
Topic 5: Pontryagin–Thom construction and Kuranishi reduction

1. Pontryagin–Thom

Two closed smooth n-manifolds M and N are said to be (unoriented) bordant to each other if

there exists an (n+ 1)-dimensional manifold-with-boundary W such that ∂ =M
∐
N .

Definition 1.1. The unoriented bordism group N∗ is the graded abelian group whose degree n

part Nn is the set of isomorphism classes of n-dimensional smooth closed manifolds modulo the

bordism relation, where the addition law is given by disjoint union.

As M
∐
M is the boundary of M × [0, 1], every element in N∗ is 2-torsion and the inverse of [M ]

is itself. This is also a ring, with product structure induced from the Cartesian product.

Questions 1.2. How to calculate N∗?

We use the following procedure, the so-called Pontryagin–Thom construction, to turn N∗ into

a homotopical object. Given a smooth closed n-dimensional manifold M , using the Whitney

embedding theorem, we can find a smooth embedding

i :M ↪→ Rn+k

for some k > 0. Then we have the following short exact sequence of vector bundles

0 −→ TM −→ i∗Rn+k −→ ν −→ 0,

where ν → M is the normal bundle of M under the embedding i. We can use the exponential

map with respect to the Euclidean metric to define an open embedding from the unit disk-bundle

D(ν) ↪→ Rn+k,

which can be equivalently thought of as the tubular neighborhood.

For any two choices

i :M ↪→ Rn+k, i′ :M ↪→ Rn+k′
,

with the corresponding open embeddings

D(ν) ↪→ Rn+k, D(ν′) ↪→ Rn+k′
,

they can be related in the following way, which can be proved using the arguments of the Whitney

embedding theorem.

Theorem 1.3. There exists K ≥ max{k, k′} such that for the embeddings M
i−→ Rn+k → Rn+K

and M
i′−→ Rn+k′ → Rn+K , the induced open embedding from the tubular neighborhoods are

isotopic to each other.
1
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In particular, the vector bundles ν and ν′ are stably isomorphic:

ν ⊕ RK−k ∼= ν′ ⊕ RK−k′
.

We call this stable isomorphism class of vector bundles over M its stable normal bundle.

Given a vector bundle ξ →M , recall that its Thom space Th(ξ) is defined to be

Th(ξ) := D(ξ)/S(ξ),

where we abuse the notation to use D(ξ) denote the closed unit disk-bundle of ξ under a given

metric, and S(ξ) is the unit sphere-bundle. Th(ξ) is a pointed-space with base point at infinity.

Going back to i :M ↪→ Rn+k, we can define a map

Sn+k = Rn+k
∐

{∞} → Th(ν)

which takes the complement of D(ν) ⊂ Rn+k to the base point, and is the identity map over

D(ν). This is called the Pontryagin–Thom collapsing map.

Exercise 1.4. Show that for m > 0, we have

Th(ξ ⊕ Rm) = Sm ∧ Th(ξ) = Σm(Th(ξ)),

where Σ is the (reduced) suspension on based topological spaces.

Accordingly, for the composed embedding M
i−→ Rn+k → Rn+K , the induced map

Sn+K → Th(ν ⊕ RK−k)

comes from suspending the original map Sn+k → Th(ν) by K − k times. Then by Theorem 1.3,

for two different choices of embeddings, we see that

Sn+K → Th(ν ⊕ RK−k), Sn+K → Th(ν′ ⊕ RK−k′
)

define the same homotopy class of maps.

Now let’s take a closer look at ν. Given a point in ν, it gives rise to

(1) an k-dimensional subspace of Rn+k, the normal space, which is an element in Gr(k, n+k),

the Grassmannian of k-planes in Rn+k;

(2) a vector in this k-dimensional vector space, the normal vector itself, so an element of the

tautological vector bundle ξk → Gr(k, n+ k).

As a result, we obtain a map

Th(ν) → Th(ξk),

which can be composed with the PT collapsing map to give

Sn+k → Th(ξk).

By the independence result for different choices of embeddings, we see that M defines a unique

class in

lim
k→∞

[Sn+k,Th(ξk)].
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Furthermore, we can replace ξk → Gr(k, n+ k) by the bundle ξk → BO(k), and the Thom space

Th(ξk) over BO(k) is usually written as MO(k).

Theorem 1.5. The oriented bordism group Nn is isomorphic to

lim
k→∞

πn+k(MO(k)).

