
Topic 3: compactness

1. Energy inequalities

Let (Σ, j) be a punctured Riemann surface equipped with cylindrical ends. Still, (M,ω) is a

compact symplectic manifold and J is an ω-compatible almost complex structure.

(1a) Inhomogeneous Cauchy–Riemann equations. The space C∞(M) is a Lie algebra

under the Poisson bracket

(f, g) 7→ {f, g} := LXf
g = ω(Xf , Xg),

which is the Lie algebra of the group of Hamiltonian diffeomorphisms. We can consider the space

of Hamiltonian connections, which is modeled on

Ω1(Σ, C∞(M)),

1-forms valued in the Lie algebra C∞(M). Once choosing α ∈ Ω1(Σ, C∞(M)), we can write

down a Cauchy–Riemann type equation

(du−Xα(u))
0,1
J = 0.

It means the following. Given such α, if we choose local coordinates (s, t) ∈ U ⊂ Σ, we can write

α = Fds+Gdt, where F,G ∈ C∞(U,C∞(M)). Then using the relation dH = ω(−, XH), we can

define the 1-form over Σ taking value in X(M), the space of vector fields on M ,

Xα = XF ds+XGdt.

Then Xα can be viewed as a vector bundle homomorphism of

(π∗
ΣTΣ, π

∗
Σj) (π∗

MTM, π∗
MJ)

Σ×M,

so is du. Then the notation (−)0,1J is the projection to the complex anti-linear part

− 7→ 1

2
(−+ J ◦ − ◦ j).

Important special cases of this equation include the following.

(1) When α ≡ 0, we have the standard J-holomorphic map equation

du ◦ j = J ◦ du.

(2) If Σ = R × S1 and the α = Htdt, which is pulled back via the projection R × S1 → S1,

because Xα = XHtdt, we obtain the Floer equation

∂su+ J(u)(∂t −XHt
(u)) = 0.
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(3) If Σ = R× S1 and the ds-component of α is 0, i.e., α = Hs,tdt, we get the continuation

equation

∂su+ J(u)(∂t −XHs,t(u)) = 0.

(4) In general, because we are supposed to use (du −Xα(u))
0,1
J = 0 to define operations in

Floer theory, we require the following constraint. Suppose ϵ : [0,+∞) → Σ or (−∞, 0]×
S1 → Σ is either a positive or negative cylindrical end. Then we ask

ϵ∗α = Htdt

for some 1-periodic Hamiltonian Ht ∈ C∞(S1 × M,R). In particular, the equation is

reduced to the Floer equation over the cylindrical ends.

(1b) Energy estimate. Now consider the product Σ×M . Then for any α ∈ Ω1(Σ, C∞(M)), we

can define α̃ ∈ Ω1(Σ×M), whose value as a linear functional at the tangent space of (z, x) ∈ Σ×M

takes (ξ, η) to αz(ξ)(x). Then we can define a 2-form on Σ×M

ωα := π∗
Mω − dα.

Exercise 1.1. Show that under the local coordinate α = Fds+Gdt, the 2-form ωα can be written

as

ω − dMF ∧ ds− dMG ∧ dt+ (∂tF − ∂sG)ds ∧ dt,

where dM denotes the de Rham differential along the M -direction.

The 2-form ωα defines a connection of the projection πΣ : Σ×M → Σ as follows. We declare the

horizontal space at (z, x) ∈ Σ×M to be

{(ξ′, η′) ∈ T(z,x)(Σ×M) | ∀(ξ, η) ∈ ker(dπM )(z,x), we have ωα

(
(ξ, η), (ξ′, η′)

)
= 0},

i.e., the symplectic orthogonal complement of the vertical tangent space.

Lemma 1.2. The connection associated with ωα has curvature Fα given by

(∂sG− ∂tF + {F,G})ds ∧ dt

using the local coordinates α = Fds+Gdt.

Proof. One can see that the horizontal lifts of ∂s and ∂t are respectively

∂s +XF , ∂t +XG.

