# ABOUZAID-MCLEAN-SMITH

We will essentially follow Abouzaid-McLean-Smith's article Complex cobordisms, Hamiltonian loops, and global Kuranishi charts and focus on the geometric aspects of their main result.

## 1. Overview and motivations

Let us introduce some notations:

- $(X,\omega)$ : closed symplectic manifold of real dimension 2n,
- $\operatorname{Ham}(X,\omega)$ : the group of Hamiltonian diffeomorphisms of  $(X,\omega)$ ,
- Symp<sub>0</sub> $(X,\omega)$ : the group of symplectomorphisms of  $(X,\omega)$  isotopic to the identity,
- $Diff_0(X)$ : the group of diffeomorphisms of X isotopic to the identity.

We have the inclusions

$$\operatorname{Ham}(X,\omega) \subseteq \operatorname{Symp}_0(X,\omega) \subseteq \operatorname{Diff}_0(X)$$

which are strict in general.

There is a classical Flux morphism

Flux: Symp<sub>0</sub>
$$(X, \omega) \longrightarrow H^1(X; \mathbb{R})$$

whose image  $\Gamma$ , the flux group, is known to be a discrete subgroup of  $H^1(X;\mathbb{R})$  by the work of Ono. The discreteness of  $\Gamma$  is equivalent to the fact that  $\operatorname{Ham}(X,\omega)$  is dense in  $\operatorname{Symp}_0(X,\omega)$ for the  $C^1$  topology. In some sense, the flux group measures the difference between  $\operatorname{Ham}(X,\omega)$ and  $\operatorname{Symp}_0(X,\omega)$ . Another way to measure this difference is to investigate the map

(1) 
$$\pi_1 \operatorname{Ham}(X, \omega) \longrightarrow \pi_1 \operatorname{Symp}_0(X, \omega)$$

induced by the inclusion.

To each  $[\phi] \in \pi_1 \operatorname{Symp}_0(X, \omega)$  one can associate a symplectic bundle

$$egin{array}{c} X & \longleftrightarrow P_{\phi} \ & \downarrow \ & \downarrow \ & S^2 \end{array}$$

obtained by a clutching construction: glue two copies of  $X \times D^2$  along  $X \times S^1$  via the map

$$\begin{array}{ccc} S^1 \times X & \longrightarrow & S^1 \times X \\ (t,x) & \longmapsto & (-t,\phi_t(x)). \end{array}$$

Obviously,  $P_{\phi} = X \times S^2$  if  $[\phi] = [id]$ . To measure the complexity of a class  $[\phi]$ , one can measure the complexity of the bundle  $P_{\phi}$ . For instance, one can consider the (co)homology of  $P_{\phi}$  with coefficients in  $\mathbb{Q}$ ,  $\mathbb{Z}$ , or a more general ring (spectrum). For now, let us fix a ring  $\mathbb{R}$ . We will be interested in the maps

$$\iota: H_*(X; \mathbb{k}) \longrightarrow H_*(P_{\phi}; \mathbb{k}),$$
$$\rho: H^*(P_{\phi}; \mathbb{k}) \longrightarrow H^*(X; \mathbb{k})$$

induced by the inclusion  $X \hookrightarrow P_{\phi}$  as well as the *sweepout map* 

$$\delta_{\phi}: H_*(X; \mathbb{k}) \xrightarrow{1} H_{*+1}(X; \mathbb{k}).$$

The latter is defined as the composition

$$H_*(X; \mathbb{k}) \xrightarrow{\cong} H_1(S^1; \mathbb{k}) \otimes_{\mathbb{k}} H_*(X; \mathbb{k}) \longrightarrow H_{*+1}(S^1 \times X; \mathbb{k}) \longrightarrow H_{*+1}(X; \mathbb{k})$$

where the second map is induced by the Künneth morphism, and the last map is induced by  $(t,x) \in S^1 \times X \longmapsto \phi_t(x) \in X$ .

