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Recall

I Basic tools: Zero-one law for tail/translation-invariant
events, ergodic theorem, FKG inequality, BK inequality.

I Consequences: number of infinite clusters is Pp a.s.
constant. Constant’s in {0, 1,∞}. In fact in {0, 1}. Unique
infinite cluster with asymptotic density θ(p) a.s. if θ(p) > 0.

I Consequence of path-counting tricks: pc bounded away
from zero and one for all d .

I Consequence of formula for θ(p): θ(p) upper
semi-continuous.

I Consequence of lack of atoms above pc for time vertex
joins infinite cluster: θ(p) continuous on [pc , 1].

I Consequence of FKG: Can’t have both infinite
cluster/dual-cluster when d = 2. Thus θ(1/2) = 0, pc ≥ 1/2.
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Trick we have already used a lot

I I give you an event like Ex , the event that one can draw exist
four edge-disjoint paths from x to infinity.

I Suppose that with positive Pp probability Ex occurs for some
x somewhere in Zd .

I Then with probability one Ex occurs for infinitely many x
values (in fact, an asymptotically positive density of x values).

I If we take a large enough box, we can make the probability
that Ex occurs for some x in the box arbitrarily close to one.

I In fact, we arrange so that (with probability close to one) the
fraction of x values in the box for which Ex occurs is within δ
of its expectation.

I You say, “There’s at least a tiny positive chance that there’s a
squirrel somewhere.”

I I say, “Any sufficiently large box has probability at least
.99999 of being infested by positive density of squirrels.”
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Exponential decay in sub-critical regime

I Claim: If p < pc then there is a ψ(p) > 0 such that
Pp(An) < e−nψ(p) where An is event C 6⊂ Λn.

I Claim implies that expected number of clusters “surrounding”
origin is finite when d = 2.

I This claim now implies Kesten’s theorem, that pc = 1/2.

I Proof requires some new tools.
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Another fundamental tool: Russo’s formula

I Consider event A depending on finitely many vertices and look
at Pp(A) as a function of p.

I Derivative ∂
∂pPp(A) = Ep(N(A)) where N(A) is number of

edges pivotal for A.

I Expected number of edges open and pivotal is
pEp(N(A)) = p ∂

∂pPp(A).

I Thus ∂
∂pPp(A) is p−1Ep(N(A);A).
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Exponential decay (per Grimmett pages 88 to 102)

I Let An be the event that C 6⊂ Sn.

I Write gp(n) = Pp(An) = Pp(An(x)) for any x .

I g ′p(n) = 1
pEp(N(An);An) = 1

pEp(N(An)|An)gp(n)

I
g ′
p(n)

gp(n)
= 1

pEp(N(An)|An)

I Take 0 ≤ α < β ≤ 1 and integrate above from α to β:

I gα(n) = gβ(n) exp
(
−
∫ β
α

1
pEp(N(An)|An)dp

)
I If we can can show Ep(N(An)|An) grows roughly linearly in n

when p < pc (the bound should hold uniformly for an interval
of p values), then this will imply that when p < pc there is a
ψ(p) > 0 such that Pp(An) < e−nψ(p).
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Conditional expectation of number of pivots grows linearly

I So we need to show that Ep(N(An)|An) grows roughly linearly
in n when p < pc .

I We kind of think that conditioned on An, the cluster looks like
a “long string of sausages” with a lot of pivots.

I Write M = max{k : Ak occurs}. Idea: try to show that
number N(An) (conditioned on An) is at least as large as
number of renewals of renewal process whose elements have
approximately same distribution as M. We’d like the
individual sausages to be smaller than copies of M.

I It’s kind of annoying that we don’t even know a priori that M
has finite expectation. We’ll have to find some sort of
bootstrapping trick for getting around this eventually.
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A nice lemma involving M

I Define sequence of pivotal edges e1, e2, . . . on the event An,
and ρi distance between start/endpoints of successive
sausages..

I Lemma: fix k > 0, integers r1, r2, . . . rk such that∑k
i=1 ri ≤ n − k . Then

Pp(ρk ≤ rk , ρi = ri for 1 ≤ i < k |An) ≥

Pp(M ≤ rk)Pp(ρi = ri for 1 ≤ i < k |An)

I We have to have at least two disjoint paths up to starting
point of first pivotal edge. BK inequality implies
Pp({ρ1 > r2} ∩ An) ≤ Pp(Ar1+1)Pp(An).

I Extend to the general case.
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Pp(ρk ≤ rk , ρi = ri for 1 ≤ i < k |An) ≥

Pp(M ≤ rk)Pp(ρi = ri for 1 ≤ i < k |An)

I We have to have at least two disjoint paths up to starting
point of first pivotal edge. BK inequality implies
Pp({ρ1 > r2} ∩ An) ≤ Pp(Ar1+1)Pp(An).

I Extend to the general case.
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Nice consequence of nice lemma

I CLAIM: For 0 < p < 1, we have Ep(N(An)|An) ≥ n∑n
i=0 gp(i)−1

.

I From previous lemma, we have Pp(ρ1 + ρ2 + . . .+ ρk ≤
n − k |An) ≥ P(M1 + M2 + . . .+ Mk ≤ n − k), where Mi are
i.i.d. with the law of M.

I Summing over k we obtain

Ep(N(An)|An) ≥
∞∑
k=1

P(M1 + . . .+ Mk ≤ n)

=
∞∑
k=1

P(K ≥ k + 1) = E (K )− 1,

where K = min{k : M1 + . . .+ Mk > n}.
I E (K ) > n

E(M1)
= n

1+E(min{M1,n}) = n∑n
i=0 gp(i)

.
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Bootstrapping

I First we show that for p < pc there is a δ(p) such that
gp(n) ≤ δ(p)n−1/2.

I Plugging this into earlier formula lets us show that∑∞
n=1 gα(n) <∞ for α < pc , and complete the exponential

decay proof.
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Large d intuition

I Suppose that d = 1010
100

. What does percolation look like
then?

I Let’s consider the case p = 1
2d . Then the expected number of

vertices connected to the origin is one.

I Expected number of additional vertices connected to each of
these is about one.

I Get approximately a critical Galton-Watson tree with Poisson
offspring numbers.

I Expect to have lots of large tree like clusters intersecting the
nd box.

I Heuristically, tree with k vertices should have a longest path
of length

√
k . Is distance of tip from origin about k1/4?
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