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We will essentially follow Abouzaid–McLean–Smith’s article Complex cobordisms, Hamil-
tonian loops, and global Kuranishi charts and focus on the geometric aspects of their main
result.

1. Overview and motivations

Let us introduce some notations:
• (X,ω): closed symplectic manifold of real dimension 2n,
• Ham(X,ω): the group of Hamiltonian diffeomorphisms of (X,ω),
• Symp0(X,ω): the group of symplectomorphisms of (X,ω) isotopic to the identity,
• Diff0(X): the group of diffeomorphisms of X isotopic to the identity.

We have the inclusions
Ham(X,ω) ⊆ Symp0(X,ω) ⊆ Diff0(X)

which are strict in general.
There is a classical Flux morphism

Flux : Symp0(X,ω) −→ H1(X;R)
whose image Γ, the flux group, is known to be a discrete subgroup of H1(X;R) by the work of
Ono. The discreteness of Γ is equivalent to the fact that Ham(X,ω) is dense in Symp0(X,ω)
for the C1 topology. In some sense, the flux group measures the difference between Ham(X,ω)
and Symp0(X,ω). Another way to measure this difference is to investigate the map

π1Ham(X,ω) −→ π1Symp0(X,ω)(1)
induced by the inclusion.

To each [ϕ] ∈ π1Symp0(X,ω) one can associate a symplectic bundle

X Pϕ

S2

obtained by a clutching construction: glue two copies of X ×D2 along X × S1 via the map
S1 ×X −→ S1 ×X

(t, x) 7−→ (−t, ϕt(x)).
Obviously, Pϕ = X × S2 if [ϕ] = [id]. To measure the complexity of a class [ϕ], one can
measure the complexity of the bundle Pϕ. For instance, one can consider the (co)homology of
Pϕ with coefficients in Q, Z, or a more general ring (spectrum). For now, let us fix a ring k.
We will be interested in the maps

ι : H∗(X;k) −→ H∗(Pϕ;k),
ρ : H∗(Pϕ;k) −→ H∗(X;k)

induced by the inclusion X ↪→ Pϕ as well as the sweepout map
δϕ : H∗(X;k) → H∗+1(X;k).
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The latter is defined as the composition

H∗(X;k) H1(S1; k) ⊗k H∗(X;k) H∗+1(S1 ×X; k) H∗+1(X;k)
∼=

where the second map is induced by the Künneth morphism, and the last map is induced by
(t, x) ∈ S1 ×X 7−→ ϕt(x) ∈ X.

One may ask: when is the map δϕ trivial? Alternatively, does the cohomology of Pϕ splits
as H∗(X;k) ⊗k H

∗(S2; k)? For a general class [ϕ] ∈ π1Symp0(X,ω), the answer is known to
be negative. However, it holds for [ϕ] ∈ π1Ham(X,ω) and for suitable coefficient rings k.

Theorem 1 (Lalonde–McDuff–Polterovich for (X,ω) monotone, McDuff in general). Let
k = Q and [ϕ] ∈ π1Ham(X,ω). Then

H∗(Pϕ;Q) ∼= H∗(X;Q) ⊗H∗(S2;Q)
as Q-vector spaces (we do not consider the ring structure on cohomology).

Equivalently, still for k = Q,
• δϕ = 0,
• ι : H∗(X;Q) → H∗(Pϕ;Q) is injective,
• The Serre spectral sequence of the fibration X ↪→ Pϕ → S2 degenerates,
• ρ : H∗(Pϕ;Q) → H∗(X;Q) is surjective.

Actually, the last four properties are always equivalent for any ring k, and are implied by
(but do not necessarily imply) the additive splitting H∗(Pϕ;k) ∼= H∗(X;k) ⊗H∗(S2;k). This
result can be interpreted as an obstruction to the surjectivity of the map (1).

The main result of AMS is strengthening of Theorem 1 for k = Z coefficients:

Theorem 2 (Abouzaid–McLean–Smith). Let k = Z and [ϕ] ∈ π1Ham(X,ω). Then
H∗(Pϕ;Z) ∼= H∗(X;Z) ⊗H∗(S2;Z)(2)

as Z-modules. Therefore, the sweepout map δϕ : H∗(X;Z) → H∗+1(X;Z) vanishes.

They actually prove an additive splitting for any complex oriented generalized cohomology
theory.

