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Selected counting tricks

» Break “choosing one of the items to be counted” into a
sequence of stages so that one always has the same number of
choices to make at each stage. Then the total count becomes
a product of number of choices available at each stage.

» Overcount by a fixed factor.

» If you have n elements you wish to divide into r distinct piles
of sizes n1, ny...n,, how many ways to do that?

n I n!
> Answer (nl,ng,...,n,) T om!nolntt
» How many sequences as, ..., ax of non-negative integers
satisfy a1 +ax+ ...+ ax = n?

> Answer: (”+ﬁ_1). Represent partition by k — 1 bars and n

stars, e.g., as # * | * k|| % % * *|x.
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Have a set S called sample space.

P(A) € [0,1] for all (measurable) A C S.

P(S) =1.

Finite additivity: P(AUB) = P(A) + P(B) if An B = 0.
Countable additivity: P(U,E;) =2, P(E) if ENE =0
for each pair 7 and j.

v

v

v

v



Consequences of axioms

> P(AS) =1 P(A)



Consequences of axioms

» P(A°)=1- P(A)
» A C B implies P(A) < P(B)



Consequences of axioms

» P(A°)=1- P(A)
» A C B implies P(A) < P(B)
» P(AUB) = P(A) + P(B) — P(AB)



Consequences of axioms

» P(A°)=1- P(A)

» A C B implies P(A) < P(B)

» P(AUB) = P(A) + P(B) — P(AB)
» P(AB) < P(A)



Inclusion-exclusion identity

> Observe P(AU B) = P(A) + P(B) — P(AB).



Inclusion-exclusion identity

> Observe P(AU B) = P(A) + P(B) — P(AB).
» Also, P(EUFUG) =
P(E) + P(F) + P(G) — P(EF) — P(EG) — P(FG) + P(EFG).



Inclusion-exclusion identity

» Observe P(AU B) = P(A) + P(B) — P(AB).
» Also, P(EUFUG) =

P(E)+ P(F)+ P(G) — P(EF) — P(EG) — P(FG) + P(EFG).
> More generally,

P(ULLE) = Z P(E)— > P(E,E,) +...
i=1

i1<ip

+ (=) N P(E,E, ... E;)

N<ip<..<ir

=+...+(-1)""P(EE.. . E).



Inclusion-exclusion identity

> Observe P(AU B) = P(A) + P(B) — P(AB).
» Also, P(EUFUG) =
P(E) + P(F) + P(G) — P(EF) — P(EG) — P(FG) + P(EFG).

» More generally,

P(UE) =Y P(E)— > P(E Ep)+...
i=1 i1 <ip
+ (=) N P(E,E, ... E;)
N<ip<..<ir

=+...+(-1)""P(EE.. . E).

» The notation >, . _; means a sum over all of the ('r’)
subsets of size r of the set {1,2,...,n}.
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own hat.
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n people toss hats into a bin, randomly shuffle, return one hat
to each person. Find probability nobody gets own hat.

Inclusion-exclusion. Let E; be the event that ith person gets
own hat.
What is P(E,'IE,'2 ... E )?

Answer: %

There are (’r') terms like that in the inclusion exclusion sum.
. (n\ (n—r)!
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n people toss hats into a bin, randomly shuffle, return one hat
to each person. Find probability nobody gets own hat.

Inclusion-exclusion. Let E; be the event that ith person gets
own hat.
What is P(E,'IE,'2 ... E )?

Answer: %

There are (’r') terms like that in the inclusion exclusion sum.
|

What is (’r’) %7

Answer: %

PULE)=1-4+4—k+. .1



Famous hat problem
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n people toss hats into a bin, randomly shuffle, return one hat
to each person. Find probability nobody gets own hat.
Inclusion-exclusion. Let E; be the event that ith person gets
own hat.

What is P(E,'IE,'2 ... E )?

Answer: %

There are (’r') terms like that in the inclusion exclusion sum.
|

What is (’;)%7
Answer: %
P E)=1-—2+4—%+... £

1-P(U E)=1-1+45—3+4 ...ty ~1/e~ 36788
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Definition: P(E|F) = P(EF)/P(F).

Call P(E|F) the “conditional probability of E given F" or
“probability of E conditioned on F".

Nice fact: P(E1ExE;...Ep) =

P(E1)P(Ex|E1)P(E3|E1ER) ... P(Ep|Er ... En-1)

Useful when we think about multi-step experiments.
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Conditional probability

» Definition: P(E|F) = P(EF)/P(F).