Proof. We have described the map

Nn → lim
k→∞

πn+k(MO(k))

in the above discussions. To show it’s well-defined, we need to argue that it descends under the

bordism relation. To this end, for a manifold-with-boundary W inducing the bordism relation of

M and N , we can choose an embedding

(W,M
∐

N) → (Rn+k × [0, 1],Rn+k × {0},Rn+k × {1})

using the collar coordinates and a stabilization. By performing the Pontryagin–Thom collapsing

construction over [0, 1], we see that the map indeed descends.

There is also something interesting in the reversed direction. Representing an element in the

stable homotopy group limk→∞ πn+k(MO(k)) by a map

Sn+k → πn+k(MO(k)),

we need to construct a manifold. Given the diagram

Th(ξk)

Sn+k BO(k),

it is equivalent to

ξk

Rn+k BO(k)
f

f̃

where the map f̃ is proper. This datum determines a vector bundle f∗ξk → Rn+k together with

a section s : Rn+k → f∗ξk determined by the lift f̃ . By the Thom transversality theorem, we

can choose the representative such that f̃ is transverse to the zero section BO(k)
0−→ ξk, which in

turn implies that s is transverse to the zero section of f∗ξk → Rn+k. For such a choice, s−1(0)

is a closed smooth manifold. Moreover, for two difference choices of transverse f̃ , we can find a

homotopy between them which remains transverse to BO(k)
0−→ ξk. Then the resulting sections

of f∗ξk → Rn+k cut out bordant closed manifolds. This defines the map

lim
k→∞

πn+k(MO(k)) → Nn,

whose independence on the choice of representatives Sn+k → πn+k(MO(k)) can be shown by a

stabilization argument.
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One can then see that these two maps are inverse to each other. For one direction, the tautological

section of π∗
νν → ν for πν : ν → M indeed cuts out M ; for the other direction, the Pontragin–

Thom collapsing map indeed reconstructs the original map from the sphere. □

The object limk→∞ πn+k(MO(k)) is easier to manipulate with, and the homotopy groups are

eventually calculated by the homology of BO(k). One important consequence is the following

theorem by Thom.

Theorem 1.6. For any manifold X and a homology class α ∈ Hk(X,F2), there exists a closed

manifold M of dimension k such that

f∗([M ]) = α,

where [M ] ∈ Hk(M,F2) is the fundamental class and f :M → X is a continuous map.

2. Equivariant situation

Let Γ be a finite group. We can then define the Γ-equivariant (unoriented) bordism group

NΓ
∗

consisting of isomorphism classes of smooth closed Γ-manifolds modulo the Γ-equivariant bordism

relation, where the addition law is again given by disjoint union. It also has a ring structure,

where Γ acts on M ×N diagonally.

We can consider the analog of ξk → BO(k), replacing BO(k) by the classifying space of Γ-

equivariant vector bundles BO(k)Γ, over which lives the tautological bundle

ξΓk → BO(k)Γ.

By restricting to connected components, we can prescribe the isomorphism type of the repre-

sentation of the fiber. We will denote the tautological bundle over the connected component of

BO(k)Γ indexed by the Γ-representation V by

ξV → BO(V )Γ.

Then we can consider

lim
V

[SV⊕Rn

,Th(ξV )]
Γ,

(1) here we consider the direct system of finite-dimensional Γ representations;

(2) SV⊕Rk

is the one-point compactification of the Γ-representation V ⊕ Rk where Γ acts

trivially on Rk;

(3) we only take homotopy classes of Γ-equivariant maps.

Exercise 2.1. Show that there is a well-defined map

NΓ
n → lim

V
[SV⊕Rn

,Th(ξV )]
Γ.
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The important insight here is that there is an equivariant analog of the Whitney embedding

theorem: for a compact Γ-manifold M , there exists a finite-dimensional Γ-representation V such

that there exists a Γ-equivariant embedding M ↪→ V . If we allow V to be infinite-dimensional,

then we can simply take V to be the space of L2 functions over M with the pull-back Γ-action.

To go back to finite dimensions, the point is that a sufficiently large approximation of L2(M) is

good enough to separate points and tangent vectors.

Now let’s investigate the other direction of the Pontryagin–Thom construction. We shall look at

ξV

V ⊕ Rn BO(V )Γ.f

f̃

To get a Γ-manifold, we have to choose a representative f̃ which is Γ-equivariant and transverse

to BO(V )Γ
0−→ ξV . However, this cannot be achieved in general. As a typical example, consider

R with two different Z/2-actions: for the first copy R(0), the groups acts on it trivially; for

the second copy R(−1), we treat it as the sign representation. Then any Z/2-equivariant map

R(0) → R(−1) is necessarily the map which takes all points to 0. In other words, we can never

find a section of the vector bundle R(−1) → R(0) which is transverse to the zero section.

