
Topic 4: gluing

We continue the previous setup: (M,ω) is a compact symplectic manifold, with the simplifying

assumption that ω|π2(M) = 0, and Ht : S
1 ×M → R is a 1-periodic nondegenerate Hamiltonian.

We choose an ω-compatible almost complex structure J and assume that the moduli spaces

M(x−, x+) := M(x−, x+, Ht, J)

are all regular.

1. Generalities

Although M(x−, x+) may not be compact due to the existence of broken Floer trajectories as

limits, the space

M(x−, x+) =
⋃
r≥0

y1,...,yr

M(x−, y1)×M(y1, y2)× · · · ×M(yr, x
+)

is compact. The gluing construction gives rise to continuous injections

M(x−, y1)×M(y1, y2)× · · · ×M(yr, x
+)× [T0,∞]r → M(x−, x+)

which completely describe a neighborhood of M(x−, x+) near its boundaries and corners. We

focus on explaining how this can be done when r = 1, and we do not touch upon the issue of

constructing smooth gluing maps including the points at ∞.

2. Gluing in an example

Suppose that to compactify M(x1, x3), we need to add in the broken configuration

M(x1, x2)×M(x2, x3).

Our goal is to describe a gluing map for T0 ≫ 1

M(x1, x2)×M(x2, x3)× [T0,∞) → M(x1, x3),

which is a diffeomorphism onto its image. Moreover, we would like to argue that in the compact-

ified moduli space M(x1, x3), all the points near the image of M(x1, x2) × M(x2, x3) is exactly

obtained by gluing. For the following discussions, let T ∈ [T0,∞).

(2a) Pregluing. Let’s choose representatives u1 ∈ M(x1, x2) and u2 ∈ M(x2, x3). Equip u1 with

a positive cylindrical end near the puncture corresponding to x2 and equip u2 with a negative

cylindrical end near the puncture corresponding to x2.
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2 TOPIC 4: GLUING

Introduce the smooth cut-off function

χ(x) =

{
0, if x ≤ 0,

1, if x ≥ 1.

We can use it to “flatten” u1 and u2 by setting (here we use the coordinate over the cylindrical

ends)

u1(s, t) =


u1(s, t), if s ≤ T − 1,

expx2(t)(χ(T − s) exp−1
x2(t)

(u1(s, t))), if T − 1 ≤ s ≤ T,

x2(t), if s ≥ T,

u2(s, t) =


u2(s, t), if s ≥ −T + 1,

expx2(t)(χ(T + s) exp−1
x2(t)

(u2(s, t))), if − T ≤ s ≤ −T + 1,

x2(t), if s ≤ −T.

Because u1 and u2 match with each other over the ends, we can define a new map over R × S1

by introducing a neck-region S1 × [0, 6T ] of length 6T :

u(s, t) =


u1(s, t), if s ≤ T,

x2(t), if T ≤ s ≤ 5T,

u2(s− 6T, t), if s ≥ 5T.

The map u is usually called the pregluing of u1 and u2.

Because the moduli spaces M(x1, x2) and M(x2, x3) are transversely cut out, as manifolds, they

locally modeled on ker(Du1
) and ker(Du2

) respectively. When u1 and u2 vary, we use the following

pregluing of kernel elements to characterize such variation. Take κi ∈ ker(Dui
), define

κ(s, t) =



κ1(s, t), if s ≤ T − 1,

Φu1(s,t)→u1(s,t)(κ1(s, t)), if T − 1 ≤ s ≤ T,

Φu1(s,t)→u1(s,t)(κ1(s, t)) · χ(T + 1− s), if T ≤ s ≤ T + 1,

0, if T + 1 ≤ s ≤ 5T − 1,

Φu2(s−6T,t)→u2(s,t)(κ2(s− 6T, t)) · χ(s− 5T + 1), if 5T − 1 ≤ s ≤ 5T,

Φu2(s−6T,t)→u2(s,t)(κ2(s− 6T, t)), if 5T ≤ s ≤ 5T + 1,

κ2(s− 6T, t), if s ≥ 5T + 1.

