
Topic 2: transversality

The discussion here is on the classical side, so we don’t need to do any virtual stuff.

1. Transversality via perturbation

We follow the exposition in the work of Floer–Hofer–Salamon [FHS95]. The textbooks [MS04]

and [AD14] also contain detailed treatment of this classical topic.

Let (M,ω) be a compact symplectic manifold and Ht : S
1 ×M → R (non-degenerate), J are as

before. Consider the space

H := {Gt ∈ C∞(S1 ×M,R)|Gt = Ht near all x : S1 → M with ẋ(t) = XHt
(x(t))}.

Fix ẋ±(t) = XHt(x
±(t)). Consider the moduli space of Floer trajectories

M(x−, x+, Gt, J)

which consists of

u : R× S1 → M, ∂su+ J(u)(∂tu−XGt(u)) = 0

such that

lim
s→±∞

u(s, t) = x±(t).

Definition 1.1. M(x−, x+, Gt, J) is called regular if for any u ∈ M(x−, x+, Gt, J), the linearized

operator

Du : W 1,p(R× S1, u∗TM) → Lp(R× S1, u∗TM)

is surjective.

Here p > 2, or we can work with W k,2 → W k−1,2 with k ≥ 2. It is a consequence of the implicit

function theorem that if M(x−, x+, Gt, J) is regular, it is a smooth manifold.

Remark 1.2. M(x−, x+, Gt, J) defined as above may have multiple path-connected components

with varying Fredholm indices. It can be exhibited as a countable union ranging over π2(M). This

is mostly relevant when discussing compactness properties of moduli spaces, as these homotopy

classes arise in the formulas of topological energy. We abuse the notations in this lecture because

it is irrelevant for most of the arguments.

Definition 1.3. Given a Banach space X, a subset U ⊂ X is called residual or of second

category if it contains an intersection of countably many open and dense subsets.

By Baire’s category theorem, every residual set is dense. For such a U , elements in U are also

called generic. The goal of this section is the following.
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Theorem 1.4. The subset of H consisting of elements Gt such that M(x−, x+, Gt, J) is regular

is of second category.

In other words, for a generic perturbation of Ht, we can ensure that the moduli space of Floer

trajectories is a smooth manifold. We need some standard results before embarking the proof.

Theorem 1.5 (Carleman Similarity Principle). Consider the equation for u : Bϵ → Cn over the

ball of radius ϵ in the complex plane

∂su+ J(z)∂tu+ C(z)u = 0

where z = s + it, J(z)2 = −Id, and we consider the regularity class u, J(z) ∈ W 1,p while

C(z) ∈ Lp(Bϵ, GL(n,C)). Then for u with u(0) = 0, there exists 0 < δ ≤ ϵ with a map

Φ ∈ W 1,p(Bδ, GL(n,C)) and a holomorphic map v : Bδ → Cn such that

u(z) = Φ(z)v(z), v(0) = 0, Φ(z)−1J(z)Φ(z) = i.

The Carleman Similarity Principle says that solutions to Cauchy–Riemann type equations are

closely related to genuine holomorphic maps. In particular, for any u with ∂su+J(z)∂tu+C(z)u =

0 vanishing at a point in Bδ with infinite order, we necessarily have u ≡ 0. A more general form

of this observation is the following.

Proposition 1.6 (Unique continuation). Let J(z, x) be a family of almost complex structures on

Cn parametrized by (z, x) ∈ C × Cn of regularity class W 1,p and C : C × Cn → Cn is of class

W 1,p. Then for any two u1, u2 ∈ W 1,p solving

∂su+ J(z, u)∂tu+ C(z, u) = 0,

over some open subset of C, the set on which u1 = u2 up to infinite order is open and closed.

The proof of this fact is left as an exercise.

Exercise 1.7. Write down the linear Cauchy–Riemann type equation satisfied by the difference

u1 − u2 and deduce the Unique Continuation statement from the Carleman Similarity Principle.

Going in a different direction, the following is the analogue of Sard’s theorem in infinite dimen-

sions, which was proved by Smale.

Proposition 1.8 (Sard–Smale Theorem). Let X and Y be separable Banach spaces and let

U ⊂ X be an open subset. Suppose F : U → Y is a Fredholm map of class Cl such that

l ≥ max{1, ind(F ) + 1}. Then the set of regular values of F in Y is residual.

Here, y ∈ Y is said to be a regular value of F if y ∈ im(F ), and for any x ∈ F−1(y), the

differential dxF is surjective. For a full proof, one can consult [MS04, Theorem A.5.1].

The key idea of the generic transversality result is to apply the Sard–Smale Theorem to the

universal moduli space

M(x−, x+,H, J) := {(u,Gt) | Gt ∈ H, u ∈ M(x−, x+, Gt, J)}.
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Note that it admits a map

π : M(x−, x+,H, J) → H, (u,Gt) 7→ Gt.

