
Topic 1: Index theory

Useful references:

(1) Salamon’s notes [Sal99] provides a condensed overview of Hamiltonian Floer theory with

some technical details. For a more detailed exposition, one can consult Audin–Damian’s

book [AD14].

(2) A beautiful exposition of Fredholm theory of elliptic operators over manifolds with cylin-

drical ends is provided in Donaldson’s book [Don02, Chapter 3].

(3) A good place to look at general theory of elliptic operators on compact manifolds is Wells’

book on complex manifolds [Wel08, Chapter IV].

1. Linear Floer equation

(1a) Linearizing the Floer equation.

Given Ht : S
1 ×M → R and an ω-compatible almost complex structure J , recall that the Floer

equation is of the form

u : R× S1 → M, ∂su+ J(u)(∂tu−XHt
(u)) = 0.

Write the right hand side of the equation more compactly as

∂Ht,J : C∞(R× S1,M) → Γ(R× S1, u∗TM).

Let’s write down the linearization of ∂Ht,Jt . Choose a Riemannian metric g = ω(−, J−) on

M , which defines the Levi-Civita connection ∇ and the exponential map. Given a section ξ ∈
Γ(R× S1, u∗TM), let’s look at

Fu(ξ) := Φexpu(ξ)→u∂Ht,J(expu(ξ)),

where Φexpu(ξ)→u denotes the parallel transport from expu(ξ) to u along the shortest geodesic.

Then the linearization of ∂Ht,J at u along the direction of ξ is

Duξ :=
d

ds
|s=0Fu(sξ) = (∇s + J(u)∇t)ξ +∇ξ(J)(∂tu−XHt(u))− J(u)∇ξXHt(u).

Exercise 1.1. Show that there exists a isomorphism of vector bundles

Ψ(s, t) : R× S1 × R2n → u∗TM,

such that Ψ∗ω = ω0 and Ψ∗J = J0, the standard symplectic and complex structures on R2n.

Using Ψ(s, t), the pullback Ψ∗Du := Ψ−1 ◦Du ◦Ψ of Du is given by

η 7→ (∂s + J0∂t)η +Ψ−1
(
(∇s + J(u)∇t)Ψ +∇Ψ(−)(J)(∂tu−XHt

(u))− J(u)∇Ψ(−)XHt
(u)

)
η

:= (∂s + J0∂t)η + Sη,
1
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for η ∈ C∞(R × S1,R2n). If for s ≫ 1 we have Ψ(s, t) = Ψ+(t), and for s ≪ −1 we have

Ψ(s, t) = Ψ−(t), we see that

S±(t) := lim
s→±∞

S(s, t) = Ψ−1J±(t)(∇tΨ−∇Ψ(−)XHt
(u)) = J0(Ψ

−1 ◦ ∇tΨ−Ψ−1∇Ψ(−)XHt
(u)),

where we use the fact that lims→±∞ ∂tu(s, t) = XHt , corresponding to lims→±∞ u(s, t) is given

by 1-periodic orbits of XHt
(u). As a result, we see that at s = ±∞, Ψ∗Du can be written as

η 7→ (∂s + J0∂t)η + S±η = ∂sη + (J0∂t + S±)η.

Let’s inspect the formula

∂t +Ψ−1 ◦ ∇tΨ−Ψ−1∇Ψ(−)XHt
.

Given a loop x : S1 → M , we can define an element in Ω1(S1,hom(x∗TM))

−x∗(∇XHt
).

Then we can see that ∂t + Ψ−1 ◦ ∇tΨ − Ψ−1∇Ψ(−)XHt
is the formula for the connection d −

x∗(∇XHt) conjugated by Ψ if there were a preferred trivialization of x∗TM ∼= S1 × R2n such

that d = ∂t ⊗ dt.

(1b) Asymptotic operators and separation of variables.

The above calculation of the linearized Floer operator motivates the following definition.