Here the symbol Φ denotes the parallel transport. One can readily see that κ is a well-defined

element of Γ(R× S1, u∗TM). We will write the domain as ΣT .

(2b) Functional spaces and linear recap.

Fix δ > 0 whose with |δ| strictly less than the minimum of the absolute value of eigenvalues of

the asymptotic operator of x2, and fix k ≥ 4. We will work with the weighted Sobolev space

W k,2,δ, which combines the W k,2-norm over the compact regions of a punctured (Σ, j) and the

weighted W k,2 norm (we write down the square)∑
0≤j≤k

∫
S1×[0,∞)

|∇jξ(s, t)|2e2δsds ∧ dt or
∑

0≤j≤k

∫
S1×(−∞,0]

|∇jξ(s, t)|2e−2δsds ∧ dt
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over the cylindrical ends together with∑
0≤j≤k

∫
S1×[0,6T ]

|∇jξ(s, t)|2e2δmin(s,6T−s)ds ∧ dt

over the long-neck region S1× [0, 6T ]. Working with such spaces does not affect the index theory

but will provide convenient estimates in the nonlinear theory.

Exercise 2.1. Verify that using these norms, we have

∥Fu(κ(s, t))∥Wk−1,2,δ ≤ C · e−δ′T (∥κ1∥Wk,2,δ + ∥κ2∥Wk,2,δ)

for any 0 < δ′ < δ.

Going back to the preglued map u, the Floer operator is written as

Fu(ξ) = Φexpu(ξ)→u∂Ht,J(expu(ξ)) : W
k,2,δ(ΣT , u

∗TM) → W k−1,2,δ(ΣT ,Ω
0,1
ΣT

⊗ u∗TM).

In our discussion of index theories, we learned how to construct an approximate right inverse the

linearized operator Du after choosing bounded right inverses Qui of Dui . Let’s recall how it goes

because here we need to incorporate the parallel transport.

(1) The first step is breaking. Given η ∈ W k−1,2,δ(ΣT ,Ω
0,1
ΣT

⊗u∗TM), we would like produce

ηi ∈ W k−1,2,δ(R× S1,Ω0,1
R×S1 ⊗ u∗

i TM) using cut-off functions. Define

η1(s, t) =


η(s, t), if s ≤ 3T − 1,

χ(3T − s) · η(s, t), if 3T − 1 ≤ s ≤ 3T,

0, if s ≥ 3T,

η2(s, t) =


0, if s ≤ −3T,

χ(3T + s) · η(s+ 6T, t), if − 3T ≤ s ≤ −3T + 1,

η(s+ 6T, t), if s ≥ −3T + 1.

(2) Next, we use parallel transport to go from the flattened maps to the original maps ui.

So define

W k−1,2,δ(R× S1,Ω0,1
R×S1 ⊗ u∗

i TM) ∋ ηi(s, t) := Φui(s,t)→ui(s,t)ηi(s, t).

(3) Using the right inverses Qui
, we obtain elements

Quiηi ∈ W k,2,δ(R× S1, u∗
i TM).

Note that we can use parallel transport to get from Qu1
η1 a section in W k,2,δ(R ×

S1, u∗
i TM) supported over the bulk region union with the neck S1× [0, 6S], so is the case

for Qu2η2. We abuse the notation for the next bullet point.