The linearization of the map

C∞(R× S1,M)×H → Γ(R× S1, u∗TM)

(u,Gt) 7→ ∂su+ J(u)(∂tu−XGt(u))

can be written as

D̃u,Gt
: Ω0(R×S1, u∗TM)⊕H ∋ (ξ, ηt) 7→ Duξ−J(u)Xηt

(u) = Duξ+∇ηt ∈ Ω0(R×S1, u∗TM),

where we use the Riemannian metric g = ω(−, J−). As a result, given (u,Gt) ∈ M(x−, x+,H, J),

for (ξ, ηt) to lie in ker(dπ), we see that ηt = 0 and Duξ = 0. In other words, we can identify

ker(Du) with ker(dπ) at (u,Gt) ∈ M(x−, x+,H, J). Similarly, by working with the formal adjoint,

we see that coker(Du) ∼= coker(dπ). We summarize the discussion as follows.

Lemma 1.9. Let Hl be the Banach space

{Gt ∈ Cl(S1 ×M,R)|Gt = Ht up to order l near all x : S1 → M with ẋ(t) = XHt
(x(t))}.

Consider the universal moduli space

M(x−, x+,Hl, J) := {(u,Gt) ∈ W 1,p(R× S1,M)×Hl | ∂J,Gt
u = 0}.

Then the map
π : M(x−, x+,Hl, J) → Hl

(u,Gt) 7→ Gt

is Fredholm of class Cl, and the Fredholm index at (u,Gt), as a virtual vector space, can be

identified with ker(Du)− coker(Du). In particular, Du is surjective at (u,Gt) iff dπ is surjective.

Proof. The regularity class of π follows from the regularity assumptions on Gt. The closedness of

the image of the linearization of π is a consequence of elliptic regularity. The rest of the assertion

has been discussed above. □

In view of this Lemma, as long as we can prove that M(x−, x+,Hl, J) is a Cl Banach manifold,

we can use the Sard–Smale Theorem to prove the generic regularity statement, with a caveat of

going from Cl to C∞, about which we will discuss later.

Lemma 1.10. For any (u,Gt) ∈ M(x−, x+,Hl, J), the linearization

(ξ, ηt) 7→ Duξ +∇ηt

is surjective.

Proof. Note that we only need to produce enough ηt such that ∇ηt can kill the obstruction space

coker(Du). In other words, we need to show that for any ζ ∈ Cl(R× S1, u∗TM) such that

D∗
uζ = 0,

∫
R×S1

dηt(u)ζdsdt = 0, ∀ηt ∈ Hl,

we must have ζ ≡ 0.
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Note that any ζ ∈ Lq(R×S1, u∗TM) with D∗
uζ = 0 must be smooth by elliptic regularity. Here q

is the Hölder dual 1/p+ 1/q = 1. We work with l ≥ 2. We continue the proof with the following

steps.

• For any u ∈ M(x−, x+,Hl, J), the subset of R × S1 on which ∂su vanishes is discrete.

This follows from differentiating ∂J,Gt
u = 0 in the s-direction and apply the Carleman

Similarity Principle Theorem 1.4 to ∂su. Here we use the fact that x+ ̸= x−.

• For u ∈ M(x−, x+,Hl, J), denote by R(u) the set of points (s, t) ∈ R× S1 such that for

any s′ ̸= s, we have u(s′, t) ̸= u(s, t) and x±(t) ̸= u(s, t). We claim that R(u) is open and

dense. Then openness follows from observing that the complement is closed, which is a

consequence of elliptic regularity in view of the convergence discussion. For the density

property, please refer to [FHS95, Theorem 4.3]. Morally speaking, this is a consequence

of the fact that if we ask u(s, t) = u(s′, t) for s < s′, this necessities u(s′′, t) ≡ u(s, t) for

all s < s′′ < s′, which would imply that u is a constant.

• Now given a smooth ζ with D∗
uζ = 0, let’s take a point (s0, t0) ∈ R(u) such that

∂su(s0, t0) ̸= 0. Then we can find a smooth function ηt : S
1 ×M → R such that

(1) for t0 ∈ S1, the differential dηt at u(s0, t0) is equal to g(−, ζ(s0, t0));

(2) ηt has support in (t0 − ϵ, t0 + ϵ)× im
(
u|(s0−ϵ,s0+ϵ)×S1

)
;

(3) dηt(u(s, t))ζ(s, t) ≥ 0 holds everywhere.

Indeed, because (s0, t0) ∈ R(u), we can choose a cut-off function to extend ζ(s0, t0). Such

cut-off functions can be used to approximate the δ-distribution multiplied by ζ(s0, t0) at

(t0, u(s0, t0)) ∈ S1 ×M . Accordingly, the condition
∫
R×S1 dηt(u)ζdsdt = 0 implies that

ζ vanishes up to infinite order at (s0, t0).