Definition 1.2. Let x : S1 → M satisfy ẋ(t) = XHt
(x). The asymptotic operator of x with

respect to a trivialization Ψ : S1 × R2n ∼= x∗TM is

Lx : Γ(S1, S1 × R2n) → Γ(S1, S1 × R2n)

η 7→ J0(
d

dt
+Ψ−1 ◦ ∇tΨ−Ψ−1∇Ψ(−)XHt

).

Lemma 1.3. Lx is a self-adjoint opertor with respect to the inner product

⟨η1, η2⟩ =
∫
S1

gJ(η1, η2)dt.

If x is a non-degenerate fixed point of ϕHt , then Lx does not admit 0 as an eigenvalue.

Proof. Note that ∫
S1

gJ(η1, J0
d

dt
η2)dt =

∫
S1

−gJ(J0η1,
d

dt
η2)dt,

and

0 =

∫
S1

d

dt
gJ(J0η1,

d

dt
η2) =

∫
S1

gJ(J0
d

dt
η1,

d

dt
η2)dt+ gJ(J0η1,

d

dt
η2)dt,

we see that ∫
S1

gJ(η1, J0
d

dt
η2)dt =

∫
S1

gJ(J0
d

dt
η1, η2)dt.

On the other hand, J0(Ψ
−1 ◦∇tΨ−Ψ−1∇Ψ(−)XHt

) is a symmetric matrix because Ψ is unitary

and Ψ−1∇Ψ(−)J0XHt
comes from a Hessian. Therefore, Lx is self-adjoint.
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Consider a family of symplectic matrices

Ψ̃(t) : [0, 1] → Sp(2n)

t 7→ Ψ ◦ dϕt
H ◦Ψ−1,

which solves the equation

d

dt
Ψ̃ = −(Ψ−1 ◦ ∇tΨ−Ψ−1∇Ψ(−)XHt

)Ψ̃.

Choosing an identification S1 ∼= [0, 1]/ ∼, after lifting Lx to [0, 1], we can conjugate Lx using Ψ̃

to see that Ψ̃−1 ◦ Lx ◦ Ψ̃ = J0
d
dt . Then we see that η : [0, 1] → R2n descends to an eigenfuntion

of Lx iff η(0) = η(1) and Ψ̃−1(η) is a nonzero constant vector in R2n. This means that η(0) =

η(1) = dϕHt
(η(0)), so 1 is an eigenvalue of dϕHt

. This proves the second claim. □

From now on, we assume that Lx does not have 0 as an eigenvalue. Accordingly, there exists

δ > 0 such that if λ is an eigenvalue of Lx, we necessarily have |λ| ≥ δ. Now let’s consider the

cylinder with the operator

(1.1)
∂

∂s
+ Lx : Γ(R× S1,R× S1 × R2n) → Γ(R× S1,R× S1 × R2n).

Lemma 1.4. Suppose ρ ∈ Γ(R× S1,R× S1 × R2n) is a compactly supported. Then there exists

f ∈ Γ(R× S1,R× S1 × R2n) such that ( ∂
∂s + Lx)(f) = ρ and ∥f∥L2 ≤ δ−1∥ρ∥L2 .

Proof. Denote by {ϕλ} a complete set of eigenvectors of Lx. Write

ρ =
∑
λ

ρλ(s)ϕλ, f =
∑
λ

fλ(s)ϕλ

Using the eigen-function expansion. Then write

(
∂

∂s
+ Lx)f =

∑
λ

(f ′
λ(s) + λfλ(s))ϕλ,

so we would like to solve

f ′
λ(s) + λfλ(s) = ρλ(s).

Then the solutions are of the form

fλ(s) = e−λs

∫ s

−∞
eλτρλ(τ)dτ if λ > 0,

fλ(s) = −e−λs

∫ ∞

s

eλτρλ(τ)dτ if λ < 0.

Note that

(f ′
λ(s))

2 + (λfλ(s))
2 = ρλ(s)

2 − 2λf ′
λ(s)fλ(s) = ρλ(s)

2 − d

ds
(fλ(s)

2),

from which the integration gives us∫
(f ′

λ(s))
2 +

∫
(λfλ(s))

2 =

∫
ρλ(s)

2.

