1
π tan−1 y

x . Linear function of angle between positive
x-axis and line through (0, 0) and (x , y).

I Start Brownian motion at (0, 1) and let X be the location of
the first point on the x-axis it hits. What’s P{X < a}?

I Applying FACT, translation invariance, reflection symmetry:
P{X < x} = P{X > −x} = 1

2 + 1
π tan−1 1

x .

I So X is a standard Cauchy random variable.

Question: what if we start at (0, 2)?

I Start at (0, 2). Let Y be first point on x-axis hit by Brownian
motion. Again, same probability distribution as point hit by
flashlight trajectory.

I Flashlight point of view: Y has the same law as 2X where X
is standard Cauchy.

I Brownian point of view: Y has same law as X1 + X2 where X1

and X2 are standard Cauchy.

I But wait a minute. Var(Y ) = 4Var(X ) and by independence
Var(X1 + X2) = Var(X1) + Var(X2) = 2Var(X2). Can this be
right?

I Cauchy distribution doesn’t have finite variance or mean.

I Some standard facts we’ll learn later in the course (central
limit theorem, law of large numbers) don’t apply to it.
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Beta distribution: Alice and Bob revisited

I Suppose I have a coin with a heads probability p that I don’t
know much about.

I What do I mean by not knowing anything? Let’s say that I
think p is equally likely to be any of the numbers
{0, .1, .2, .3, .4, . . . , .9, 1}.

I Now imagine a multi-stage experiment where I first choose p
and then I toss n coins.

I Given that number h of heads is a− 1, and b − 1 tails, what’s
conditional probability p was a certain value x?

I P
(
p = x |h = (a− 1)

)
=

1
11 ( n

a−1)x
a−1(1−x)b−1

P{h=(a−1)} which is

xa−1(1− x)b−1 times a constant that doesn’t depend on x .

Beta distribution

I Suppose I have a coin with a heads probability p that I really
don’t know anything about. Let’s say p is uniform on [0, 1].

I Now imagine a multi-stage experiment where I first choose p
uniformly from [0, 1] and then I toss n coins.

I If I get, say, a− 1 heads and b − 1 tails, then what is the
conditional probability density for p?

I Turns out to be a constant (that doesn’t depend on x) times
xa−1(1− x)b−1.

I 1
B(a,b)x

a−1(1− x)b−1 on [0, 1], where B(a, b) is constant
chosen to make integral one. Can be shown that
B(a, b) = Γ(a)Γ(b)

Γ(a+b) .

I What is E [X ]?

I Answer: a
a+b .
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Distribution of function of random variable

I Suppose P{X ≤ a} = FX (a) is known for all a. Write
Y = X 3. What is P{Y ≤ 27}?

I Answer: note that Y ≤ 27 if and only if X ≤ 3. Hence
P{Y ≤ 27} = P{X ≤ 3} = FX (3).

I Generally FY (a) = P{Y ≤ a} = P{X ≤ a1/3} = FX (a1/3)

I This is a general principle. If X is a continuous random
variable and g is a strictly increasing function of x and
Y = g(X ), then FY (a) = FX (g−1(a)).

I How can we use this to compute the probability density
function fY from fX ?

I If Z = X 2, then what is P{Z ≤ 16}?
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Joint probability mass functions: discrete random variables

I If X and Y assume values in {1, 2, . . . , n} then we can view
Ai ,j = P{X = i ,Y = j} as the entries of an n × n matrix.

I Let’s say I don’t care about Y . I just want to know
P{X = i}. How do I figure that out from the matrix?

I Answer: P{X = i} =
∑n

j=1 Ai ,j .

I Similarly, P{Y = j} =
∑n

i=1 Ai ,j .

I In other words, the probability mass functions for X and Y
are the row and columns sums of Ai ,j .

I Given the joint distribution of X and Y , we sometimes call
distribution of X (ignoring Y ) and distribution of Y (ignoring
X ) the marginal distributions.

I In general, when X and Y are jointly defined discrete random
variables, we write p(x , y) = pX ,Y (x , y) = P{X = x ,Y = y}.

Joint distribution functions: continuous random variables

I Given random variables X and Y , define
F (a, b) = P{X ≤ a,Y ≤ b}.

I The region {(x , y) : x ≤ a, y ≤ b} is the lower left “quadrant”
centered at (a, b).

I Refer to FX (a) = P{X ≤ a} and FY (b) = P{Y ≤ b} as
marginal cumulative distribution functions.

I Question: if I tell you the two parameter function F , can you
use it to determine the marginals FX and FY ?

I Answer: Yes. FX (a) = limb→∞ F (a, b) and
FY (b) = lima→∞ F (a, b).



Joint density functions: continuous random variables

I Suppose we are given the joint distribution function
F (a, b) = P{X ≤ a,Y ≤ b}.

I Can we use F to construct a “two-dimensional probability
density function”? Precisely, is there a function f such that
P{(X ,Y ) ∈ A} =

∫
A f (x , y)dxdy for each (measurable)

A ⊂ R2?

I Let’s try defining f (x , y) = ∂
∂x

∂
∂y F (x , y). Does that work?

I Suppose first that A = {(x , y) : x ≤ a,≤ b}. By definition of
F , fundamental theorem of calculus, fact that F (a, b)
vanishes as either a or b tends to −∞, we indeed find∫ b
−∞

∫ a
−∞

∂
∂x

∂
∂y F (x , y)dxdy =

∫ b
−∞

∂
∂y F (a, y)dy = F (a, b).

I From this, we can show that it works for strips, rectangles,
general open sets, etc.
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Independent random variables

I We say X and Y are independent if for any two (measurable)
sets A and B of real numbers we have

P{X ∈ A,Y ∈ B} = P{X ∈ A}P{Y ∈ B}.

I Intuition: knowing something about X gives me no
information about Y , and vice versa.

I When X and Y are discrete random variables, they are
independent if P{X = x ,Y = y} = P{X = x}P{Y = y} for
all x and y for which P{X = x} and P{Y = y} are non-zero.

I What is the analog of this statement when X and Y are
continuous?

I When X and Y are continuous, they are independent if
f (x , y) = fX (x)fY (y).



Sample problem: independent normal random variables

I Suppose that X and Y are independent normal random
variables with mean zero and variance one.

I What is the probability that (X ,Y ) lies in the unit circle?
That is, what is P{X 2 + Y 2 ≤ 1}?

I First, any guesses?

I Probability X is within one standard deviation of its mean is
about .68. So (.68)2 is an upper bound.

I f (x , y) = fX (x)fY (y) = 1√
2π
e−x

2/2 1√
2π
e−y

2/2 = 1
2π e
−r2/2

I Using polar coordinates, we want∫ 1
0 (2πr) 1

2π e
−r2/2dr = −e−r2/2

∣∣1
0

= 1− e−1/2 ≈ .39.
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Repeated die roll

I Roll a die repeatedly and let X be such that the first even
number (the first 2, 4, or 6) appears on the X th roll.

I Let Y be the the number that appears on the X th roll.

I Are X and Y independent? What is their joint law?

I If j ≥ 1, then

P{X = j ,Y = 2} = P{X = j ,Y = 4}

= P{X = j ,Y = 6} = (1/2)j−1(1/6) = (1/2)j(1/3).

I Can we get the marginals from that?



Continuous time variant of repeated die roll

I On a certain hiking trail, it is well known that the lion, tiger,
and bear attacks are independent Poisson processes with
respective λ values of .1/hour, .2/hour, and .3/hour.

I Let T ∈ R be the amount of time until the first animal
attacks. Let A ∈ {lion, tiger, bear} be the species of the first
attacking animal.

I What is the probability density function for T? How about
E [T ]?

I Are T and A independent?

I Let T1 be the time until the first attack, T2 the subsequent
time until the second attack, etc., and let A1,A2, . . . be the
corresponding species.

I Are all of the Ti and Ai independent of each other? What are
their probability distributions?

More lions, tigers, bears

I Lion, tiger, and bear attacks are independent Poisson
processes with λ values .1/hour, .2/hour, and .3/hour.

I Distribution of time Ttiger till first tiger attack?

I Exponential λtiger = .2/hour. So P{Ttiger > a} = e−.2a.

I How about E [Ttiger] and Var[Ttiger]?

I E [Ttiger] = 1/λtiger = 5 hours, Var[Ttiger] = 1/λ2tiger = 25
hours squared.

I Time until 5th attack by any animal?

I Γ distribution with α = 5 and λ = .6.

I X , where X th attack is 5th bear attack?

I Negative binomial with parameters p = 1/2 and n = 5.

I Can hiker breathe sigh of relief after 5 attack-free hours?

Buffon’s needle problem

I Drop a needle of length one on a large sheet of paper (with
evenly spaced horizontal lines spaced at all integer heights).

I What’s the probability the needle crosses a line?

I Need some assumptions. Let’s say vertical position X of
lowermost endpoint of needle modulo one is uniform in [0, 1]
and independent of angle θ, which is uniform in [0, π]. Crosses
line if and only there is an integer between the numbers X
and X + sin θ, i.e., X ≤ 1 ≤ X + sin θ.

I Draw the box [0, 1]× [0, π] on which (X , θ) is uniform.
What’s the area of the subset where X ≥ 1− sin θ?
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Summing two random variables

I Say we have independent random variables X and Y and we
know their density functions fX and fY .

I Now let’s try to find FX+Y (a) = P{X + Y ≤ a}.
I This is the integral over {(x , y) : x + y ≤ a} of

f (x , y) = fX (x)fY (y). Thus,

I

P{X + Y ≤ a} =

∫ ∞
−∞

∫ a−y

−∞
fX (x)fY (y)dxdy

=

∫ ∞
−∞

FX (a− y)fY (y)dy .

I Differentiating both sides gives
fX+Y (a) = d

da

∫∞
−∞ FX (a−y)fY (y)dy =

∫∞
−∞ fX (a−y)fY (y)dy .

I Latter formula makes some intuitive sense. We’re integrating
over the set of x , y pairs that add up to a.

Independent identically distributed (i.i.d.)

I The abbreviation i.i.d. means independent identically
distributed.

I It is actually one of the most important abbreviations in
probability theory.

I Worth memorizing.

Summing i.i.d. uniform random variables

I Suppose that X and Y are i.i.d. and uniform on [0, 1]. So
fX = fY = 1 on [0, 1].

I What is the probability density function of X + Y ?

I fX+Y (a) =
∫∞
−∞ fX (a− y)fY (y)dy =

∫ 1
0 fX (a− y) which is

the length of [0, 1] ∩ [a− 1, a].

I That’s a when a ∈ [0, 1] and 2− a when a ∈ [1, 2] and 0
otherwise.



Review: summing i.i.d. geometric random variables

I A geometric random variable X with parameter p has
P{X = k} = (1− p)k−1p for k ≥ 1.

I Sum Z of n independent copies of X?

I We can interpret Z as time slot where nth head occurs in
i.i.d. sequence of p-coin tosses.

I So Z is negative binomial (n, p). So
P{Z = k} =

(k−1
n−1

)
pn−1(1− p)k−np.

Summing i.i.d. exponential random variables

I Suppose X1, . . .Xn are i.i.d. exponential random variables with
parameter λ. So fXi

(x) = λe−λx on [0,∞) for all 1 ≤ i ≤ n.

I What is the law of Z =
∑n

i=1 Xi?

I We claimed in an earlier lecture that this was a gamma
distribution with parameters (λ, n).

I So fZ (y) = λe−λy (λy)n−1

Γ(n) .

I We argued this point by taking limits of negative binomial
distributions. Can we check it directly?

I By induction, would suffice to show that a gamma (λ, 1) plus
an independent gamma (λ, n) is a gamma (λ, n + 1).

Summing independent gamma random variables

I Say X is gamma (λ, s), Y is gamma (λ, t), and X and Y are
independent.

I Intuitively, X is amount of time till we see s events, and Y is
amount of subsequent time till we see t more events.

I So fX (x) = λe−λx (λx)s−1

Γ(s) and fY (y) = λe−λy (λy)t−1

Γ(t) .

I Now fX+Y (a) =
∫∞
−∞ fX (a− y)fY (y)dy .

I Up to an a-independent multiplicative constant, this is∫ a

0
e−λ(a−y)(a−y)s−1e−λyy t−1dy = e−λa

∫ a

0
(a−y)s−1y t−1dy .

I Letting x = y/a, this becomes

e−λaas+t−1
∫ 1

0 (1− x)s−1x t−1dx .

I This is (up to multiplicative constant) e−λaas+t−1. Constant
must be such that integral from −∞ to ∞ is 1. Conclude
that X + Y is gamma (λ, s + t).

Summing two normal variables

I X is normal with mean zero, variance σ2
1, Y is normal with

mean zero, variance σ2
2.

I fX (x) = 1√
2πσ1

e
−x2

2σ2
1 and fY (y) = 1√

2πσ2
e

−y2

2σ2
2 .

I We just need to compute fX+Y (a) =
∫∞
−∞ fX (a− y)fY (y)dy .

I We could compute this directly.

I Or we could argue with a multi-dimensional bell curve picture
that if X and Y have variance 1 then fσ1X+σ2Y is the density
of a normal random variable (and note that variances and
expectations are additive).

I Or use fact that if Ai ∈ {−1, 1} are i.i.d. coin tosses then
1√
N

∑σ2N
i=1 Ai is approximately normal with variance σ2 when

N is large.

I Generally: if independent random variables Xj are normal
(µj , σ

2
j ) then

∑n
j=1 Xj is normal (

∑n
j=1 µj ,

∑n
j=1 σ

2
j ).



Other sums

I Sum of an independent binomial (m, p) and binomial (n, p)?

I Yes, binomial (m + n, p). Can be seen from coin toss
interpretation.

I Sum of independent Poisson λ1 and Poisson λ2?

I Yes, Poisson λ1 + λ2. Can be seen from Poisson point process
interpretation.
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Conditional distributions

I Let’s say X and Y have joint probability density function
f (x , y).

I We can define the conditional probability density of X given
that Y = y by fX |Y=y (x) = f (x ,y)

fY (y) .

I This amounts to restricting f (x , y) to the line corresponding
to the given y value (and dividing by the constant that makes
the integral along that line equal to 1).

I This definition assumes that fY (y) =
∫∞
−∞ f (x , y)dx <∞ and

fY (y) 6= 0. Is that safe to assume?

I Usually...



Remarks: conditioning on a probability zero event

I Our standard definition of conditional probability is
P(A|B) = P(AB)/P(B).

I Doesn’t make sense if P(B) = 0. But previous slide defines
“probability conditioned on Y = y” and P{Y = y} = 0.

I When can we (somehow) make sense of conditioning on
probability zero event?

I Tough question in general.

I Consider conditional law of X given that Y ∈ (y − ε, y + ε). If
this has a limit as ε→ 0, we can call that the law conditioned
on Y = y .

I Precisely, define
FX |Y=y (a) := limε→0 P{X ≤ a|Y ∈ (y − ε, y + ε)}.

I Then set fX |Y=y (a) = F ′X |Y=y (a). Consistent with definition
from previous slide.

A word of caution

I Suppose X and Y are chosen uniformly on the semicircle
{(x , y) : x2 + y2 ≤ 1, x ≥ 0}. What is fX |Y=0(x)?

I Answer: fX |Y=0(x) = 1 if x ∈ [0, 1] (zero otherwise).