One may ask: when is the map  $\delta_{\phi}$  trivial? Alternatively, does the cohomology of  $P_{\phi}$  splits as  $H^*(X; \mathbb{k}) \otimes_{\mathbb{k}} H^*(S^2; \mathbb{k})$ ? For a general class  $[\phi] \in \pi_1 \operatorname{Symp}_0(X, \omega)$ , the answer is known to be negative. However, it holds for  $[\phi] \in \pi_1 \operatorname{Ham}(X, \omega)$  and for suitable coefficient rings  $\mathbb{k}$ .

**Theorem 1** (Lalonde–McDuff–Polterovich for  $(X, \omega)$  monotone, McDuff in general). Let  $\mathbb{k} = \mathbb{Q}$  and  $[\phi] \in \pi_1 \text{Ham}(X, \omega)$ . Then

$$H^*(P_{\phi}; \mathbb{Q}) \cong H^*(X; \mathbb{Q}) \otimes H^*(S^2; \mathbb{Q})$$

as Q-vector spaces (we do not consider the ring structure on cohomology).

Equivalently, still for  $k = \mathbb{Q}$ ,

- $\delta_{\phi} = 0$ ,
- $\iota: H_*(X; \mathbb{Q}) \to H_*(P_{\phi}; \mathbb{Q})$  is injective,
- The Serre spectral sequence of the fibration  $X \hookrightarrow P_{\phi} \to S^2$  degenerates,
- $\rho: H^*(P_{\phi}; \mathbb{Q}) \to H^*(X; \mathbb{Q})$  is surjective.

Actually, the last four properties are always equivalent for any ring  $\mathbb{k}$ , and are implied by (but do not necessarily imply) the additive splitting  $H^*(P_{\phi}; \mathbb{k}) \cong H^*(X; \mathbb{k}) \otimes H^*(S^2; \mathbb{k})$ . This result can be interpreted as an obstruction to the surjectivity of the map (1).

The main result of AMS is strengthening of Theorem 1 for  $\mathbb{k} = \mathbb{Z}$  coefficients:

**Theorem 2** (Abouzaid–McLean–Smith). Let  $\mathbb{k} = \mathbb{Z}$  and  $[\phi] \in \pi_1 \text{Ham}(X, \omega)$ . Then

(2) 
$$H^*(P_{\phi}; \mathbb{Z}) \cong H^*(X; \mathbb{Z}) \otimes H^*(S^2; \mathbb{Z})$$

as  $\mathbb{Z}$ -modules. Therefore, the sweepout map  $\delta_{\phi}: H_*(X; \mathbb{Z}) \to H_{*+1}(X; \mathbb{Z})$  vanishes.

They actually prove an additive splitting for any *complex oriented* generalized cohomology theory.

From now on, we fix a class  $[\phi] \in \pi_1 \operatorname{Ham}(X, \omega)$ . To prove this result, we will show that  $\rho$  is a *split-epimorphism*: there exists a  $\mathbb{Z}$ -module map

$$s: H^*(X; \mathbb{Z}) \longrightarrow H^*(P_{\phi}; \mathbb{Z})$$

which is a section of  $\rho$ , in the sense that  $\rho \circ s = \mathrm{id}$ . This is strictly stronger than  $\rho$  being surjective in general.

**Lemma 3.** Assume that  $\rho$  is a split-epimorphism. Then (2) holds.

*Proof.* We will omit the coefficients (assumed to be  $\mathbb{Z}$ ) in the (co)homology groups, and we will use the notation  $H^*(Y|A) = H^*(Y;Y \setminus A)$ .

Notice that  $P_{\phi} \setminus X$  is homotopy equivalent to X. We denote by  $N \subset P_{\phi}$  a neighborhood of a fiber  $X \subset P_{\phi}$  obtained as the preimage of a small disk under the fibration. Then by excision,

$$H^*(P_{\phi}|X) \cong H^*(N|X) \cong H^*(D^2 \times X|X) \cong H^*(D^2|\operatorname{pt}) \otimes H^*(X) \cong H^{*+2}(X).$$

The cohomology long exact sequence for the pair  $(P_{\phi}, P_{\phi} \setminus X)$  splits as a short exact sequence

$$0 \longrightarrow H^*(P_{\phi}|X) \longrightarrow H^*(P_{\phi}) \longrightarrow H^*(P_{\phi} \setminus X) \longrightarrow 0$$

which is isomorphic to a short exact sequence

$$0 \longrightarrow H^{*+2}(X) \longrightarrow H^*(P_{\phi}) \stackrel{\rho}{\longrightarrow} H^*(X) \longrightarrow 0,$$

and since  $\rho$  admits a section, there is a isomorphism (depending on s)

$$H^*(P_{\phi}) \cong H^*(X) \oplus H^{*+2}(X) \cong H^*(S^2) \otimes H^*(X).$$

To construct s, we will consider suitable Gromov–Witten invariants in a larger symplectic fibration.