Summing over λ we see that ∥f∥L2 ≤ δ−1∥ρ∥L2 . Although this only provides a distributional

solution a priori, elliptic regularity ensures that f is actually smooth. □
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Recall that W 1,2(R × S1,R × S1 × R2n) is the Sobolev completion of Γ(R × S1,R × S1 × R2n)

under the norm ∥f∥L2 + ∥∇f∥L2 . We actually see that ∂
∂s + Lx extends to an operator

W 1,2(R× S1,R× S1 × R2n) → L2(R× S1,R× S1 × R2n),

and the above lemma shows that it is surjective. The same proof shows that for any ρ, there is

a unique f such that ( ∂
∂s + Lx)(f) = ρ. We record it as:

Proposition 1.5. ∂
∂s + Lx : W 1,2(R × S1,R × S1 × R2n) → L2(R × S1,R × S1 × R2n) is an

isomorphism with an inverse Q : L2 → W 1,2 such that ∥Qρ∥L2 ≤ δ−1∥ρ∥L2 .

Exercise 1.6. Consider the operator ∂
∂s +Lx restricted to the finite cylinder (−T, T )×S1. Show

that if ( ∂
∂s + Lx)f = 0, then∫

(−T,T )×S1

|f |2 ≤ 1

1− e−2δ

∫
(−T,−T+1)

|f |2 +
∫
(T,T−1)

|f |2.

Also, all derivatives of f decays exponentially in T .

(1c) Linearized operators are Fredholm.

We wish to show that the pullback of the linearized Floer operator Ψ∗Du, after being extended

to an operator W 1,2 → L2, is Fredholm. Actually, we would like to discuss a more general form

of elliptic theory of Cauchy–Riemann operators.

Let (Σ, j) be a punctured Riemann surface such that the punctures are endowed with cylindrical

ends, i.e., biholomorphic maps onto its image

ϵ+i : [0,∞)× S1 → Σ or ϵ−j : (−∞, 0]× S1 → Σ

such that the limit is a puncture in Σ. Given a complex vector bundle E → Σ of real rank 2n, a

differential operator

D : Ω0(Σ, E) → Ω0,1(Σ, E)

is called of Cauchy–Riemann type if for any smooth function f ∈ C∞(Σ,C) and s ∈ Ω0(Σ, E),

we have

(1.2) D(fs) = ∂(f)s+ fD(s),

where ∂ = 1
2 (d+J◦d◦j) is the standard Cauchy–Riemann operator and J is the fiberwise complex

structure on E. Going back to Σ, we consider its real-oriented blowups at the punctures, which

can be thought of as the image of the circle S1
j at ∞ of the cylindrical ends. We assume the

following data:

(1) for each puncture j, a trivialization of the vector bundle Φ±
j : S1 × R2n ∼= E|S1

j
;

(2) using the cylindrical coordinates and the trivialization Φ±
j , we require that the pullback

of D can be written as

∂s + J0(∂t + Sj(t)),

where Sj(t) is a family of symmetric matrices such that J0(∂t + Sj(t)) does not have 0

as an eigenvalue.

Of course, the linearized Floer operator is a special case.
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Proposition 1.7. Under the above assumptions, D : W 1,2 → L2 is a Fredholm operator:

• the kernel ker(D) is finite-dimensional;

• the image of D is a closed subspace of L2 of finite codimension in L2, which agrees with

the kernel of the formal adjoint D∗.

Proof. For the first assertion, it suffices to show that the unit ball of ker(D) under the L2-norm

is compact. Suppose {fk} is a sequence such that ∥fk∥L2 ≤ 1 and Dfk = 0. As the Cauchy–

Riemann operator is elliptic, we can find f∞ such that fk → f∞ in L2 over compact subsets of Σ.

It suffices to check that the convergence holds over the whole Σ. This follows from the estimate

in Exercise 1.6, which can be applied to the positive and negative case respectively.