Then the projection of [∂s +XF , ∂t +XG] to the vertical direction is

X∂sG −X∂tF +X{F,G}.

Translating back to the Lie algebra C∞(M), we obtain the desired formula. □

Definition 1.3. The geometric/analytic energy of a solution to (du −Xα(u))
0,1
J = 0 is defined

to be

Egeom(u) :=
1

2

∫
Σ

|du−Xα(u)|2dvolΣ.
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Proposition 1.4. For u : Σ → M satisfying (du−Xα(u))
0,1
J = 0, we have

Egeom(u) =

∫
Σ

u∗ω +

∫
Σ

Fα(u).

Proof. Let’s perform some calculations. In the local coordinates (s, t), the equation can be written

as (
∂su−XF (u)

)
+ J(u)

(
∂t −XG(u)

)
= 0.

Therefore, treating ds and dt as orthonormal basis, we have

1

2
|du−Xα(u)|2dvolΣ

=
1

2

(
gJ(∂su−XF (u), ∂su−XF (u)) + gJ(∂tu−XG(u), ∂tu−XG(u)

)
ds ∧ dt

=
1

2

(
ω(∂su−XF (u), J(u)(∂su−XF (u))) + ω(∂tu−XG(u), J(u)(∂tu−XG(u))

)
ds ∧ dt

= ω(∂su−XF (u), ∂tu−XG(u))ds ∧ dt

= u∗ω + Fα(u).

In the third line, we use the compatibility g(−,−) = ω(−, J−) in the fourth line, we use the

equation satisfied by u; the last line is derived by tracing through the definition. □

In contrast with the geometric energy, we can define topological energy Etop(u) in the following

context. All the definitions satisfy the important estimate

Egeom(u) ≤ Etop(u).

(1) If α ≡ 0 and Σ is a closed Riemann surface such that u∗([Σ]) = A ∈ H2(M,Z), then

Egeom(u) =

∫
Σ

u∗ω = ω(A) =: Etop(u).

That is to say, after prescribing the homology class of a J-holomorphic map, Egeom(u)

is uniformaly bounded from above by ω(A).

(2) For the Floer equation, note that we have

Egeom(u) =

∫
R×S1

ω(∂su, ∂tu−XHt
(u))ds ∧ dt =

∫
R×S1

u∗ω −
∫
R×S1

dHt(u)(∂su)ds ∧ dt.

Because dHt(u)(∂su)ds ∧ dt = d(Ht(u)) ∧ dt, if lims→±∞ u(s, t) = x±(t), we see that the

last integral becomes ∫
S1

Ht(x
+(t))dt−

∫
S1

Ht(x
−(t))dt,

so we have

0 ≤ Egeom(u) =

∫
R×S1

u∗ω −
∫
S1

Ht(x
+(t))dt+

∫
S1

Ht(x
−(t))dt.

Furthermore, if the orbits x± are capped by u± : D2 → M , the above formula is further

reduced to∫
D2

(u+)∗ω −
∫
S1

Ht(x
+(t))dt− (

∫
D2

(u−)∗ω −
∫
S1

Ht(x
−(t))dt),
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which is the difference of the action functional −A([x+, u+]) +A([x−, u−]). Thus, under

our convention, the Floer differential does not decrease the energy. In this case, we

declare Etop = −A([x+, u+]) +A([x−, u−]).

(3) For the continuation map equation defined using α = Hs,tdt with asymptotics lims→±∞ u(s, t) =

x±(t) (capped) Hamiltonian orbits of H±
t , we have

Egeom(u) = −A([x+, u+]) +A([x−, u−]) +

∫
R×S1

∂sHs,t(u)ds ∧ dt.

Therefore, if we ask for the pointwise condition ∂sHs,t ≤ 0, we see that

Egeom(u) ≤ −A([x+, u+]) +A([x−, u−]) =: Etop(u),

which can be used to define continuation maps preserving the energy filtration. More

generally, the pointwise condition

Fα

ds ∧ dt
≤ 0

ensures that Egeom(u) is bounded from above by the weighted sum of the energy of the

action functional at the critical points.