#### 2. The geometric degeneration

Let  $\mathbb{S}$  denote the one-point blowup of  $\mathbb{CP}^1 \times \mathbb{CP}^1 = S^2 \times S^2$ . Composing the blowdown map  $\mathbb{S} \to \mathbb{CP}^1 \times \mathbb{CP}^1$ , with the projection onto the second factor yields a singular fibration  $\pi_B : \mathbb{S} \to B = \mathbb{CP}^1$  which has one singular fiber over 0. This fiber is isomorphic to  $\mathbb{CP}^1 \vee \mathbb{CP}^1$ . For  $t \in B$ , we write  $\mathbb{S}_t = \pi_B^{-1}(t)$ .

It is not hard to see that the connected sum  $P_{\phi} \#_X P_{\phi^{-1}}$  along a fiber is diffeomorphic to  $P_{\mathrm{id}} = S^2 \times X$ , and this space can be thought of as a resolution of the space  $P_{\phi} \cup_X P_{\phi^{-1}}$ . Therefore, there exists a smooth fibration  $\pi_{\mathbb{S}} : \tilde{P} \to \mathbb{S}$  such that  $\pi_{\mathbb{S}}^{-1}(\mathbb{S}_0) \cong P_{\phi} \cup_X P_{\phi^{-1}}$ , and  $\pi_{\mathbb{S}}^{-1}(\mathbb{S}_t) \cong S^2 \times X$  for  $t \neq 0$ . Using that  $\phi$  is a loop of Hamiltonian diffeomorphisms, McDuff upgraded this construction to a symplectic fibration:

**Proposition 4** (McDuff). There exists a symplectic fibration  $\pi_{\mathbb{S}} : \widetilde{P} \to \mathbb{S}$  with fiber  $(X, \omega)$  satisfying the following.

- (1) (Triviality At  $\infty$ ) There exists a neighborhood  $W_{\infty} \subset B$  of  $\infty \in B$  over which  $\pi_B$  is trivial, and such that the restriction of  $\widetilde{P}$  to  $\pi_B^{-1}(W_{\infty})$  is isomorphic to the trivial symplectic fibration  $(S^2 \times W_{\infty} \times X, \omega_{S^2} \oplus \omega_{S^2|W_{\infty}} \oplus \omega)$ .
- (2) (SINGULAR LOCUS)  $\pi_{\mathbb{S}}^{-1}(\mathbb{S}_0) \cong P_{\phi} \cup_X P_{\phi^{-1}}$ , where each component is mapped to a reducible component of  $\mathbb{S}_0 \cong \mathbb{CP}^1 \vee \mathbb{CP}^1$  and carries the canonical (deformation class of) symplectic structure.

Let us introduce more notations:

- $\mathbb{S}_0 = \mathbb{S}_{\phi} \vee \mathbb{S}_{\phi^{-1}}$ ,
- $S_h^2$  is the image of a holomorphic section of  $\pi_B: \mathbb{S} \to B$  passing through  $\mathbb{S}_{\phi} \setminus \mathbb{S}_{\phi^{-1}}$ ,
- $(S^2 \times X)_h = \pi_{\mathbb{S}}^{-1}(S_h^2),$
- For  $t \in \mathbb{CP}^1 \setminus \{0\}, P_t = \widetilde{P}_{|\mathbb{S}_t}$ .

Here, the subscript h means "horizontal". See Figure 1 for an illustration of the previous Proposition and some of these notations.