I Let (θ,R) be (X ,Y ) in polar coordinates. What is fX |θ=0(x)?

I Answer: fX |θ=0(x) = 2x if x ∈ [0, 1] (zero otherwise).

I Both {θ = 0} and {Y = 0} describe the same probability zero
event. But our interpretation of what it means to condition
on this event is different in these two cases.

I Conditioning on (X ,Y ) belonging to a θ ∈ (−ε, ε) wedge is
very different from conditioning on (X ,Y ) belonging to a
Y ∈ (−ε, ε) strip.
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Maxima: pick five job candidates at random, choose best

I Suppose I choose n random variables X1,X2, . . . ,Xn uniformly
at random on [0, 1], independently of each other.

I The n-tuple (X1,X2, . . . ,Xn) has a constant density function
on the n-dimensional cube [0, 1]n.

I What is the probability that the largest of the Xi is less than
a?

I ANSWER: an.

I So if X = max{X1, . . . ,Xn}, then what is the probability
density function of X?

I Answer: FX (a) =


0 a < 0

an a ∈ [0, 1]

1 a > 1

. And

fx(a) = F ′X (a) = nan−1.

General order statistics

I Consider i.i.d random variables X1,X2, . . . ,Xn with continuous
probability density f .

I Let Y1 < Y2 < Y3 . . . < Yn be list obtained by sorting the Xj .

I In particular, Y1 = min{X1, . . . ,Xn} and
Yn = max{X1, . . . ,Xn} is the maximum.

I What is the joint probability density of the Yi?

I Answer: f (x1, x2, . . . , xn) = n!
∏n

i=1 f (xi ) if x1 < x2 . . . < xn,
zero otherwise.

I Let σ : {1, 2, . . . , n} → {1, 2, . . . , n} be the permutation such
that Xj = Yσ(j)

I Are σ and the vector (Y1, . . . ,Yn) independent of each other?

I Yes.

Example

I Let X1, . . . ,Xn be i.i.d. uniform random variables on [0, 1].

I Example: say n = 10 and condition on X1 being the third
largest of the Xj .

I Given this, what is the conditional probability density function
for X1?

I Write p = X1. This kind of like choosing a random p and
then conditioning on 7 heads and 2 tails.

I Answer is beta distribution with parameters (a, b) = (8, 3).

I Up to a constant, f (x) = x7(1− x)2.

I General beta (a, b) expectation is a/(a + b) = 8/11. Mode is
(a−1)

(a−1)+(b−1) = 2/9.
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Properties of expectation

I Several properties we derived for discrete expectations
continue to hold in the continuum.

I If X is discrete with mass function p(x) then
E [X ] =

∑
x p(x)x .

I Similarly, if X is continuous with density function f (x) then
E [X ] =

∫
f (x)xdx .

I If X is discrete with mass function p(x) then
E [g(x)] =

∑
x p(x)g(x).

I Similarly, X if is continuous with density function f (x) then
E [g(X )] =

∫
f (x)g(x)dx .

I If X and Y have joint mass function p(x , y) then
E [g(X ,Y )] =

∑
y

∑
x g(x , y)p(x , y).

I If X and Y have joint probability density function f (x , y) then
E [g(X ,Y )] =

∫∞
−∞

∫∞
−∞ g(x , y)f (x , y)dxdy .

Properties of expectation

I For both discrete and continuous random variables X and Y
we have E [X + Y ] = E [X ] + E [Y ].

I In both discrete and continuous settings, E [aX ] = aE [X ]
when a is a constant. And E [

∑
aiXi ] =

∑
aiE [Xi ].

I But what about that delightful “area under 1− FX” formula
for the expectation?

I When X is non-negative with probability one, do we always
have E [X ] =

∫∞
0 P{X > x}, in both discrete and continuous

settings?

I Define g(y) so that 1− FX (g(y)) = y . (Draw horizontal line
at height y and look where it hits graph of 1− FX .)

I Choose Y uniformly on [0, 1] and note that g(Y ) has the
same probability distribution as X .

I So E [X ] = E [g(Y )] =
∫ 1
0 g(y)dy , which is indeed the area

under the graph of 1− FX .
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A property of independence

I If X and Y are independent then
E [g(X )h(Y )] = E [g(X )]E [h(Y )].

I Just write E [g(X )h(Y )] =
∫∞
−∞

∫∞
−∞ g(x)h(y)f (x , y)dxdy .

I Since f (x , y) = fX (x)fY (y) this factors as∫∞
−∞ h(y)fY (y)dy

∫∞
−∞ g(x)fX (x)dx = E [h(Y )]E [g(X )].



Defining covariance and correlation

I Now define covariance of X and Y by
Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ]).

I Note: by definition Var(X ) = Cov(X ,X ).

I Covariance (like variance) can also written a different way.
Write µx = E [X ] and µY = E [Y ]. If laws of X and Y are
known, then µX and µY are just constants.

I Then

Cov(X ,Y ) = E [(X−µX )(Y−µY )] = E [XY−µXY−µYX+µXµY ] =

E [XY ]− µXE [Y ]− µYE [X ] + µXµY = E [XY ]− E [X ]E [Y ].

I Covariance formula E [XY ]− E [X ]E [Y ], or “expectation of
product minus product of expectations” is frequently useful.

I Note: if X and Y are independent then Cov(X ,Y ) = 0.

Basic covariance facts

I Using Cov(X ,Y ) = E [XY ]− E [X ]E [Y ] as a definition,
certain facts are immediate.

I Cov(X ,Y ) = Cov(Y ,X )

I Cov(X ,X ) = Var(X )

I Cov(aX ,Y ) = aCov(X ,Y ).

I Cov(X1 + X2,Y ) = Cov(X1,Y ) + Cov(X2,Y ).

I General statement of bilinearity of covariance:

Cov(
m∑
i=1

aiXi ,
n∑

j=1

bjYj) =
m∑
i=1

n∑
j=1

aibjCov(Xi ,Yj).

I Special case:

Var(
n∑

i=1

Xi ) =
n∑

i=1

Var(Xi ) + 2
∑

(i ,j):i<j

Cov(Xi ,Xj).

Defining correlation

I Again, by definition Cov(X ,Y ) = E [XY ]− E [X ]E [Y ].

I Correlation of X and Y defined by

ρ(X ,Y ) :=
Cov(X ,Y )√
Var(X )Var(Y )

.

I Correlation doesn’t care what units you use for X and Y . If
a > 0 and c > 0 then ρ(aX + b, cY + d) = ρ(X ,Y ).

I Satisfies −1 ≤ ρ(X ,Y ) ≤ 1.

I Why is that? Something to do with E [(X + Y )2] ≥ 0 and
E [(X − Y )2] ≥ 0?

I If a and b are constants and a > 0 then ρ(aX + b,X ) = 1.

I If a and b are constants and a < 0 then ρ(aX + b,X ) = −1.

Important point

I Say X and Y are uncorrelated when ρ(X ,Y ) = 0.

I Are independent random variables X and Y always
uncorrelated?

I Yes, assuming variances are finite (so that correlation is
defined).

I Are uncorrelated random variables always independent?

I No. Uncorrelated just means E [(X − E [X ])(Y − E [Y ])] = 0,
i.e., the outcomes where (X − E [X ])(Y − E [Y ]) is positive
(the upper right and lower left quadrants, if axes are drawn
centered at (E [X ],E [Y ])) balance out the outcomes where
this quantity is negative (upper left and lower right
quadrants). This is a much weaker statement than
independence.



Examples

I Suppose that X1, . . . ,Xn are i.i.d. random variables with
variance 1. For example, maybe each Xj takes values ±1
according to a fair coin toss.

I Compute Cov(X1 + X2 + X3,X2 + X3 + X4).

I Compute the correlation coefficient
ρ(X1 + X2 + X3,X2 + X3 + X4).

I Can we generalize this example?

I What is variance of number of people who get their own hat
in the hat problem?

I Define Xi to be 1 if ith person gets own hat, zero otherwise.

I Recall formula
Var(

∑n
i=1 Xi ) =

∑n
i=1Var(Xi ) + 2

∑
(i ,j):i<j Cov(Xi ,Xj).

I Reduces problem to computing Cov(Xi ,Xj) (for i 6= j) and
Var(Xi ).
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Famous paradox

I Certain corrupt and amoral banker dies, instructed to spend
some number n (of banker’s choosing) days in hell.

I At the end of this period, a (biased) coin will be tossed.
Banker will be assigned to hell forever with probability 1/n
and heaven forever with probability 1− 1/n.

I After 10 days, banker reasons, “If I wait another day I reduce
my odds of being here forever from 1/10 to 1/11. That’s a
reduction of 1/110. A 1/110 chance at infinity has infinite
value. Worth waiting one more day.”

I Repeats this reasoning every day, stays in hell forever.

I Standard punch line: this is actually what banker deserved.

I Fairly dark as math humor goes (and no offense intended to
anyone...) but dilemma is interesting.



I Paradox: decisions seem sound individually but together yield
worst possible outcome. Why? Can we demystify this?

I Variant without probability: Instead of tossing (1/n)-coin,
person deterministically spends 1/n fraction of future days
(every nth day, say) in hell.

I Even simpler variant: infinitely many identical money sacks
have labels 1, 2, 3, . . . I have sack 1. You have all others.

I You offer me a deal. I give you sack 1, you give me sacks 2
and 3. I give you sack 2 and you give me sacks 4 and 5. On
the nth stage, I give you sack n and you give me sacks 2n and
2n + 1. Continue until I say stop.

I Lets me get arbitrarily rich. But if I go on forever, I return
every sack given to me. If nth sack confers right to spend nth
day in heaven, leads to hell-forever paradox.

I I make infinitely many good trades and end up with less than I
started with. “Paradox” is really just existence of 2-to-1 map
from (smaller set) {2, 3, . . .} to (bigger set) {1, 2, . . .}.

Money pile paradox

I You have an infinite collection of money piles with labeled
0, 1, 2, . . . from left to right.

I Precise details not important, but let’s say you have 1/4 in
the 0th pile and 3

85j in the jth pile for each j > 0. Important
thing is that pile size is increasing exponentially in j .

I Banker proposes to transfer a fraction (say 2/3) of each pile
to the pile on its left and remainder to the pile on its right.
Do this simultaneously for all piles.

I Every pile is bigger after transfer (and this can be true even if
banker takes a portion of each pile as a fee).

I Banker seemed to make you richer (every pile got bigger) but
really just reshuffled your infinite wealth.

Two envelope paradox

I X is geometric with parameter 1/2. One envelope has 10X

dollars, one has 10X−1 dollars. Envelopes shuffled.

I You choose an envelope and, after seeing contents, are
allowed to choose whether to keep it or switch. (Maybe you
have to pay a dollar to switch.)

I Maximizing conditional expectation, it seems it’s always
better to switch. But if you always switch, why not just
choose second-choice envelope first and avoid switching fee?

I Kind of a disguised version of money pile paradox. But more
subtle. One has to replace “jth pile of money” with
“restriction of expectation sum to scenario that first chosen
envelop has 10j”. Switching indeed makes each pile bigger.

I However, “Higher expectation given amount in first envelope”
may not be right notion of “better.” If S is payout with
switching, T is payout without switching, then S has same
law as T − 1. In that sense S is worse.

Moral

I Beware infinite expectations.

I Beware unbounded utility functions.

I They can lead to strange conclusions, sometimes related to
“reshuffling infinite (actual or expected) wealth to create
more” paradoxes.

I Paradoxes can arise even when total transaction is finite with
probability one (as in envelope problem).
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Recall: conditional probability distributions

I It all starts with the definition of conditional probability:
P(A|B) = P(AB)/P(B).

I If X and Y are jointly discrete random variables, we can use
this to define a probability mass function for X given Y = y .

I That is, we write pX |Y (x |y) = P{X = x |Y = y} = p(x ,y)
pY (y) .

I In words: first restrict sample space to pairs (x , y) with given
y value. Then divide the original mass function by pY (y) to
obtain a probability mass function on the restricted space.

I We do something similar when X and Y are continuous
random variables. In that case we write fX |Y (x |y) = f (x ,y)

fY (y) .

I Often useful to think of sampling (X ,Y ) as a two-stage
process. First sample Y from its marginal distribution, obtain
Y = y for some particular y . Then sample X from its
probability distribution given Y = y .

I Marginal law of X is weighted average of conditional laws.



Example

I Let X be value on one die roll, Y value on second die roll,
and write Z = X + Y .

I What is the probability distribution for X given that Y = 5?

I Answer: uniform on {1, 2, 3, 4, 5, 6}.
I What is the probability distribution for Z given that Y = 5?

I Answer: uniform on {6, 7, 8, 9, 10, 11}.
I What is the probability distribution for Y given that Z = 5?

I Answer: uniform on {1, 2, 3, 4}.
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Conditional expectation

I Now, what do we mean by E [X |Y = y ]? This should just be
the expectation of X in the conditional probability measure
for X given that Y = y .

I Can write this as
E [X |Y = y ] =

∑
x xP{X = x |Y = y} =

∑
x xpX |Y (x |y).

I Can make sense of this in the continuum setting as well.

I In continuum setting we had fX |Y (x |y) = f (x ,y)
fY (y) . So

E [X |Y = y ] =
∫∞
−∞ x f (x ,y)

fY (y) dx



Example

I Let X be value on one die roll, Y value on second die roll,
and write Z = X + Y .

I What is E [X |Y = 5]?

I What is E [Z |Y = 5]?

I What is E [Y |Z = 5]?

Conditional expectation as a random variable

I Can think of E [X |Y ] as a function of the random variable Y .
When Y = y it takes the value E [X |Y = y ].

I So E [X |Y ] is itself a random variable. It happens to depend
only on the value of Y .

I Thinking of E [X |Y ] as a random variable, we can ask what its
expectation is. What is E [E [X |Y ]]?

I Very useful fact: E [E [X |Y ]] = E [X ].

I In words: what you expect to expect X to be after learning Y
is same as what you now expect X to be.

I Proof in discrete case:
E [X |Y = y ] =

∑
x xP{X = x |Y = y} =

∑
x x

p(x ,y)
pY (y) .

I Recall that, in general, E [g(Y )] =
∑

y pY (y)g(y).

I E [E [X |Y = y ]] =
∑

y pY (y)
∑

x x
p(x ,y)
pY (y) =

∑
x

∑
y p(x , y)x =

E [X ].

Conditional variance

I Definition:
Var(X |Y ) = E

[
(X − E [X |Y ])2|Y

]
= E

[
X 2 − E [X |Y ]2|Y

]
.

I Var(X |Y ) is a random variable that depends on Y . It is the
variance of X in the conditional distribution for X given Y .

I Note E [Var(X |Y )] = E [E [X 2|Y ]]− E [E [X |Y ]2|Y ] =
E [X 2]− E [E [X |Y ]2].

I If we subtract E [X ]2 from first term and add equivalent value
E [E [X |Y ]]2 to the second, RHS becomes
Var[X ]−Var[E [X |Y ]], which implies following:

I Useful fact: Var(X ) = Var(E [X |Y ]) + E [Var(X |Y )].

I One can discover X in two stages: first sample Y from
marginal and compute E [X |Y ], then sample X from
distribution given Y value.

I Above fact breaks variance into two parts, corresponding to
these two stages.

Example

I Let X be a random variable of variance σ2X and Y an
independent random variable of variance σ2Y and write
Z = X + Y . Assume E [X ] = E [Y ] = 0.

