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Basic properties

I Brownian motion is real-valued process Bt , t ≥ 0.

I Independent increments: If t0 < t1 < t2 . . . then
B(t0),B(t1 − t0),B(t2 − t1), . . . are independent.

I Gaussian increments: If s, t ≥ 0 then B(s + t)− B(s) is
normal with variance t.

I Continuity: With probability one, t → Bt is continuous.

I Hmm... does this mean we need to use a σ-algebra in which
the event “Bt is continuous” is a measurable?

I Suppose Ω is set of all functions of t, and we use smallest
σ-field that makes each Bt a measurable random variable...
does that fail?
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Basic properties

I Translation invariance: is Bt0+t − Bt0 a Brownian motion?

I Brownian scaling: fix c , then Bct agrees in law with c1/2Bt .

I Another characterization: B is jointly Gaussian, EBs = 0,
EBsBt = s ∧ t, and t → Bt a.s. continuous.
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Defining Brownian motion

I Can define joint law of Bt values for any finite collection of
values.

I Can observe consistency and extend to countable set by
Kolmogorov. This gives us measure in σ-field F0 generated by
cylinder sets.

I But not enough to get a.s. continuity.

I Can define Brownian motion jointly on diadic rationals pretty
easily. And claim that this a.s. extends to continuous path in
unique way.

I We can use the Kolmogorov continuity theorem (next slide).

I Can prove Hölder continuity using similar estimates (see
problem set).

I Can extend to higher dimensions: make each coordinate
independent Brownian motion.
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Continuity theorem

I Kolmogorov continuity theorem: Suppose
E |Xs − Xt |β ≤ K |t − s|1+α where α, β > 0. If γ < α/β then
with probability one there is a constant C (ω) so that
|X (q)− X (r)| ≤ C |q − r |γ for all q, r ∈ Q2 ∩ [0, 1].

I Proof idea: First look at values at all multiples of 2−0, then
at all multiples of 2−1, then multiples of 2−2, etc.

I At each stage we can draw a nice piecewise linear
approximation of the process. How much does the
approximation change in supremum norm (or some other
Hölder norm) on the ith step? Can we say it probably doesn’t
change very much? Can we say the sequence of
approximations is a.s. Cauchy in the appropriate normed
spaced?
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Continuity theorem proof

I Kolmogorov continuity theorem: Suppose
E |Xs − Xt |β ≤ K |t − s|1+α where α, β > 0. If γ < α/β then
with probability one there is a constant C (ω) so that
|X (q)− X (r)| ≤ C |q − r |γ for all q, r ∈ Q2 ∩ [0, 1].

I Argument from Durrett (Pemantle): Write

Gn = {|X (i/2n)−X ((i−1)/2n)|} ≤ C |q− r |λ for 0 < i ≤ 2n}.

I Chebyshev implies P(|Y | > a) ≤ a−βE |Y |β, so if
λ = α− βγ > 0 then

P(G c
n ) ≤ 2n · 2nβγ · E |X (j2−n)|β = K2−nλ.

18.175 Lecture 24



Continuity theorem proof

I Kolmogorov continuity theorem: Suppose
E |Xs − Xt |β ≤ K |t − s|1+α where α, β > 0. If γ < α/β then
with probability one there is a constant C (ω) so that
|X (q)− X (r)| ≤ C |q − r |γ for all q, r ∈ Q2 ∩ [0, 1].

I Argument from Durrett (Pemantle): Write

Gn = {|X (i/2n)−X ((i−1)/2n)|} ≤ C |q− r |λ for 0 < i ≤ 2n}.

I Chebyshev implies P(|Y | > a) ≤ a−βE |Y |β, so if
λ = α− βγ > 0 then

P(G c
n ) ≤ 2n · 2nβγ · E |X (j2−n)|β = K2−nλ.

18.175 Lecture 24



Continuity theorem proof

I Kolmogorov continuity theorem: Suppose
E |Xs − Xt |β ≤ K |t − s|1+α where α, β > 0. If γ < α/β then
with probability one there is a constant C (ω) so that
|X (q)− X (r)| ≤ C |q − r |γ for all q, r ∈ Q2 ∩ [0, 1].

I Argument from Durrett (Pemantle): Write

Gn = {|X (i/2n)−X ((i−1)/2n)|} ≤ C |q− r |λ for 0 < i ≤ 2n}.

I Chebyshev implies P(|Y | > a) ≤ a−βE |Y |β, so if
λ = α− βγ > 0 then

P(G c
n ) ≤ 2n · 2nβγ · E |X (j2−n)|β = K2−nλ.

18.175 Lecture 24



Easy observations

I Brownian motion is Hölder continuous for any γ < 1/2 (apply
theorem with β = 2m, α = m − 1).

I Brownian motion is almost surely not differentiable.

I Brownian motion is almost surely not Lipschitz.

I Kolmogorov-Centsov theorem applies to higher dimensions
(with adjusted exponents). One can construct a.s. continuous
functions from Rn to R.
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More σ-algebra thoughts

I Write Fo
s = σ(Br : r ≤ s).

I Write F+
s = ∩t>sFo

t

I Note right continuity: ∩t>sF+
t = F+

s .

I F+
s allows an “infinitesimal peek at future”
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Markov property

I If s ≥ 0 and Y is bounded and C-measurable, then for all
x ∈ Rd , we have

Ex(Y ◦ θs |F+
s ) = EBsY ,

where the RHS is function φ(x) = ExY evaluated at x = Bs .

I Proof idea: First establish this for some simple functions Y
(depending on finitely many time values) and then use
measure theory (monotone class theorem) to extend to
general case.
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Looking ahead

I Expectation equivalence theorem If Z is bounded and
measurable then for all s ≥ 0 and x ∈ Rd have

Ex(Z |F+
s ) = Ex(Z |Fo

s ).

I Proof idea: Consider case that Z =
∑m

i=1 fm(B(tm)) and the
fm are bounded and measurable. Kind of obvious in this case.
Then use same measure theory as in Markov property proof to
extend general Z .

I Observe: If Z ∈ F+
s then Z = Ex(Z |Fo

s ). Conclude that F+
s

and Fo
s agree up to null sets.
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Blumenthal’s 0-1 law

I If A ∈ F+
0 , then P(A) ∈ {0, 1} (if P is probability law for

Brownian motion started at fixed value x at time 0).

I There’s nothing you can learn from infinitesimal neighborhood
of future.

I Proof: If we have A ∈ F+
0 , then previous theorem implies

1A = Ex(1A|F+
0 ) = Ex(1A|Fo

0 ) = Px(A) Pxa.s.
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More observations

I If τ = inf{t ≥ 0 : Bt > 0} then P0(τ = 0) = 1.

I If T0 = inf{t > 0 : Bt = 0} then P0(T0 = 0) = 1.

I If Bt is Brownian motion started at 0, then so is process
defined by X0 = 0 and Xt = tB(1/t). (Proved by checking
E (XsXt) = stE (B(1/s)B(1/t)) = s when s < t. Then check
continuity at zero.)
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Continuous martingales

I What can we say about continuous martingales?

I Do they all kind of look like Brownian motion?
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