## 3. Moduli spaces of pseudoholomorphic curves

Let us choose a compatible almost complex structure J on  $\widetilde{P}$  which satisfies

- $\pi_{\mathbb{S}}: \widetilde{P} \to \mathbb{S}$  is pseudoholomorphic,
- J is trivial over  $S^2 \times W_{\infty} \times W$ , i.e., it splits as a direct sum  $J = j_{S^2} \oplus j_{S^2|W_{\infty}} \oplus J_X$ , where j denotes the canonical complex structure on  $S^2$  and  $J_X$  is a compatible almost complex structure on X.



FIGURE 1. The fibration  $\pi_{\mathbb{S}}: \widetilde{P} \to \mathbb{S}$  over  $\pi_B: \mathbb{S} \to B$ . Figure obtained from Bai–Xu's An integral Euler cycle in normally complex orbifolds and  $\mathbb{Z}$ -valued Gromov–Witten type invariants with the permission of the authors.

Let  $A \in H_2(\widetilde{P}; \mathbb{Z})$  denote the homology class represented by  $S^2 \times \{\infty\} \times \{\text{pt}\} \subset S^2 \times W_\infty \times X$ . We denote by  $\overline{\mathcal{M}} = \overline{\mathcal{M}}_{0,2}(X, J; A)$  the moduli space of genus 0 stable J-holomorphic maps in the class A with two marked points. It comes with two evaluation maps

$$\overline{\mathcal{M}} \xrightarrow{ev_1} \widetilde{P}.$$

We define

$$\overline{\mathcal{M}}_h := ev_1^{-1}((S^2 \times X)_h) \subset \overline{\mathcal{M}}$$

and for  $\heartsuit \in \{\phi, \infty\}$ ,

$$\overline{\mathcal{M}}_{\heartsuit} := \overline{\mathcal{M}}_h \cap ev_2^{-1}(P_{\heartsuit}) \subset \overline{\mathcal{M}}_h.$$

Notice that because of or choice of J and A, the curves in  $\overline{\mathcal{M}}_{\phi}$  are contained in  $P_{\phi} \cup_{X} P_{\phi^{-1}}$  (not necessarily in  $P_{\phi}$ !), and the curves in  $\overline{\mathcal{M}}_{\infty}$  are contained in  $P_{\infty} \cong S^{2} \times X$ . We obtain two correspondences

$$\overline{\mathcal{M}}_{\heartsuit}$$
 $ev_1$ 
 $ev_2$ 
 $(S^2 \times X)_h$ 
 $P_{\heartsuit}$ 

which will induce two maps

$$H^*(S^2 \times X; \mathbb{Z}) \longrightarrow H^*(P_{\heartsuit}; \mathbb{Z}).$$

We will use the one for  $\heartsuit = \phi$  to define the desired section s of  $\rho$ , and we will compare it to the one for  $\heartsuit = \infty$  to prove that s is indeed a section of  $\rho$ . Let us first check that these moduli spaces have the correct virtual dimensions.

**Lemma 5.**  $\overline{\mathcal{M}}_h$  has virtual dimension  $\dim(\widetilde{P}) = 2n + 4$ , and  $\overline{\mathcal{M}}_{\heartsuit}$  has virtual dimension  $\dim(P_{\heartsuit}) = 2n + 2$ .

Proof. First, note that  $\langle c_1(T\widetilde{P}), A \rangle = \chi(S^2) = 2$ . Hence, the virtual dimension of the moduli space of parametrized genus 0 stable curves in  $\widetilde{P}$  in the class A without marked points is  $\dim(\widetilde{P}) + 2\langle c_1(T\widetilde{P}), A \rangle = 2n + 8$ . We can assume that the added marked points lie are two prescribed points, e.g., at 0 and  $\infty$ , leaving a  $\mathbb{C}^*$  reparametrization action which drops the virtual dimension by 2, hence  $\operatorname{vdim} \overline{\mathcal{M}} = 2n + 6$ . Adding a divisorial constraint on one marked point drops the virtual dimension by 2, hence  $\operatorname{vdim} \overline{\mathcal{M}}_h = 2n + 4$ , and adding another divisorial constraint on the other marked point yields  $\operatorname{vdim} \overline{\mathcal{M}}_{\nabla} = 2n + 2$ .