I What are the covariances Cov(X ,Y ) and Cov(X ,Z )?

I How about the correlation coefficients ρ(X ,Y ) and ρ(X ,Z )?

I What is E [Z |X ]? And how about Var(Z |X )?

I Both of these values are functions of X . Former is just X .
Latter happens to be a constant-valued function of X , i.e.,
happens not to actually depend on X . We have
Var(Z |X ) = σ2Y .

I Can we check the formula
Var(Z ) = Var(E [Z |X ]) + E [Var(Z |X )] in this case?



Outline

Conditional probability distributions

Conditional expectation

Interpretation and examples

Outline

Conditional probability distributions

Conditional expectation

Interpretation and examples

Interpretation

I Sometimes think of the expectation E [Y ] as a “best guess” or
“best predictor” of the value of Y .

I It is best in the sense that at among all constants m, the
expectation E [(Y −m)2] is minimized when m = E [Y ].

I But what if we allow non-constant predictors? What if the
predictor is allowed to depend on the value of a random
variable X that we can observe directly?

I Let g(x) be such a function. Then E [(y − g(X ))2] is
minimized when g(X ) = E [Y |X ].

Examples

I Toss 100 coins. What’s the conditional expectation of the
number of heads given that there are k heads among the first
fifty tosses?

I k + 25

I What’s the conditional expectation of the number of aces in a
five-card poker hand given that the first two cards in the hand
are aces?

I 2 + 3 · 2/50
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Moment generating functions

I Let X be a random variable.

I The moment generating function of X is defined by
M(t) = MX (t) := E [etX ].

I When X is discrete, can write M(t) =
∑

x e
txpX (x). So M(t)

is a weighted average of countably many exponential
functions.

I When X is continuous, can write M(t) =
∫∞
−∞ etx f (x)dx . So

M(t) is a weighted average of a continuum of exponential
functions.

I We always have M(0) = 1.

I If b > 0 and t > 0 then
E [etX ] ≥ E [etmin{X ,b}] ≥ P{X ≥ b}etb.

I If X takes both positive and negative values with positive
probability then M(t) grows at least exponentially fast in |t|
as |t| → ∞.



Moment generating functions actually generate moments

I Let X be a random variable and M(t) = E [etX ].

I Then M ′(t) = d
dtE [etX ] = E

[
d
dt (etX )

]
= E [XetX ].

I in particular, M ′(0) = E [X ].

I Also M ′′(t) = d
dtM

′(t) = d
dtE [XetX ] = E [X 2etX ].

I So M ′′(0) = E [X 2]. Same argument gives that nth derivative
of M at zero is E [X n].

I Interesting: knowing all of the derivatives of M at a single
point tells you the moments E [X k ] for all integer k ≥ 0.

I Another way to think of this: write
etX = 1 + tX + t2X 2

2! + t3X 3

3! + . . ..

I Taking expectations gives
E [etX ] = 1 + tm1 + t2m2

2! + t3m3
3! + . . ., where mk is the kth

moment. The kth derivative at zero is mk .

Moment generating functions for independent sums

I Let X and Y be independent random variables and
Z = X + Y .

I Write the moment generating functions as MX (t) = E [etX ]
and MY (t) = E [etY ] and MZ (t) = E [etZ ].

I If you knew MX and MY , could you compute MZ?

I By independence, MZ (t) = E [et(X+Y )] = E [etX etY ] =
E [etX ]E [etY ] = MX (t)MY (t) for all t.

I In other words, adding independent random variables
corresponds to multiplying moment generating functions.

Moment generating functions for sums of i.i.d. random
variables

I We showed that if Z = X + Y and X and Y are independent,
then MZ (t) = MX (t)MY (t)

I If X1 . . .Xn are i.i.d. copies of X and Z = X1 + . . .+ Xn then
what is MZ?

I Answer: Mn
X . Follows by repeatedly applying formula above.

I This a big reason for studying moment generating functions.
It helps us understand what happens when we sum up a lot of
independent copies of the same random variable.

Other observations

I If Z = aX then can I use MX to determine MZ?

I Answer: Yes. MZ (t) = E [etZ ] = E [etaX ] = MX (at).

I If Z = X + b then can I use MX to determine MZ?

I Answer: Yes. MZ (t) = E [etZ ] = E [etX+bt ] = ebtMX (t).

I Latter answer is the special case of MZ (t) = MX (t)MY (t)
where Y is the constant random variable b.



Examples

I Let’s try some examples. What is MX (t) = E [etX ] when X is
binomial with parameters (p, n)? Hint: try the n = 1 case
first.

I Answer: if n = 1 then MX (t) = E [etX ] = pet + (1− p)e0. In
general MX (t) = (pet + 1− p)n.

I What if X is Poisson with parameter λ > 0?

I Answer: MX (t) = E [etx ] =
∑∞

n=0
etne−λλn

n! =

e−λ
∑∞

n=0
(λet)n

n! = e−λeλe
t

= exp[λ(et − 1)].

I We know that if you add independent Poisson random
variables with parameters λ1 and λ2 you get a Poisson
random variable of parameter λ1 + λ2. How is this fact
manifested in the moment generating function?

More examples: normal random variables

I What if X is normal with mean zero, variance one?

I MX (t) = 1√
2π

∫∞
−∞ etxe−x

2/2dx =

1√
2π

∫∞
−∞ exp{− (x−t)2

2 + t2

2 }dx = et
2/2.

I What does that tell us about sums of i.i.d. copies of X?

I If Z is sum of n i.i.d. copies of X then MZ (t) = ent
2/2.

I What is MZ if Z is normal with mean µ and variance σ2?

I Answer: Z has same law as σX + µ, so
MZ (t) = M(σt)eµt = exp{σ2t2

2 + µt}.

More examples: exponential random variables

I What if X is exponential with parameter λ > 0?

I MX (t) =
∫∞
0 etxλe−λxdx = λ

∫∞
0 e−(λ−t)xdx = λ

λ−t .

I What if Z is a Γ distribution with parameters λ > 0 and
n > 0?

I Then Z has the law of a sum of n independent copies of X .
So MZ (t) = MX (t)n =

(
λ
λ−t
)n

.

I Exponential calculation above works for t < λ. What happens
when t > λ? Or as t approaches λ from below?

I MX (t) =
∫∞
0 etxλe−λxdx = λ

∫∞
0 e−(λ−t)xdx =∞ if t ≥ λ.

More examples: existence issues

I Seems that unless fX (x) decays superexponentially as x tends
to infinity, we won’t have MX (t) defined for all t.

I What is MX if X is standard Cauchy, so that fX (x) = 1
π(1+x2)

.

I Answer: MX (0) = 1 (as is true for any X ) but otherwise
MX (t) is infinite for all t 6= 0.

I Informal statement: moment generating functions are not
defined for distributions with fat tails.
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Characteristic functions

I Let X be a random variable.

I The characteristic function of X is defined by
φ(t) = φX (t) := E [e itX ]. Like M(t) except with i thrown in.

I Recall that by definition e it = cos(t) + i sin(t).

I Characteristic functions are similar to moment generating
functions in some ways.

I For example, φX+Y = φXφY , just as MX+Y = MXMY .

I And φaX (t) = φX (at) just as MaX (t) = MX (at).

I And if X has an mth moment then E [Xm] = imφ
(m)
X (0).

I But characteristic functions have a distinct advantage: they
are always well defined for all t even if fX decays slowly.
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Perspective

I In later lectures, we will see that one can use moment
generating functions and/or characteristic functions to prove
the so-called weak law of large numbers and central limit
theorem.

I Proofs using characteristic functions apply in more generality,
but they require you to remember how to exponentiate
imaginary numbers.

I Moment generating functions are central to so-called large
deviation theory and play a fundamental role in statistical
physics, among other things.

I Characteristic functions are Fourier transforms of the
corresponding distribution density functions and encode
“periodicity” patterns. For example, if X is integer valued,
φX (t) = E [e itX ] will be 1 whenever t is a multiple of 2π.

Continuity theorems

I Let X be a random variable and Xn a sequence of random
variables.

I We say that Xn converge in distribution or converge in law
to X if limn→∞ FXn(x) = FX (x) at all x ∈ R at which FX is
continuous.

I Lévy’s continuity theorem (see Wikipedia): if
limn→∞ φXn(t) = φX (t) for all t, then Xn converge in law to
X .

I Moment generating analog: if moment generating
functions MXn(t) are defined for all t and n and
limn→∞MXn(t) = MX (t) for all t, then Xn converge in law to
X .
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Continuous random variables

I Say X is a continuous random variable if there exists a
probability density function f = fX on R such that
P{X ∈ B} =

∫
B f (x)dx :=

∫
1B(x)f (x)dx .

I We may assume
∫
R f (x)dx =

∫∞
−∞ f (x)dx = 1 and f is

non-negative.

I Probability of interval [a, b] is given by
∫ b
a f (x)dx , the area

under f between a and b.

I Probability of any single point is zero.

I Define cumulative distribution function
F (a) = FX (a) := P{X < a} = P{X ≤ a} =

∫ a
−∞ f (x)dx .



Expectations of continuous random variables

I Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote

E [X ] =
∑

x :p(x)>0

p(x)x .

I How should we define E [X ] when X is a continuous random
variable?

I Answer: E [X ] =
∫∞
−∞ f (x)xdx .

I Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote

E [g(X )] =
∑

x :p(x)>0

p(x)g(x).

I What is the analog when X is a continuous random variable?

I Answer: we will write E [g(X )] =
∫∞
−∞ f (x)g(x)dx .

Variance of continuous random variables

I Suppose X is a continuous random variable with mean µ.

I We can write Var[X ] = E [(X − µ)2], same as in the discrete
case.

I Next, if g = g1 + g2 then
E [g(X )] =

∫
g1(x)f (x)dx +

∫
g2(x)f (x)dx =∫ (

g1(x) + g2(x)
)
f (x)dx = E [g1(X )] + E [g2(X )].

I Furthermore, E [ag(X )] = aE [g(X )] when a is a constant.

I Just as in the discrete case, we can expand the variance
expression as Var[X ] = E [X 2 − 2µX + µ2] and use additivity
of expectation to say that
Var[X ] = E [X 2]− 2µE [X ] + E [µ2] = E [X 2]− 2µ2 + µ2 =
E [X 2]− E [X ]2.

I This formula is often useful for calculations.
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It’s the coins, stupid

I Much of what we have done in this course can be motivated
by the i.i.d. sequence Xi where each Xi is 1 with probability p
and 0 otherwise. Write Sn =

∑n
i=1 Xn.

I Binomial (Sn — number of heads in n tosses), geometric
(steps required to obtain one heads), negative binomial
(steps required to obtain n heads).

I Standard normal approximates law of Sn−E [Sn]
SD(Sn) . Here

E [Sn] = np and SD(Sn) =
√
Var(Sn) =

√
npq where

q = 1− p.

I Poisson is limit of binomial as n→∞ when p = λ/n.

I Poisson point process: toss one λ/n coin during each length
1/n time increment, take n→∞ limit.

I Exponential: time till first event in λ Poisson point process.

I Gamma distribution: time till nth event in λ Poisson point
process.

Discrete random variable properties derivable from coin
toss intuition

I Sum of two independent binomial random variables with
parameters (n1, p) and (n2, p) is itself binomial (n1 + n2, p).

I Sum of n independent geometric random variables with
parameter p is negative binomial with parameter (n, p).

I Expectation of geometric random variable with parameter
p is 1/p.

I Expectation of binomial random variable with parameters
(n, p) is np.

I Variance of binomial random variable with parameters
(n, p) is np(1− p) = npq.

Continuous random variable properties derivable from coin
toss intuition

I Sum of n independent exponential random variables each
with parameter λ is gamma with parameters (n, λ).

I Memoryless properties: given that exponential random
variable X is greater than T > 0, the conditional law of
X − T is the same as the original law of X .

I Write p = λ/n. Poisson random variable expectation is
limn→∞ np = limn→∞ nλn = λ. Variance is
limn→∞ np(1− p) = limn→∞ n(1− λ/n)λ/n = λ.

I Sum of λ1 Poisson and independent λ2 Poisson is a
λ1 + λ2 Poisson.

I Times between successive events in λ Poisson process are
independent exponentials with parameter λ.

I Minimum of independent exponentials with parameters λ1

and λ2 is itself exponential with parameter λ1 + λ2.

DeMoivre-Laplace Limit Theorem

I DeMoivre-Laplace limit theorem (special case of central
limit theorem):

lim
n→∞

P{a ≤ Sn − np
√
npq

≤ b} → Φ(b)− Φ(a).

I This is Φ(b)− Φ(a) = P{a ≤ X ≤ b} when X is a standard
normal random variable.



Problems

I Toss a million fair coins. Approximate the probability that I
get more than 501, 000 heads.

I Answer: well,
√
npq =

√
106 × .5× .5 = 500. So we’re asking

for probability to be over two SDs above mean. This is
approximately 1− Φ(2) = Φ(−2).

I Roll 60000 dice. Expect to see 10000 sixes. What’s the
probability to see more than 9800?

I Here
√
npq =

√
60000× 1

6 ×
5
6 ≈ 91.28.

I And 200/91.28 ≈ 2.19. Answer is about 1− Φ(−2.19).

Properties of normal random variables

I Say X is a (standard) normal random variable if
f (x) = 1√

2π
e−x

2/2.

I Mean zero and variance one.

I The random variable Y = σX + µ has variance σ2 and
expectation µ.

I Y is said to be normal with parameters µ and σ2. Its density
function is fY (x) = 1√

2πσ
e−(x−µ)2/2σ2

.

I Function Φ(a) = 1√
2π

∫ a
−∞ e−x

2/2dx can’t be computed

explicitly.

I Values: Φ(−3) ≈ .0013, Φ(−2) ≈ .023 and Φ(−1) ≈ .159.

I Rule of thumb: “two thirds of time within one SD of mean,
95 percent of time within 2 SDs of mean.”

Properties of exponential random variables

I Say X is an exponential random variable of parameter λ
when its probability distribution function is f (x) = λe−λx for
x ≥ 0 (and f (x) = 0 if x < 0).

I For a > 0 have

FX (a) =

∫ a

0
f (x)dx =

∫ a

0
λe−λxdx = −e−λx

∣∣a
0

= 1− e−λa.

I Thus P{X < a} = 1− e−λa and P{X > a} = e−λa.

I Formula P{X > a} = e−λa is very important in practice.

I Repeated integration by parts gives E [X n] = n!/λn.

I If λ = 1, then E [X n] = n!. Value Γ(n) := E [X n−1] defined for
real n > 0 and Γ(n) = (n − 1)!.

Defining Γ distribution

I Say that random variable X has gamma distribution with

parameters (α, λ) if fX (x) =

{
(λx)α−1e−λxλ

Γ(α) x ≥ 0

0 x < 0
.

I Same as exponential distribution when α = 1. Otherwise,
multiply by xα−1 and divide by Γ(α). The fact that Γ(α) is
what you need to divide by to make the total integral one just
follows from the definition of Γ.

I Waiting time interpretation makes sense only for integer α,
but distribution is defined for general positive α.
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Properties of uniform random variables

I Suppose X is a random variable with probability density

function f (x) =

{
1

β−α x ∈ [α, β]

0 x 6∈ [α, β].

I Then E [X ] = α+β
2 .