2. Useful results for compactness

The general question is the following: given a sequence of pseudo-holomorphic maps uk : Σk → M ,

how to ensure that a limit exists in a suitable sense? Note that this covers the setting of Floer

equations because of Gromov’s graph trick. We collect some useful analytic results.

(2a) C∞
loc-convergence. The following statement is deduced from elliptic bootstrapping tech-

nique, which also appears in other contexts like gauge theory.

Theorem 2.1. Let (M,J) be an almost complex manifold. Suppose Jk → J is a sequence of

almost complex structures which converges to J in the C∞ topology. Then given a Riemann

surface (Σ, j) with smooth maps

uk : Σ ⊃ Ωk → M

defined over an increasing sequence of precompact open subsets Ωk exhausting Σ satisfying

duk ◦ j = Jk ◦ du

and the uniform bound

sup
k

|duk| < ∞

over any compact subset K ⊂ Σ, we can find a smooth map

u : Σ → M, du ◦ j = J ◦ du

such that {uk} admits a subsequence which converges uniformly in all derivatives to u over com-

pact subsets of Σ.

In other words, uniform control on the derivative ensures sequential compactness.
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Proof. This is a typical application of the elliptic bootstrapping technique. We first show that

for any u : (D2, j) → (M,J) satisfying

∂su+ J(u)∂tu = 0,

we have |Dku(0)| ≤ C · ∥u∥C1 for some C depending on M , J , and k. Indeed, we can apply the

operator ∂s − ∂tJ(u) to the J-holomorphic map equation to obtain

uss + utt = J̇(u, ut)us − J̇(u, us)ut.

As the RHS has L2-norm bounded from above by ∥u∥C1 , standard properties of the Laplacian

operator implies that ∥u∥W 2,2(K) ≤ C · ∥u∥C1 for any compact subset K of the open 2-disc D◦.

Using the pointwise bound on J̇ due to the assumption that ∥du∥C0 is bounded, we deduce

that over any such K, the RHS has W 1,2-norm bounded from above by C · ∥u∥C1 . Because of

this, we can apply the elliptic regularity of the Laplacian operator again to conclude that over

any K ⊂ D◦, we have ∥u∥W 3,2 ≤ C · ∥u∥C1 . Then use such W 3,2-bound, we see that the RHS

has W 2,2-bound controlled by a constant multiple of ∥u∥C1 , which then implies the W 4,2-bound

on u on compact subsets of D◦. Iterating, we see that for any k ≥ 1, there exists a constant

C = C(k,M, J) such that

∥u∥Wk,2(K) ≤ C · ∥u∥C1

for any compact K ⊂ D◦. Using the Sobolev embedding Ck ↪→ W k′,2 for suitable k′, we obtain

the desired estimate by specializing to the point 0. 1

Going back to the situation we have. Inspecting the proof, we see that the constant C in the final

estimate depends continuously on the first k + 2 derivatives of J . Therefore, for any compact

subset K ⊂ Σ, upon passing to a subsequence, we see that for any m ≥ 0, we have the uniform

bound

∥uk∥Cm ≤ C · sup
k

|duk|

where C depends on M,J, and m. Using the Arzelà–Ascoli theorem, and combining the diagonal

argument with the exhausting family of open subsets of Σ, after passing to a subsequence, we

can find u : Σ → M such that uk → u uniformly in all derivatives over compact subsets of Σ. It

follows from the construction that u satisfies du ◦ j = J ◦ du. □

(2b) Bubbling. From the discussion on C∞
loc-convergence, we see that sequential compactness

of J-holomorphic maps may fail if the gradient blows up.

