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» Consider a sequence of random variables Xp, X1, X, ... each
taking values in the same state space, which for now we take
to be a finite set that we label by {0,1,..., M}.
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» Consider a sequence of random variables Xp, X1, X, ... each
taking values in the same state space, which for now we take
to be a finite set that we label by {0,1,..., M}.

> Interpret X, as state of the system at time n.

» Sequence is called a Markov chain if we have a fixed
collection of numbers Pj; (one for each pair
i,j €{0,1,..., M}) such that whenever the system is in state
i, there is probability Pj; that system will next be in state j.

» Precisely,

P{X,-,+1 :j|Xn = i,Xn_l = in—l; e ,Xl = il,Xo = io} = P,J

» Kind of an “almost memoryless” property. Probability

distribution for next state depends only on the current state
(and not on the rest of the state history).
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Matrix representation

» To describe a Markov chain, we need to define Pj; for any
i,je{0,1,..., M}.
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Matrix representation

» To describe a Markov chain, we need to define Pj; for any
i,je{0,1,..., M}.

» It is convenient to represent the collection of transition
probabilities Pj; as a matrix:

POO P()]_ POM

P]_o P]_]_ P]_M
A= '

PMO PMl P[\/[/\/]

» For this to make sense, we require P; > 0 for all i, and

Zj:o Pjj = 1 for each /. That is, the rows sum to one.
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Powers of transition matrix

> We write P,.(j") for the probability to go from state i to state j

over n steps.
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Powers of transition matrix

> We write P,.(j") for the probability to go from state i to state j

over n steps.

» From the matrix point of view

O e Poo  Poz Pom '\ "
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Powers of transition matrix

> We write P,.(J.") for the probability to go from state i to state j

over n steps.

» From the matrix point of view

O e Po Por ... Pom \"
P{g) P Pm, Po P ... Pim
pmpl) o pm Pvo Pmr - Pum

> If Ais the one-step transition matrix, then A" is the n-step
transition matrix.
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Ergodic Markov chains

» Say Markov chain is ergodic if some power of the transition
matrix has all non-zero entries.
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Ergodic Markov chains

» Say Markov chain is ergodic if some power of the transition

matrix has all non-zero entries.
» Turns out that if chain has this property, then
= limp oo Pi(j") exists and the 7; are the unique

non-negative solutions of m; = Zyzo 7k Pyj that sum to one.
» This means that the row vector
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is a left eigenvector of A with eigenvalue 1, i.e., TA = 7.
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Ergodic Markov chains

» Say Markov chain is ergodic if some power of the transition

matrix has all non-zero entries.

» Turns out that if chain has this property, then
= limp oo P,.(j") exists and the 7; are the unique
non-negative solutions of m; = Zyzo 7k Pyj that sum to one.

» This means that the row vector

7r:(7r0 T ... 7le)

is a left eigenvector of A with eigenvalue 1, i.e., TA = 7.
» We call 7 the stationary distribution of the Markov chain.
» One can solve the system of linear equations

T = Zyzo 7k Pyj to compute the values 7;. Equivalent to

considering A fixed and solving wA = 7. Or solving

(A—I)m =0. This determines 7 up to a multiplicative

constant, and fact that ) m; = 1 determines the constant.
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Random walks on RY.

Branching processes: p(i,j) = P(an:1 Em :j) where &; are
i.i.d. non-negative integer-valued random variables.

v

v

v

Renewal chain (deterministic unit decreases, random jump
when zero hit).

Card shuffling.

v
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» Random walks on RY.
» Branching processes: p(i,j) = P(an:1 Em :j) where &; are
i.i.d. non-negative integer-valued random variables.

» Renewal chain (deterministic unit decreases, random jump
when zero hit).

» Card shuffling.

» Ehrenfest chain (n balls in two chambers, randomly pick ball
to swap).

» Birth and death chains (changes by £1). Stationarity
distribution?

» M/G/1 queues.

» Random walk on a graph. Stationary distribution?

» Random walk on directed graph (e.g., single directed chain).
> Snakes and ladders.
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Markov chains: general definition

» Consider a measurable space (S,S).
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Markov chains: general definition

» Consider a measurable space (S, S).
» A function p: S x § — R is a transition probability if
» For each x € S, A — p(x, A) is a probability measure on S, S).
» For each A € S, the map x — p(x, A) is a measurable function.
» Say that X, is a Markov chain w.r.t. F, with transition
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Markov chains: general definition

>

Consider a measurable space (S, S).
A function p: S x § — R is a transition probability if

» For each x € S, A — p(x, A) is a probability measure on S, S).
» For each A € S, the map x — p(x, A) is a measurable function.

v

v

Say that X, is a Markov chain w.r.t. F,, with transition
probability p if P(Xn+1 € B|F,) = p(Xn, B).