I And Var[X ] = Var[(β − α)Y + α] = Var[(β − α)Y ] =
(β − α)2Var[Y ] = (β − α)2/12.

Distribution of function of random variable

I Suppose P{X ≤ a} = FX (a) is known for all a. Write
Y = X 3. What is P{Y ≤ 27}?

I Answer: note that Y ≤ 27 if and only if X ≤ 3. Hence
P{Y ≤ 27} = P{X ≤ 3} = FX (3).

I Generally FY (a) = P{Y ≤ a} = P{X ≤ a1/3} = FX (a1/3)

I This is a general principle. If X is a continuous random
variable and g is a strictly increasing function of x and
Y = g(X ), then FY (a) = FX (g−1(a)).



Joint probability mass functions: discrete random variables

I If X and Y assume values in {1, 2, . . . , n} then we can view
Ai ,j = P{X = i ,Y = j} as the entries of an n × n matrix.

I Let’s say I don’t care about Y . I just want to know
P{X = i}. How do I figure that out from the matrix?

I Answer: P{X = i} =
∑n

j=1 Ai ,j .

I Similarly, P{Y = j} =
∑n

i=1 Ai ,j .

I In other words, the probability mass functions for X and Y
are the row and columns sums of Ai ,j .

I Given the joint distribution of X and Y , we sometimes call
distribution of X (ignoring Y ) and distribution of Y (ignoring
X ) the marginal distributions.

I In general, when X and Y are jointly defined discrete random
variables, we write p(x , y) = pX ,Y (x , y) = P{X = x ,Y = y}.

Joint distribution functions: continuous random variables

I Given random variables X and Y , define
F (a, b) = P{X ≤ a,Y ≤ b}.

I The region {(x , y) : x ≤ a, y ≤ b} is the lower left “quadrant”
centered at (a, b).

I Refer to FX (a) = P{X ≤ a} and FY (b) = P{Y ≤ b} as
marginal cumulative distribution functions.

I Question: if I tell you the two parameter function F , can you
use it to determine the marginals FX and FY ?

I Answer: Yes. FX (a) = limb→∞ F (a, b) and
FY (b) = lima→∞ F (a, b).

I Density: f (x , y) = ∂
∂x

∂
∂y F (x , y).

Independent random variables

I We say X and Y are independent if for any two (measurable)
sets A and B of real numbers we have

P{X ∈ A,Y ∈ B} = P{X ∈ A}P{Y ∈ B}.

I When X and Y are discrete random variables, they are
independent if P{X = x ,Y = y} = P{X = x}P{Y = y} for
all x and y for which P{X = x} and P{Y = y} are non-zero.

I When X and Y are continuous, they are independent if
f (x , y) = fX (x)fY (y).

Summing two random variables

I Say we have independent random variables X and Y and we
know their density functions fX and fY .

I Now let’s try to find FX+Y (a) = P{X + Y ≤ a}.
I This is the integral over {(x , y) : x + y ≤ a} of

f (x , y) = fX (x)fY (y). Thus,

I

P{X + Y ≤ a} =

∫ ∞
−∞

∫ a−y

−∞
fX (x)fY (y)dxdy

=

∫ ∞
−∞

FX (a− y)fY (y)dy .

I Differentiating both sides gives
fX+Y (a) = d

da

∫∞
−∞ FX (a−y)fY (y)dy =

∫∞
−∞ fX (a−y)fY (y)dy .

I Latter formula makes some intuitive sense. We’re integrating
over the set of x , y pairs that add up to a.



Conditional distributions

I Let’s say X and Y have joint probability density function
f (x , y).

I We can define the conditional probability density of X given
that Y = y by fX |Y=y (x) = f (x ,y)

fY (y) .

I This amounts to restricting f (x , y) to the line corresponding
to the given y value (and dividing by the constant that makes
the integral along that line equal to 1).

Maxima: pick five job candidates at random, choose best

I Suppose I choose n random variables X1,X2, . . . ,Xn uniformly
at random on [0, 1], independently of each other.

I The n-tuple (X1,X2, . . . ,Xn) has a constant density function
on the n-dimensional cube [0, 1]n.

I What is the probability that the largest of the Xi is less than
a?

I ANSWER: an.

I So if X = max{X1, . . . ,Xn}, then what is the probability
density function of X?

I Answer: FX (a) =


0 a < 0

an a ∈ [0, 1]

1 a > 1

. And

fx(a) = F ′X (a) = nan−1.

General order statistics

I Consider i.i.d random variables X1,X2, . . . ,Xn with continuous
probability density f .

I Let Y1 < Y2 < Y3 . . . < Yn be list obtained by sorting the Xj .

I In particular, Y1 = min{X1, . . . ,Xn} and
Yn = max{X1, . . . ,Xn} is the maximum.

I What is the joint probability density of the Yi?

I Answer: f (x1, x2, . . . , xn) = n!
∏n

i=1 f (xi ) if x1 < x2 . . . < xn,
zero otherwise.

I Let σ : {1, 2, . . . , n} → {1, 2, . . . , n} be the permutation such
that Xj = Yσ(j)

I Are σ and the vector (Y1, . . . ,Yn) independent of each other?

I Yes.

Properties of expectation

I Several properties we derived for discrete expectations
continue to hold in the continuum.

I If X is discrete with mass function p(x) then
E [X ] =

∑
x p(x)x .

I Similarly, if X is continuous with density function f (x) then
E [X ] =

∫
f (x)xdx .

I If X is discrete with mass function p(x) then
E [g(x)] =

∑
x p(x)g(x).

I Similarly, X if is continuous with density function f (x) then
E [g(X )] =

∫
f (x)g(x)dx .

I If X and Y have joint mass function p(x , y) then
E [g(X ,Y )] =

∑
y

∑
x g(x , y)p(x , y).

I If X and Y have joint probability density function f (x , y) then
E [g(X ,Y )] =

∫∞
−∞

∫∞
−∞ g(x , y)f (x , y)dxdy .



Properties of expectation

I For both discrete and continuous random variables X and Y
we have E [X + Y ] = E [X ] + E [Y ].

I In both discrete and continuous settings, E [aX ] = aE [X ]
when a is a constant. And E [

∑
aiXi ] =

∑
aiE [Xi ].

I But what about that delightful “area under 1− FX” formula
for the expectation?

I When X is non-negative with probability one, do we always
have E [X ] =

∫∞
0 P{X > x}, in both discrete and continuous

settings?

I Define g(y) so that 1− FX (g(y)) = y . (Draw horizontal line
at height y and look where it hits graph of 1− FX .)

I Choose Y uniformly on [0, 1] and note that g(Y ) has the
same probability distribution as X .

I So E [X ] = E [g(Y )] =
∫ 1

0 g(y)dy , which is indeed the area
under the graph of 1− FX .

A property of independence

I If X and Y are independent then
E [g(X )h(Y )] = E [g(X )]E [h(Y )].

I Just write E [g(X )h(Y )] =
∫∞
−∞

∫∞
−∞ g(x)h(y)f (x , y)dxdy .

I Since f (x , y) = fX (x)fY (y) this factors as∫∞
−∞ h(y)fY (y)dy

∫∞
−∞ g(x)fX (x)dx = E [h(Y )]E [g(X )].

Defining covariance and correlation

I Now define covariance of X and Y by
Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ]).

I Note: by definition Var(X ) = Cov(X ,X ).

I Covariance formula E [XY ]− E [X ]E [Y ], or “expectation of
product minus product of expectations” is frequently useful.

I If X and Y are independent then Cov(X ,Y ) = 0.

I Converse is not true.

Basic covariance facts

I Cov(X ,Y ) = Cov(Y ,X )

I Cov(X ,X ) = Var(X )

I Cov(aX ,Y ) = aCov(X ,Y ).

I Cov(X1 + X2,Y ) = Cov(X1,Y ) + Cov(X2,Y ).

I General statement of bilinearity of covariance:

Cov(
m∑
i=1

aiXi ,
n∑

j=1

bjYj) =
m∑
i=1

n∑
j=1

aibjCov(Xi ,Yj).

I Special case:

Var(
n∑

i=1

Xi ) =
n∑

i=1

Var(Xi ) + 2
∑

(i ,j):i<j

Cov(Xi ,Xj).



Defining correlation

I Again, by definition Cov(X ,Y ) = E [XY ]− E [X ]E [Y ].

I Correlation of X and Y defined by

ρ(X ,Y ) :=
Cov(X ,Y )√
Var(X )Var(Y )

.

I Correlation doesn’t care what units you use for X and Y . If
a > 0 and c > 0 then ρ(aX + b, cY + d) = ρ(X ,Y ).

I Satisfies −1 ≤ ρ(X ,Y ) ≤ 1.

I If a and b are positive constants and a > 0 then
ρ(aX + b,X ) = 1.

I If a and b are positive constants and a < 0 then
ρ(aX + b,X ) = −1.

Conditional probability distributions

I It all starts with the definition of conditional probability:
P(A|B) = P(AB)/P(B).

I If X and Y are jointly discrete random variables, we can use
this to define a probability mass function for X given Y = y .

I That is, we write pX |Y (x |y) = P{X = x |Y = y} = p(x ,y)
pY (y) .

I In words: first restrict sample space to pairs (x , y) with given
y value. Then divide the original mass function by pY (y) to
obtain a probability mass function on the restricted space.

I We do something similar when X and Y are continuous
random variables. In that case we write fX |Y (x |y) = f (x ,y)

fY (y) .

I Often useful to think of sampling (X ,Y ) as a two-stage
process. First sample Y from its marginal distribution, obtain
Y = y for some particular y . Then sample X from its
probability distribution given Y = y .

Conditional expectation

I Now, what do we mean by E [X |Y = y ]? This should just be
the expectation of X in the conditional probability measure
for X given that Y = y .

I Can write this as
E [X |Y = y ] =

∑
x xP{X = x |Y = y} =

∑
x xpX |Y (x |y).

I Can make sense of this in the continuum setting as well.

I In continuum setting we had fX |Y (x |y) = f (x ,y)
fY (y) . So

E [X |Y = y ] =
∫∞
−∞ x f (x ,y)

fY (y) dx

Conditional expectation as a random variable

I Can think of E [X |Y ] as a function of the random variable Y .
When Y = y it takes the value E [X |Y = y ].

I So E [X |Y ] is itself a random variable. It happens to depend
only on the value of Y .

I Thinking of E [X |Y ] as a random variable, we can ask what its
expectation is. What is E [E [X |Y ]]?

I Very useful fact: E [E [X |Y ]] = E [X ].

I In words: what you expect to expect X to be after learning Y
is same as what you now expect X to be.

I Proof in discrete case:
E [X |Y = y ] =

∑
x xP{X = x |Y = y} =

∑
x x

p(x ,y)
pY (y) .

I Recall that, in general, E [g(Y )] =
∑

y pY (y)g(y).

I E [E [X |Y = y ]] =
∑

y pY (y)
∑

x x
p(x ,y)
pY (y) =

∑
x

∑
y p(x , y)x =

E [X ].



Conditional variance

I Definition:
Var(X |Y ) = E

[
(X − E [X |Y ])2|Y

]
= E

[
X 2 − E [X |Y ]2|Y

]
.

I Var(X |Y ) is a random variable that depends on Y . It is the
variance of X in the conditional distribution for X given Y .

I Note E [Var(X |Y )] = E [E [X 2|Y ]]− E [E [X |Y ]2|Y ] =
E [X 2]− E [E [X |Y ]2].

I If we subtract E [X ]2 from first term and add equivalent value
E [E [X |Y ]]2 to the second, RHS becomes
Var[X ]−Var[E [X |Y ]], which implies following:

I Useful fact: Var(X ) = Var(E [X |Y ]) + E [Var(X |Y )].

I One can discover X in two stages: first sample Y from
marginal and compute E [X |Y ], then sample X from
distribution given Y value.

I Above fact breaks variance into two parts, corresponding to
these two stages.

Example

I Let X be a random variable of variance σ2
X and Y an

independent random variable of variance σ2
Y and write

Z = X + Y . Assume E [X ] = E [Y ] = 0.

I What are the covariances Cov(X ,Y ) and Cov(X ,Z )?

I How about the correlation coefficients ρ(X ,Y ) and ρ(X ,Z )?

I What is E [Z |X ]? And how about Var(Z |X )?

I Both of these values are functions of X . Former is just X .
Latter happens to be a constant-valued function of X , i.e.,
happens not to actually depend on X . We have
Var(Z |X ) = σ2

Y .

I Can we check the formula
Var(Z ) = Var(E [Z |X ]) + E [Var(Z |X )] in this case?

Moment generating functions

I Let X be a random variable and M(t) = E [etX ].

I Then M ′(0) = E [X ] and M ′′(0) = E [X 2]. Generally, nth
derivative of M at zero is E [X n].

I Let X and Y be independent random variables and
Z = X + Y .

I Write the moment generating functions as MX (t) = E [etX ]
and MY (t) = E [etY ] and MZ (t) = E [etZ ].

I If you knew MX and MY , could you compute MZ?

I By independence, MZ (t) = E [et(X+Y )] = E [etX etY ] =
E [etX ]E [etY ] = MX (t)MY (t) for all t.

I In other words, adding independent random variables
corresponds to multiplying moment generating functions.

Moment generating functions for sums of i.i.d. random
variables

I We showed that if Z = X + Y and X and Y are independent,
then MZ (t) = MX (t)MY (t)

I If X1 . . .Xn are i.i.d. copies of X and Z = X1 + . . .+ Xn then
what is MZ?

I Answer: Mn
X . Follows by repeatedly applying formula above.

I This a big reason for studying moment generating functions.
It helps us understand what happens when we sum up a lot of
independent copies of the same random variable.

I If Z = aX then MZ (t) = E [etZ ] = E [etaX ] = MX (at).

I If Z = X + b then MZ (t) = E [etZ ] = E [etX+bt ] = ebtMX (t).



Examples

I If X is binomial with parameters (p, n) then
MX (t) = (pet + 1− p)n.

I If X is Poisson with parameter λ > 0 then
MX (t) = exp[λ(et − 1)].

I If X is normal with mean 0, variance 1, then MX (t) = et
2/2.

I If X is normal with mean µ, variance σ2, then
MX (t) = eσ

2t2/2+µt .

I If X is exponential with parameter λ > 0 then MX (t) = λ
λ−t .

Cauchy distribution

I A standard Cauchy random variable is a random real
number with probability density f (x) = 1

π
1

1+x2 .

I There is a “spinning flashlight” interpretation. Put a flashlight
at (0, 1), spin it to a uniformly random angle in [−π/2, π/2],
and consider point X where light beam hits the x-axis.

I FX (x) = P{X ≤ x} = P{tan θ ≤ x} = P{θ ≤ tan−1x} =
1
2 + 1

π tan−1 x .

I Find fX (x) = d
dx F (x) = 1

π
1

1+x2 .

Beta distribution

I Two part experiment: first let p be uniform random variable
[0, 1], then let X be binomial (n, p) (number of heads when
we toss n p-coins).

I Given that X = a− 1 and n − X = b − 1 the conditional law
of p is called the β distribution.

I The density function is a constant (that doesn’t depend on x)
times xa−1(1− x)b−1.

I That is f (x) = 1
B(a,b)x

a−1(1− x)b−1 on [0, 1], where B(a, b)
is constant chosen to make integral one. Can show
B(a, b) = Γ(a)Γ(b)

Γ(a+b) .