Nevertheless, we can consider the Γ-equivariant vector bundle

f̃∗ξV → V ⊕ Rn,

which comes with a proper section s : V ⊕ Rn → f̃∗ξV induced from f̃ . This triple

(V ⊕ Rn, f̃∗ξV , s)

records enough homotopical information to remedy the failure of the Pontryagin–Thom isomor-

phism in the equivariant setting.

Definition 2.2. A Γ-equivariant Kuranishi chart is a triple

(M,E, s)

where M is a Γ-manifold, E →M is a Γ-equivariant vector bundle, s :M → E is a Γ-equivariant

section such that s−1(0) is compact.

Motivated by the desire to salvage the Pontryagin–Thom isomorphism, what we really care

about a Γ-equivariant Kuranishi chart (M,E, s) is actually behavior of s−1(0) and how it can be

thickened up to be a smooth manifold. Therefore, we consider the following relations:

(1) Shrinking: it replaces (M,E, s) by (M ′, E|M ′ , s|M ′), where M ′ ⊂ M is an open neigh-

borhood of s−1(0).

(2) Stabilization: given another Γ-equivariant vector bundle πF : F → M , it replaces

(M,E, s) by

(F, π∗
FF ⊕ π∗

FE, τF ⊕ π∗s)

where τ : F → π∗
FF is the tautological section.
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The notion of bordism can be extended to triples: we say (M,E, s) and (M ′, E′, s′) are bordant

if there exists a Γ-manifold with boundary W , and a Γ-equivariant vector bundle Ẽ → W with

a Γ-equivariant section S :W → Ẽ such that

(∂W, Ẽ|∂W , S|∂W ) = (M
∐

M ′, E
∐

E′, s
∐

s′).

Then we can define a new bordism group

dN∗

which consists of isomorphism classes of Γ-equivariant Kuranishi charts, modulo the equivalence

reltions generated by shrinking, stabilization, and bordism. It is an abelian group under disjoint

union.

Proposition 2.3. There exists an isomorphism

dNn → lim
V

[SV⊕Rn

,Th(ξV )]
Γ

from the Pontryagin–Thom construction.

The only missing piece is the following: given (M,E, s), the bundle E admits a stable inverse

in the sense that we can find a Γ-equivariant vector bundle πF : F → M such that E ⊕ F ∼=
V for some Γ-representation V . Using the stabilization relation, we can replace (M,E, s) by

(F, V , π∗
F s⊕ τF ). We need to find a commutative square

V ξV

F BO(V )Γ

π∗
F s⊕τF

f̃

where f̃ : F → ξV is induced by a Whitney embedding into a representation. This can be done

even if F is not compact: it only has finitely many orbit types.

Exercise 2.4. Complete the above construction and prove the Pontryagin–Thom isomorphism

in the equivariant setting.

The group dN∗ is usually called the homotopical Γ-equivariant bordism group.

3. Kuranishi reduction

What’s the relation between the above classical algebraic topology and moduli spaces of pseudo-

holomorphic curves? The answer is, via a finite-dimensional reduction, called the Kuranishi

reduction, Kuranishi charts naturally arise from nonlinear Fredholm problems.

Let X ,Y be (possibly finite dimensional) Banach spaces and let

Φ : X → Y(3.1)

be a smooth Fredholm map, defined on an open neighborhood of 0 ∈ X , such that we have

Φ(0) = 0 ∈ Y. Consider the linearization

D̃ = DΦ(0) : X → Y(3.2)
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and define the (necessarily finite dimensional) vector spaces T := ker D̃ and E := cokerD̃. Split

the inclusion T → X and the projection Y → E by choosing a Banach space complement X ′ ⊂ X
of T and a linear subspace lift E ⊂ Y. Applying the implicit function theorem now shows that

Φ−1(E) ⊂ X is identified (near 0 ∈ X ) with the graph of a smooth map Ψ : T → X ′ defined on

a neighborhood of 0 ∈ T . This map satisfies Ψ(0) = 0 ∈ X ′ and DΨ(0) = 0. The associated

Kuranishi map

F : T → E,(3.3)

defined near 0 ∈ T , is given by F (κ) := Φ(κ + Ψ(κ)) for κ ∈ T . It satisfies F (0) = 0 and

DF (0) = 0 by construction. We refer to the process of constructing F from Φ as Kuranishi

reduction and note that it depends on the choices of splittings of the maps T → X and Y → E.