How do we construct an infinite Markov chain? Choose p and
initial distribution u on (S,S). For each n < oo write

v

POGeB0<j<m= [
B

/ p(anlvan)'
By

Extend to n = oo by Kolmogorov's extension theorem.

wu(dxp) /B p(xo, dxy) - - -
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» Definition, again: Say X, is a Markov chain w.r.t. 7, with
transition probability p if P(Xp41 € B|F,) = p(Xn, B).
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» Definition, again: Say X, is a Markov chain w.r.t. 7, with
transition probability p if P(Xp41 € B|F,) = p(Xn, B).

» Construction, again: Fix initial distribution x4 on (S, S). For
each n < oo write

P(&esj,osj'sm:/

(o) / p(x0, dx1) -
By B:

/ p(Xn—1, dxp).

n

Extend to n = co by Kolmogorov's extension theorem.
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» Definition, again: Say X, is a Markov chain w.r.t. 7, with
transition probability p if P(Xp41 € B|F,) = p(Xn, B).

» Construction, again: Fix initial distribution x4 on (S, S). For
each n < oo write

P(&esj,osj'sm:/

(o) / p(x0, dx1) -
By B:

/ p(Xn—1, dxp).

n

Extend to n = co by Kolmogorov's extension theorem.

> Notation: Extension produces probability measure P, on
sequence space (S%1- SOL-).

» Theorem: (Xp, Xy,...) chosen from P, is Markov chain.

» Theorem: If X, is any Markov chain with initial distribution
1 and transition p, then finite dim. probabilities are as above.

18 175 L ecture 31



Markov properties

» Markov property: Take (Qg, F) = (5{0’17'"},8{0’1""}), and
let P, be Markov chain measure and 0, the shift operator on
Qo (shifts sequence n units to left, discarding elements shifted
off the edge). If Y : Qo — R is bounded and measurable then

E.(Y 06, Fy) = Ex, Y.
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Markov properties

» Markov property: Take (Qg, F) = (5{0’17'"},8{0’1""}), and
let P, be Markov chain measure and 0, the shift operator on
Qo (shifts sequence n units to left, discarding elements shifted
off the edge). If Y : Qo — R is bounded and measurable then

E.(Y 06, Fy) = Ex, Y.

» Strong Markov property: Can replace n with a.s. finite
stopping time N and function Y can vary with time. Suppose
that for each n, Y, : Q, — R is measurable and |Y,| < M for
all n. Then

E“(YN e} 9N|f/\/) = EXN YN,

where RHS means E, Y, evaluated at x = X,,, n = N.
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» Property of infinite opportunities: Suppose X, is Markov
chain and

'D( ?no:nJrl{Xm € Bm}|Xn) >0>0

on {X, € Ap}. Then P({X, € Ayi.o.} —{X, € Byi.o.}) =0.
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» Reflection principle: Symmetric random walks on R. Have
P(supm>p Sm > a) < 2P(S, > a).
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» Property of infinite opportunities: Suppose X, is Markov
chain and

'D( rono:nJrl{Xm € Bm}|Xn) >0>0

on {X, € Ap}. Then P({X, € Ayi.o.} —{X, € Byi.o.}) =0.
» Reflection principle: Symmetric random walks on R. Have
P(supm>p Sm > a) < 2P(S, > a).
» Proof idea: Reflection picture.
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» Interesting question: If A is an infinite probability transition
matrix on a countable state space, what does the (infinite)
matrix | + A+ A2 + A3+ ... = (I — A)~! represent (if the
sum converges)?
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» Question: Does it describe the expected number of y hits
when starting at x7 Is there a similar interpretation for other
power series?
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» Interesting question: If A is an infinite probability transition
matrix on a countable state space, what does the (infinite)
matrix | + A+ A2 + A3+ ... = (I — A)~! represent (if the
sum converges)?

» Question: Does it describe the expected number of y hits
when starting at x7 Is there a similar interpretation for other

power series?
» How about e” or e?

» Related to distribution after a Poisson random number of
steps?
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Recurrence

» Consider probability walk from y ever returns to y.
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Recurrence

» Consider probability walk from y ever returns to y.

» If it's 1, return to y infinitely often, else don't. Call y a
recurrent state if we return to y infinitely often.
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