For the second assertion, we construct an inverse of D modulo compact operators. Over the

cylindrical ends, using Proposition 1.5, we can find Qj : L2 → W 1,2 such that (∂s + J0(∂t +

Sj(t))) ◦Q = Id. In the complement of the cylindrical regions, we can choose a finite cover ∪Uk

and a smooth partition of unity subordinate to this cover 1 =
∑

k βk, such that the restriction of

D along Uk admits a right inverse Q̂k, whose existence follows from the ellipticity ofD. Extending

the partition of unity by choosing βj : Σ → [0, 1] which is equal to 1 over image of ϵj , we consider

Q =
∑
j

βjQj +
∑
k

βkQ̂k.

Then one can check that

DQ = Id+ compact operator.

Then the second assertion follows from standard Fredholm theory and the fact that coker(D) can

be identified with the L2 complement of im(D). □

Exercise 1.8. Recall the construction of paramatrices of elliptic operators.

More generally, it can be shown that D : W 1,p → Lp for any 1 < p < ∞ is a Fredholm

operator, which uses Calderon–Zygmund estimates and deeper theory of Sobolev spaces. On the

other hand, one can also work with W k,2 → W k−1,2 spaces with k ≥ 2, for which the Fouriere

analysis approach as above carries over without too much change except for keeping track of

more derivatives. In any case, the point of working with W 1,p with p > 2 or W k,2 with k ≥ 2 is

to ensure the compact embedding W 1,p,W k,2 ↪→ C0.

2. Index calculation

The goal is to derive the Fredholm index of Cauchy–Riemann type operators discussed in the

previous section.

(2a) Gluing and additivity of indices. Let (Σ1, j1) and (Σ2, j2) be punctured Riemann

surfaces with cylindrical ends. Choosing a negative cylindrical end ϵ1 : (−∞, 0] × S1 → Σ1 and

a positive cylindrical end ϵ2 : [0,+∞)× S1 → Σ2, consider

ΣR
1 := Σ1 \ ϵ1((−∞,−2R)× S1) and ΣR

2 := Σ2 \ ϵ2((2R,∞)× S1).
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Then we construct a new Riemann surface

Σ1#RΣ2

where the gluing is performed under the isomorphism

[−2R,−R]× S1 ∼= [R, 2R]× S1

(s, t) 7→ (s+ 3R, t)

over the cylindrical region. Now suppose (Σ1, j1) and (Σ2, j2) come with vector bundles E1 → Σ1,

E2 → Σ2 and Cauchy–Riemann type operators D1, D2, together with the trivializations and

asymptotic operators. If the data (E,Φ, S) agree over the cylindrical ends over which the gluing

is performed, we obtain a CR type operator DR over Σ1#RΣ2.

Theorem 2.1. For R sufficiently large, we have

ind(DR) = ind(D1) + ind(D2).

Proof. We first consider the case when both D1 and D2 are surjective. Define a smooth function

β1 on Σ1 which is equal to 1 as s ≥ −R (extended by 1 across the complement of the cylindrical

region) and has support within s ≥ −2R, with the condition that |∇β1| ≤ C/R for some constant

C > 0. On the other hand, choose β2 : Σ2 → R which is equal to 1−β1(s−3R, t) over [R, 2R]×S1,

and extended by 0 and 1 respectively over [2R,∞] × S1 and the complement of the cylindrical

region in Σ2. Given f1 ∈ Γ(Σ1, E1) and f2 ∈ Γ(Σ2, E2), we can define a section over Σ1#RΣ2 of

the form

β1f1 + β2f2,

where we reparametrize β1f1 over [R, 2R]×S1 using the shift s 7→ s+3R. We call this the gluing

of two sections.

On the other hand, over Σ1#RΣ2, we can choose two smooth functions as follows. For β′
1 :

Σ1#RΣ2 → R, it is supported in s ≥ −R in the copy of Σ1 and is equal to 1 in the complement

of the cylindrical region; for β′
2 : Σ1#RΣ2 → R, it is supported in s ≤ R in the copy of Σ2

and is equal to 1 in the complement of the cylindrical region. Then given a section f over

β′
1 : Σ1#RΣ2 → R, we obtain a pair of sections

β′
1f ∈ Γ(Σ1, E1) and β′

2f ∈ Γ(Σ2, E2),

which we call the breaking of a section.

