18.600: Lecture 13 Lectures 1-12 Review

Scott Sheffield

MIT

Outline

Counting tricks and basic principles of probability

Discrete random variables

Outline

Counting tricks and basic principles of probability

Discrete random variables

Break "choosing one of the items to be counted" into a sequence of stages so that one always has the same number of choices to make at each stage. Then the total count becomes a product of number of choices available at each stage.

- Break "choosing one of the items to be counted" into a sequence of stages so that one always has the same number of choices to make at each stage. Then the total count becomes a product of number of choices available at each stage.
- Overcount by a fixed factor.

- Break "choosing one of the items to be counted" into a sequence of stages so that one always has the same number of choices to make at each stage. Then the total count becomes a product of number of choices available at each stage.
- Overcount by a fixed factor.
- ▶ If you have n elements you wish to divide into r distinct piles of sizes $n_1, n_2 \dots n_r$, how many ways to do that?

- Break "choosing one of the items to be counted" into a sequence of stages so that one always has the same number of choices to make at each stage. Then the total count becomes a product of number of choices available at each stage.
- Overcount by a fixed factor.
- ▶ If you have n elements you wish to divide into r distinct piles of sizes $n_1, n_2 \dots n_r$, how many ways to do that?
- Answer $\binom{n}{n_1, n_2, ..., n_r} := \frac{n!}{n_1! n_2! ... n_r!}$.

- Break "choosing one of the items to be counted" into a sequence of stages so that one always has the same number of choices to make at each stage. Then the total count becomes a product of number of choices available at each stage.
- Overcount by a fixed factor.
- ▶ If you have n elements you wish to divide into r distinct piles of sizes $n_1, n_2 \dots n_r$, how many ways to do that?
- Answer $\binom{n}{n_1, n_2, ..., n_r} := \frac{n!}{n_1! n_2! ... n_r!}$.
- ► How many sequences $a_1, ..., a_k$ of non-negative integers satisfy $a_1 + a_2 + ... + a_k = n$?

- Break "choosing one of the items to be counted" into a sequence of stages so that one always has the same number of choices to make at each stage. Then the total count becomes a product of number of choices available at each stage.
- Overcount by a fixed factor.
- ▶ If you have n elements you wish to divide into r distinct piles of sizes $n_1, n_2 \dots n_r$, how many ways to do that?
- ► Answer $\binom{n}{n_1, n_2, ..., n_r} := \frac{n!}{n_1! n_2! ... n_r!}$.
- ► How many sequences $a_1, ..., a_k$ of non-negative integers satisfy $a_1 + a_2 + ... + a_k = n$?
- Answer: $\binom{n+k-1}{n}$. Represent partition by k-1 bars and n stars, e.g., as **|**||****|*.

ightharpoonup Have a set S called sample space.

- ▶ Have a set *S* called *sample space*.
- ▶ $P(A) \in [0,1]$ for all (measurable) $A \subset S$.

- ▶ Have a set *S* called *sample space*.
- ▶ $P(A) \in [0,1]$ for all (measurable) $A \subset S$.
- ▶ P(S) = 1.

- ▶ Have a set *S* called *sample space*.
- ▶ $P(A) \in [0,1]$ for all (measurable) $A \subset S$.
- ▶ P(S) = 1.
- ▶ Finite additivity: $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$.

- ▶ Have a set S called sample space.
- ▶ $P(A) \in [0,1]$ for all (measurable) $A \subset S$.
- ▶ P(S) = 1.
- ▶ Finite additivity: $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$.
- ▶ Countable additivity: $P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$ if $E_i \cap E_j = \emptyset$ for each pair i and j.

▶
$$P(A^c) = 1 - P(A)$$

▶
$$P(A^c) = 1 - P(A)$$

▶ $A \subset B$ implies $P(A) \leq P(B)$

▶
$$P(A^c) = 1 - P(A)$$

- ▶ $A \subset B$ implies $P(A) \leq P(B)$
- $P(A \cup B) = P(A) + P(B) P(AB)$

▶
$$P(A^c) = 1 - P(A)$$

▶
$$A \subset B$$
 implies $P(A) \leq P(B)$

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

▶
$$P(AB) \leq P(A)$$

▶ Observe $P(A \cup B) = P(A) + P(B) - P(AB)$.

- ▶ Observe $P(A \cup B) = P(A) + P(B) P(AB)$.
- ▶ Also, $P(E \cup F \cup G) = P(E) + P(F) + P(G) P(EF) P(EG) P(FG) + P(EFG)$.