From now on, we fix a class [ϕ] ∈ π1Ham(X,ω). To prove this result, we will show that ρ
is a split-epimorphism : there exists a Z-module map

s : H∗(X;Z) −→ H∗(Pϕ;Z)
which is a section of ρ, in the sense that ρ ◦ s = id. This is strictly stronger than ρ being
surjective in general.

Lemma 3. Assume that ρ is a split-epimorphism. Then (2) holds.

Proof. We will omit the coefficients (assumed to be Z) in the (co)homology groups, and we
will use the notation H∗(Y |A) = H∗(Y ;Y \A).

Notice that Pϕ \X is homotopy equivalent to X. We denote by N ⊂ Pϕ a neighborhood
of a fiber X ⊂ Pϕ obtained as the preimage of a small disk under the fibration. Then by
excision,

H∗(Pϕ|X) ∼= H∗(N |X) ∼= H∗(D2 ×X|X) ∼= H∗(D2|pt) ⊗H∗(X) ∼= H∗+2(X).
The cohomology long exact sequence for the pair (Pϕ, Pϕ\X) splits as a short exact sequence

0 H∗(Pϕ|X) H∗(Pϕ) H∗(Pϕ \X) 0



ABOUZAID–MCLEAN–SMITH 3

which is isomorphic to a short exact sequence

0 H∗+2(X) H∗(Pϕ) H∗(X) 0,ρ

and since ρ admits a section, there is a isomorphism (depending on s)

H∗(Pϕ) ∼= H∗(X) ⊕H∗+2(X) ∼= H∗(S2) ⊗H∗(X).

□

To construct s, we will consider suitable Gromov–Witten invariants in a larger symplectic
fibration.

2. The geometric degeneration

Let S denote the one-point blowup of CP1 × CP1 = S2 × S2. Composing the blowdown
map S → CP1 × CP1. with the projection onto the second factor yields a singular fibration
πB : S → B = CP1 which has one singular fiber over 0. This fiber is isomorphic to CP1 ∨ CP1.
For t ∈ B, we write St = π−1

B (t).
It is not hard to see that the connected sum Pϕ#XPϕ−1 along a fiber is diffeomorphic to

Pid = S2 × X, and this space can be thought of as a resolution of the space Pϕ ∪X Pϕ−1 .
Therefore, there exists a smooth fibration πS : P̃ → S such that π−1

S (S0) ∼= Pϕ ∪X Pϕ−1 , and
π−1
S (St) ∼= S2 ×X for t ̸= 0. Using that ϕ is a loop of Hamiltonian diffeomorphisms, McDuff

upgraded this construction to a symplectic fibration:

Proposition 4 (McDuff). There exists a symplectic fibration πS : P̃ → S with fiber (X,ω)
satisfying the following.

(1) (Triviality at ∞) There exists a neighborhood W∞ ⊂ B of ∞ ∈ B over which πB

is trivial, and such that the restriction of P̃ to π−1
B (W∞) is isomorphic to the trivial

symplectic fibration (S2 ×W∞ ×X,ωS2 ⊕ ωS2|W∞ ⊕ ω).
(2) (Singular locus) π−1

S (S0) ∼= Pϕ ∪X Pϕ−1, where each component is mapped to a
reducible component of S0 ∼= CP1 ∨ CP1 and carries the canonical (deformation class
of) symplectic structure.

Let us introduce more notations:
• S0 = Sϕ ∨ Sϕ−1 ,
• S2

h is the image of a holomorphic section of πB : S → B passing through Sϕ \ Sϕ−1 ,
• (S2 ×X)h = π−1

S (S2
h),

• For t ∈ CP1 \ {0}, Pt = P̃|St
.

Here, the subscript h means “horizontal”. See Figure 1 for an illustration of the previous
Proposition and some of these notations.

3. Moduli spaces of pseudoholomorphic curves

Let us choose a compatible almost complex structure J on P̃ which satisfies
• πS : P̃ → S is pseudoholomorphic,
• J is trivial over S2 ×W∞ ×W , i.e., it splits as a direct sum J = jS2 ⊕ jS2|W∞ ⊕ JX ,

where j denotes the canonical complex structure on S2 and JX is a compatible almost
complex structure on X.
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Figure 1. The fibration πS : P̃ → S over πB : S → B. Figure obtained from
Bai–Xu’s An integral Euler cycle in normally complex orbifolds and Z-valued
Gromov–Witten type invariants with the permission of the authors.