• Finally, note that the Carleman similarity principle can be applied again to the equation

D∗
uζ = 0, so that we know that any ζ which vanishes up to infinite order at a point is

actually 0. So we have shown the surjectivity of the linearized operator at (u,Gt).

□

Upgrading to the C∞ world. This is known as the Taubes’ trick. We can define

Hreg,K := {Gt ∈ H | D̃u,Gt
is surjective for u ∈ M(x−, x+, Gt, J), |∂su| ≤ K},

and consider the space

Hreg :=
⋂
K∈N

Hreg,K .

We want to show that for each K ∈ N, the space Hreg,K is open and dense in H.

For the openness of Hreg,K ⊂ H, it suffices to argue that the complement is closed. Indeed, if we

have {(uν , G
ν
t )}ν such that Duν ,Gν

t
admits ην ̸= 0 with D∗

uν ,Gν
t
ην = 0 with (uν , G

ν
t )

ν→∞−−−−→ (u,Gt),

after normalizing ην to have norm 1 and passing to a subsquence, we can find ην → η with

D∗
u,Gη = 0. So we see that Hreg,K ⊂ H is open.

For density, note that we have

Hreg,K = (
⋂
l

H
reg,K
l ) ∩H.
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By Lemma 1.10 and the Sard–Smale theorem, we know thatHreg,K
l is dense inHl. Given Gt ∈ H,

viewing it as an element in Hl, we can choose a sequence {Gν,l
t } ⊂ H

reg,K
l converging in Cl. Then

a diagonal argument applied to the family with indices ν and l produces a sequence, and we can

approximate each of them by a smooth element in H
reg,K
l which is 2−ν-close in the Cl-norm,

which can be done due to the openness of regularity. Therefore, Hreg,K ⊂ H is dense. □

Inspecting the proof, one notes that the condition |∂su| ≤ K is not used: this means that the

above proof is not correct on the nose. Where does it go wrong? The point is, we cannot choose the

sequence (uν , G
ν
t )

ν→∞−−−−→ (u,Gt) directly in the proof of the openness. Instead, we can only find

Gν
t

ν→∞−−−−→ Gt such that each Gν
t admits uν ∈ M(x−, x+, Gν

t , J) with Duν
acquires a nontrivial

cokernel element. We need something more to ensure that after passing to a subsequence if

necessary, we can extract an limit uν
ν→∞−−−−→ u. This is where the assumption |∂su| ≤ K becomes

necessary, and we will study it in more detail when discussing the compactness of moduli spaces.

2. Variants of perturbations

There are two notable variants of the transversality argument exhibited above. It seems best to

leave them as exercises.

In the first setting, we consider the continuation map equation. For that, let’s choose a pair of

non-degenerate Hamitonians H±
t and a R-family of Hamiltonians Hs,t such that

lim
s→±∞

Hs,t = H±
t .

Then the continuation equation is defined to be

u : R× S1 → M, ∂su+ J(u)(∂tu−XHs,t
(u)) = 0,

where XHs,t
is defined by

dHs,t = ω(−, XHs,t).

Of course, we need to impose asymptotic conditions

lim
s→±∞

u(s, t) = x±(t)

where now x±(t) are respectively closed 1-periodic orbits of XH±
t
. We denote the moduli space

of such solutions by

M(x−, x+, Hs,t, J).

Then we can consider the space

H(H±) := {Hs,t : R× S1 ×M → R | lim
s→±∞

Hs,t = H±
t }.

And there is the universal moduli space

M(x−, x+,H(H±), J).

consisting of pairs (u,Hs,t) solving the continuation equation.
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Exercise 2.1. Derive the linearization of the equation which defines the space M(x−, x+,H(H±), J)

(ξ, ηs,t) 7→ Duξ +∇ηs,t

and find the correct domain of ηs,t.

Exercise 2.2. Show that there exists a residual subset of H(H±) such that for any Hs,t therein,

M(x−, x+, Hs,t, J) is regular.

In fact, the proof of this exercise is easier than the case of Floer trajectories. The point is to

choose cut-off functions in both the s and t directions, which is an additional flexibility as we

allow Hs,t to depend on s, to create an approximation of the delta functional .

In the second setting, we look at the so-called somewhere injective curves. Given a closed Riemann

surface (Σ, j) and an almost complex manifold (M,J), a J-holomorphic map

u : Σ → M, du ◦ j = J ◦ du

is called somewhere injective if there exists z0 ∈ Σ such that

• du : Tz0Σ → Tu(z0)M is injective;

• u−1(u(z0)) = {z0}.