- ▶ Observe $P(A \cup B) = P(A) + P(B) P(AB)$.
- ▶ Also, $P(E \cup F \cup G) = P(E) + P(F) + P(G) P(EF) P(EG) P(FG) + P(EFG)$.
- More generally,

$$P(\bigcup_{i=1}^{n} E_{i}) = \sum_{i=1}^{n} P(E_{i}) - \sum_{i_{1} < i_{2}} P(E_{i_{1}} E_{i_{2}}) + \dots$$

$$+ (-1)^{(r+1)} \sum_{i_{1} < i_{2} < \dots < i_{r}} P(E_{i_{1}} E_{i_{2}} \dots E_{i_{r}})$$

$$= + \dots + (-1)^{n+1} P(E_{1} E_{2} \dots E_{n}).$$

- ▶ Observe $P(A \cup B) = P(A) + P(B) P(AB)$.
- ▶ Also, $P(E \cup F \cup G) = P(E) + P(F) + P(G) P(EF) P(EG) P(FG) + P(EFG)$.
- More generally,

$$P(\bigcup_{i=1}^{n} E_{i}) = \sum_{i=1}^{n} P(E_{i}) - \sum_{i_{1} < i_{2}} P(E_{i_{1}} E_{i_{2}}) + \dots$$

$$+ (-1)^{(r+1)} \sum_{i_{1} < i_{2} < \dots < i_{r}} P(E_{i_{1}} E_{i_{2}} \dots E_{i_{r}})$$

$$= + \dots + (-1)^{n+1} P(E_{1} E_{2} \dots E_{n}).$$

▶ The notation $\sum_{i_1 < i_2 < ... < i_r}$ means a sum over all of the $\binom{n}{r}$ subsets of size r of the set $\{1, 2, ..., n\}$.

▶ *n* people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.

- ▶ *n* people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- ▶ Inclusion-exclusion. Let *E_i* be the event that *i*th person gets own hat.

- ▶ *n* people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- ▶ Inclusion-exclusion. Let *E_i* be the event that *i*th person gets own hat.
- What is $P(E_{i_1}E_{i_2}...E_{i_r})$?

- ▶ *n* people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- ▶ Inclusion-exclusion. Let *E_i* be the event that *i*th person gets own hat.
- What is $P(E_{i_1}E_{i_2}...E_{i_r})$?
- Answer: $\frac{(n-r)!}{n!}$.

- ▶ *n* people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- ▶ Inclusion-exclusion. Let *E_i* be the event that *i*th person gets own hat.
- What is $P(E_{i_1}E_{i_2}...E_{i_r})$?
- ► Answer: $\frac{(n-r)!}{n!}$.
- ► There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r} \frac{(n-r)!}{n!}$?

- ▶ *n* people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- ▶ Inclusion-exclusion. Let *E_i* be the event that *i*th person gets own hat.
- What is $P(E_{i_1}E_{i_2}...E_{i_r})$?
- Answer: $\frac{(n-r)!}{n!}$.
- ► There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r} \frac{(n-r)!}{n!}$?
- ► Answer: $\frac{1}{r!}$.

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- ▶ Inclusion-exclusion. Let *E_i* be the event that *i*th person gets own hat.
- What is $P(E_{i_1}E_{i_2}...E_{i_r})$?
- Answer: $\frac{(n-r)!}{n!}$.
- ► There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r} \frac{(n-r)!}{n!}$?
- ► Answer: $\frac{1}{r!}$.
- $P(\cup_{i=1}^n E_i) = 1 \frac{1}{2!} + \frac{1}{3!} \frac{1}{4!} + \dots \pm \frac{1}{n!}$

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- ▶ Inclusion-exclusion. Let *E_i* be the event that *i*th person gets own hat.
- What is $P(E_{i_1}E_{i_2}...E_{i_r})$?
- Answer: $\frac{(n-r)!}{n!}$.
- ► There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r} \frac{(n-r)!}{n!}$?
- ► Answer: $\frac{1}{r!}$.
- $P(\bigcup_{i=1}^n E_i) = 1 \frac{1}{2!} + \frac{1}{3!} \frac{1}{4!} + \dots \pm \frac{1}{n!}$
- ▶ $1 P(\bigcup_{i=1}^{n} E_i) = 1 1 + \frac{1}{2!} \frac{1}{3!} + \frac{1}{4!} \dots \pm \frac{1}{n!} \approx 1/e \approx .36788$

▶ Definition: P(E|F) = P(EF)/P(F).

- ▶ Definition: P(E|F) = P(EF)/P(F).
- ► Call P(E|F) the "conditional probability of E given F" or "probability of E conditioned on F".