One typical example is the following. Let’s look at the holomorphic u : D2 → CP 1 defined

by embedding the unit disc. We endow CP 1 with the Fubini–Study metric. Then consider

uN : D2 u−→ D2 ×N−−→ C ⊂ CP 1. We see that the geometric energy of uN is the same as

Egeom(u). However, the gradient of uN blows up at 0 for obvious reasons. On the other hand,

we can rescale the domain of uN by D2
N

×1/N−−−−→ D2, a conformal reparametrization. Then

the rescaled map converges to the identity map CP 1 → CP 1 except at ∞, while the original

sequence {uN} converges to ∞ away from 0 ∈ D2. In other words, we should think the limit as

u : CP 1 ∧D2 → CP 1, which is the identity map over CP 1 and the constant map to ∞ over D2.

1The same argument can be applied to the Sobolev spaces Wk,p using Calderon–Zygmund estimates.
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Exercise 2.2. Consider holomorphic maps CP 1 → CP 1, which can be presented as a rational

function

z 7→ u(z) =
p(z)

q(z)

where p(z) and q(z) are polynomials in z. Then the degree of the map is simply the maximum of

the degrees of p(z) and q(z), prescribing the topological and geometric energy.

(1) Equipping CP 1 with the Fubini–Study metric (1+x2+ y2)−2dx∧ dy, show that the norm

of the derivative of u(z) satisfies

|du(z)|FS =
√
2|u′(z)| 1 + |z|2

1 + |u(z)|2
.

(2) Consider the sequence of rational maps

uk(z) =
zp(z)

(z − ak)q(z)

for some degree k polynomials p(z) and q(z) with p(0) = q(0) = 1 which are coprime to

each other. Moreover, assume that ak → 0. Show that duk(0) diverges but uk converges

uniformly to a holomorphic map on CP 1 \ {0}. Construct reparametrizations of uk so

that the new sequence converges to a degree 1 rational function.

Next, we provide a general discussion of these so-called bubbling-off analysis.

Lemma 2.3 (Hofer’s lemma). Let (X, d) be a complete metric space, let f : X → R≥0 be

locally bounded, and let M < ∞. For every p0 ∈ X, there exists p ∈ X with f(p) ≥ f(p0) and

d(p, p0) ≤ 2Mf(p0)
−1 such that d(x, p) ≤ M · f(p)−1 ⇒ f(x) ≤ 2f(p).

Proof. Let’s argue by contradiction. Suppose that p0 itself does not satisfy the said property.

Then we can find p1 such that d(p0, p1) ≤ M · f(p0)−1 and f(p1) > 2f(p0). If p1 still violates the

desired property, then we can find p2 with d(p1, p2) ≤ M ·f(p1)−1 and f(p2) > 2f(p1). Iterating,

we see that for any k ≥ 1, we will find pk with d(pk−i, pk) uniformly bounded by C · 2−i but

f(pk) ≥ 2kf(p0). By the completeness of X, we see that pk → p by passing to a subsequence but

f(p) = ∞, contradicting the boundedness assumption on f . □

Hofer’s lemma can be applied in the following way. Suppose we have a sequence of J-holomorphic

maps uk : (Σ, j) → (M,J) and a sequence of points {zk} ⊂ Σ such that |du(zk)| → ∞. For each k,

let f(z) = |du(z)| and let p0 = zk. SettingM = |du(zk)|1/2. Then we can find z′k, which is the p in

Hofer’s lemma, such that for any z ∈ Σ with d(z, z′k) ≤ 1/
√
|du(z′k)| we have |du(z)| ≤ 2|du(z′k)|.

Choosing local coordinates around z′k, we can consider the reparametrized map

ũk := z 7→ u(
z

|du(z′k)|
+ z′k)

defined over the ball in C centered at 0 with radius
√
|du(z′k)|. Then ũk satisfies |dũk| ≤ 2, so

we see that after passing to a subsequence, ũk converges to a holomorphic plane ũ : C → M .
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(2c) Convergence modulo bubbling. Combining the discussion in the previous two subsec-

tions, we can state the key compactness result.