Of course, these moduli spaces might not have a natural structure of smooth manifolds of the correct dimension. Let us make the following

**Assumption.** (Transversality)  $\overline{\mathcal{M}}_h$  is a smooth oriented manifold of dimension 2n+4, and the evaluation map  $ev_2: \overline{\mathcal{M}}_h \to \widetilde{P}$  is a smooth submersion transverse to  $P_{\infty}$  and  $P_{\phi}$ , so that  $\overline{\mathcal{M}}_{\heartsuit}$ ,  $\heartsuit \in \{\infty, \phi\}$ , are smooth manifolds of dimension 2n+2.

Under this (unrealistic!) transversality assumption, we explain how to prove Theorem 2. For  $\heartsuit \in \{\infty, \phi\}$ , we define a map  $s_{\heartsuit} : H^*(X; \mathbb{Z}) \longrightarrow H^*(P_{\heartsuit}; \mathbb{Z})$  as the composition

$$H^{*}(\overline{\mathcal{M}_{\heartsuit}}) \xrightarrow{\cap [\overline{\mathcal{M}_{\heartsuit}}]} H_{2n+2-*}(\overline{\mathcal{M}_{\heartsuit}})$$

$$H^{*}((S^{2} \times X)_{h}) \qquad \qquad (ev_{2})_{*}$$

$$\downarrow PD$$

$$\downarrow PD$$

$$H^{*}(X) \xrightarrow{S^{\heartsuit}} H^{*}(P_{\heartsuit})$$

where we dropped the coefficients from the notations. We now show that  $s = s_{\phi}$  is the desired section of  $\rho: H^*(P_{\phi}; \mathbb{Z}) \to H^*(X; \mathbb{Z})$ .

**Lemma 6.**  $\rho \circ s_{\phi} = id$ .

*Proof.* We consider the following commutative diagram:



This implies that  $\rho \circ s = \rho_{\phi} \circ s_{\phi} = \rho_{\infty} \circ s_{\infty}$ . However, the map  $s_{\infty}$  is easy to compute since the curves in  $\overline{\mathcal{M}}_{\infty}$  can be described explicitly. In fact, any curve in  $\overline{\mathcal{M}}_{\infty}$  is of the form

$$\begin{array}{ccc} u: & S^2 & \longrightarrow & P_{\infty} = S^2 \times \{\infty\} \times X \\ & z & \longmapsto & (\psi(z), \infty, \mathrm{pt}), \end{array}$$

where  $\psi: S^2 \to S^2$  is a biholomorphism. Therefore,  $\overline{\mathcal{M}}_{\infty} \cong P_{\infty} = S^2 \times \{\infty\} \times X$  and the evaluation map  $ev_2: \overline{\mathcal{M}}_{\infty} \to P_{\infty}$  is a diffeomorphism, which implies that  $s_{\infty} = pr_2^*$  and  $\rho_{\infty} \circ s_{\infty} = \mathrm{id}$ , as desired.

# 4. Removing the transversality assumption

We know explain how to make the previous argument work without the transversality assumption on the moduli spaces. There are (at least) two approaches.

- One strategy consists of defining a  $\mathbb{Z}$ -valued fundamental class for the Gromov-Witten moduli spaces using suitable global Kuranishi charts/derived orbifold charts. This is carried out in Bai-Xu's An integral Euler cycle in normally complex orbifolds and  $\mathbb{Z}$ -valued Gromov-Witten type invariants, using their FOP perturbations.
- Another perhaps less direct strategy is to work over *Morava K-theory* to show that  $\rho$  is a split-epimorphism for  $\mathbb{Z}/p^k\mathbb{Z}$  coefficients, for every prime p and every integer  $k \geq 1$ . This is the approach of Abouzaid–McLean–Smith. To that extent, they construct a *global Kuranishi chart* for the moduli spaces of interest, which satisfy suitable orientation properties with respect to Morava K-theory.

We will focus on the AMS approach and briefly overview the main ingredients. Let us first discuss Morava K-theory.