(4) Finally, we can glue the above two sections together to obtain

Glue(Qu1
η1, Qu2

η2) =


Qu1η1, if s ≤ 2T,

χ(4T − s) ·Qu1η1 + χ(s− 2T )Qu2η2(s− 6T, t), if 2T ≤ s ≤ 4T,

Qu2η2(s− 6T, t), if s ≥ 4T.
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Combining these steps together, we obtain

Q̃u : W k−1,2,δ(ΣT ,Ω
0,1
ΣT

⊗ u∗TM) → W k,2,δ(ΣT , u
∗TM)

We can summarize the above construction using the following diagram

W k,2,δ(ΣT , u
∗TM) W k−1,2,δ(ΣT ,Ω

0,1
ΣT

⊗ u∗TM)

⊕
i=1,2 W

k,2,δ(R× S1, u∗
i TM)

⊕
i=1,2 W

k−1,2,δ(R× S1,Ω0,1
R×S1 ⊗ u∗

i TM)

⊕
i=1,2 W

k,2,δ(R× S1, u∗
i TM)

⊕
i=1,2 W

k−1,2,δ(R× S1,Ω0,1
R×S1 ⊗ u∗

i TM)

Du

Break

Q̃u

Glue

Du1
⊕Du2

Φui(s,t)→ui(s,t)
Φui(s,t)→ui(s,t)

Du1
⊕Du2

Qu1
⊕Qu2

Lemma 2.2. As an operator, Q̃u satisfies

∥Q̃u∥ ≤ C, ∥DuQ̃u − 1∥ ≤ 1

2

for T sufficiently large.

Proof. The only difference between the current setting and our discussion in the linear case is the

presence of parallel transport in the discussion, but the error introduced here can be effectively

controlled by the exponential decay behavior: u1(s, t) → x2(t) as s → ∞ exponentially fast with

decay rate > δ, and similarly for u2(s, t) as s → −∞.

The boundedness Q̃u is a straightforward consequence of the construction. For the rest, to be

more precise, what needs to be proved can be reduced to the following sequence of statements.

(1) For the bottom square, we can compute

∥(Du1 ⊕Du2) ◦
(
Φui→ui ◦ (Qu1 ⊕Qu2) ◦ Φui→ui

)
− 1∥

= ∥(Du1
⊕Du2

) ◦
(
Φui→ui

◦ (Qu1
⊕Qu2

) ◦ Φui→ui

)
− Φui→ui

◦
(
Du1

⊕Du2
) ◦ (Qu1

⊕Qu2
)
)
Φui→ui

∥

≤ ∥(Qu1
⊕Qu2

)
)
Φui→ui

∥ · ∥(Du1
⊕Du2

) ◦ Φui→ui
− Φui→ui

◦
(
Du1

⊕Du2
)∥.

The first operator in is bounded by our assumption. As for the second operator, one

can spell out the explicit formula of the linearized operators as what we did before. It

turns out that the operator norm is bounded from above by a constant multiple of the

Ck-distance of ui and ui, which is in turned bounded by C · e−δ′T for some δ′ > 0.

(2) For the top square, we wish to show that

∥Du −Glue ◦ (Du1
⊕Du2

) ◦ Break∥
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is sufficiently close to 0. This is the situation we encounter in the discussion of linear

gluing. The point is that our Sobolev weights and the support of the cut-off functions

have been chosen very nicely so that is again bounded by C · e−δ′T .

(3) Combining the above two steps, we have

∥Du ◦ Q̃u − 1∥

≤ ∥Du ◦ Q̃u −Glue ◦ (Du1
⊕Du2

) ◦ Break ◦Qu∥+ ∥Glue ◦ (Du1
⊕Du2

) ◦ Break ◦ Q̃u − 1∥

≤ C · ∥Du −Glue ◦ (Du1 ⊕Du2) ◦ Break∥+ ∥Glue ◦ (Du1 ⊕Du2) ◦ Break ◦ Q̃u − (Du1 ⊕Du2)

◦
(
Φui→ui

◦ (Qu1
⊕Qu2

) ◦ Φui→ui

)
∥+ ∥(Du1

⊕Du2
) ◦

(
Φui→ui

◦ (Qu1
⊕Qu2

) ◦ Φui→ui

)
− 1∥.

The middle term can be estimated by tracing through the definition.

Then one sees that for T ≫ 1, we have the desired bounds. □

The upshot is, we can define the bounded genuinely right inverse Qu of Du using

Q̃u ◦ (DuQ̃u)
−1 = Q̃u ◦ (1− (1−DuQ̃u))

−1 = Q̃u ◦
∑
k≥0

(1−DuQ̃u)
k.