Theorem 2.4. Let (M,J) be an almost complex manifold. Suppose Jk → J is a sequence of

almost complex structures which converges to J in the C∞ topology. Let (Σ, j) be a Riemann

surface with smooth maps

uk : Σ ⊃ Ωk → M

defined over an increasing sequence of precompact open subsets Ωk exhausting Σ satisfying

duk ◦ j = Jk ◦ du

and the uniform bound on the geometric energy

1

2

∫
Ωk

|duk|2dvolΩk
< ∞

We can find a smooth map

u : Σ → M, du ◦ j = J ◦ du

and a finite set of points Z = {z1, . . . , zl} ⊂ Σ such that

(1) {uk} admits a subsequence (written using the same notation) which converges uniformly

in all derivatives to u over compact subsets of Σ \ Z.

(2) For every j and ϵ > 0 the limit

m(zj , ϵ) := lim
k→∞

E(uk, Bϵ(zj)) := lim
k→∞

1

2

∫
Bϵ(zj)

|duk|2dvol

exists and is a continuous function in ϵ. Moreover, m(zj) := limϵ→0 m(zj , ϵ) is uniformly

bounded from below by a constant ℏ depending only on (M,J).

(3) We have the conservation of energy

lim
k

Egeom(uk) = Egeom(u) +
∑
j

m(zj).

For the full proof, please consult [MS04, Chapter 4]. We only list some ingredients without

providing the full proof.

(1) For a holomorphic plane u : C → (M,J) constructed from the bubbling analysis, using

the reparametrization z 7→ 1/z, investigating u near ∞ follows into the investigations of

holomorphic u : D2 \ {0} → M with bounded energy. The following is known as the

Removal Singularity Theorem.

Theorem 2.5. If u : D2\{0} → (M,J) has bounded geometric energy and compact image

after taking closure (to deal with when M is noncompact), then u extends smoothly across

0 to be a J-holomorphic map on the whole D2.

Accordingly, the J-holomorphic planes are actually extendable to J-holomorphic spheres,

explaining the name bubbles.

(2) The lower bound m(zj) ≥ ℏ is known as energy quantization. It is usually deduced from

the so-called mean-value inequality, a form of ϵ-regularity.
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Theorem 2.6. Given an almost complex manifold (M,J), there exists δ > 0 and C > 0

such that for any J-holomorphic u : D2
r → (M,J), we have∫

D2
r

|du|2dvol ≤ δ ⇒ |du(0)| ≤ C

r2

∫
D2

r

|du|2dvol.

We can prove the energy quantization from here very easily. Assume that for (M,J),

for any ϵ > 0, we can find u : S2 → M non-constant which is J-holomorphic and

Egeom(u) ≤ ϵ. For ϵ < δ, we can choose Dr to be the open ball in C ⊂ S2. Since we are

free to choose the origin and r can be arbitratily large, we see that du ≡ 0, contradicting

the assumption that u is not a constant.

(3) Using energy quantization, it is easy to see that there are only finitely many bubbles

assuming the bound on geometric energy. In reality, this is ensured by the relation

between geometric and topological energy.

3. Convergence of trajectories

Now we can use generalities on compactness aspects of J-holomorphic maps to see how to com-

pactify the moduli spaces of Floer trajectories. We use the notation M(x+, x−, Ht, J) that we

introduced before. Then we know that if x± is equipped with cappings u± : D2 → M , we have

Egeom(u) = −A([x+, u+]) +A([x−, u−]) < ∞,

where the bound is uniform for all the elements in M(x+, x−, Ht, J).

For a Floer trajectory u : R× S1 → M , the punctures at infinities are not removable in general

as u converges to Hamiltonian orbits. Nevertheless, to connect with our previous discussion, note

that we have a conformal map

R× S1 → C \ {0}, (s, t) 7→ es+2πit.