Choosing bounded right inverses Q1 and Q2 of D1 and D2 respectively, consider the operator

Q̃R := gluing ◦ (Q1 ⊕Q2) ◦ breaking.

Then Q̃R is an approximate right inverse to DR in the following sense: there exists C > 0 such

that

∥DRQ̃R − Id∥W 1,2 ≤ C

R
.

Then for R sufficiently large, we see that

QR := Q̃
∑
k

(Id−DQ̃)k
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is a bounded right inverse to DR: the series
∑

k(Id − DQ̃)k converges via the the comparison

with geometric series, and recall that
∑

k(1 − x)k = 1
1−(1−x) = x−1. This shows that DR is

surjective.

We can define
ker(D1)⊕ ker(D2) → ker(DR)

(f1, f2) 7→ (Id−QR ◦DR)(β1f1 + β2f2),

which is now shown to be an isomorphism for R sufficiently large. For injectivity, it follows from

the unique continuation by restricting to the “bulk region” of Σ1 and Σ2 as the map sends the

sections f1 and f2 to itself. For surjectivity, note that over the neck region [0, 3R]×S1, the glued

operator DR has the form

∂s + J0(∂t + S(t)),

so we know that for any f ∈ ker(DR), its restriction to the neck region satisfies the exponential

decay in R. By looking at the projections to ker(D1) and ker(D2) of the breaking, we see that

f can be arbitrarily close to an element from gluing by making R sufficiently large. Then a

compactness argument by letting R → ∞ shows that if there exists f ∈ ker(D) which does not

come from gluing, this cannot happen. This establishes the surjectivity of gluing.

Finally, when D1 and D2 have nontrivial cokernels, we consider stabilization: choose finite di-

mensional vector spaces V1 and V2 with linear isomorphisms ι1 : V1
∼= coker(D1) and ι2 : V2

∼=
coker(D2), and look at the operators

D1 ⊕ ι1, D2 ⊕ ι2.

Then the index of the glued operator is calculated as

ind(DR) = ind(D1 ⊕ ι1) + ind(D2 ⊕ ι2)− dimV1 − dimV2

by the additivity of Fredholm indices under direct sums. □

The above proof shows not only the numerical additivity of Fredholm indices. If we use the same

notation ind(D) to denote the virtual vector space

ker(D)− coker(D),

the additivity relation

ind(DR) = ind(D1) + ind(D2).

remains to hold as virtual vector spaces.

Remark 2.2. The same proof as in Theorem 2.1 shows the following:

(1) If Ei → Σi are equipped with group actions some by Lie group G, the Fredholm in-

dex ind(Di) is a virtual G-representation, i.e., equivalence classes of difference of finite-

dimensional G-representations. Then ind(DR) = ind(D1) + ind(D2) holds in the repre-

sentation ring of G.

(2) Given a family of Fredholm data (Σi, Ei, Di) parametrized by compact topological spaces

Mi, the Fredholm index defines a virtual vector bundle ind(Di) → Mi. Then over the

product M1 ×M2, we can perform the gluing of Riemann surfaces to obtain a family of

Fredholm operators. Then ind(DR) = π∗
1 ind(D1)+π∗

2 ind(D2) in the K-theory of M1×M2.
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Exercise 2.3. Fill in the details of the second case.

(2b) Conley–Zehnder indices. Consider the Riemann surface C ∼= S2 \ {∞}, for which ∞ is

equipped with the positive cylindrical end [0,∞) × S1 → C taking (s, t) to es+2πit. Under the

cylindrical end, suppose that we are looking at the Cauchy–Riemann type operator on the trivial

bundle R2n

∂s + J0(∂t + S(t)).

We extend it to an operator

∂S : Γ(C,R2n) → Γ(C,R2n)

such that the restriction of ∂S to the unit disc agrees with the standard Cauchy–Riemann operator

∂s + J0∂t. Then we know that ∂S is a Fredholm operator after making the extension W 1,p → Lp

or W k,2 → W k−1,2. On the other hand, by solving the equation with initial condition Ψ(t) = Id

Ψ̇(t) = J0S(t)Ψ(t),

we obtain a 1-parameter family of symplectic matrices. The matrix S(t) can then be recovered

from Ψ(t) by taking derivative in t.