- ▶ Definition: P(E|F) = P(EF)/P(F).
- ► Call P(E|F) the "conditional probability of E given F" or "probability of E conditioned on F".
- Nice fact: $P(E_1E_2E_3...E_n) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)...P(E_n|E_1...E_{n-1})$

- ▶ Definition: P(E|F) = P(EF)/P(F).
- ► Call P(E|F) the "conditional probability of E given F" or "probability of E conditioned on F".
- Nice fact: $P(E_1E_2E_3...E_n) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)...P(E_n|E_1...E_{n-1})$
- Useful when we think about multi-step experiments.

- ▶ Definition: P(E|F) = P(EF)/P(F).
- ► Call P(E|F) the "conditional probability of E given F" or "probability of E conditioned on F".
- Nice fact: $P(E_1E_2E_3...E_n) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)...P(E_n|E_1...E_{n-1})$
- Useful when we think about multi-step experiments.
- ► For example, let *E_i* be event *i*th person gets own hat in the *n*-hat shuffle problem.

Dividing probability into two cases

$$P(E) = P(EF) + P(EF^{c})$$
$$= P(E|F)P(F) + P(E|F^{c})P(F^{c})$$

Dividing probability into two cases

 $P(E) = P(EF) + P(EF^{c})$ $= P(E|F)P(F) + P(E|F^{c})P(F^{c})$

▶ In words: want to know the probability of *E*. There are two scenarios *F* and *F*^c. If I know the probabilities of the two scenarios and the probability of *E* conditioned on each scenario, I can work out the probability of *E*.

▶ Bayes' theorem/law/rule states the following: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$.

- ▶ Bayes' theorem/law/rule states the following: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$.
- Follows from definition of conditional probability: P(AB) = P(B)P(A|B) = P(A)P(B|A).

- ▶ Bayes' theorem/law/rule states the following: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$.
- Follows from definition of conditional probability: P(AB) = P(B)P(A|B) = P(A)P(B|A).
- ▶ Tells how to update estimate of probability of *A* when new evidence restricts your sample space to *B*.

- ▶ Bayes' theorem/law/rule states the following: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$.
- Follows from definition of conditional probability: P(AB) = P(B)P(A|B) = P(A)P(B|A).
- ▶ Tells how to update estimate of probability of *A* when new evidence restricts your sample space to *B*.
- ▶ So P(A|B) is $\frac{P(B|A)}{P(B)}$ times P(A).

- ▶ Bayes' theorem/law/rule states the following: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$.
- Follows from definition of conditional probability: P(AB) = P(B)P(A|B) = P(A)P(B|A).
- ▶ Tells how to update estimate of probability of *A* when new evidence restricts your sample space to *B*.
- ▶ So P(A|B) is $\frac{P(B|A)}{P(B)}$ times P(A).
- ► Ratio $\frac{P(B|A)}{P(B)}$ determines "how compelling new evidence is".

$P(\cdot|F)$ is a probability measure

▶ We can check the probability axioms: $0 \le P(E|F) \le 1$, P(S|F) = 1, and $P(\cup E_i) = \sum P(E_i|F)$, if i ranges over a countable set and the E_i are disjoint.

$P(\cdot|F)$ is a probability measure

- ▶ We can check the probability axioms: $0 \le P(E|F) \le 1$, P(S|F) = 1, and $P(\cup E_i) = \sum P(E_i|F)$, if i ranges over a countable set and the E_i are disjoint.
- ▶ The probability measure $P(\cdot|F)$ is related to $P(\cdot)$.

$\overline{P(\cdot|F)}$ is a probability measure

- ▶ We can check the probability axioms: $0 \le P(E|F) \le 1$, P(S|F) = 1, and $P(\cup E_i) = \sum P(E_i|F)$, if i ranges over a countable set and the E_i are disjoint.
- ▶ The probability measure $P(\cdot|F)$ is related to $P(\cdot)$.
- ▶ To get former from latter, we set probabilities of elements outside of F to zero and multiply probabilities of events inside of F by 1/P(F).

$P(\cdot|F)$ is a probability measure

- ▶ We can check the probability axioms: $0 \le P(E|F) \le 1$, P(S|F) = 1, and $P(\cup E_i) = \sum P(E_i|F)$, if i ranges over a countable set and the E_i are disjoint.
- ▶ The probability measure $P(\cdot|F)$ is related to $P(\cdot)$.
- ▶ To get former from latter, we set probabilities of elements outside of F to zero and multiply probabilities of events inside of F by 1/P(F).
- ▶ $P(\cdot)$ is the *prior* probability measure and $P(\cdot|F)$ is the *posterior* measure (revised after discovering that F occurs).

Independence

▶ Say E and F are **independent** if P(EF) = P(E)P(F).

Independence

- ▶ Say *E* and *F* are **independent** if P(EF) = P(E)P(F).
- ▶ Equivalent statement: P(E|F) = P(E). Also equivalent: P(F|E) = P(F).