Lemma 3.1 (Splitting dependence of Kuranishi map). Let F̃ : T → E be a Kuranishi map

obtained using a different choice of splittings than in (3.3). Then, there exists a local diffeomor-

phism

ψ : T → T(3.4)

with ψ(0) = 0 and Dψ(0) = idT and a smooth map

ψ̃ : T → End(E)(3.5)

with ψ̃(0) = idE such that, for all κ ∈ T near 0, we have

F̃ (κ) = ψ̃(κ)F (ψ(κ)).(3.6)

Proof. Via the splitting used to define (3.3), we get direct sum decompositions X = X ′ ⊕ T and

Y = im(D̃)⊕ E.

Consider first the case when F̃ is obtained by the changing the splitting of T → X but using the

same splitting of Y → E as in (3.3). Denote the resulting complement of T by X̃ ′ ⊂ X . Using

the implicit function theorem, we write Φ−1(E) as the graph of a smooth map Ψ̃ : T → X̃ ′ near

0 ∈ X , with Ψ̃(0) = 0 and DΨ̃(0) = 0. Since Φ−1(E) is locally also the graph of the smooth map

Ψ : T → X ′, we must have

ΠX ′Ψ̃(κ) = Ψ(κ+ΠT Ψ̃(κ))(3.7)

for all κ ∈ T near 0, where ΠX ′ and ΠT denote the projections onto the summands of the

decomposition X = X ′⊕T . This immediately yields F̃ (κ) ≡ F (ψ(κ)) with ψ : T → T defined by

ψ(κ) = κ+ΠT Ψ̃(κ).(3.8)

Since Ψ̃(0) = 0 and DΨ̃(0) = 0, we see that ψ satisfies ψ(0) = 0 and Dψ(0) = idT and is thus a

local diffeomorphism.

Consider next the case when F̃ is obtained by keeping the same splitting of T → X as in (3.3) but

changing the splitting of the map Y → E. Denote the resulting complement im(D̃) by Ẽ ⊂ Y.

Consider the map

ΦE : X ⊕ E → Y(3.9)
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given by ΦE(x, e) = Φ(x)− e. Using the implicit function theorem, we may write Φ−1
E (Ẽ), near

0, as the graph of a smooth map Ψ̃E : T ⊕ E → X ′. Using Ψ̃E , we define the smooth map

F̃E : T ⊕ E → E by the formula

F̃E(κ, e) = ΠE(Φ(κ+ Ψ̃E(κ, e))− e)(3.10)

where ΠE : Y → E denotes the projection. Restricting Ψ̃E to T ⊕{0} recovers the map Ψ̃ : T →
X ′ whose graph coincides with Φ−1(Ẽ) near 0 ∈ X (which also shows that F̃E(κ, 0) = F̃ (κ) for

κ ∈ T ). Therefore, as before, we have Ψ̃(0) = 0 and DΨ̃(0) = 0 which shows that DF̃E(0, 0) is

given by (the negative of) the projection onto E. Now, if (κ, e) is a point where F̃E vanishes,

then since ΠE |Ẽ : Ẽ → E is an isomorphism it follows that Φ(κ + Ψ̃E(κ, e)) − e = 0. This, in

turn, implies that we must in fact have Ψ̃E(κ, e) = Ψ(κ) and e = F (κ). Conversely, if e = F (κ),

then ΦE(κ + Ψ(κ), e) = Φ(κ + Ψ(κ)) − e = 0 ∈ Ẽ and thus, Ψ̃E(κ, e) = Ψ(κ) and F̃E(κ, e) = 0.

In summary, F̃E is a defining equation, near (0, 0), for the submanifold of T ⊕ E given by the

graph of the map F : T → E, i.e., the equation F̃E = 0 transversely cuts out the graph of

F near (0, 0). Since FE(κ, e) := F (κ) − e is also a defining equation for the graph of F , and

DFE(0, 0) = DF̃E(0, 0), it follows that there exists a smooth map ψ̃E : T ⊕ E → End(E) with

ψ̃E(0, 0) = idE such that

F̃E(κ, e) = ψ̃E(κ, e) · FE(κ, e)(3.11)

for all (κ, e) ∈ T ⊕ E near (0, 0). Restricting to e = 0 and defining the map ψ̃ : T → GL(E) by

ψ̃(κ) = ψ̃E(κ, 0), we obtain F̃ (κ) ≡ ψ̃(κ)F (κ).