I Turns out that E [X ] = a
a+b and the mode of X is (a−1)

(a−1)+(b−1) .
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Markov’s and Chebyshev’s inequalities

I Markov’s inequality: Let X be a random variable taking only
non-negative values. Fix a constant a > 0. Then
P{X ≥ a} ≤ E [X ]

a .

I Proof: Consider a random variable Y defined by

Y =

{
a X ≥ a

0 X < a
. Since X ≥ Y with probability one, it

follows that E [X ] ≥ E [Y ] = aP{X ≥ a}. Divide both sides by
a to get Markov’s inequality.

I Chebyshev’s inequality: If X has finite mean µ, variance σ2,
and k > 0 then

P{|X − µ| ≥ k} ≤ σ2

k2
.

I Proof: Note that (X − µ)2 is a non-negative random variable
and P{|X − µ| ≥ k} = P{(X − µ)2 ≥ k2}. Now apply
Markov’s inequality with a = k2.



Markov and Chebyshev: rough idea

I Markov’s inequality: Let X be a random variable taking only
non-negative values with finite mean. Fix a constant a > 0.
Then P{X ≥ a} ≤ E [X ]

a .

I Chebyshev’s inequality: If X has finite mean µ, variance σ2,
and k > 0 then

P{|X − µ| ≥ k} ≤ σ2

k2
.

I Inequalities allow us to deduce limited information about a
distribution when we know only the mean (Markov) or the
mean and variance (Chebyshev).

I Markov: if E [X ] is small, then it is not too likely that X is
large.

I Chebyshev: if σ2 = Var[X ] is small, then it is not too likely
that X is far from its mean.

Statement of weak law of large numbers

I Suppose Xi are i.i.d. random variables with mean µ.

I Then the value An := X1+X2+...+Xn
n is called the empirical

average of the first n trials.

I We’d guess that when n is large, An is typically close to µ.

I Indeed, weak law of large numbers states that for all ε > 0
we have limn→∞ P{|An − µ| > ε} = 0.

I Example: as n tends to infinity, the probability of seeing more
than .50001n heads in n fair coin tosses tends to zero.

Proof of weak law of large numbers in finite variance case

I As above, let Xi be i.i.d. random variables with mean µ and
write An := X1+X2+...+Xn

n .

I By additivity of expectation, E[An] = µ.

I Similarly, Var[An] = nσ2

n2
= σ2/n.

I By Chebyshev P
{
|An − µ| ≥ ε

}
≤ Var[An]

ε2
= σ2

nε2
.

I No matter how small ε is, RHS will tend to zero as n gets
large.
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Extent of weak law

I Question: does the weak law of large numbers apply no
matter what the probability distribution for X is?

I Is it always the case that if we define An := X1+X2+...+Xn
n then

An is typically close to some fixed value when n is large?

I What if X is Cauchy?

I Recall that in this strange case An actually has the same
probability distribution as X .

I In particular, the An are not tightly concentrated around any
particular value even when n is very large.

I But in this case E [|X |] was infinite. Does the weak law hold
as long as E [|X |] is finite, so that µ is well defined?

I Yes. Can prove this using characteristic functions.

Characteristic functions

I Let X be a random variable.

I The characteristic function of X is defined by
φ(t) = φX (t) := E [e itX ]. Like M(t) except with i thrown in.

I Recall that by definition e it = cos(t) + i sin(t).

I Characteristic functions are similar to moment generating
functions in some ways.

I For example, φX+Y = φXφY , just as MX+Y = MXMY , if X
and Y are independent.

I And φaX (t) = φX (at) just as MaX (t) = MX (at).

I And if X has an mth moment then E [Xm] = imφ
(m)
X (0).

I But characteristic functions have an advantage: they are well
defined at all t for all random variables X .

Continuity theorems

I Let X be a random variable and Xn a sequence of random
variables.

I Say Xn converge in distribution or converge in law to X if
limn→∞ FXn(x) = FX (x) at all x ∈ R at which FX is
continuous.

I The weak law of large numbers can be rephrased as the
statement that An converges in law to µ (i.e., to the random
variable that is equal to µ with probability one).

I Lévy’s continuity theorem (see Wikipedia): if

lim
n→∞

φXn(t) = φX (t)

for all t, then Xn converge in law to X .
I By this theorem, we can prove the weak law of large numbers

by showing limn→∞ φAn(t) = φµ(t) = e itµ for all t. In the
special case that µ = 0, this amounts to showing
limn→∞ φAn(t) = 1 for all t.



Proof of weak law of large numbers in finite mean case

I As above, let Xi be i.i.d. instances of random variable X with
mean zero. Write An := X1+X2+...+Xn

n . Weak law of large
numbers holds for i.i.d. instances of X if and only if it holds
for i.i.d. instances of X − µ. Thus it suffices to prove the
weak law in the mean zero case.

I Consider the characteristic function φX (t) = E [e itX ].

I Since E [X ] = 0, we have φ′X (0) = E [ ∂∂t e
itX ]t=0 = iE [X ] = 0.

I Write g(t) = log φX (t) so φX (t) = eg(t). Then g(0) = 0 and

(by chain rule) g ′(0) = limε→0
g(ε)−g(0)

ε = limε→0
g(ε)
ε = 0.

I Now φAn(t) = φX (t/n)n = eng(t/n). Since g(0) = g ′(0) = 0

we have limn→∞ ng(t/n) = limn→∞ t
g( t

n
)

t
n

= 0 if t is fixed.

Thus limn→∞ eng(t/n) = 1 for all t.

I By Lévy’s continuity theorem, the An converge in law to 0
(i.e., to the random variable that is 0 with probability one).
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Recall: DeMoivre-Laplace limit theorem

I Let Xi be an i.i.d. sequence of random variables. Write
Sn =

∑n
i=1 Xn.

I Suppose each Xi is 1 with probability p and 0 with probability
q = 1− p.

I DeMoivre-Laplace limit theorem:

lim
n→∞

P{a ≤ Sn − np
√
npq

≤ b} → Φ(b)− Φ(a).

I Here Φ(b)− Φ(a) = P{a ≤ Z ≤ b} when Z is a standard
normal random variable.

I Sn−np√
npq describes “number of standard deviations that Sn is

above or below its mean”.

I Question: Does a similar statement hold if the Xi are i.i.d. but
have some other probability distribution?

I Central limit theorem: Yes, if they have finite variance.



Example

I Say we roll 106 ordinary dice independently of each other.

I Let Xi be the number on the ith die. Let X =
∑106

i=1 Xi be the
total of the numbers rolled.

I What is E [X ]?

I 106/6

I What is Var[X ]?

I 106 · (35/12)

I How about SD[X ]?

I 1000
√

35/12

I What is the probability that X is less than a standard
deviations above its mean?

I Central limit theorem: should be about 1√
2π

∫ a
−∞ e−x

2/2dx .

Example

I Suppose earthquakes in some region are a Poisson point
process with rate λ equal to 1 per year.

I Let X be the number of earthquakes that occur over a
ten-thousand year period. Should be a Poisson random
variable with rate 10000.

I What is E [X ]?

I 10000

I What is Var[X ]?

I 10000

I How about SD[X ]?

I 100

I What is the probability that X is less than a standard
deviations above its mean?

I Central limit theorem: should be about 1√
2π

∫ a
−∞ e−x

2/2dx .

General statement

I Let Xi be an i.i.d. sequence of random variables with finite
mean µ and variance σ2.

I Write Sn =
∑n

i=1 Xi . So E [Sn] = nµ and Var[Sn] = nσ2 and
SD[Sn] = σ

√
n.

I Write Bn = X1+X2+...+Xn−nµ
σ
√
n

. Then Bn is the difference

between Sn and its expectation, measured in standard
deviation units.

I Central limit theorem:

lim
n→∞

P{a ≤ Bn ≤ b} → Φ(b)− Φ(a).

Outline
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Recall: characteristic functions

I Let X be a random variable.

I The characteristic function of X is defined by
φ(t) = φX (t) := E [e itX ]. Like M(t) except with i thrown in.

I Recall that by definition e it = cos(t) + i sin(t).

I Characteristic functions are similar to moment generating
functions in some ways.

I For example, φX+Y = φXφY , just as MX+Y = MXMY , if X
and Y are independent.

I And φaX (t) = φX (at) just as MaX (t) = MX (at).

I And if X has an mth moment then E [Xm] = imφ
(m)
X (0).

I Characteristic functions are well defined at all t for all random
variables X .

Rephrasing the theorem

I Let X be a random variable and Xn a sequence of random
variables.

I Say Xn converge in distribution or converge in law to X if
limn→∞ FXn(x) = FX (x) at all x ∈ R at which FX is
continuous.

I Recall: the weak law of large numbers can be rephrased as the
statement that An = X1+X2+...+Xn

n converges in law to µ (i.e.,
to the random variable that is equal to µ with probability one)
as n→∞.

I The central limit theorem can be rephrased as the statement
that Bn = X1+X2+...+Xn−nµ

σ
√
n

converges in law to a standard

normal random variable as n→∞.

Continuity theorems

I Lévy’s continuity theorem (see Wikipedia): if

lim
n→∞

φXn(t) = φX (t)

for all t, then Xn converge in law to X .

I By this theorem, we can prove the central limit theorem by
showing limn→∞ φBn(t) = e−t

2/2 for all t.

I Moment generating function continuity theorem: if
moment generating functions MXn(t) are defined for all t and
n and limn→∞MXn(t) = MX (t) for all t, then Xn converge in
law to X .

I By this theorem, we can prove the central limit theorem by
showing limn→∞MBn(t) = et

2/2 for all t.



Proof of central limit theorem with moment generating
functions

I Write Y = X−µ
σ . Then Y has mean zero and variance 1.

I Write MY (t) = E [etY ] and g(t) = logMY (t). So
MY (t) = eg(t).

I We know g(0) = 0. Also M ′Y (0) = E [Y ] = 0 and
M ′′Y (0) = E [Y 2] = Var[Y ] = 1.

I Chain rule: M ′Y (0) = g ′(0)eg(0) = g ′(0) = 0 and
M ′′Y (0) = g ′′(0)eg(0) + g ′(0)2eg(0) = g ′′(0) = 1.

I So g is a nice function with g(0) = g ′(0) = 0 and g ′′(0) = 1.
Taylor expansion: g(t) = t2/2 + o(t2) for t near zero.

I Now Bn is 1√
n

times the sum of n independent copies of Y .

I So MBn(t) =
(
MY (t/

√
n)
)n

= e
ng( t√

n
)
.

I But e
ng( t√

n
) ≈ e

n( t√
n
)2/2

= et
2/2, in sense that LHS tends to

et
2/2 as n tends to infinity.

Proof of central limit theorem with characteristic functions

I Moment generating function proof only applies if the moment
generating function of X exists.

I But the proof can be repeated almost verbatim using
characteristic functions instead of moment generating
functions.

I Then it applies for any X with finite variance.

Almost verbatim: replace MY (t) with φY (t)

I Write φY (t) = E [e itY ] and g(t) = log φY (t). So
φY (t) = eg(t).

I We know g(0) = 0. Also φ′Y (0) = iE [Y ] = 0 and
φ′′Y (0) = i2E [Y 2] = −Var[Y ] = −1.

I Chain rule: φ′Y (0) = g ′(0)eg(0) = g ′(0) = 0 and
φ′′Y (0) = g ′′(0)eg(0) + g ′(0)2eg(0) = g ′′(0) = −1.

I So g is a nice function with g(0) = g ′(0) = 0 and
g ′′(0) = −1. Taylor expansion: g(t) = −t2/2 + o(t2) for t
near zero.

I Now Bn is 1√
n

times the sum of n independent copies of Y .

I So φBn(t) =
(
φY (t/

√
n)
)n

= e
ng( t√

n
)
.

I But e
ng( t√

n
) ≈ e

−n( t√
n
)2/2

= e−t
2/2, in sense that LHS tends

to e−t
2/2 as n tends to infinity.

Perspective

I The central limit theorem is actually fairly robust. Variants of
the theorem still apply if you allow the Xi not to be identically
distributed, or not to be completely independent.

I We won’t formulate these variants precisely in this course.

I But, roughly speaking, if you have a lot of little random terms
that are “mostly independent” — and no single term
contributes more than a “small fraction” of the total sum —
then the total sum should be “approximately” normal.

I Example: if height is determined by lots of little mostly
independent factors, then people’s heights should be normally
distributed.

I Not quite true... certain factors by themselves can cause a
person to be a whole lot shorter or taller. Also, individual
factors not really independent of each other.

I Kind of true for homogenous population, ignoring outliers.



18.600: Lecture 31

Strong law of large numbers and Jensen’s
inequality

Scott Sheffield

MIT

Outline

A story about Pedro

Strong law of large numbers

Jensen’s inequality

Outline

A story about Pedro

Strong law of large numbers

Jensen’s inequality

Pedro’s hopes and dreams

I Pedro is considering two ways to invest his life savings.

I One possibility: put the entire sum in government insured
interest-bearing savings account. He considers this completely
risk free. The (post-tax) interest rate equals the inflation rate,
so the real value of his savings is guaranteed not to change.

I Riskier possibility: put sum in investment where every month
real value goes up 15 percent with probability .53 and down
15 percent with probability .47 (independently of everything
else).

I How much does Pedro make in expectation over 10 years with
risky approach? 100 years?



Pedro’s hopes and dreams

I How much does Pedro make in expectation over 10 years with
risky approach? 100 years?

I Answer: let Ri be i.i.d. random variables each equal to 1.15
with probability .53 and .85 with probability .47. Total value
after n steps is initial investment times
Tn := R1 × R2 × . . .× Rn.

I Compute E [R1] = .53× 1.15 + .47× .85 = 1.009.

I Then E [T120] = 1.009120 ≈ 2.93. And
E [T1200] = 1.0091200 ≈ 46808.9

Pedro’s financial planning

I How would you advise Pedro to invest over the next 10 years
if Pedro wants to be completely sure that he doesn’t lose
money?

I What if Pedro is willing to accept substantial risk if it means
there is a good chance it will enable his grandchildren to retire
in comfort 100 years from now?

I What if Pedro wants the money for himself in ten years?

I Let’s do some simulations.

Logarithmic point of view

I We wrote Tn = R1 × . . .× Rn. Taking logs, we can write
Xi = logRi and Sn = logTn =

∑n
i=1 Xi .

I Now Sn is a sum of i.i.d. random variables.

I E [X1] = E [logR1] = .53(log 1.15) + .47(log .85) ≈ −.0023.

I By the law of large numbers, if we take n extremely large,
then Sn/n ≈ −.0023 with high probability.

I This means that, when n is large, Sn is usually a very negative
value, which means Tn is usually very close to zero (even
though its expectation is very large).

I Bad news for Pedro’s grandchildren. After 100 years, the
portfolio is probably in bad shape. But what if Pedro takes an
even longer view? Will Tn converge to zero with probability
one as n gets large? Or will Tn perhaps always eventually
rebound?
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Strong law of large numbers

I Suppose Xi are i.i.d. random variables with mean µ.

I Then the value An := X1+X2+...+Xn
n is called the empirical

average of the first n trials.

I Intuition: when n is large, An is typically close to µ.

I Recall: weak law of large numbers states that for all ε > 0
we have limn→∞ P{|An − µ| > ε} = 0.

I The strong law of large numbers states that with
probability one limn→∞ An = µ.