Say $E_1 \dots E_n$ are independent if for each $\{i_1, i_2, \dots, i_k\} \subset \{1, 2, \dots n\}$ we have $P(E_{i_1}E_{i_2} \dots E_{i_k}) = P(E_{i_1})P(E_{i_2}) \dots P(E_{i_k})$.

- Say $E_1 \dots E_n$ are independent if for each $\{i_1, i_2, \dots, i_k\} \subset \{1, 2, \dots n\}$ we have $P(E_{i_1}E_{i_2} \dots E_{i_k}) = P(E_{i_1})P(E_{i_2}) \dots P(E_{i_k})$.
- ▶ In other words, the product rule works.

- Say $E_1 \dots E_n$ are independent if for each $\{i_1, i_2, \dots, i_k\} \subset \{1, 2, \dots n\}$ we have $P(E_{i_1}E_{i_2} \dots E_{i_k}) = P(E_{i_1})P(E_{i_2}) \dots P(E_{i_k})$.
- ▶ In other words, the product rule works.
- Independence implies $P(E_1E_2E_3|E_4E_5E_6) = \frac{P(E_1)P(E_2)P(E_3)P(E_4)P(E_5)P(E_6)}{P(E_4)P(E_5)P(E_6)} = P(E_1E_2E_3)$, and other similar statements.

- Say $E_1 \dots E_n$ are independent if for each $\{i_1, i_2, \dots, i_k\} \subset \{1, 2, \dots n\}$ we have $P(E_{i_1}E_{i_2} \dots E_{i_k}) = P(E_{i_1})P(E_{i_2}) \dots P(E_{i_k})$.
- ▶ In other words, the product rule works.
- Independence implies $P(E_1E_2E_3|E_4E_5E_6) = \frac{P(E_1)P(E_2)P(E_3)P(E_4)P(E_5)P(E_6)}{P(E_4)P(E_5)P(E_6)} = P(E_1E_2E_3)$, and other similar statements.
- Does pairwise independence imply independence?

- Say $E_1 \dots E_n$ are independent if for each $\{i_1, i_2, \dots, i_k\} \subset \{1, 2, \dots n\}$ we have $P(E_{i_1}E_{i_2} \dots E_{i_k}) = P(E_{i_1})P(E_{i_2}) \dots P(E_{i_k})$.
- ▶ In other words, the product rule works.
- Independence implies $P(E_1E_2E_3|E_4E_5E_6) = \frac{P(E_1)P(E_2)P(E_3)P(E_4)P(E_5)P(E_6)}{P(E_4)P(E_5)P(E_6)} = P(E_1E_2E_3)$, and other similar statements.
- Does pairwise independence imply independence?
- No. Consider these three events: first coin heads, second coin heads, odd number heads. Pairwise independent, not independent.

Outline

Counting tricks and basic principles of probability

Discrete random variables

Outline

Counting tricks and basic principles of probability

Discrete random variables

► A random variable *X* is a function from the state space to the real numbers.

- ► A random variable *X* is a function from the state space to the real numbers.
- Can interpret X as a quantity whose value depends on the outcome of an experiment.

- ► A random variable *X* is a function from the state space to the real numbers.
- Can interpret X as a quantity whose value depends on the outcome of an experiment.
- ► Say *X* is a **discrete** random variable if (with probability one) if it takes one of a countable set of values.

- ► A random variable *X* is a function from the state space to the real numbers.
- Can interpret X as a quantity whose value depends on the outcome of an experiment.
- ► Say *X* is a **discrete** random variable if (with probability one) if it takes one of a countable set of values.
- For each a in this countable set, write $p(a) := P\{X = a\}$. Call p the **probability mass function**.

- ► A random variable *X* is a function from the state space to the real numbers.
- Can interpret X as a quantity whose value depends on the outcome of an experiment.
- ▶ Say X is a discrete random variable if (with probability one) if it takes one of a countable set of values.
- For each a in this countable set, write p(a) := P{X = a}.
 Call p the probability mass function.
- ▶ Write $F(a) = P\{X \le a\} = \sum_{x \le a} p(x)$. Call F the cumulative distribution function.

▶ Given any event E, can define an **indicator** random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as $X = 1_E$.

- ▶ Given any event E, can define an **indicator** random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as $X = 1_E$.
- ▶ The value of 1_E (either 1 or 0) *indicates* whether the event has occurred.

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as X = 1_F.
- ► The value of 1_E (either 1 or 0) indicates whether the event has occurred.
- ▶ If $E_1, E_2, ..., E_k$ are events then $X = \sum_{i=1}^k 1_{E_i}$ is the number of these events that occur.