Combining the arguments of the preceding two paragraphs produces ψ, ψ̃ and the identity (3.6)

in the general case. □

As one can see from the proof, when X and Y are endowed with Γ-actions, if Φ is further assumed

to be Γ-equivariant, the Kuranishi map F : T → E is also Γ-equivariant because the implicit

function theorem carries out without modification in the equivariant setting. If this procedure

can be performed in a global fashion, meaning that Φ : X → Y is actually a Fredholm section

of a Banach vector bundle over a Banach manifold, the output in the Γ-equivariant setting is

exactly a Γ-equivariant Kuranishi model.

4. Local Kuranishi model for stable maps

Let (M,J) be an almost complex manifold. Suppose (Σ, j) is a Riemann surface with at worst

nodal singularities, i.e., locally modeled on {xy = 0} ⊂ C2. A smooth map u : Σ →M is defined

to be a smooth map over the normalization of Σ (separating the branches at nodal points) whose

takes the same value at the preimages of a given nodal point. It is said to be J-holomorphic if

du ◦ j = J ◦ du

holds over the normalization of Σ.

Definition 4.1. A J-holomorphic map u : (Σ, j) → (M,J) is called stable if there exists only

definitely many automorphisms ϕ : (Σ, j) → (Σ, j) such that u ◦ ϕ = u.
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A Riemann surface (Σ, j) with marked points is called stable if there are only finitely many

automorphisms of (Σ, j) fixing the marked points.

Let M be the moduli space of J-holomorphic stable maps to M , and we have chosen to be

deliberately vague with the additional data entering into the definition. We wish to find a

local Kuranishi model near u : (Σ, j) → (M,J) for [u] ∈ M in the following sense: we want

to find a quadruple (Γ, V1, V2, f) where Γ is a finite group, V1 and V2 are finite-dimensional

Γ-representations, f : V1 → V2 is a Γ-equivariant continuous map, such that there exists a

continuous map

ψ : f−1(0)/Γ → M

which defines a homeomorphism onto an open subset of M containing [u].

For the first step, we need a method to stabilize the domain of u such that after adding some

marked points, (Σ, j) becomes stable as a Riemann surface.

Lemma 4.2. Let u : (Σ, j) → (M,J) be a stable J-holomorphic map. Then there exists a

codimension 2 submanifold with boundary D ⊂ M such that D only intersects u away from the

nodes with transverse intersectin points, and if (Σ, j) is equipped with marked points coming from

the intersection points with D, the domain becomes stable.

Proof. Note that if u is a stable map, an irreducible component is unstable only if u is not

constant when restricted along it. Therefore, the differential du must be injective at a smooth

point x over such an irreducible component. Then we can choose D to be (a disjoint union) of

manifolds-with-boundary coming from a small disk in the normal direction of dux. This ensures

the stability of the domain if we choose sufficiently many submanifolds. □

Now suppose that (Σ, j) is a genus g Riemann surface with k marked points. Choosing a D

in Lemma 4.2, let r := #u−1(D). Ordering these r points requires a choice, which defines a

Sym(r)-torsor, the symmetric group of r-elements. In other words, the moduli space of genus g

curves with k + r marked points quotient out by the Sym(r)-action

Mg,k+r/Sym(r)

defines a local model for the possible domains of curves in M near [u]. The family of curves

Cg,k+r/Sym(r) → Mg,k+r/Sym(r)

parametrized by this moduli space provides the stage for applying the Kuranishi reduction.

Indeed, we can present Mg,k+r/Sym(r) locally as a quotient of a manifold

M/Γ,

over which we have the Γ-equivariant family of curves C → M.

For the final step, we note that the moduli space M near [u] is the zero locus of the ∂-section of

the Banach bundle over

W k,p(C,M)
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whose fiber at ((Σ′, j′), v) is given by W k−1,p(Σ′; Ω0,1
Σ′,j′ ⊗ v∗TM) modulo the Γ-action. Applying

the Kuranishi reduction, we obtain our (Γ, V1, V2, f), where V1 and V2 are respectively the kernel

and cokernel of the linearization Du∂.

Remark 4.3. Recall that the Kuranishi reduction is constructed by applying the implicit function

theorem to the stabilization by coker(Du∂). This says that the extra piece of thickening we should

take to ensure the manifold structure of the moduli space exactly comes from enlarging the domain

by coker(Du∂). As a comparison, in the equivariant Pontryagin–Thom construction, we can

obtain a genuine manifold from the equivariant homotopy group in general only by thickening up

using an equivariant vector bundle.

It is evident that if we could present M globally as s−1(0)/Γ for a Γ-equivariant Kuranishi chart

(M,E, s), we can import algebraic topology to investigate the topology of moduli spaces of J-

holomorphic maps.
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