The failure of sequential compactness can then be caused by blow-up of gradients near 0 or ∞,

viewing C\{0} ⊂ CP 1. Going back to the cylinder R×S1, it means that the energy concentration

can happen over the infinite parts of R × S1. This is why you see broken trajectories in the

compactification procedure. To emphasize the trajectory feature of Floer equations, we make the

following simplifying assumption.

Assumption 3.1. (M,ω) is symplectically aspherical, i.e., ω|π2(M) = 0.

Definition 3.2. An m-translation vector T is an m-tuple of real numbers

T1 < · · · < Tm.

Theorem 3.3. Given a sequence uk : R×S1 in M(x+, x−, Ht, J), after passing to a subsequence,

we can find

• a collection of translation vectors T (k) with Tj(k)− Tj−1(k)
α→∞−−−−→ ∞;

• 1-periodic orbts x− = x0, x1, . . . , xm = x+ and vj ∈ M(xj , xj+1, Ht, J) for j = 1, . . . ,m;
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• over any compact subsets of R× S1, we have

uk(z + Tj(k)) → vj

uniformly in all derivatives; this convergence also holds in W 1,p(R× S1,M);

• there is no loss of energy:∑
j

Egeom(vj) = lim
k→∞

E(uk).

Proof. Firstly, note that by applying the mean value inequality to the graph ũ using the almost

complex structure

J̃ =

(
j 0

Jt ◦XHt
−XHt

◦ j J

)
,

after conformally changing to C \ {0} to make the area of the cylinder factor sufficiently small,

we see that there exists δ > 0 such that for any sequence vk : [0,+∞) × S1 → M or vk :

(−∞, 0] × S1 → M with Egeom(vk) ≤ δ, we necessarily have |dvk| ≤ C uniformly. Then using

elliptic bootstrapping, we see that we can extract a subsequence of {vk} in this setting which

converges uniformly in all derivatives over any compact subset to a limit solution to the Floer

equation.

Let’s choose ϵ to be the minimum of δ and the minimum of the energy gap −A(x+) + A(x−)

ranging over all pairs of distinct orbits x±. Because Egeom(uk) > ϵ, we can find a unique T1(k)

such that

1

2

∫ T1(k)

−∞

∫
S1

|duk −XHt
(uk)|dvol = ϵ.

Applying the translation by T1(k) in the domain of uk, we may assume T1(k) = 0. Then the

new sequence uk(z + T1(k)) admits a limit v1 modulo bubbling. Note that the bubbling cannot

happen in the interior due to the assumption ω|π2(M) = 0, otherwise the sphere bubble obtained

by removal of singularity would have zero energy. In fact, there is no further bubbling at the

negative ∞: this follows from our choice of ϵ. Therefore, we see that uk(z + T1(k)) convergences

to v1 uniformly in all derivatives over (−∞, 0]× S1 and in all W k,2.

If there is no bubbling at the positive ∞ in the convergence modulo bubbling u1
k := uk(z +

T1(k)) ⇀ u1, we are already done. Otherwise, we see that

Egeom(uk)− Egeom(v1) > 0.

Then we can find T2(k) ∈ R such that for the translated u1
k, we have

1

2

∫ T2(k)

−∞

∫
S1

|du1
k −XHt(u

1
k)|dvol = ϵ.

Then we can find another limit v2 of the sequence u2
k := u1

k(z + T2(k)), modulo bubbling at the

positive part. Note that the positive end of v1 and the negative end of v2 match with each other

due to the exponential decay estimate.
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We can then iterate this process. It must terminate because of the finiteness of Egeom(uk). This

constructs the limit (v1, . . . , vm). The no-loss-of-energy follows from the construction. This and

convergence modulo bubbling implies the uniform convergence over all compact subsets. □

Remark 3.4. (1) We use the fact that any finite-energy solution to the Floer equation must

converge to Hamiltonian orbits near infinity, and the limit is unique assuming non-

degeneracy. See [Sal99, Proposition 1.21].

(2) If we drop the assumption ω|π2(M) = 0, we have to deal with stable Floer trajectories,

which will be discussed later.
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