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as X = 1_F.
- ► The value of 1_E (either 1 or 0) indicates whether the event has occurred.
- ▶ If $E_1, E_2, ..., E_k$ are events then $X = \sum_{i=1}^k 1_{E_i}$ is the number of these events that occur.
- ▶ Example: in n-hat shuffle problem, let E_i be the event ith person gets own hat.

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as X = 1_F.
- ► The value of 1_E (either 1 or 0) indicates whether the event has occurred.
- ▶ If $E_1, E_2, ..., E_k$ are events then $X = \sum_{i=1}^k 1_{E_i}$ is the number of these events that occur.
- ▶ Example: in n-hat shuffle problem, let E_i be the event ith person gets own hat.
- ▶ Then $\sum_{i=1}^{n} 1_{E_i}$ is total number of people who get own hats.

► Say *X* is a **discrete** random variable if (with probability one) it takes one of a countable set of values.

- ► Say *X* is a **discrete** random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write $p(a) := P\{X = a\}$. Call p the **probability mass function**.

- ► Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write $p(a) := P\{X = a\}$. Call p the **probability mass function**.
- ▶ The **expectation** of X, written E[X], is defined by

$$E[X] = \sum_{x: p(x) > 0} xp(x).$$

- ► Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write $p(a) := P\{X = a\}$. Call p the **probability mass function**.
- ▶ The **expectation** of X, written E[X], is defined by

$$E[X] = \sum_{x: p(x) > 0} xp(x).$$

▶ Represents weighted average of possible values *X* can take, each value being weighted by its probability.

Expectation when state space is countable

▶ If the state space *S* is countable, we can give **SUM OVER STATE SPACE** definition of expectation:

$$E[X] = \sum_{s \in S} P\{s\}X(s).$$

Expectation when state space is countable

▶ If the state space *S* is countable, we can give **SUM OVER STATE SPACE** definition of expectation:

$$E[X] = \sum_{s \in S} P\{s\}X(s).$$

Agrees with the SUM OVER POSSIBLE X VALUES definition:

$$E[X] = \sum_{x: p(x) > 0} x p(x).$$

Expectation of a function of a random variable

▶ If X is a random variable and g is a function from the real numbers to the real numbers then g(X) is also a random variable.

Expectation of a function of a random variable

- ▶ If X is a random variable and g is a function from the real numbers to the real numbers then g(X) is also a random variable.
- ▶ How can we compute E[g(X)]?

Expectation of a function of a random variable

- ▶ If X is a random variable and g is a function from the real numbers to the real numbers then g(X) is also a random variable.
- ▶ How can we compute E[g(X)]?
- Answer:

$$E[g(X)] = \sum_{x:p(x)>0} g(x)p(x).$$

▶ If X and Y are distinct random variables, then E[X + Y] = E[X] + E[Y].

- ▶ If X and Y are distinct random variables, then E[X + Y] = E[X] + E[Y].
- ▶ In fact, for real constants a and b, we have E[aX + bY] = aE[X] + bE[Y].

- ▶ If X and Y are distinct random variables, then E[X + Y] = E[X] + E[Y].
- ▶ In fact, for real constants a and b, we have E[aX + bY] = aE[X] + bE[Y].
- ► This is called the **linearity of expectation**.

- ▶ If X and Y are distinct random variables, then E[X + Y] = E[X] + E[Y].
- In fact, for real constants a and b, we have E[aX + bY] = aE[X] + bE[Y].
- ▶ This is called the **linearity of expectation**.
- ► Can extend to more variables $E[X_1 + X_2 + ... + X_n] = E[X_1] + E[X_2] + ... + E[X_n].$

▶ Let X be a random variable with mean μ .

- Let X be a random variable with mean μ .
- ► The variance of X, denoted Var(X), is defined by $Var(X) = E[(X \mu)^2]$.

- Let X be a random variable with mean μ .
- ▶ The variance of X, denoted Var(X), is defined by $Var(X) = E[(X \mu)^2]$.
- ▶ Taking $g(x) = (x \mu)^2$, and recalling that $E[g(X)] = \sum_{x:p(x)>0} g(x)p(x)$, we find that

$$\operatorname{Var}[X] = \sum_{x: p(x) > 0} (x - \mu)^2 p(x).$$

- Let X be a random variable with mean μ .
- ▶ The variance of X, denoted Var(X), is defined by $Var(X) = E[(X \mu)^2]$.
- ▶ Taking $g(x) = (x \mu)^2$, and recalling that $E[g(X)] = \sum_{x:p(x)>0} g(x)p(x)$, we find that

$$\operatorname{Var}[X] = \sum_{x: p(x) > 0} (x - \mu)^2 p(x).$$

Variance is one way to measure the amount a random variable "varies" from its mean over successive trials.