For a prime p and an integer  $n \ge 1$ ,  $k = K_p(n)$  is a generalized cohomology theory which satisfies the following:

- (1) The underlying coefficient ring is  $\mathbb{k}_* = H^*(\mathrm{pt}, \mathbb{k}) = \mathbb{F}_p[v^{\pm}]$  where  $|v^{\pm}| = 2(p^n 1)$ ,
- (2) If X and Y are CW-complexes, there is a Künneth isomorphism

$$H^*(X \times Y; \mathbb{k}) \cong H^*(X; \mathbb{k}) \otimes_{\mathbb{k}} H^*(Y; \mathbb{k}),$$

- (3) Every vector bundle with a stable complex structure is k-oriented, hence every stably complex manifold is k-oriented,
- (4) If p > 2, then any oriented vector bundle is k-oriented, hence every oriented manifold is k-oriented.

For  $k \geq 1$ , there is an extension of  $K_p(n)$  denoted  $K_{p^k}(n)$  with coefficient ring  $\mathbb{Z}/p^k\mathbb{Z}(n)[v^{\pm}]$ ,  $|v| = 2(p^n - 1)$ , which satisfies (3) and (4).

The upshot of AMS's proof is that  $K_{p^k}(n)$  behaves a bit like a coefficient field, and their global Kuranishi charts are  $K_{p^k}(n)$ -oriented, allowing them to construct virtual fundamental classes with coefficients in  $K_{p^k}(n)$ . One crucial aspect is that Morava K-theories satisfy a version of equivariant Poincaré duality, or rather Atiyah duality, which is used to define suitable pushforward maps in cohomology (those are relevant for the definition of s as in the previous section). This equivariant duality statement was proved by Cheng.

The virtual fundamental class then takes the form of a map  $H^*(M; \mathbb{k}) \to \mathbb{k}_*$ . More generally, for a space M with a suitable global Kuranishi chart  $\mathcal{K} = (G, \mathcal{T}, E, s)$  and a map  $f : M \to X$  to a  $\mathbb{k}$ -oriented smooth manifold, AMS construct a pushforward map

$$f_*^{\mathcal{K}}: H^*(M; \mathbb{k}) \longrightarrow H^{*-\operatorname{vdim}(M)+\operatorname{dim}(X)}(X; \mathbb{k})$$

which behaves naturally with respect to restricting to subspaces of the form  $f^{-1}(S)$  for a k-oriented submanifold  $S \subseteq X$  (for a suitable induced Kuranishi chart on  $f^{-1}(S)$ ). Therefore, one can make sense of the diagrams in the previous section for cohomology groups with  $K_{p^k}(n)$ -coefficients. This implies:

**Lemma 7.** The map  $\rho: H^*(P_{\phi}; K_{p^k}(n)) \to H^*(X; K_{p^k}(n))$  is a split-epimorphism.

Now since  $P_{\phi}$  and X are finite dimensional manifolds, for n large enough  $(2(p^n-1) > 2n+4)$ , the Atiyah-Hirzebruch spectral sequence for  $K_{p^k}(n)$  degenerates and

$$H^*(X; K_{p^k}(n)) \cong H^*(X; \mathbb{Z}/p^k \mathbb{Z}) \otimes_{\mathbb{Z}/p^k \mathbb{Z}} \mathbb{Z}/p^k \mathbb{Z}[v^{\pm}],$$
  
$$H^*(P_{\phi}; K_{p^k}(n)) \cong H^*(P_{\phi}; \mathbb{Z}/p^k \mathbb{Z}) \otimes_{\mathbb{Z}/p^k \mathbb{Z}} \mathbb{Z}/p^k \mathbb{Z}[v^{\pm}],$$

which implies that  $H^*(P_{\phi}; \mathbb{Z}/p^k\mathbb{Z}) \to H^*(X; \mathbb{Z}/p^k\mathbb{Z})$  is a split-epimorphism. Since this holds for every prime p and every integer k,  $\rho: H^*(P_{\phi}; \mathbb{Z}/m\mathbb{Z}) \to H^*(X; \mathbb{Z}/m\mathbb{Z})$  is also a split-epimorphism for every integer  $m \geq 1$ , which implies that  $\rho: H^*(P_{\phi}; \mathbb{Z}) \to H^*(X; \mathbb{Z})$  is a split-epimorphism.