» Call P(E|F) the “conditional probability of E given F" or
“probability of E conditioned on F".

» Nice fact: P(E1E2E3 ... En) =
P(E1)P(Ez|E1)P(E3|EL1ED) ... P(EqlEr ... En—q)

» Useful when we think about multi-step experiments.

» For example, let E; be event ith person gets own hat in the
n-hat shuffle problem.
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P(E) = P(EF) + P(EF®)
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Dividing probability into two cases

P(E) = P(EF) + P(EF®)
— P(E|F)P(F) + P(E|F€)P(FF)

> In words: want to know the probability of E. There are two
scenarios F and F€. If | know the probabilities of the two
scenarios and the probability of E conditioned on each
scenario, | can work out the probability of E.
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Bayes' theorem

> Bayes' theorem/law/rule states the following:
P(B|A)P(A)
P(A|B) = PB) -
> Follows from definition of conditional probability:
P(AB) = P(B)P(A|B) = P(A)P(BJA).
» Tells how to update estimate of probability of A when new
evidence restricts your sample space to B.

» So P(A|B) is ,&‘(3,';)‘) times P(A).

» Ratio P,gf,‘g)) determines “how compelling new evidence is".
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P(-|F) is a probability measure

» We can check the probability axioms: 0 < P(E|F) <1,
P(S|F) =1, and P(UE;) = >_ P(E;|F), if i ranges over a
countable set and the E; are disjoint.

» The probability measure P(-|F) is related to P(-).

» To get former from latter, we set probabilities of elements
outside of F to zero and multiply probabilities of events inside
of F by 1/P(F).

» P(-) is the prior probability measure and P(-|F) is the
posterior measure (revised after discovering that F occurs).
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» Say E and F are independent if P(EF) = P(E)P(F).
» Equivalent statement: P(E|F) = P(E). Also equivalent:
P(F|E) = P(F).



Independence of multiple events

» Say E; ... E, are independent if for each
{il, iy, ik} C {1,2, .. n} we have
P(E,LEj, ... E) = P(Ey)P(E;,) ... P(E).



Independence of multiple events

» Say E; ... E, are independent if for each
{il, iy, ik} C {1,2, .. n} we have
P(E,LEj, ... E) = P(Ey)P(E;,) ... P(E).

» In other words, the product rule works.



Independence of multiple events

» Say E; ... E, are independent if for each
{il, iy, ik} C {1,2, .. n} we have
P(E,LEj, ... E) = P(Ey)P(E;,) ... P(E).

» In other words, the product rule works.

» Independence implies P(E1ExE3|E4EsEg) =

P(E1)P(%()g()%()g()%()g()&)’)(E"’) = P(E1E»E3), and other similar

statements.




Independence of multiple events

» Say E; ... E, are independent if for each
{il, iy, ik} C {1,2, .. n} we have
P(E,Ei, ... E,) = P(Ey,)P(E;,)... P(E).

» In other words, the product rule works.

» Independence implies P(E1ExE3|E4EsEg) =

P(E1)P(%()g()%()g()%()g(f-”)’)(E"’) = P(E1E»E3), and other similar

statements.

» Does pairwise independence imply independence?



Independence of multiple events

» Say E; ... E, are independent if for each
{il, iy, ik} C {1,2, .. n} we have
P(E,Ei, ... E,) = P(Ey,)P(E;,)... P(E).

» In other words, the product rule works.

» Independence implies P(E1ExE3|E4EsEg) =
P(E1)P(%()g()%()g()%()g()Eg,)P(Ee) = P(E1E»E3), and other similar
statements.

» Does pairwise independence imply independence?

» No. Consider these three events: first coin heads, second coin
heads, odd number heads. Pairwise independent, not
independent.
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Random variables
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A random variable X is a function from the state space to the
real numbers.

Can interpret X as a quantity whose value depends on the
outcome of an experiment.

Say X is a discrete random variable if (with probability one)
if it takes one of a countable set of values.

For each a in this countable set, write p(a) := P{X = a}.
Call p the probability mass function.

Write F(a) = P{X < a} =} ,p(x). Call F the
cumulative distribution function.
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Indicators

> Given any event E, can define an indicator random variable,
i.e., let X be random variable equal to 1 on the event E and 0
otherwise. Write this as X = 1g.

» The value of 1¢ (either 1 or 0) indicates whether the event
has occurred.

» If E1, B, ..., Ex are events then X = Zf'(:l 1g, is the number
of these events that occur.