(2c) Gluing map and Newton–Picard iteration.

We wish to perturb the map expu(s,t)(κ(s, t)) by an element in im(Qu) to obtain a genuine

solution to the Floer equation. In other words, we would like to solve the equation

Fu(κ(s, t) +Quη) = 0

for η ∈ W k−1,2,δ(ΣT ,Ω
0,1
ΣT

⊗ u∗TM). The following discussion is useful for thinking about this

equation. Using the linearization Du, we can write the Taylor expansion of Fu as

Fu = Du + quadratic terms,

which can be formulated precisely as follows.

Lemma 2.3. Given ξ1, ξ2 ∈ W k,2,δ(ΣT , u
∗TM), we have

∥Du(ξ1 − ξ2)− (Fu(ξ1)− Fu(ξ2))∥Wk−1,2,δ ≤ C · ∥ξ1 − ξ2∥Wk,2,δ · (∥ξ1∥Wk,2,δ + ∥ξ2∥Wk,2,δ). □

For the proof, one can look at [MS04, Proposition 3.5.3]. The result is, of course, expected from

the point of view of Taylor expansions.

Now we can use the previous preparation to define the gluing map. This process is an explicit

implementation of the contraction mapping principle as in the proof of implicit function theorems,

usually referred to as the Newton–Picard iteration.

Proposition 2.4. There exists a C ′ > 0 such that for ∥κi∥ sufficiently small, the equation

Fu(κ(s, t) +Quη) = 0

with the constraint ∥η∥ ≤ C ′ admits a unique solution.
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Proof. Note that the equation we would like to solve is equivalent to

η − Fu(κ(s, t) +Quη) = η,

in other words, the fixed point of the mapping

η 7→ η − Fu(κ(s, t) +Quη).

Set ξ1 = κ(s, t) +Quη1 and ξ2 = κ(s, t) +Quη2 in the quadratic estimate, we see that

∥η1−η2−(Fu(κ(s, t)+Quη1)−Fu(κ(s, t)+Quη2)))∥ ≤ 2C·∥Qu∥·∥η1−η2∥·(∥κ(s, t)∥+∥Quη1∥+∥Quη2∥).

Therefore, we see that we can choose C ′ such that for ∥κi∥ sufficiently small we necessarily have

∥η1 − η2 − (Fu(κ(s, t) +Quη1)− Fu(κ(s, t) +Quη2)))∥ ≤ 1

2
∥η1 − η2∥

when ∥ηi∥ ≤ C ′. Moreover, the condition ∥η∥ ≤ C ′ can be assumed to be preserved under such a

contraction mapping. This is true because the quadratic estimates applied to ξ1 = κ(s, t) +Quη

and ξ2 = κ(s, t) gives us

∥η − (Fu(κ(s, t) +Quη)− Fu(κ(s, t)))∥ ≤ 2C · ∥Quη∥ · (∥Quη∥+ ∥κ(s, t)∥),

the estimates ∥Fu(κ(s, t)))∥ ≤ C · (∥κ1∥+ ∥κ2∥), and the quadratic term ∥Quη∥2.

Then the iteration is given by

η0 := κ,

ηm := ηm−1 − Fu(κ(s, t) +Quηm−1).

This is a Cauchy sequence, which admits a limit in the complete metric space, the C ′ closed ball

in W k−1,2,δ(ΣT ,Ω
0,1
ΣT

⊗ u∗TM). The limit is the defined to be η, and it solved the genuine Floer

equation by construction. Uniqueness is straightforward: ∥η − η′∥ ≤ 1
2∥η − η′∥ if η and η′ are

fixed points. □

To sum up, given (u1, u2, T ) ∈ M(x1, x2) ×M(x2, x3) × [T0,∞), together with κ1 and κ2 which

are elements in the local coordinate chart of u1 and u2 respectively defined from the kernel of

the linearized operator, we find a solution to the Floer equation

Fu(κ(s, t) +Quη) = 0

from the Newton–Picard iteration. This is the gluing map

(κ1, κ2, T ) ∈ ker(Du1
)× ker(Du2

)× [T0,∞) → M(x1, x3).