Let A ∈ H2(P̃ ;Z) denote the homology class represented by S2×{∞}×{pt} ⊂ S2×W∞×X.
We denote by M = M0,2(X, J ;A) the moduli space of genus 0 stable J-holomorphic maps in
the class A with two marked points. It comes with two evaluation maps

M P̃ .
ev2

ev1

We define
Mh := ev−1

1
(
(S2 ×X)h

)
⊂ M

and for ♡ ∈ {ϕ,∞},
M♡ := Mh ∩ ev−1

2 (P♡) ⊂ Mh.

Notice that because of or choice of J and A, the curves in Mϕ are contained in Pϕ ∪X Pϕ−1

(not necessarily in Pϕ!), and the curves in M∞ are contained in P∞ ∼= S2 ×X. We obtain
two correspondences

M♡

(S2 ×X)h P♡

ev1 ev2

which will induce two maps

H∗(S2 ×X;Z) −→ H∗(P♡;Z).
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We will use the one for ♡ = ϕ to define the desired section s of ρ, and we will compare it
to the one for ♡ = ∞ to prove that s is indeed a section of ρ. Let us first check that these
moduli spaces have the correct virtual dimensions.

Lemma 5. Mh has virtual dimension dim(P̃ ) = 2n + 4, and M♡ has virtual dimension
dim(P♡) = 2n+ 2.

Proof. First, note that ⟨c1(T P̃ ), A⟩ = χ(S2) = 2. Hence, the virtual dimension of the moduli
space of parametrized genus 0 stable curves in P̃ in the class A without marked points is
dim(P̃ ) + 2⟨c1(T P̃ ), A⟩ = 2n+ 8. We can assume that the added marked points lie are two
prescribed points, e.g., at 0 and ∞, leaving a C∗ reparametrization action which drops the
virtual dimension by 2, hence vdimM = 2n+ 6. Adding a divisorial constraint on one marked
point drops the virtual dimension by 2, hence vdimMh = 2n+4, and adding another divisorial
constraint on the other marked point yields vdimM♡ = 2n+ 2. □

Of course, these moduli spaces might not have a natural structure of smooth manifolds of
the correct dimension. Let us make the following

Assumption. (Transversality) Mh is a smooth oriented manifold of dimension 2n+ 4, and
the evaluation map ev2 : Mh → P̃ is a smooth submersion transverse to P∞ and Pϕ, so that
M♡, ♡ ∈ {∞, ϕ}, are smooth manifolds of dimension 2n+ 2.

Under this (unrealistic!) transversality assumption, we explain how to prove Theorem 2.
For ♡ ∈ {∞, ϕ}, we define a map s♡ : H∗(X;Z) −→ H∗(P♡;Z) as the composition

H∗(
M♡

)
H2n+2−∗

(
M♡

)

H∗(
(S2 ×X)h

)
H2n+2−∗(P♡)

H∗(X) H∗(P♡)

∩[M♡]

(ev2)∗ev∗
1

PDpr∗
2

s♡

where we dropped the coefficients from the notations. We now show that s = sϕ is the desired
section of ρ : H∗(Pϕ;Z) → H∗(X;Z).

Lemma 6. ρ ◦ sϕ = id.

Proof. We consider the following commutative diagram:

H∗(
Mh

)
H2n+4−∗

(
Mh

)
H2n+4−∗(P̃ ) H∗(P̃ )

H∗(
(S2 ×X)h

)
H∗(X)

H∗(X) H∗(
M♡

)
H2n+2−∗

(
M♡

)
H2n+2−∗(P♡) H∗(P♡)

PD

inc∗

(ev2)∗

inc!

PD

inc! inc!

ev∗
1

ev∗
1

pr∗
2

s♡

PD (ev2)∗ PD
ρ♡
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This implies that ρ ◦ s = ρϕ ◦ sϕ = ρ∞ ◦ s∞. However, the map s∞ is easy to compute since
the curves in M∞ can be described explicitly. In fact, any curve in M∞ is of the form

u : S2 −→ P∞ = S2 × {∞} ×X
z 7−→ (ψ(z),∞,pt),

where ψ : S2 → S2 is a biholomorphism. Therefore, M∞ ∼= P∞ = S2 × {∞} × X and the
evaluation map ev2 : M∞ → P∞ is a diffeomorphism, which implies that s∞ = pr∗

2 and
ρ∞ ◦ s∞ = id, as desired. □

4. Removing the transversality assumption

We know explain how to make the previous argument work without the transversality
assumption on the moduli spaces. There are (at least) two approaches.