» Example: in n-hat shuffle problem, let E; be the event ith
person gets own hat.

» Then Y7 ; 1g is total number of people who get own hats.
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Expectation of a discrete random variable

» Say X is a discrete random variable if (with probability one)
it takes one of a countable set of values.

» For each a in this countable set, write p(a) := P{X = a}.
Call p the probability mass function.

» The expectation of X, written E[X], is defined by
EX]= > xp(x).
x:p(x)>0

> Represents weighted average of possible values X can take,
each value being weighted by its probability.
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Expectation when state space is countable

> If the state space S is countable, we can give SUM OVER
STATE SPACE definition of expectation:

EIX] = P{s}X(s).

seS
» Agrees with the SUM OVER POSSIBLE X VALUES
definition:
EX]= > xp(x).

x:p(x)>0
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Expectation of a function of a random variable

» If X is a random variable and g is a function from the real
numbers to the real numbers then g(X) is also a random
variable.

» How can we compute E[g(X)]?

» Answer:
EeX)]= > &lx)p(x).

x:p(x)>0
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Additivity of expectation

» If X and Y are distinct random variables, then
E[X + Y] = E[X]+ E[Y].

» In fact, for real constants a and b, we have
E[aX + bY] = aE[X] + bE[Y].

» This is called the linearity of expectation.

» Can extend to more variables
E[X1 + X5+ ... —l—Xn] = E[Xl] + E[XQ] + ...+ E[Xn].



Defining variance in discrete case

> Let X be a random variable with mean p.



Defining variance in discrete case

> Let X be a random variable with mean p.

» The variance of X, denoted Var(X), is defined by
Var(X) = E[(X — p)?].



Defining variance in discrete case

> Let X be a random variable with mean p.

» The variance of X, denoted Var(X), is defined by
Var(X) = E[(X — p)?].

» Taking g(x) = (x — 1), and recalling that
Elg(X)] = Xox.p(x)>0 8(x)P(x), we find that

Var[X] = > (x — 1)*p(x).

x:p(x)>0
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Let X be a random variable with mean p.

The variance of X, denoted Var(X), is defined by
Var(X) = E[(X — p)?].

Taking g(x) = (x — p)?, and recalling that
Elg(X)] = Xox.p(x)>0 8(x)P(x), we find that

Var[X] = > (x — 1)*p(x).

x:p(x)>0
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“varies” from its mean over successive trials.



Defining variance in discrete case

Let X be a random variable with mean p.

The variance of X, denoted Var(X), is defined by
Var(X) = E[(X — p)?].

Taking g(x) = (x — p)?, and recalling that
Elg(X)] = Xox.p(x)>0 8(x)P(x), we find that

Var[X] = > (x — 1)*p(x).

x:p(x)>0
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Variance is one way to measure the amount a random variable
“varies” from its mean over successive trials.

Very important alternate formula: Var[X] = E[X?] — (E[X])>.

v
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» If Y =X + b, where b is constant, then Var[Y] = Var[X].

» Also, Var[aX] = a*Var[X].

» Proof: Var[aX] = E[a’X?] — E[aX]? = a®E[X?] — a®E[X]? =
a*Var[X].
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Standard deviation

» Write SD[X] = +/Var[X].
» Satisfies identity SD[aX] = aSD[X].
» Uses the same units as X itself.

» If we switch from feet to inches in our “height of randomly
chosen person” example, then X, E[X], and SD[X] each get
multiplied by 12, but Var[X] gets multiplied by 144.
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Bernoulli random variables

Toss fair coin n times. (Tosses are independent.) What is the
probability of k heads?

Answer: (Z) /2".
What if coin has p probability to be heads?
Answer: (7)pk(1— p) k.
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Bernoulli random variables

Toss fair coin n times. (Tosses are independent.) What is the
probability of k heads?

Answer: (])/2".

What if coin has p probability to be heads?
Answer: (7)pk(1— p) k.

Writing g = 1 — p, we can write this as (Z)pkq”_k
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Bernoulli random variables

» Toss fair coin n times. (Tosses are independent.) What is the
probability of k heads?

> Answer: (])/2".

» What if coin has p probability to be heads?

> Answer: (7)pk(1— p)™~.

» Writing g = 1 — p, we can write this as (Z)pkq”_k

» Can use binomial theorem to show probabilities sum to one:



Bernoulli random variables
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Toss fair coin n times. (Tosses are independent.) What is the
probability of k heads?

Answer: (])/2".

What if coin has p probability to be heads?
Answer: (7)pk(1— p) k.