Note that for κi sufficiently small, Fui
(κi) is very close to 0. Using the right inverses Qui

, one

can then use the same idea to find a unique ηi ∈ W k−1,2,δ(R× S1,Ω0,1
R×S1 ⊗ u∗

i TM) such that

Fui
(κi +Qui

ηi) = 0.

This produces maps

ker(Du1
) → M(x1, x2), ker(Du2

) → M(x2, x3)
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which is a diffeomorphism onto its image. This should be thought of as the “exponential map”

on the moduli spaces. Using the exponential map as local coordinates, we can view the gluing

map as

M(x1, x2)×M(x2, x3)× [T0,∞) → M(x1, x3).

(2d) Properties of the gluing map.

We wish to show that the gluing map completely describe the boundary of the compactified

moduli space M(x1, x3). In other words, we would like to see that the gluing map is smooth,

injective, and surjective.

Exercise 2.5. Trace through the construction to show that the gluing map is smooth. This can

be formally summarized as the smooth dependence of the implicit functions on parameters.

For the injectivity, note that the neck length of two glued maps with the same image should

agree. Suppose that we have (κ1, κ2) ∈ ker(Du1)× ker(Du2) and (κ′
1, κ

′
2) ∈ ker(Du1)× ker(Du2)

such that

expu(κ+Quη) = expu(κ
′ +Quη

′).

See we see that

κ+Quη = κ′ +Quη
′,

to which we can apply Du to see that η = η′, so we know that κ = κ′. Then the agreement of

(κ1, κ2) and (κ′
1, κ

′
2) follows from the linear pregluing and unique continuation.

For surjectivity, let’s assume that we are given uν : ΣTν
→ M in M(x1, x3) with Tν → ∞ as

ν → ∞ such that uν converges to the broken trajectory formed by u1 and u2. We want to show

that for ν sufficiently large, any uν comes from gluing. Then using the preglued map uν from

the flattened maps uν
1 and uν

2 with respect to the parameter Tν , we can define ξν by the formula

expuν (ξν) = uν .

Then we know that ∥ξν∥C0 → 0 as ν → ∞. We then break the discussion into two parts.

(1) Over the “bulk region” of the glued surface ΣTν , i.e., away from the neck region S1 ×
[2, 6Tν − 2], we necessarily have uν converges uniformly in all of its derives over compact

subsets to u1 and u2 in the respective region. This is true by the nature of Gromov–

Floer compactness. Moreover, the sequence ξν converges uniformly in all of its derives

over compact subsets to 0.

(2) Over the neck region S1 × [Tν , 5Tν ], let’s observe that ξν can also be obtained via the

equation

expx2(t)(ξν(s, t)) = uν(s, t)

because uν is flattened to be the Hamiltonian orbit x2(t). We further define ξ̃ν over the

neck region S1 × [0, 6Tν ] using

expx2(t)(ξ̃ν(s, t)) = uν(s, t).
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Then [Sal99, Lemma 2.11] can be modified to prove that over 1 ≤ s ≤ N − 1, we have

|∇k ξ̃ν(s, t)| ≤ Ck(e
−δ′′s(

∫
S1

|ξ̃(0, t)|2)1/2 + e−δ′′(6Tν−s)(

∫
S1

|ξ̃(6Tν , t)|2)1/2).

Therefore, we see that ξν → 0 in the W k,2,δ-norm. We can write

ξν = κν +Quνην

where κν ∈ ker(Duν
). Then for ν sufficiently large, if we apply the Newton–Picard iteration to

κν over the preglued curve uν , the η solved there is necessarily ην due to the uniqueness, which

we can use because κν has norm sufficiently close to 0.
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