- Let X be a random variable with mean μ .
- ► The variance of X, denoted Var(X), is defined by $Var(X) = E[(X \mu)^2]$.
- ▶ Taking $g(x) = (x \mu)^2$, and recalling that $E[g(X)] = \sum_{x:p(x)>0} g(x)p(x)$, we find that

$$\operatorname{Var}[X] = \sum_{x: p(x) > 0} (x - \mu)^2 p(x).$$

- Variance is one way to measure the amount a random variable "varies" from its mean over successive trials.
- ▶ Very important alternate formula: $Var[X] = E[X^2] (E[X])^2$.

Identity

▶ If Y = X + b, where b is constant, then Var[Y] = Var[X].

Identity

- ▶ If Y = X + b, where b is constant, then Var[Y] = Var[X].
- ▶ Also, $Var[aX] = a^2 Var[X]$.

Identity

- ▶ If Y = X + b, where b is constant, then Var[Y] = Var[X].
- Also, $Var[aX] = a^2 Var[X]$.
- ▶ Proof: $Var[aX] = E[a^2X^2] E[aX]^2 = a^2E[X^2] a^2E[X]^2 = a^2Var[X]$.

• Write
$$SD[X] = \sqrt{Var[X]}$$
.

- Write $SD[X] = \sqrt{Var[X]}$.
- ▶ Satisfies identity SD[aX] = aSD[X].

- Write $SD[X] = \sqrt{Var[X]}$.
- ▶ Satisfies identity SD[aX] = aSD[X].
- ▶ Uses the same units as X itself.

- Write $SD[X] = \sqrt{Var[X]}$.
- ▶ Satisfies identity SD[aX] = aSD[X].
- Uses the same units as X itself.
- If we switch from feet to inches in our "height of randomly chosen person" example, then X, E[X], and $\mathrm{SD}[X]$ each get multiplied by 12, but $\mathrm{Var}[X]$ gets multiplied by 144.

▶ Toss fair coin *n* times. (Tosses are independent.) What is the probability of *k* heads?

- ► Toss fair coin *n* times. (Tosses are independent.) What is the probability of *k* heads?
- Answer: $\binom{n}{k}/2^n$.

- ► Toss fair coin *n* times. (Tosses are independent.) What is the probability of *k* heads?
- Answer: $\binom{n}{k}/2^n$.
- ▶ What if coin has *p* probability to be heads?

- ▶ Toss fair coin *n* times. (Tosses are independent.) What is the probability of *k* heads?
- Answer: $\binom{n}{k}/2^n$.
- What if coin has p probability to be heads?
- Answer: $\binom{n}{k} p^k (1-p)^{n-k}$.

- ► Toss fair coin *n* times. (Tosses are independent.) What is the probability of *k* heads?
- Answer: $\binom{n}{k}/2^n$.
- What if coin has p probability to be heads?
- Answer: $\binom{n}{k} p^k (1-p)^{n-k}$.
- ▶ Writing q = 1 p, we can write this as $\binom{n}{k} p^k q^{n-k}$

- ► Toss fair coin *n* times. (Tosses are independent.) What is the probability of *k* heads?
- Answer: $\binom{n}{k}/2^n$.
- What if coin has p probability to be heads?
- Answer: $\binom{n}{k} p^k (1-p)^{n-k}$.
- ▶ Writing q = 1 p, we can write this as $\binom{n}{k} p^k q^{n-k}$
- ► Can use binomial theorem to show probabilities sum to one:

- ▶ Toss fair coin *n* times. (Tosses are independent.) What is the probability of *k* heads?
- Answer: $\binom{n}{k}/2^n$.
- What if coin has p probability to be heads?
- Answer: $\binom{n}{k} p^k (1-p)^{n-k}$.
- ▶ Writing q = 1 p, we can write this as $\binom{n}{k} p^k q^{n-k}$
- Can use binomial theorem to show probabilities sum to one:
- $1 = 1^n = (p+q)^n = \sum_{k=0}^n \binom{n}{k} p^k q^{n-k}.$

- ▶ Toss fair coin *n* times. (Tosses are independent.) What is the probability of *k* heads?
- Answer: $\binom{n}{k}/2^n$.
- What if coin has p probability to be heads?
- Answer: $\binom{n}{k} p^k (1-p)^{n-k}$.
- ▶ Writing q = 1 p, we can write this as $\binom{n}{k} p^k q^{n-k}$
- ▶ Can use binomial theorem to show probabilities sum to one:
- $1 = 1^n = (p+q)^n = \sum_{k=0}^n \binom{n}{k} p^k q^{n-k}.$
- Number of heads is binomial random variable with parameters (n, p).

Let X be a binomial random variable with parameters (n, p). Here is one way to compute E[X].

- Let X be a binomial random variable with parameters (n, p). Here is one way to compute E[X].
- ▶ Think of *X* as representing number of heads in *n* tosses of coin that is heads with probability *p*.

