
Cauchy, beta, gamma and the infinite expectation paradox

18.600 Problem Set 7, due April 14

Welcome to your seventh 18.600 problem set! This problem set will feature problems about
beta, Γ, and Cauchy random variables. These random variables are not quite as ubiquitous as
others we have discussed (exponential, uniform, normal, Poisson, binomial) but they are fun
and they do come up. The problems should help you internalize both the definitions and some
standard interpretations.

Many of you are familiar with Pascal’s wager. The general idea is that if choosing A over B
comes with a finite cost but a positive probability (however small) of an infinite payoff, then one
should always choose A. Pascal’s conclusion was that if living a virtuous life leads (with even
a tiny probability) to an eternal reward, then it is a worthwhile sacrifice to make. A common
criticism is that this kind of thinking can lead to violence (killing heretics who might lead souls
stray, or dissidents who might obstruct an endless Marxist utopia) as well as virtue. A more
mathematical concern is that in principle there may be many choices, each of which we expect
to do an infinite amount of good (and perhaps also an infinite amount of harm) and that there
is no obvious mathematical way to compare the competing infinities.

The comparison difficulties associated with infinite expectations can arise even when the
payoffs themselves are finite with probability one (e.g., if the utility payout is a Cauchy random
variable). This problem set illustrates this point with a particularly vexing form of a famous
envelope switching paradox. Interestingly, in this paradox, the conditional expectations used
for decision making are all finite; but a certain a priori expectation is infinite, and that is the
root of the paradox. I hope that you enjoy thinking about the story, and that it causes you at
most a finite amount of existential angst.

Please stop by my weekly office hours (2-249, Wednesday 3 to 5) for discussion.

A. FROM TEXTBOOK CHAPTER FIVE:

1. Theoretical Exercise 26: If X is a beta random variable with parameters a and b show
that

E[X] =
a

a+ b
,

Var(X) =
ab

(a+ b)2(a+ b+ 1)
.

B. FROM TEXTBOOK CHAPTER SIX:

1. Problem 30: Jill’s bowling scores are approximately normally distributed with mean 170
and standard deviation 20, while Jack’s scores are approximately normally distributed
with mean 160 and standard deviation 15. If Jack and Jill each bowl one game, then
assuming that their scores are independent random variables, approximate the
probability that
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(a) Jack’s score is higher;

(b) the total of their scores is above 350.

2. Theoretical Exercise 12: Show that the jointly continuous (discrete) random variables
X1, . . . Xn are independent if and only if their joint probability density (mass) function
f(x1, . . . , xn) can be written as

f(x1, . . . , xn) =
n∏

i=1

gi(xi),

for nonnegative functions gi(x), i = 1, . . . , n.

C. Let p be the fraction of MIT students who love Taylor Swift — or, more precisely, the
fraction who will say they love Taylor Swift when you ask (making it clear that you absolutely
require a simple yes or no answer). Let’s make believe that your initial Bayesian prior for p is
uniform on [0, 1]. Now ask three of your fellow students (actually do this!) one at a time
whether they love Taylor Swift, and write the pair (# yes answers so far, # no answers so far)
before you start and after each time you ask a question. For example, you will write the pairs

(0, 0), (1, 0), (2, 0), (3, 0)

if everyone you ask loves Taylor Swift. Pretend that you have chosen your people uniformly at
random from the large MIT population, so that each answer is yes with probabilty p and no
with probability (1− p) independently of the other answers. Then write down each of the four
number pairs, and beside each one draw a rough picture of the graph of the revised probability
density function for p that you would have at that point in time, along with its algebraic
expression, which should be a polynomial whose integral from 0 to 1 is 1. You can use
graphing software if you want. Beside each graph write down the corresponding conditional
expectation for p (using the results from part A) given what you know at that time.

D. The following is one formulation of a famous “two envelope” paradox. Jill is a
money-loving individual who, given two options, invariably chooses the one that gives her the
most money in expectation. One day Harry, a trusted (and capable of delivering) individual,
offers her the following deal as a gift. He will secretely toss a fair coin until the first time that
it comes up tails. If there are n heads before the first tails, he will place 10n dollars in one
envelope and 10n+1 dollars in the second envelope. (Thus, the probability that one envelope
has 10n dollars and the other has 10n+1 dollars is 2−n−1 for n ≥ 0.) Harry will then hand Jill
the pair of envelopes (randomly ordered, indistinguishable from the outside) and invite her to
choose one. After Jill chooses an envelope she will be allowed to open it. Once she does, she
will be allowed to either keep the money in the first envelope or switch to the second envelope
and keep whatever amount of money is in the second envelope. However, if she decides to
switch envelopes, she has to pay a one dollar “switching fee.”
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(a) If Jill finds 100 dollars in the first envelope she opens, what is the conditional probability
that the other envelope contains 1000 dollars? What is the conditional probability that
the other envelope contains 10 dollars?