I It is called “strong” because it implies the weak law of large
numbers. But it takes a bit of thought to see why this is the
case.

Strong law implies weak law

I Suppose we know that the strong law holds, i.e., with
probability 1 we have limn→∞ An = µ.

I Strong law implies that for every ε the random variable
Yε = max{n : |An − µ| > ε} is finite with probability one. It
has some probability mass function (though we don’t know
what it is).

I Note that if |An − µ| > ε for some n value then Yε ≥ n.

I Thus for each n we have P{|An − µ| > ε} ≤ P{Yε ≥ n}.
I So limn→∞ P{|An − µ| > ε} ≤ limn→∞ P{Yε ≥ n} = 0.

I If the right limit is zero for each ε (strong law) then the left
limit is zero for each ε (weak law).

Proof of strong law assuming E [X 4] <∞

I Assume K := E [X 4] <∞. Not necessary, but simplifies proof.

I Note: Var[X 2] = E [X 4]− E [X 2]2 > 0, so E [X 2]2 ≤ K .

I The strong law holds for i.i.d. copies of X if and only if it
holds for i.i.d. copies of X − µ where µ is a constant.

I So we may as well assume E [X ] = 0.

I Key to proof is to bound fourth moments of An.

I E [A4
n] = n−4E [S4

n ] = n−4E [(X1 + X2 + . . .+ Xn)4].

I Expand (X1 + . . .+ Xn)4. Five kinds of terms: XiXjXkXl and
XiXjX

2
k and XiX

3
j and X 2

i X
2
j and X 4

i .

I The first three terms all have expectation zero. There are
(n
2

)
of the fourth type and n of the last type, each equal to at

most K . So E [A4
n] ≤ n−4

(
6
(n
2

)
+ n
)
K .

I Thus E [
∑∞

n=1 A
4
n] =

∑∞
n=1 E [A4

n] <∞. So
∑∞

n=1 A
4
n <∞

(and hence An → 0) with probability 1.
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Jensen’s inequality statement

I Let X be random variable with finite mean E [X ] = µ.

I Let g be a convex function. This means that if you draw a
straight line connecting two points on the graph of g , then
the graph of g lies below that line. If g is twice differentiable,
then convexity is equivalent to the statement that g ′′(x) ≥ 0
for all x . For a concrete example, take g(x) = x2.

I Jensen’s inequality: E [g(X )] ≥ g(E [X ]).

I Proof: Let L(x) = ax + b be tangent to graph of g at point
(E [X ], g(E [X ])). Then L lies below g . Observe

E [g(X )] ≥ E [L(X )] = L(E [X ]) = g(E [X )]

I Note: if g is concave (which means −g is convex), then
E [g(X )] ≤ g(E [X ]).

I If your utility function is concave, then you always prefer a
safe investment over a risky investment with the same
expected return.

More about Pedro

I Disappointed by the strong law of large numbers, Pedro seeks
a better way to make money.

I Signs up for job as “hedge fund manager”. Allows him to
manage C ≈ 109 dollars of somebody else’s money. At end of
each year, he and his staff get two percent of principle plus
twenty percent of profit.

I Precisely: if X is end-of-year portfolio value, Pedro gets

g(X ) = .02C + .2 max{X − C , 0}.

I Pedro notices that g is a convex function. He can therefore
increase his expected return by adopting risky strategies.

I Pedro has strategy that increases portfolio value 10 percent
with probability .9, loses everything with probability .1.

I He repeats this yearly until fund collapses.

I With high probability Pedro is rich by then.



Perspective

I The “two percent of principle plus twenty percent of profit” is
common in the hedge fund industry.

I The idea is that fund managers have both guaranteed revenue
for expenses (two percent of principle) and incentive to make
money (twenty percent of profit).

I Because of Jensen’s inequality, the convexity of the payoff
function is a genuine concern for hedge fund investors. People
worry that it encourages fund managers (like Pedro) to take
risks that are bad for the client.

I This is a special case of the “principal-agent” problem of
economics. How do you ensure that the people you hire
genuinely share your interests?



18.600: Lecture 32

Markov Chains

Scott Sheffield

MIT

Outline

Markov chains

Examples

Ergodicity and stationarity

Outline

Markov chains

Examples

Ergodicity and stationarity

Markov chains

I Consider a sequence of random variables X0,X1,X2, . . . each
taking values in the same state space, which for now we take
to be a finite set that we label by {0, 1, . . . ,M}.

I Interpret Xn as state of the system at time n.

I Sequence is called a Markov chain if we have a fixed
collection of numbers Pij (one for each pair
i , j ∈ {0, 1, . . . ,M}) such that whenever the system is in state
i , there is probability Pij that system will next be in state j .

I Precisely,
P{Xn+1 = j |Xn = i ,Xn−1 = in−1, . . . ,X1 = i1,X0 = i0} = Pij .

I Kind of an “almost memoryless” property. Probability
distribution for next state depends only on the current state
(and not on the rest of the state history).



Simple example

I For example, imagine a simple weather model with two states:
rainy and sunny.

I If it’s rainy one day, there’s a .5 chance it will be rainy the
next day, a .5 chance it will be sunny.

I If it’s sunny one day, there’s a .8 chance it will be sunny the
next day, a .2 chance it will be rainy.

I In this climate, sun tends to last longer than rain.

I Given that it is rainy today, how many days to I expect to
have to wait to see a sunny day?

I Given that it is sunny today, how many days to I expect to
have to wait to see a rainy day?

I Over the long haul, what fraction of days are sunny?

Matrix representation

I To describe a Markov chain, we need to define Pij for any
i , j ∈ {0, 1, . . . ,M}.

I It is convenient to represent the collection of transition
probabilities Pij as a matrix:

A =



P00 P01 . . . P0M

P10 P11 . . . P1M

·
·
·

PM0 PM1 . . . PMM


I For this to make sense, we require Pij ≥ 0 for all i , j and∑M

j=0 Pij = 1 for each i . That is, the rows sum to one.

Transitions via matrices

I Suppose that pi is the probability that system is in state i at
time zero.

I What does the following product represent?

(
p0 p1 . . . pM

)


P00 P01 . . . P0M

P10 P11 . . . P1M

·
·
·

PM0 PM1 . . . PMM


I Answer: the probability distribution at time one.

I How about the following product?(
p0 p1 . . . pM

)
An

I Answer: the probability distribution at time n.

Powers of transition matrix

I We write P
(n)
ij for the probability to go from state i to state j

over n steps.

I From the matrix point of view

P
(n)
00 P

(n)
01 . . . P

(n)
0M

P
(n)
10 P

(n)
11 . . . P

(n)
1M

·
·
·

P
(n)
M0 P

(n)
M1 . . . P

(n)
MM


=



P00 P01 . . . P0M

P10 P11 . . . P1M

·
·
·

PM0 PM1 . . . PMM



n

I If A is the one-step transition matrix, then An is the n-step
transition matrix.



Questions

I What does it mean if all of the rows are identical?

I Answer: state sequence Xi consists of i.i.d. random variables.

I What if matrix is the identity?

I Answer: states never change.

I What if each Pij is either one or zero?

I Answer: state evolution is deterministic.
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Simple example

I Consider the simple weather example: If it’s rainy one day,
there’s a .5 chance it will be rainy the next day, a .5 chance it
will be sunny. If it’s sunny one day, there’s a .8 chance it will
be sunny the next day, a .2 chance it will be rainy.

I Let rainy be state zero, sunny state one, and write the
transition matrix by

A =

(
.5 .5
.2 .8

)
I Note that

A2 =

(
.64 .35
.26 .74

)
I Can compute A10 =

(
.285719 .714281
.285713 .714287

)



Does relationship status have the Markov property?

Single

In a relationship

It’s complicated

EngagedMarried

I Can we assign a probability to each arrow?

I Markov model implies time spent in any state (e.g., a
marriage) before leaving is a geometric random variable.

I Not true... Can we make a better model with more states?
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Ergodic Markov chains

I Say Markov chain is ergodic if some power of the transition
matrix has all non-zero entries.

I Turns out that if chain has this property, then

πj := limn→∞ P
(n)
ij exists and the πj are the unique

non-negative solutions of πj =
∑M

k=0 πkPkj that sum to one.

I This means that the row vector

π =
(
π0 π1 . . . πM

)
is a left eigenvector of A with eigenvalue 1, i.e., πA = π.

I We call π the stationary distribution of the Markov chain.

I One can solve the system of linear equations
πj =

∑M
k=0 πkPkj to compute the values πj . Equivalent to

considering A fixed and solving πA = π. Or solving
(A− I )π = 0. This determines π up to a multiplicative
constant, and fact that

∑
πj = 1 determines the constant.



Simple example

I If A =

(
.5 .5
.2 .8

)
, then we know

πA =
(
π0 π1

)( .5 .5
.2 .8

)
=
(
π0 π1

)
= π.

I This means that .5π0 + .2π1 = π0 and .5π0 + .8π1 = π1 and
we also know that π0 + π1 = 1. Solving these equations gives
π0 = 2/7 and π1 = 5/7, so π =

(
2/7 5/7

)
.

I Indeed,

πA =
(

2/7 5/7
)( .5 .5

.2 .8

)
=
(

2/7 5/7
)

= π.

I Recall that

A10 =

(
.285719 .714281
.285713 .714287

)
≈
(

2/7 5/7
2/7 5/7

)
=

(
π
π

)
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What is entropy?

I Entropy is an important notion in thermodynamics,
information theory, data compression, cryptography, etc.

I Familiar on some level to everyone who has studied chemistry
or statistical physics.

I Kind of means amount of randomness or disorder.

I But can we give a mathematical definition? In particular, how
do we define the entropy of a random variable?



Information

I Suppose we toss a fair coin k times.

I Then the state space S is the set of 2k possible heads-tails
sequences.

I If X is the random sequence (so X is a random variable), then
for each x ∈ S we have P{X = x} = 2−k .

I In information theory it’s quite common to use log to mean
log2 instead of loge . We follow that convention in this lecture.
In particular, this means that

logP{X = x} = −k

for each x ∈ S .

I Since there are 2k values in S , it takes k “bits” to describe an
element x ∈ S .

I Intuitively, could say that when we learn that X = x , we have
learned k = − logP{X = x} “bits of information”.

Shannon entropy

I Shannon: famous MIT student/faculty member, wrote The
Mathematical Theory of Communication in 1948.

I Goal is to define a notion of how much we “expect to learn”
from a random variable or “how many bits of information a
random variable contains” that makes sense for general
experiments (which may not have anything to do with coins).

I If a random variable X takes values x1, x2, . . . , xn with positive
probabilities p1, p2, . . . , pn then we define the entropy of X by

H(X ) =
n∑

i=1

pi (− log pi ) = −
n∑

i=1

pi log pi .

I This can be interpreted as the expectation of (− log pi ). The
value (− log pi ) is the “amount of surprise” when we see xi .

Twenty questions with Harry

I Harry always thinks of one of the following animals:

x P{X = x} − logP{X = x}
Dog 1/4 2
Cat 1/4 2
Cow 1/8 3
Pig 1/16 4

Squirrel 1/16 4
Mouse 1/16 4

Owl 1/16 4
Sloth 1/32 5
Hippo 1/32 5
Yak 1/32 5

Zebra 1/64 6
Rhino 1/64 6

I Can learn animal with H(X ) = 47
16 questions on average.

Other examples

I Again, if a random variable X takes the values x1, x2, . . . , xn
with positive probabilities p1, p2, . . . , pn then we define the
entropy of X by

H(X ) =
n∑

i=1

pi (− log pi ) = −
n∑

i=1

pi log pi .

I If X takes one value with probability 1, what is H(X )?

I If X takes k values with equal probability, what is H(X )?

I What is H(X ) if X is a geometric random variable with
parameter p = 1/2?
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Coding values by bit sequences
I David Huffman (as MIT student) published in “A Method for

the Construction of Minimum-Redundancy Code” in 1952.
I If X takes four values A,B,C ,D we can code them by:

A↔ 00

B ↔ 01

C ↔ 10

D ↔ 11

I Or by
A↔ 0

B ↔ 10

C ↔ 110

D ↔ 111

I No sequence in code is an extension of another.
I What does 100111110010 spell?
I A coding scheme is equivalent to a twenty questions strategy.

Twenty questions theorem

I Noiseless coding theorem: Expected number of questions
you need is always at least the entropy.

I Note: The expected number of questions is the entropy if
each question divides the space of possibilities exactly in half
(measured by probability).

I In this case, let X take values x1, . . . , xN with probabilities
p(x1), . . . , p(xN). Then if a valid coding of X assigns ni bits
to xi , we have

N∑
i=1

nip(xi ) ≥ H(X ) = −
N∑
i=1

p(xi ) log p(xi ).

I Data compression: X1,X2, . . . ,Xn be i.i.d. instances of X .
Do there exist encoding schemes such that the expected
number of bits required to encode the entire sequence is
about H(X )n (assuming n is sufficiently large)?

I Yes. We can cut space of Nn possibilities close to exactly in
half at each stage (up till near end maybe).
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Entropy for a pair of random variables

I Consider random variables X ,Y with joint mass function
p(xi , yj) = P{X = xi ,Y = yj}.

I Then we write

H(X ,Y ) = −
∑
i

∑
j

p(xi , yj) log p(xi , yi ).

I H(X ,Y ) is just the entropy of the pair (X ,Y ) (viewed as a
random variable itself).

I Claim: if X and Y are independent, then

H(X ,Y ) = H(X ) + H(Y ).

Why is that?

Conditional entropy

I Let’s again consider random variables X ,Y with joint mass
function p(xi , yj) = P{X = xi ,Y = yj} and write

H(X ,Y ) = −
∑
i

∑
j

p(xi , yj) log p(xi , yi ).

I But now let’s not assume they are independent.

I We can define a conditional entropy of X given Y = yj by

HY=yj (X ) = −
∑
i

p(xi |yj) log p(xi |yj).

I This is just the entropy of the conditional distribution. Recall
that p(xi |yj) = P{X = xi |Y = yj}.

I We similarly define HY (X ) =
∑

j HY=yj (X )pY (yj). This is
the expected amount of conditional entropy that there will be
in Y after we have observed X .



Properties of conditional entropy

I Definitions: HY=yj (X ) = −
∑

i p(xi |yj) log p(xi |yj) and
HY (X ) =

∑
j HY=yj (X )pY (yj).

I Important property one: H(X ,Y ) = H(Y ) + HY (X ).

I In words, the expected amount of information we learn when
discovering (X ,Y ) is equal to expected amount we learn when
discovering Y plus expected amount when we subsequently
discover X (given our knowledge of Y ).

I To prove this property, recall that p(xi , yj) = pY (yj)p(xi |yj).

I Thus, H(X ,Y ) = −
∑

i

∑
j p(xi , yj) log p(xi , yj) =

−
∑

i

∑
j pY (yj)p(xi |yj)[log pY (yj) + log p(xi |yj)] =

−
∑

j pY (yj) log pY (yj)
∑

i p(xi |yj)−∑
j pY (yj)

∑
i p(xi |yj) log p(xi |yj) = H(Y ) + HY (X ).

Properties of conditional entropy

I Definitions: HY=yj (X ) = −
∑

i p(xi |yj) log p(xi |yj) and
HY (X ) =

∑
j HY=yj (X )pY (yj).

I Important property two: HY (X ) ≤ H(X ) with equality if
and only if X and Y are independent.