- Let X be a binomial random variable with parameters (n, p). Here is one way to compute E[X].
- ▶ Think of *X* as representing number of heads in *n* tosses of coin that is heads with probability *p*.
- ▶ Write $X = \sum_{j=1}^{n} X_j$, where X_j is 1 if the jth coin is heads, 0 otherwise.

- Let X be a binomial random variable with parameters (n, p). Here is one way to compute E[X].
- ▶ Think of *X* as representing number of heads in *n* tosses of coin that is heads with probability *p*.
- ▶ Write $X = \sum_{j=1}^{n} X_j$, where X_j is 1 if the jth coin is heads, 0 otherwise.
- In other words, X_j is the number of heads (zero or one) on the jth toss.

- Let X be a binomial random variable with parameters (n, p). Here is one way to compute E[X].
- ▶ Think of *X* as representing number of heads in *n* tosses of coin that is heads with probability *p*.
- ▶ Write $X = \sum_{j=1}^{n} X_j$, where X_j is 1 if the jth coin is heads, 0 otherwise.
- In other words, X_j is the number of heads (zero or one) on the jth toss.
- Note that $E[X_j] = p \cdot 1 + (1-p) \cdot 0 = p$ for each j.

- Let X be a binomial random variable with parameters (n, p). Here is one way to compute E[X].
- ▶ Think of *X* as representing number of heads in *n* tosses of coin that is heads with probability *p*.
- ▶ Write $X = \sum_{j=1}^{n} X_j$, where X_j is 1 if the jth coin is heads, 0 otherwise.
- In other words, X_j is the number of heads (zero or one) on the jth toss.
- Note that $E[X_j] = p \cdot 1 + (1-p) \cdot 0 = p$ for each j.
- Conclude by additivity of expectation that

$$E[X] = \sum_{j=1}^{n} E[X_j] = \sum_{j=1}^{n} p = np.$$

$$X = \sum_{j=1}^{n} X_{j}, \text{ so } E[X^{2}] = E[\sum_{i=1}^{n} X_{i} \sum_{j=1}^{n} X_{j}] = \sum_{i=1}^{n} \sum_{j=1}^{n} E[X_{i}X_{j}]$$

►
$$X = \sum_{j=1}^{n} X_j$$
, so $E[X^2] = E[\sum_{i=1}^{n} X_i \sum_{j=1}^{n} X_j] = \sum_{i=1}^{n} \sum_{j=1}^{n} E[X_i X_j]$

▶ $E[X_iX_j]$ is p if i = j, p^2 otherwise.

- ► $X = \sum_{j=1}^{n} X_j$, so $E[X^2] = E[\sum_{i=1}^{n} X_i \sum_{j=1}^{n} X_j] = \sum_{i=1}^{n} \sum_{j=1}^{n} E[X_i X_j]$
- ▶ $E[X_iX_i]$ is p if i = j, p^2 otherwise.
- $\sum_{i=1}^{n} \sum_{j=1}^{n} E[X_i X_j] \text{ has } n \text{ terms equal to } p \text{ and } (n-1)n$ terms equal to p^2 .

- ► $X = \sum_{j=1}^{n} X_j$, so $E[X^2] = E[\sum_{i=1}^{n} X_i \sum_{j=1}^{n} X_j] = \sum_{i=1}^{n} \sum_{j=1}^{n} E[X_i X_j]$
- ▶ $E[X_iX_j]$ is p if i = j, p^2 otherwise.
- ▶ $\sum_{i=1}^{n} \sum_{j=1}^{n} E[X_i X_j]$ has n terms equal to p and (n-1)n terms equal to p^2 .
- ► So $E[X^2] = np + (n-1)np^2 = np + (np)^2 np^2$.

Compute variance with decomposition trick

- ► $X = \sum_{j=1}^{n} X_j$, so $E[X^2] = E[\sum_{i=1}^{n} X_i \sum_{j=1}^{n} X_j] = \sum_{i=1}^{n} \sum_{j=1}^{n} E[X_i X_j]$
- ▶ $E[X_iX_i]$ is p if i = j, p^2 otherwise.
- ▶ $\sum_{i=1}^{n} \sum_{j=1}^{n} E[X_i X_j]$ has n terms equal to p and (n-1)n terms equal to p^2 .
- ► So $E[X^2] = np + (n-1)np^2 = np + (np)^2 np^2$.
- Thus $Var[X] = E[X^2] E[X]^2 = np np^2 = np(1-p) = npq.$