Now we work with a compact symplectic manifold (X,ω). Denote by Jl the space of ω-compatible

almost complex structures of regularity class Cl. Then the statement we want is the following.

Proposition 2.3. Given J ∈ J, and u : (Σ, j) → M a somewhere-injective J-holomorphic map,

the universal moduli space

M(Σ, Jl,M) := {(v, J ′) ∈ W 1,p(Σ,M)× Jl | dv ◦ j = J ′ ◦ du}

is a smooth Banach manifold near (u, J).

Exercise 2.4. Write down the linearization of the map

W 1,p(Σ,M)× Jl →
⋃

u∈W 1,p(Σ,M)

Lp(Ω0,1
Σ (Σ, u∗TM))

(u, J) 7→ 1

2
(du+ J ◦ du ◦ j).

Here ∪u∈W 1,p(Σ,M)L
p(Σ, u∗TM) is the Banach vector bundle over W 1,p(Σ,M) whose fiber over

u is Lp(Ω0,1
Σ (Σ, u∗TM)).

Schematically, the answer is given by

(ξ, Y ) 7→ Duξ + Y ◦ du ◦ j,

where ξ ∈ W 1,p(Σ, u∗TM), Du is the analogue of the linear Floer operator with Ht ≡ 0, and Y

is an infinitesimal almost complex structure compatible with ω:

Y ∈ End(TM), J ◦ Y + Y ◦ J = 0, ω(−, Y−) + ω(Y−,−) = 0.
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Exercise 2.5. Show that for the injective point z0, if η ̸= 0 satisfies D∗
uη = 0, then we can find

Y as above which is supported near u(z0) such that∫
Σ

⟨η, Y ◦ du ◦ j⟩ > 0.

This exercise is done by a very similar argument as in the proof of Lemma 1.10. The solution will

lead to the proof of Proposition 2.3. As a consequence, by applying the Taubes’ trick with the

necessary ingredients about compactness of moduli spaces, one can show that the moduli space

of somewhere injective J-holomorphic maps with J generic is regular.

Exercise 2.6. A J-holomorphic map u : (Σ, j) → M is call multiply-covered if u can be written as

a composition u = v ◦ϕ where ϕ : (Σ, j) → (Σ′, j′) is a holomorphic branched cover of degree ≥ 2

and v : (Σ′, j′) → M is J-holomorphic. Understand why if u is multiply-covered, the construction

in Exercise 2.5 fails to hold.

3. The general principle

Given a Banach space X and a Banach vector bundle E → X, elliptic moduli problems produce

Fredholm sections
E

X

s

which come from elliptic partial differential equations. Usually, the Fredholm section s depends

on certain data (Riemannian metric, almost complex structure, or simply some inhomogeneous

terms), which can be parametrized by a Banach space P . Then the moduli problem admits an

extension
EP

X × P

sP

such that the universal moduli space

MP := s−1
P (0)

inherits the projection map

πP : MP → P.

It can be checked directly that for (x, p) ∈ MP , the kernel and cokernel of

dsP (x, p)|TxX : TxX → EP |(x,p)
exactly coincides with the kernel and cokernel of

dπP : T(x,p)MP → TpP,

provided that MP is a smooth manifold. The perturbation space P usually introduces 0-th

order perturbations of the differential operator, therefore, elliptic regularity ensures that dπP is

Fredholm. As a result, generic transversality is usually proven by the following two steps.
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(1) Show that dsP is surjective. This can be summarized as having enough perturbations.

(2) Apply the Sard–Smale theorem and the identification of Fredholm indices to conclude.

This is where the notion generic comes up.

Exercise 3.1. Suppose X is a compact finite-dimensional manifold and let E → X be a smooth

vector bundle. Show that the subset of C∞(Γ(X,E)) consisting of s : X → E transverse to the

0-section is residual, using C∞(Γ(X,E)) itself as the perturbation space P .

Exercise 3.2. Let M be a smooth compact manifold and suppose f : M → R is a Morse function.

Given two critical points x±, we can consider

M(x−, x+, f) := {(v, g) | v : R → M, g Riemannian metric , v̇ +∇gf(v) = 0, lim
s→±∞

= x±}

Show that M(x−, x+, f)k which consists of v ∈ W 1,2 and g ∈ Gk := space of Ck-metrics is a

smooth Banach manifold, with

πGk
: M(x−, x+, f)k → Gk

Fredholm of index ind(x+)− ind(x−). Then show that

M(x−, x+, f, g) := {v : R → M smooth | v̇ +∇gf(v) = 0, lim
s→±∞

v(s) = x±}

is a smooth manifold for generic (= residual subset) g.

In the above exercise, one can also perturb the negative gradient flow line equation using smooth

functions which are supported away from the critical points of f , like what we did for Floer

trajectories.
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