(b) If Jill finds 100 dollars in the first envelope she opens, how much money does Jill expect
to win from the game if she does not switch envelopes? (Answer: 100 dollars.) How
much does she expect to win (net, after the switching fee) if she does switch envelopes?

(c) Generalize the answers above to the case that the first envelope contains 10n dollars (for
n ≥ 0) instead of 100.

(d) Jill concludes from the above that, no matter what she finds in the first envelope, she will
expect to earn more money if she switches envelopes and pays the one dollar switching
fee. This strikes Jill as a bit odd. If she knows she will always switch envelopes, why
doesn’t she just take the second envelope first and avoid the envelope switching fee?
How can she be maximizing her expected wealth if she spends an unnecessary “switching
fee” dollar no matter what? How does one resolve this apparent paradox?

E. Alice and Bob are interested in having a child and, after difficulty conceiving, decide to
undergo a medical procedure called IVF. In their universe, each couple has a random quantity
p, uniformly distributed on [0, 1], which indicates the probability that they will conceive a
child after a cycle of IVF treatment. (The value p depends on permanent biological
characteristics of Alice and Bob, but its value is unknown to them, so we model it as a random
variable.) If Alice and Bob attempt multiple cycles, each one succeeds with the same
probability p, independently of what happens on previous cycles.

(a) Explain intuitively why (in this universe) the probability that Alice and Bob conceive
after one cycle should be .5 (i.e., the expected value of p).

(b) Given that Alice and Bob did not conceive during the first (k − 1) cycles, what is the
updated Bayesian probability density for the random variable p?

(c) Use the answer in (b) to explicitly compute the expected value for p, given that the
couple did not conceive during the first (k − 1) cycles. The answer is the conditional
probability that the couple conceives during the kth cycle, given that they did not
conceive during the first (k − 1) cycles. (One can prove in general that if one first
chooses r in some random fashion and then tosses a coin that is heads with probability r,
the overall probability of heads is the expectation E[r].)

(d) Compute the conditional probability describe in (c) in a different way: imagine that
X0, X1, X2, . . . , Xk are uniformly and independently distributed on [0, 1]. Write p = X0

and declare that the jth cycle succeeds if and only if Xj < X0. Show that this model is
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equivalent to the one initially described, and then explain why the probability that
Xk < X0, given that X0 is the smallest of the set {X0, X1, . . . , Xk−1}, should be
1/(k + 1). [Hint: use symmetry to argue that a priori the rank ordering of
X0, X1, . . . , Xk is equally likely to be given by each of the (k+ 1)! possible permutations.]

(e) Suppose that instead of being uniform the random variable p is a priori distributed on
[0, 1] according to the density function f(x) = 2− 2x. (This might be more realistic, see
remark below.) Under this assumption, compute the probability of success on the kth
cycle given that the first (k − 1) cycles failed. [Hint: recognize f(x) as itself a beta
random variable and reduce to the previous case.]

Remark: This problem was inspired by a NY Times article called With in vitro fertilization
persistence pays off (look it up) which reports on a large study:

The rate of live births for participants after the first cycle in the new study was
29.5 percent, compared with 20.5 percent ater the fourth cycle, 17.4 percent after
the sixth cycle, and 15.7 percent after the ninth cycle.

The numbers start a bit below our answer in (e) (since .295 < 1/3) and end up larger (since
.157 > 1/11). This may suggest that p values are not distributed according the f that we
guessed (somewhat arbitrarily) in (e). On the other hand, maybe different people have
different Bayesian priors for p (based on age, known physical issues, etc.) and those whose p
values are expected a priori to be small tend to discontinue IVF after fewer cycles; if so, this
could explain the higher reported success rates for later cycles.

F. Suppose X1, X2, . . . , X6 are independent Cauchy random variables. Compute the
probability that X1 +X2 +X3 > X4 +X5 +X6 + 3. (Hint: try combining the spinning
flashlight story with left-right symmetry and the fact that the average of independent Cauchy
random variables is itself a Cauchy random variable.)

G. Let X be a Γ random variable with parameters λ = 1 and α = n where n is an integer. Let
Y be an exponential random variable with parameter λ = 1. Derive the variance for X from
the variance for Y using a “waiting time until nth bus” story.
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