Compute variance with decomposition trick

- ► $X = \sum_{j=1}^{n} X_j$, so $E[X^2] = E[\sum_{i=1}^{n} X_i \sum_{j=1}^{n} X_j] = \sum_{i=1}^{n} \sum_{j=1}^{n} E[X_i X_j]$
- ▶ $E[X_iX_i]$ is p if i = j, p^2 otherwise.
- ▶ $\sum_{i=1}^{n} \sum_{j=1}^{n} E[X_i X_j]$ has n terms equal to p and (n-1)n terms equal to p^2 .
- ► So $E[X^2] = np + (n-1)np^2 = np + (np)^2 np^2$.
- ► Thus $Var[X] = E[X^2] E[X]^2 = np np^2 = np(1 p) = npq$.
- ▶ Can show generally that if $X_1, ..., X_n$ independent then $\operatorname{Var}[\sum_{j=1}^n X_j] = \sum_{j=1}^n \operatorname{Var}[X_j]$

Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^6$.

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^6$.
- ▶ Suppose I have a coin that comes on heads with probability λ/n and I toss it n times.

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^6$.
- ▶ Suppose I have a coin that comes on heads with probability λ/n and I toss it n times.
- ► How many heads do I expect to see?

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^6$.
- ▶ Suppose I have a coin that comes on heads with probability λ/n and I toss it n times.
- How many heads do I expect to see?
- Answer: $np = \lambda$.

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^6$.
- ▶ Suppose I have a coin that comes on heads with probability λ/n and I toss it n times.
- How many heads do I expect to see?
- Answer: $np = \lambda$.
- Let k be some moderate sized number (say k = 4). What is the probability that I see exactly k heads?

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^6$.
- ▶ Suppose I have a coin that comes on heads with probability λ/n and I toss it n times.
- ► How many heads do I expect to see?
- Answer: $np = \lambda$.
- Let k be some moderate sized number (say k = 4). What is the probability that I see exactly k heads?
- ▶ Binomial formula: $\binom{n}{k} p^k (1-p)^{n-k} = \frac{n(n-1)(n-2)...(n-k+1)}{k!} p^k (1-p)^{n-k}$.

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^6$.
- Suppose I have a coin that comes on heads with probability λ/n and I toss it n times.
- How many heads do I expect to see?
- Answer: $np = \lambda$.
- Let k be some moderate sized number (say k = 4). What is the probability that I see exactly k heads?
- ▶ Binomial formula: $\binom{n}{k} p^k (1-p)^{n-k} = \frac{n(n-1)(n-2)...(n-k+1)}{k!} p^k (1-p)^{n-k}$.
- ▶ This is approximately $\frac{\lambda^k}{k!}(1-p)^{n-k} \approx \frac{\lambda^k}{k!}e^{-\lambda}$.

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^6$.
- Suppose I have a coin that comes on heads with probability λ/n and I toss it n times.
- ▶ How many heads do I expect to see?
- Answer: $np = \lambda$.
- Let k be some moderate sized number (say k=4). What is the probability that I see exactly k heads?
- ▶ Binomial formula: $\binom{n}{k} p^k (1-p)^{n-k} = \frac{n(n-1)(n-2)...(n-k+1)}{k!} p^k (1-p)^{n-k}$.
- ▶ This is approximately $\frac{\lambda^k}{k!}(1-p)^{n-k} \approx \frac{\lambda^k}{k!}e^{-\lambda}$.
- ▶ A **Poisson random variable** X with parameter λ satisfies $P\{X=k\}=\frac{\lambda^k}{k!}e^{-\lambda}$ for integer $k\geq 0$.

▶ A **Poisson random variable** X with parameter λ satisfies $P\{X = k\} = \frac{\lambda^k}{k!}e^{-\lambda}$ for integer $k \ge 0$.

- ▶ A **Poisson random variable** X with parameter λ satisfies $P\{X = k\} = \frac{\lambda^k}{k!}e^{-\lambda}$ for integer $k \ge 0$.
- ▶ Clever computation tricks yield $E[X] = \lambda$ and $Var[X] = \lambda$.

- ▶ A **Poisson random variable** X with parameter λ satisfies $P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}$ for integer $k \ge 0$.
- ▶ Clever computation tricks yield $E[X] = \lambda$ and $Var[X] = \lambda$.
- We think of a Poisson random variable as being (roughly) a Bernoulli (n, p) random variable with n very large and $p = \lambda/n$.

- ▶ A **Poisson random variable** X with parameter λ satisfies $P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}$ for integer $k \ge 0$.
- ▶ Clever computation tricks yield $E[X] = \lambda$ and $Var[X] = \lambda$.
- We think of a Poisson random variable as being (roughly) a Bernoulli (n, p) random variable with n very large and $p = \lambda/n$.
- ▶ This also suggests $E[X] = np = \lambda$ and $Var[X] = npq \approx \lambda$.