Writing g = 1 — p, we can write this as (Z)pkq”_k

Can use binomial theorem to show probabilities sum to one:
1:1n:(p+q)n Zko()knk



Bernoulli random variables

» Toss fair coin n times. (Tosses are independent.) What is the
probability of k heads?

> Answer: (])/2".

» What if coin has p probability to be heads?

> Answer: (7)pk(1— p)™~.

» Writing g = 1 — p, we can write this as (Z)pkq”_k

» Can use binomial theorem to show probabilities sum to one:

> 1=1"=(p+q)" =i ()P 9"~

» Number of heads is binomial random variable with
parameters (n, p).
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Decomposition approach to computing expectation

» Let X be a binomial random variable with parameters (n, p).
Here is one way to compute E[X].

» Think of X as representing number of heads in n tosses of
coin that is heads with probability p.

> Write X = ZJ"ZIXJ where Xj is 1 if the jth coin is heads, 0
otherwise.

> In other words, X; is the number of heads (zero or one) on the
Jth toss.

» Note that E[Xj] =p -1+ (1 —p)-0= p for each j.
» Conclude by additivity of expectation that

n

EX] =) _EX]=>_p=np.
j=1

Jj=1
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Compute variance with decomposition trick

» X = Zf:l Xj, so
E[X?] = E[Siy Xi oy Xi) = Doy 2oy E[XiXj]

» E[X;X;]is pif i = j, p? otherwise.

» >0 _7:1 E[X;X;] has n terms equal to p and (n — 1)n
terms equal to p?.



Compute variance with decomposition trick

X = Zf:l Xj, so

E[X2] = E[Z?:l Xi 2_7:1 XJ] = 27:1 _]r":]. E[Xin]
E[X;X;] is p if i = j, p? otherwise.

>oie1 2 j—1 E[XiXj] has n terms equal to p and (n —1)n
terms equal to p°.

So E[X?] = np+ (n— 1)np? = np + (np)? — np.

v

v

v

v



Compute variance with decomposition trick

X =31Xj so

E[X2] = E[Z?:l Xi 2_7:1 XJ] = 27:1 _]r":]. E[Xin]
E[X;X;] is p if i = j, p? otherwise.

>oie1 2 j—1 E[XiXj] has n terms equal to p and (n —1)n
terms equal to p?.

So E[X?] = np+ (n— 1)np? = np + (np)? — np.

» Thus

Var[X] = E[X?] — E[X]* = np — np® = np(1 — p) = npq.

v
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Compute variance with decomposition trick

X =31Xj so
E[X2] = E[Z?:l Xi 2_7:1 XJ] = 27:1 _]r":]. E[Xin]
» E[X;X;]is pif i = j, p? otherwise.
> 371> -1 E[XiXj] has n terms equal to p and (n —1)n
terms equal to p?.
» So E[X?] = np+ (n—1)np? = np + (np)? — np>.
> Thus
Var[X] = E[X?] — E[X]? = np — np? = np(1 — p) = npq.
» Can show generally that if X1,..., X, independent then
Var[} Ly Xj] =377 Var[Xj]

v
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Let A be some moderate-sized number. Say A =2 or A = 3.
Let n be a huge number, say n = 10°.

Suppose | have a coin that comes on heads with probability
A/n and | toss it n times.

v

» How many heads do | expect to see?
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Answer: np = \.
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Bernoulli random variable with n large and np = A

> Let A\ be some moderate-sized number. Say A =2 or A = 3.
Let n be a huge number, say n = 10°.

» Suppose | have a coin that comes on heads with probability
A/n and | toss it n times.

» How many heads do | expect to see?
> Answer: np = \.

» Let k be some moderate sized number (say k = 4). What is
the probability that | see exactly k heads?

» Binomial formula:
_ —1)(n—2)...(n—k -
(M) p*(1 — p)nk = n(n—1)(n i) (n—k+1) pk(1 = p)nk.
» This is approximately i‘(—l,((l p)"k ~ k,e A

» A Poisson ran(kiom variable X with parameter \ satisfies
P{X = k} = 77e for integer k > 0.
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Expectation and variance
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A Poisson ran(kiom variable X with parameter A satisfies
P{X =k} = %e‘A for integer k > 0.
Clever computation tricks yield E[X] = A and Var[X] = A.

We think of a Poisson random variable as being (roughly) a
Bernoulli (n, p) random variable with n very large and

p=\/n.
This also suggests E[X] = np = X and Var[X] = npg ~ \.

v

v

v
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