I In words, the expected amount of information we learn when
discovering X after having discovered Y can’t be more than
the expected amount of information we would learn when
discovering X before knowing anything about Y .

I Proof: note that E(p1, p2, . . . , pn) := −
∑

pi log pi is concave.

I The vector v = {pX (x1), pX (x2), . . . , pX (xn)} is a weighted
average of vectors vj := {pX (x1|yj), pX (x2|yj), . . . , pX (xn|yj)}
as j ranges over possible values. By (vector version of)
Jensen’s inequality,
H(X ) = E(v) = E(

∑
pY (yj)vj) ≥

∑
pY (yj)E(vj) = HY (X ).
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Martingale definition

I Let S be a probability space.

I Let X0,X1,X2, . . . be a sequence of random variables.
Informally, we will imagine that we acquiring information
about S in a sequence of stages, and each Xj represents a
quantity that is known to us at the jth stage.

I If Z is any random variable, we let E [Z |Fn] denote the
conditional expectation of X given all the information that is
available to us on the nth stage. If we don’t specify otherwise,
we assume that this information consists precisely of the
values X0,X1, . . . ,Xn, so that E [Z |Fn] = E [Z |X0,X1, . . . ,Xn].
(In some applications, one could imagine there are other
things known as well at stage n.)

I We say Xn sequence is a martingale if E [|Xn|] <∞ for all n
and E [Xn+1|Fn] = Xn for all n.

I “Taking into account all the information I have at stage n, the
expected value at stage n + 1 is the value at stage n.”



Martingale definition

I Example: Imagine that Xn is the price of a stock on day n.

I Martingale condition: “Expected value of stock tomorrow,
given all I know today, is value of the stock today.”

I Question: If you are given a mathematical description of a
process X0,X1,X2, . . . then how can you check whether it is a
martingale?

I Consider all of the information that you know after having
seen X0,X1, . . . ,Xn. Then try to figure out what additional
(not yet known) randomness is involved in determining Xn+1.
Use this to figure out the conditional expectation of Xn+1,
and check to see whether this is necessarily equal to the
known Xn value.

Martingale examples

I Suppose that A1,A2, . . . are i.i.d. random variables each equal
to −1 with probability .5 and 1 with probability .5.

I Let X0 = 0 and Xn =
∑n

i=1 Ai for n > 0. Is the Xn sequence
a martingale?

I Answer: yes. To see this, note that
E [Xn+1|Fn] = E [Xn + An+1|Fn] = E [Xn|Fn] + E [An+1|Fn],
by additivity of conditional expectation (given Fn).

I Since Xn is known at stage n, we have E [Xn|Fn] = Xn. Since
we know nothing more about An+1 at stage n than we
originally knew, we have E [An+1|Fn] = 0. Thus
E [Xn+1|Fn] = Xn.

I Informally, I’m just tossing a new fair coin at each stage to
see if Xn goes up or down one step. If I know the information
available up to stage n, and I know Xn = 10, then I see
Xn+1 = 11 and Xn+1 = 9 as equally likely, so
E [Xn+1|Fn] = 10 = Xn.

Another martingale example

I What if each Ai is 1.01 with probability .5 and .99 with
probability .5 and we write X0 = 1 and Xn =

∏n
i=1 Ai for

n > 0? Then is Xn a martingale?
I Answer: yes. Note that E [Xn+1|Fn] = E [An+1Xn|Fn]. At

stage n, the value Xn is known, and hence can be treated as a
known constant, which can be factored out of the
expectation, i.e., E [An+1Xn|Fn] = XnE [An+1|Fn].

I Since I know nothing new about An+1 at stage n, we have
E [An+1|Fn] = E [An+1] = 1. Hence E [An+1Xn|Fn] = Xn.

I Informally, I’m just tossing a new fair coin at each stage to
see if Xn goes up or down by a percentage point of its current
value. If I know all the information available up to stage n,
and I know Xn = 5, then I see Xn+1 = 5.05 and Xn+1 = 4.95
as equally likely, so E [Xn+1|Fn] = 5.

I Two classic martingale examples: sums of independent
random variables (each with mean zero) and products of
independent random variables (each with mean one).

Another example

I Suppose A is 1 with probability .5 and −1 with probability .5.
Let X0 = 0 and write Xn = (−1)nA for all n > 0.

I What is E [Xn], as a function of n?

I E [Xn] = 0 for all n.

I Does this mean that Xn is a martingale?

I No. If n ≥ 1, then given the information available up to stage
n, I can figure out what A must be, and can hence deduce
exactly what Xn+1 will be — and it is not the same as Xn. In
particular, E [Xn+1|Fn] = −Xn 6= Xn.

I Informally, Xn alternates between 1 and −1. Each time it goes
up and hits 1, I know it will go back down to −1 on the next
step.



Stopping time definition

I Let T be a non-negative integer valued random variable.

I Think of T as giving the time the asset will be sold if the
price sequence is X0,X1,X2, . . ..

I Say that T is a stopping time if the event that T = n
depends only on the values Xi for i ≤ n. In other words, the
decision to sell at time n depends only on prices up to time n,
not on (as yet unknown) future prices.

Stopping time examples

I Let A1, . . . be i.i.d. random variables equal to −1 with
probability .5 and 1 with probability .5 and let X0 = 0 and
Xn =

∑n
i=1 Ai for n ≥ 0.

I Which of the following is a stopping time?

1. The smallest T for which |XT | = 50
2. The smallest T for which XT ∈ {−10, 100}
3. The smallest T for which XT = 0.
4. The T at which the Xn sequence achieves the value 17 for the

9th time.
5. The value of T ∈ {0, 1, 2, . . . , 100} for which XT is largest.
6. The largest T ∈ {0, 1, 2, . . . , 100} for which XT = 0.

I Answer: first four, not last two.
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Optional stopping overview

I Doob’s optional stopping time theorem is contained in
many basic texts on probability and Martingales. (See, for
example, Theorem 10.10 of Probability with Martingales, by
David Williams, 1991.)

I Essentially says that you can’t make money (in expectation)
by buying and selling an asset whose price is a martingale.

I Precisely, if you buy the asset at some time and adopt any
strategy at all for deciding when to sell it, then the expected
price at the time you sell is the price you originally paid.

I If market price is a martingale, you cannot make money in
expectation by “timing the market.”

Doob’s Optional Stopping Theorem: statement

I Doob’s Optional Stopping Theorem: If the sequence
X0,X1,X2, . . . is a bounded martingale, and T is a stopping
time, then the expected value of XT is X0.

I When we say martingale is bounded, we mean that for some
C , we have that with probability one |Xi | < C for all i .

I Why is this assumption necessary?

I Can we give a counterexample if boundedness is not assumed?

I Theorem can be proved by induction if stopping time T is
bounded. Unbounded T requires a limit argument. (This is
where boundedness of martingale is used.)

Martingales applied to finance

I Many asset prices are believed to behave approximately like
martingales, at least in the short term.

I Efficient market hypothesis: new information is instantly
absorbed into the stock value, so expected value of the stock
tomorrow should be the value today. (If it were higher,
statistical arbitrageurs would bid up today’s price until this
was not the case.)

I But what about interest, risk premium, etc.?

I According to the fundamental theorem of asset pricing,
the discounted price X (n)

A(n) , where A is a risk-free asset, is a
martingale with respected to risk neutral probability. More
on this next lecture.

Martingales as successively revised best guesses

I The two-element sequence E [X ],X is a martingale.

I In previous lectures, we interpreted the conditional
expectation E [X |Y ] as a random variable.

I Depends only on Y . Describes expectation of X given
observed Y value.

I We showed E [E [X |Y ]] = E [X ].

I This means that the three-element sequence E [X ],E [X |Y ],X
is a martingale.

I More generally if Yi are any random variables, the sequence
E [X ],E [X |Y1],E [X |Y1,Y2],E [X |Y1,Y2,Y3], . . . is a
martingale.



Martingales as real-time subjective probability updates

I Ivan sees email from girlfriend with subject “some possibly
serious news”, thinks there’s a 20 percent chance she’ll break
up with him by email’s end. Revises number after each line:

I Oh Ivan, I’ve missed you so much! 12

I I have something crazy to tell you, 24

I and so sorry to do this by email. (Where’s your phone!?) 38

I I’ve been spending lots of time with a guy named Robert, 52

I a visiting database consultant on my project 34

I who seems very impressed by my work. 23

I Robert wants me to join his startup in Palo Alto. 38

I Exciting!!! Of course I said I’d have to talk to you first, 24

I because you are absolutely my top priority in my life, 8

I and you’re stuck at MIT for at least three more years... 11

I but honestly, I’m just so confused on so many levels. 15

I Call me!!! I love you! Alice 0

More conditional probability martingale examples

I Example: let C be the amount of oil available for drilling
under a particular piece of land. Suppose that ten geological
tests are done that will ultimately determine the value of C .
Let Cn be the conditional expectation of C given the
outcome of the first n of these tests. Then the sequence
C0,C1,C2, . . . ,C10 = C is a martingale.

I Let Ai be my best guess at the probability that a basketball
team will win the game, given the outcome of the first i
minutes of the game. Then (assuming some “rationality” of
my personal probabilities) Ai is a martingale.
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Recall martingale definition

I Let S be the probability space. Let X0,X1,X2, . . . be a
sequence of real random variables. Interpret Xi as price of
asset at ith time step.

I Say Xn sequence is a martingale if E [|Xn|] <∞ for all n and
E [Xn|Fn] := E [Xn+1|X0,X1,X2, . . . ,Xn] = Xn for all n.

I “Given all I know today, expected price tomorrow is the price
today.”

I If you are given a mathematical description of a process
X0,X1,X2, . . . then how can you check whether it is a
martingale?

I Consider all of the information that you know after having
seen X0,X1, . . . ,Xn. Then try to figure out what additional
(not yet known) randomness is involved in determining Xn+1.
Use this to figure out the conditional expectation of Xn+1,
and check to see whether this is always equal to the known Xn

value.



Recall stopping time definition

I Let T be a non-negative integer valued random variable.

I Think of T as giving the time the asset will be sold if the
price sequence is X0,X1,X2, . . ..

I Say that T is a stopping time if the event that T = n
depends only on the values Xi for i ≤ n. In other words, the
decision to sell at time n depends only on prices up to time n,
not on (as yet unknown) future prices.

Examples

I Suppose that an asset price is a martingale that starts at 50
and changes by increments of ±1 at each time step. What is
the probability that the price goes down to 40 before it goes
up to 70?

I What is the probability that it goes down to 45 then up to 55
then down to 45 then up to 55 again — all before reaching
either 0 or 100?
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Martingales applied to finance

I Many asset prices are believed to behave approximately like
martingales, at least in the short term.

I Efficient market hypothesis: new information is instantly
absorbed into the stock value, so expected value of the stock
tomorrow should be the value today. (If it were higher,
statistical arbitrageurs would bid up today’s price until this
was not the case.)

I But there are some caveats: interest, risk premium, etc.

I According to the fundamental theorem of asset pricing,
the discounted price X (n)

A(n) , where A is a risk-free asset, is a
martingale with respected to risk neutral probability.

Risk neutral probability

I “Risk neutral probability” is a fancy term for “market
probability”. (The term “market probability” is arguably more
descriptive.)

I That is, it is a probability measure that you can deduce by
looking at prices on market.

I For example, suppose somebody is about to shoot a free
throw in basketball. What is the price in the sports betting
world of a contract that pays one dollar if the shot is made?

I If the answer is .75 dollars, then we say that the risk neutral
probability that the shot will be made is .75.

I Risk neutral probability is the probability determined by the
market betting odds.

Risk neutral probability of outcomes known at fixed time T

I Risk neutral probability of event A: PRN(A) denotes

Price{Contract paying 1 dollar at time T if A occurs }
Price{Contract paying 1 dollar at time T no matter what }

.

I If risk-free interest rate is constant and equal to r
(compounded continuously), then denominator is e−rT .

I Assuming no arbitrage (i.e., no risk free profit with zero
upfront investment), PRN satisfies axioms of probability. That
is, 0 ≤ PRN(A) ≤ 1, and PRN(S) = 1, and if events Aj are
disjoint then PRN(A1 ∪ A2 ∪ . . .) = PRN(A1) + PRN(A2) + . . .

I Arbitrage example: if A and B are disjoint and
PRN(A ∪ B) < P(A) + P(B) then we sell contracts paying 1 if
A occurs and 1 if B occurs, buy contract paying 1 if A ∪ B
occurs, pocket difference.

Risk neutral probability differ vs. “ordinary probability”

I At first sight, one might think that PRN(A) describes the
market’s best guess at the probability that A will occur.

I But suppose A is the event that the government is dissolved
and all dollars become worthless. What is PRN(A)?

I Should be 0. Even if people think A is likely, a contract
paying a dollar when A occurs is worthless.

I Now, suppose there are only 2 outcomes: A is event that
economy booms and everyone prospers and B is event that
economy sags and everyone is needy. Suppose purchasing
power of dollar is the same in both scenarios. If people think
A has a .5 chance to occur, do we expect PRN(A) > .5 or
PRN(A) < .5?

I Answer: PRN(A) < .5. People are risk averse. In second
scenario they need the money more.f



Non-systemic event

I Suppose that A is the event that the Boston Red Sox win the
World Series. Would we expect PRN(A) to represent (the
market’s best assessment of) the probability that the Red Sox
will win?

I Arguably yes. The amount that people in general need or
value dollars does not depend much on whether A occurs
(even though the financial needs of specific individuals may
depend on heavily on A).

I Even if some people bet based on loyalty, emotion, insurance
against personal financial exposure to team’s prospects, etc.,
there will arguably be enough in-it-for-the-money statistical
arbitrageurs to keep price near a reasonable guess of what
well-informed informed experts would consider the true
probability.

Extensions of risk neutral probability

I Definition of risk neutral probability depends on choice of
currency (the so-called numéraire).

I In 2016 presidential election, investors predicted value of
Mexican peso (in US dollars) would be lower

I Risk neutral probability can be defined for variable times and
variable interest rates — e.g., one can take the numéraire to
be amount one dollar in a variable-interest-rate money market
account has grown to when outcome is known. Can define
PRN(A) to be price of contract paying this amount if and
when A occurs.

I For simplicity, we focus on fixed time T , fixed interest rate r
in this lecture.

Risk neutral probability is objective

I Check out binary prediction contracts at predictwise.com,
oddschecker.com, predictit.com, etc.

I Many financial derivatives are essentially bets of this form.

I Unlike “true probability” (what does that mean?) the “risk
neutral probability” is an objectively measurable price.

I Pundit: The market predictions are ridiculous. I can estimate
probabilities much better than they can.

I Listener: Then why not make some bets and get rich? If your
estimates are so much better, law of large numbers says you’ll
surely come out way ahead eventually.

I Pundit: Well, you know... been busy... scruples about
gambling... more to life than money...

I Listener: Yeah, that’s what I thought.

Prices as expectations

I By assumption, the price of a contract that pays one dollar at
time T if A occurs is PRN(A)e−rT .

I If A and B are disjoint, what is the price of a contract that
pays 2 dollars if A occurs, 3 if B occurs, 0 otherwise?

I Answer: (2PRN(A) + 3PRN(B))e−rT .

I Generally, in absence of arbitrage, price of contract that pays
X at time T should be ERN(X )e−rT where ERN denotes
expectation with respect to the risk neutral probability.