For a path of symplectic matrices Ψ(t) : [0, 1] → Sp(2n) with Ψ(0) = Id and Ψ(1) does not

have 1 as an eigenvalue, the Conley–Zehnder index µCZ of Ψ(t) is characterized by the following

properties:

(1) It’s invariant under conjugations: for Φ(t) : [0, 1] → Sp(2n). we have µCZ(ΦΨΦ−1(t)) =

µCZ(Ψ(t)).

(2) It’s invariant under homotopy relative to end points.

(3) If Ψ(t) does not have an eigenvalue on the unit circle for all t, then µCZ(Ψ(t)) = 0.

(4) For Ψ1(t) : [0, 1] → Sp(2n1) and Ψ2(t) : [0, 1] → Sp(2n2), the direct sum (Ψ1 ⊕ Ψ2)(t) :

[0, 1] → Sp(2(n1 + n2)) satisfies µCZ(Ψ1 ⊕Ψ2) = µCZ(Ψ1) + µCZ(Ψ2).

(5) For a loop Φ : S1 → Sp(2n) based at the identity, define µ(Φ) to be the degree of the

map det(Φ). Then µCZ(ΦΨ) = 2µ(Φ) + µCZ(Ψ).

(6) For a fixed symmetric matrix S, the path t 7→ exp(tJ0S) satisfies µCZ(exp(tJ0S)) =
1
2 sign(S) if ∥S∥ < 2π and sign denotes the signature.

(7) (−1)µCZ(Ψ(t)) = sign det(Id−Ψ(1)).

(8) For the inverse path Ψ−1(t), we have µCZ(Ψ
−1(t)) = −µCZ(Ψ(t)).

Exercise 2.4. Show that the above properties uniquely determine µCZ .

Proposition 2.5. Define S(t) via Ψ̇(t) = J0S(t)Ψ(t), then the Fredholm index of ∂S satisfies

the above properties is equal to n− µCZ(Ψ(t)).

Proof. (1), (2), (4) follows from standard properties of Fredholm indices. (3), (6), (7) follows

from model calculations after performing suitable homotopies. For (5) and (8), they follow from

the gluing formula of Fredholm indices of Cauchy–Riemann type operators. For a detailed proof

of (5), see [Abo15, Proposition 1.4.10]. □
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(2c) The index formula. Let (Σ, j) be a punctured Riemann surface with positive and negative

cylindrical ends ϵ+i , ϵ
−
j . Suppose E → Σ is a Hermitian vector bundle of rank n. IfD : Ω0(Σ, E) →

Ω0,1(Σ, E) is a Cauchy Riemann type operator, and under the trivializations of E restricted to

the cylindrical regions

Φ+
i : [0,∞)× S1 × Cn ∼−→ E|ϵ+i ([0,∞)×S1)

Φ−
j : (−∞, 0]× S1 × Cn ∼−→ E|ϵ−j ((−∞,0]×S1),

the operators are pulled back to

∂S+
i
= ∂s + J0(∂t + S+

i (t))

∂S−
j
= ∂s + J0(∂t + S−

j (t)),

we can produce the 1-parameter families of symplectic matrices Ψ+
i (t) and Ψ−

j (t).

Proposition 2.6. The Fredholm index of D is

ind(D) = nχ(Σ) +
∑
i

µCZ(Ψ
+
i )−

∑
j

µCZ(Ψ
−
j ).

Proof. Using the index gluing formula, we see that

ind(D) +
∑
i

(n− µCZ(Ψ
+
i ))−

∑
j

(n+ µCZ(Ψ
−
j ))

is equal to the Fredholm index of the standard ∂-operator on the trivial bundle Cn over the

compactification Σ, which is n(2− 2g(Σ)). □

In particular, we see that the Fredholm index of the linearized Floer operator is

µCZ(Ψ
+)− µCZ(Ψ

−).
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