TOPIC 5: PONTRYAGIN-THOM CONSTRUCTION AND KURANISHI REDUCTION

1. Pontryagin-Thom

Two closed smooth n-manifolds M and N are said to be (unoriented) bordant to each other if there exists an (n+1)-dimensional manifold-with-boundary W such that $\partial = M \coprod N$.

Definition 1.1. The unoriented bordism group N_* is the graded abelian group whose degree n part N_n is the set of isomorphism classes of n-dimensional smooth closed manifolds modulo the bordism relation, where the addition law is given by disjoint union.

As $M \coprod M$ is the boundary of $M \times [0, 1]$, every element in \mathcal{N}_* is 2-torsion and the inverse of [M] is itself. This is also a ring, with product structure induced from the Cartesian product.

Questions 1.2. How to calculate N_* ?

We use the following procedure, the so-called $Pontryagin-Thom\ construction$, to turn \mathcal{N}_* into a homotopical object. Given a smooth closed n-dimensional manifold M, using the Whitney embedding theorem, we can find a smooth embedding

$$i: M \hookrightarrow \mathbb{R}^{n+k}$$

for some k > 0. Then we have the following short exact sequence of vector bundles

$$0 \longrightarrow TM \longrightarrow i^* \mathbb{R}^{n+k} \longrightarrow \nu \longrightarrow 0,$$

where $\nu \to M$ is the normal bundle of M under the embedding i. We can use the exponential map with respect to the Euclidean metric to define an open embedding from the unit disk-bundle

$$D(\nu) \hookrightarrow \mathbb{R}^{n+k}$$
,

which can be equivalently thought of as the tubular neighborhood.

For any two choices

$$i: M \hookrightarrow \mathbb{R}^{n+k}, \qquad i': M \hookrightarrow \mathbb{R}^{n+k'},$$

with the corresponding open embeddings

$$D(\nu) \hookrightarrow \mathbb{R}^{n+k}, \qquad D(\nu') \hookrightarrow \mathbb{R}^{n+k'},$$

they can be related in the following way, which can be proved using the arguments of the Whitney embedding theorem.

Theorem 1.3. There exists $K \ge \max\{k, k'\}$ such that for the embeddings $M \xrightarrow{i} \mathbb{R}^{n+k} \to \mathbb{R}^{n+K}$ and $M \xrightarrow{i'} \mathbb{R}^{n+k'} \to \mathbb{R}^{n+K}$, the induced open embedding from the tubular neighborhoods are isotopic to each other.

1

In particular, the vector bundles ν and ν' are stably isomorphic:

$$\nu \oplus \mathbb{R}^{K-k} \cong \nu' \oplus \mathbb{R}^{K-k'}.$$

We call this stable isomorphism class of vector bundles over M its stable normal bundle.

Given a vector bundle $\xi \to M$, recall that its *Thom space* Th(ξ) is defined to be

$$Th(\xi) := D(\xi)/S(\xi),$$

where we abuse the notation to use $D(\xi)$ denote the closed unit disk-bundle of ξ under a given metric, and $S(\xi)$ is the unit sphere-bundle. Th(ξ) is a pointed-space with base point at infinity. Going back to $i: M \hookrightarrow \mathbb{R}^{n+k}$, we can define a map

$$S^{n+k} = \mathbb{R}^{n+k} \prod \{\infty\} \to \operatorname{Th}(\nu)$$

which takes the complement of $D(\nu) \subset \mathbb{R}^{n+k}$ to the base point, and is the identity map over $D(\nu)$. This is called the *Pontryagin-Thom collapsing map*.

Exercise 1.4. Show that for m > 0, we have

$$\operatorname{Th}(\xi \oplus \underline{\mathbb{R}}^m) = S^m \wedge \operatorname{Th}(\xi) = \Sigma^m(\operatorname{Th}(\xi)),$$

where Σ is the (reduced) suspension on based topological spaces.