I Example: if a non-divided paying stock will be worth X at
time T , then its price today should be ERN(X )e−rT .

I So-called fundamental theorem of asset pricing states that
(assuming no arbitrage) interest-discounted asset prices are
martingales with respect to risk neutral probability. Current
price of stock being ERN(X )e−rT follows from this.
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Overview

I The mathematics of today’s lecture will not go far beyond
things we know.

I Main mathematical tasks will be to compute expectations of
functions of log-normal random variables (to get the
Black-Scholes formula) and differentiate under an integral (to
compute risk neutral density functions from option prices).

I Will spend time giving financial interpretations of the math.

I Can interpret this lecture as a sophisticated story problem,
illustrating an important application of the probability we have
learned in this course (involving probability axioms,
expectations, cumulative distribution functions, etc.)

I Brownian motion (as mathematically constructed by MIT
professor Norbert Wiener) is a continuous time martingale.

I Black-Scholes theory assumes that the log of an asset price is
a process called Brownian motion with drift with respect to
risk neutral probability. Implies option price formula.



Black-Scholes: main assumption and conclusion

I More famous MIT professors: Black, Scholes, Merton.

I 1997 Nobel Prize.

I Assumption: the log of an asset price X at fixed future time
T is a normal random variable (call it N) with some known
variance (call it Tσ2) and some mean (call it µ) with respect
to risk neutral probability.

I Observation: N normal (µ,Tσ2) implies E [eN ] = eµ+Tσ2/2.

I Observation: If X0 is the current price then
X0 = ERN [X ]e−rT = ERN [eN ]e−rT = eµ+(σ2/2−r)T .

I Observation: This implies µ = logX0 + (r − σ2/2)T .

I Conclusion: If g is any function then the price of a contract
that pays g(X ) at time T is

ERN [g(X )]e−rT = ERN [g(eN)]e−rT

where N is normal with mean µ and variance Tσ2.

Black-Scholes example: European call option

I A European call option on a stock at maturity date T ,
strike price K , gives the holder the right (but not obligation)
to purchase a share of stock for K dollars at time T .

The document gives the
bearer the right to pur-
chase one share of MSFT
from me on May 31 for
35 dollars. SS

I If X is the value of the stock at T , then the value of the
option at time T is given by g(X ) = max{0,X − K}.

I Black-Scholes: price of contract paying g(X ) at time T is
ERN [g(X )]e−rT = ERN [g(eN)]e−rT where N is normal with
variance Tσ2, mean µ = logX0 + (r − σ2/2)T .

I Write this as

e−rTERN [max{0, eN − K}] = e−rTERN [(eN − K )1N≥logK ]

=
e−rT

σ
√

2πT

∫ ∞
logK

e−
(x−µ)2

2Tσ2 (ex − K )dx .

The famous formula

I Let T be time to maturity, X0 current price of underlying
asset, K strike price, r risk free interest rate, σ the volatility.

I We need to compute e−rT
∫∞
logK e−

(x−µ)2

2Tσ2 (ex − K )dx where

µ = rT + logX0 − Tσ2/2.

I Can use complete-the-square tricks to compute the two terms
explicitly in terms of standard normal cumulative distribution
function Φ.

I Price of European call is Φ(d1)X0 − Φ(d2)Ke−rT where

d1 =
ln(

X0
K
)+(r+σ2

2
)(T )

σ
√
T

and d2 =
ln(

X0
K
)+(r−σ2

2
)(T )

σ
√
T

.
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Determining risk neutral probability from call quotes

I If C (K ) is price of European call with strike price K and
f = fX is risk neutral probability density function for X at
time T , then C (K ) = e−rT

∫∞
−∞ f (x) max{0, x − K}dx .

I Differentiating under the integral, we find that

erTC ′(K ) =

∫
f (x)(−1x>K )dx = −PRN{X > K} = FX (K )−1,

erTC ′′(K ) = f (K ).

I We can look up C (K ) for a given stock symbol (say GOOG)
and expiration time T at cboe.com and work out
approximately what FX and hence fX must be.

Perspective: implied volatility

I Risk neutral probability densities derived from call quotes are
not quite lognormal in practice. Tails are too fat. Main
Black-Scholes assumption is only approximately correct.

I “Implied volatility” is the value of σ that (when plugged into
Black-Scholes formula along with known parameters) predicts
the current market price.

I If Black-Scholes were completely correct, then given a stock
and an expiration date, the implied volatility would be the
same for all strike prices. In practice, when the implied
volatility is viewed as a function of strike price (sometimes
called the “volatility smile”), it is not constant.

Perspective: why is Black-Scholes not exactly right?

I Main Black-Scholes assumption: risk neutral probability
densities are lognormal.

I Heuristic support for this assumption: If price goes up 1
percent or down 1 percent each day (with no interest) then
the risk neutral probability must be .5 for each (independently
of previous days). Central limit theorem gives log normality
for large T .

I Replicating portfolio point of view: in the simple binary
tree models (or continuum Brownian models), we can transfer
money back and forth between the stock and the risk free
asset to ensure our wealth at time T equals the option payout.
Option price is required initial investment, which is risk neutral
expectation of payout. “True probabilities” are irrelevant.

I Where arguments for assumption break down: Fluctuation
sizes vary from day to day. Prices can have big jumps.

I Fixes: variable volatility, random interest rates, Lévy jumps....
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Expectation and variance

I Eight athletic teams are ranked 1 through 8 after season one,
and ranked 1 through 8 again after season two. Assume that
each set of rankings is chosen uniformly from the set of 8!
possible rankings and that the two rankings are independent.
Let N be the number of teams whose rank does not change
from season one to season two. Let N+ the number of teams
whose rank improves by exactly two spots. Let N− be the
number whose rank declines by exactly two spots. Compute
the following:

I E [N], E [N+], and E [N−]
I Var[N]
I Var[N+]

Expectation and variance — answers

I Let Ni be 1 if team ranked ith first season remains ith second
seasons. Then E [N] = E [

∑8
i=1Ni ] = 8 · 18 = 1. Similarly,

E [N+] = E [N−] = 6 · 18 = 3/4

I Var[N] = E [N2]− E [N]2 and
E [N2] = E [

∑8
i=1

∑8
j=1NiNj ] = 8 · 18 + 56 · 1

56 = 2.

I N i
+ be 1 if team ranked ith has rank improve to (i − 2)th for

second seasons. Then
E [(N+)2] = E [

∑8
3=1

∑8
3=1N

i
+N

j
+] = 6 · 18 + 30 · 1

56 = 9/7, so
Var[N+] = 9/7− (3/4)2.

Conditional distributions

I Roll ten dice. Find the conditional probability that there are
exactly 4 ones, given that there are exactly 4 sixes.



Conditional distributions — answers

I Straightforward approach: P(A|B) = P(AB)/P(B).

I Numerator: is
(104 )(64)4

2

610
. Denominator is

(104 )56

610
.

I Ratio is
(6
4

)
42/56 =

(6
4

)
(15)4(45)2.

I Alternate solution: first condition on location of the 6’s and
then use binomial theorem.

Poisson point processes

I Suppose that in a certain town earthquakes are a Poisson
point process, with an average of one per decade, and volcano
eruptions are an independent Poisson point process, with an
average of two per decade. The V be length of time (in
decades) until the first volcano eruption and E the length of
time (in decades) until the first earthquake. Compute the
following:

I E[E 2] and Cov[E ,V ].
I The expected number of calendar years, in the next decade

(ten calendar years), that have no earthquakes and no volcano
eruptions.

I The probability density function of min{E ,V }.

Poisson point processes — answers

I E [E 2] = 2 and Cov[E ,V ] = 0.

I Probability of no earthquake or eruption in first year is

e−(2+1) 1
10 = e−.3 (see next part). Same for any year by

memoryless property. Expected number of
quake/eruption-free years is 10e−.3 ≈ 7.4.

I Probability density function of min{E ,V } is 3e−(2+1)x for
x ≥ 0, and 0 for x < 0.
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Order statistics

I Let X be a uniformly distributed random variable on [−1, 1].
I Compute the variance of X 2.
I If X1, . . . ,Xn are independent copies of X , what is the

probability density function for the smallest of the Xi

Order statistics — answers

I

Var[X 2] = E [X 4]− (E [X 2])2

=

∫ 1

−1

1

2
x4dx − (

∫ 1

−1

1

2
x2dx)2 =

1

5
− 1

9
=

4

45
.

I Note that for x ∈ [−1, 1] we have

P{X > x} =

∫ 1

x

1

2
dx =

1− x

2
.

If x ∈ [−1, 1], then

P{min{X1, . . . ,Xn} > x}

= P{X1 > x ,X2 > x , . . . ,Xn > x} = (
1− x

2
)n.

So the density function is

− ∂

∂x
(

1− x

2
)n =

n

2
(

1− x

2
)n−1.

Moment generating functions

I Suppose that Xi are independent copies of a random variable
X . Let MX (t) be the moment generating function for X .
Compute the moment generating function for the average∑n

i=1 Xi/n in terms of MX (t) and n.



Moment generating functions — answers

I Write Y =
∑n

i=1 Xi/n. Then

MY (t) = E [etY ] = E [et
∑n

i=1 Xi/n] = (MX (t/n))n.

Entropy

I Suppose X and Y are independent random variables, each
equal to 1 with probability 1/3 and equal to 2 with probability
2/3.

I Compute the entropy H(X ).
I Compute H(X + Y ).
I Which is larger, H(X + Y ) or H(X ,Y )? Would the answer to

this question be the same for any discrete random variables X
and Y ? Explain.

Entropy — answers

I H(X ) = 1
3(− log 1

3) + 2
3(− log 2

3).

I H(X + Y ) = 1
9(− log 1

9) + 4
9(− log 4

9) + 4
9(− log 4

9)

I H(X ,Y ) is larger, and we have H(X ,Y ) ≥ H(X + Y ) for any
X and Y . To see why, write a(x , y) = P{X = x ,Y = y} and
b(x , y) = P{X + Y = x + y}. Then a(x , y) ≤ b(x , y) for any
x and y , so
H(X ,Y ) = E [− log a(x , y)] ≥ E [− log b(x , y)] = H(X + Y ).
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Markov chains

I Alice and Bob share a home with a bathroom, a walk-in
closet, and 2 towels.

I Each morning a fair coin decide which of the two showers first.

I After Bob showers, if there is at least one towel in the
bathroom, Bob uses the towel and leaves it draped over a
chair in the walk-in closet. If there is no towel in the
bathroom, Bob grumpily goes to the walk-in closet, dries off
there, and leaves the towel in the walk-in closet

I When Alice showers, she first checks to see if at least one
towel is present. If a towel is present, she dries off with that
towel and returns it to the bathroom towel rack. Otherwise,
she cheerfully retrieves both towels from the walk-in closet,
then showers, dries off and leaves both towels on the rack.

I Problem: describe towel-distribution evolution as a Markov
chain and determine (over the long term) on what fraction of
days Bob emerges from the shower to find no towel.

Markov chains — answers

I Let state 0, 1, 2 denote bathroom towel number.

I Shower state change Bob: 2→ 1, 1→ 0, 0→ 0.

I Shower state change Alice: 2→ 2, 1→ 1, 0→ 2.

I Morning state change AB: 2→ 1, 1→ 0, 0→ 1.

I Morning state change BA: 2→ 1, 1→ 2, 0→ 2.

I Markov chain matrix:

M =

0 .5 .5
.5 0 .5
0 1 0


I Row vector π such that πM = π (with components of π

summing to one) is
(
2
9

4
9

1
3

)
.

I Bob finds no towel only if morning starts in state zero and
Bob goes first. Over long term Bob finds no towel 2

9 ×
1
2 = 1

9
fraction of the time.

Optional stopping, martingales, central limit theorem

Suppose that X1,X2,X3, . . . is an infinite sequence of independent
random variables which are each equal to 1 with probability 1/2
and −1 with probability 1/2. Let Yn =

∑n
i=1 Xi . Answer the

following:

I What is the the probability that Yn reaches −25 before the
first time that it reaches 5?

I Use the central limit theorem to approximate the probability
that Y9000000 is greater than 6000.



Optional stopping, martingales, central limit theorem —
answers

I p−2525 + p55 = 0 and p−25 + p5 = 1. Solving, we obtain
p−25 = 1/6 and p5 = 5/6.

I One standard deviation is
√

9000000 = 3000. We want
probability to be 2 standard deviations above mean. Should
be about

∫∞
2

1√
2π
e−x

2/2dx .

Martingales

I Let Xi be independent random variables with mean zero. In
which of the cases below is the sequence Yi necessarily a
martingale?

I Yn =
∑n

i=1 iXi

I Yn =
∑n

i=1 X
2
i − n

I Yn =
∏n

i=1(1 + Xi )
I Yn =

∏n
i=1(Xi − 1)

Martingales

I Yes, no, yes, no.

Calculations like those needed for Black-Scholes derivation

I Let X be a normal random variable with mean 0 and variance
1. Compute the following (you may use the function

Φ(a) :=
∫ a
−∞

1√
2π
e−x

2/2dx in your answers):

I E [e3X−3].
I E [eX1X∈(a,b)] for fixed constants a < b.



Calculations like those needed for Black-Scholes derivation
– answers

E [e3X−3] =

∫ ∞
−∞

e3x−3
1√
2π

e−x
2/2dx

=

∫ ∞
−∞

1√
2π

e−
x2−6x+6

2 dx

=

∫ ∞
−∞

1√
2π

e−
x2−6x+9

2 e3/2dx

= e3/2
∫ ∞
−∞

1√
2π

e−
(x−3)2

2 dx

= e3/2

Calculations like those needed for Black-Scholes derivation
– answers

E [eX1X∈(a,b)] =

∫ b

a
ex

1√
2π

e−x
2/2dx

=

∫ b

a
ex

1√
2π

e−
x2

2 dx

=

∫ b

a

1√
2π

e−
x2−2x+1−1

2 dx

= e1/2
∫ b

a

1√
2π

e−
(x−1)2

2 dx

= e1/2
∫ b−1

a−1

1√
2π

e−
x2

2 dx

= e1/2(Φ(b − 1)− Φ(a− 1))

If you want more probability and statistics...

I UNDERGRADUATE:
(a) 18.615 Introduction to Stochastic Processes
(b) 18.642 Topics in Math with Applications in Finance
(c) 18.650 Statistics for Applications

I GRADUATE LEVEL PROBABILITY
(a) 18.175 Theory of Probability
(b) 18.176 Stochastic calculus
(c) 18.177 Topics in stochastic processes (topics vary —

repeatable, offered twice next year)
I GRADUATE LEVEL STATISTICS

(a) 18.655 Mathematical statistics
(b) 18.657 Topics in statistics (topics vary — topic this year was

machine learning; repeatable)
I OUTSIDE OF MATH DEPARTMENT

(a) Look up new MIT minor in statistics and data sciences.
(b) Look up long list of probability/statistics courses (about 78

total) at https://stat.mit.edu/academics/subjects/
(c) Ask other MIT faculty how they use probability and statistics

in their research.

Thanks for taking the course!

I Considering previous generations of mathematically inclined
MIT students, and adopting a frequentist point of view...

I You will probably do some important things with your lives.

I I hope your probabilistic shrewdness serves you well.

I Thinking more short term...

I Happy exam day!

I And may the odds be ever in your favor.

https://stat.mit.edu/academics/subjects/
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