• One strategy consists of defining a Z-valued fundamental class for the Gromov–Witten
moduli spaces using suitable global Kuranishi charts/derived orbifold charts. This
is carried out in Bai–Xu’s An integral Euler cycle in normally complex orbifolds and
Z-valued Gromov–Witten type invariants, using their FOP perturbations.

• Another perhaps less direct strategy is to work over Morava K-theory to show that
ρ is a split-epimorphism for Z/pkZ coefficients, for every prime p and every integer
k ≥ 1. This is the approach of Abouzaid–McLean–Smith. To that extent, they
construct a global Kuranishi chart for the moduli spaces of interest, which satisfy
suitable orientation properties with respect to Morava K-theory.

We will focus on the AMS approach and briefly overview the main ingredients. Let us first
discuss Morava K-theory.

For a prime p and an integer n ≥ 1, k = Kp(n) is a generalized cohomology theory which
satisfies the following:

(1) The underlying coefficient ring is k∗ = H∗(pt, k) = Fp[v±] where |v±| = 2(pn − 1),
(2) If X and Y are CW-complexes, there is a Künneth isomorphism

H∗(X × Y ; k) ∼= H∗(X;k) ⊗k∗ H
∗(Y ;k),

(3) Every vector bundle with a stable complex structure is k-oriented, hence every stably
complex manifold is k-oriented,

(4) If p > 2, then any oriented vector bundle is k-oriented, hence every oriented manifold
is k-oriented.

For k ≥ 1, there is an extension of Kp(n) denoted Kpk(n) with coefficient ring Z/pkZ(n)[v±],
|v| = 2(pn − 1), which satisfies (3) and (4).

The upshot of AMS’s proof is that Kpk(n) behaves a bit like a coefficient field, and their
global Kuranishi charts are Kpk(n)-oriented, allowing them to construct virtual fundamental
classes with coefficients in Kpk(n). One crucial aspect is that Morava K-theories satisfy
a version of equivariant Poincaré duality, or rather Atiyah duality, which is used to define
suitable pushforward maps in cohomology (those are relevant for the definition of s as in the
previous section). This equivariant duality statement was proved by Cheng.

The virtual fundamental class then takes the form of a map H∗(M ;k) → k∗. More generally,
for a space M with a suitable global Kuranishi chart K = (G, T , E, s) and a map f : M → X
to a k-oriented smooth manifold, AMS construct a pushforward map

fK
∗ : H∗(M ;k) −→ H∗−vdim(M)+dim(X)(X;k)



ABOUZAID–MCLEAN–SMITH 7

which behaves naturally with respect to restricting to subspaces of the form f−1(S) for a
k-oriented submanifold S ⊆ X (for a suitable induced Kuranishi chart on f−1(S)). Therefore,
one can make sense of the diagrams in the previous section for cohomology groups with
Kpk(n)-coefficients. This implies:

Lemma 7. The map ρ : H∗(Pϕ;Kpk(n)) → H∗(X;Kpk(n)) is a split-epimorphism.

Now since Pϕ and X are finite dimensional manifolds, for n large enough (2(pn−1) > 2n+4),
the Atiyah-Hirzebruch spectral sequence for Kpk(n) degenerates and

H∗(X;Kpk(n)) ∼= H∗(X;Z/pkZ) ⊗Z/pkZ Z/pkZ[v±],

H∗(Pϕ;Kpk(n)) ∼= H∗(Pϕ;Z/pkZ) ⊗Z/pkZ Z/pkZ[v±],

which implies that H∗(Pϕ;Z/pkZ) → H∗(X;Z/pkZ) is a split-epimorphism. Since this holds
for every prime p and every integer k, ρ : H∗(Pϕ;Z/mZ) → H∗(X;Z/mZ) is also a split-
epimorphism for every integer m ≥ 1, which implies that ρ : H∗(Pϕ;Z) → H∗(X;Z) is a
split-epimorphism.


	1. Overview and motivations
	2. The geometric degeneration
	3. Moduli spaces of pseudoholomorphic curves
	4. Removing the transversality assumption