Accordingly, for the composed embedding $M \xrightarrow{i} \mathbb{R}^{n+k} \to \mathbb{R}^{n+K}$, the induced map

$$S^{n+K} \to \operatorname{Th}(\nu \oplus \mathbb{R}^{K-k})$$

comes from suspending the original map $S^{n+k} \to \text{Th}(\nu)$ by K-k times. Then by Theorem 1.3, for two different choices of embeddings, we see that

$$S^{n+K} \to \operatorname{Th}(\nu \oplus \mathbb{R}^{K-k}), \qquad S^{n+K} \to \operatorname{Th}(\nu' \oplus \mathbb{R}^{K-k'})$$

define the same homotopy class of maps.

Now let's take a closer look at ν . Given a point in ν , it gives rise to

- (1) an k-dimensional subspace of \mathbb{R}^{n+k} , the normal space, which is an element in Gr(k, n+k), the Grassmannian of k-planes in \mathbb{R}^{n+k} ;
- (2) a vector in this k-dimensional vector space, the normal vector itself, so an element of the tautological vector bundle $\xi_k \to \operatorname{Gr}(k, n+k)$.

As a result, we obtain a map

$$Th(\nu) \to Th(\xi_k),$$

which can be composed with the PT collapsing map to give

$$S^{n+k} \to \operatorname{Th}(\xi_k).$$

By the independence result for different choices of embeddings, we see that M defines a unique class in

$$\lim_{k\to\infty} [S^{n+k}, \operatorname{Th}(\xi_k)].$$

Furthermore, we can replace $\xi_k \to \operatorname{Gr}(k, n+k)$ by the bundle $\xi_k \to BO(k)$, and the Thom space $\operatorname{Th}(\xi_k)$ over BO(k) is usually written as MO(k).

Theorem 1.5. The oriented bordism group N_n is isomorphic to

$$\lim_{k\to\infty} \pi_{n+k}(MO(k)).$$

Proof. We have described the map

$$\mathcal{N}_n \to \lim_{k \to \infty} \pi_{n+k}(MO(k))$$

in the above discussions. To show it's well-defined, we need to argue that it descends under the bordism relation. To this end, for a manifold-with-boundary W inducing the bordism relation of M and N, we can choose an embedding

$$(W,M\coprod N)\to (\mathbb{R}^{n+k}\times [0,1],\mathbb{R}^{n+k}\times \{0\},\mathbb{R}^{n+k}\times \{1\})$$

using the collar coordinates and a stabilization. By performing the Pontryagin–Thom collapsing construction over [0,1], we see that the map indeed descends.

There is also something interesting in the reversed direction. Representing an element in the stable homotopy group $\lim_{k\to\infty} \pi_{n+k}(MO(k))$ by a map

$$S^{n+k} \to \pi_{n+k}(MO(k)),$$

we need to construct a manifold. Given the diagram

$$S^{n+k} \xrightarrow{\operatorname{Th}(\xi_k)} BO(k),$$

it is equivalent to

$$\mathbb{R}^{n+k} \xrightarrow{\tilde{f}} BO(k)$$

where the map \tilde{f} is proper. This datum determines a vector bundle $f^*\xi_k \to \mathbb{R}^{n+k}$ together with a section $s: \mathbb{R}^{n+k} \to f^*\xi_k$ determined by the lift \tilde{f} . By the *Thom transversality theorem*, we can choose the representative such that \tilde{f} is transverse to the zero section $BO(k) \xrightarrow{0} \xi_k$, which in turn implies that s is transverse to the zero section of $f^*\xi_k \to \mathbb{R}^{n+k}$. For such a choice, $s^{-1}(0)$ is a closed smooth manifold. Moreover, for two difference choices of transverse \tilde{f} , we can find a homotopy between them which remains transverse to $BO(k) \xrightarrow{0} \xi_k$. Then the resulting sections of $f^*\xi_k \to \mathbb{R}^{n+k}$ cut out bordant closed manifolds. This defines the map

$$\lim_{k\to\infty} \pi_{n+k}(MO(k)) \to \mathfrak{N}_n,$$

whose independence on the choice of representatives $S^{n+k} \to \pi_{n+k}(MO(k))$ can be shown by a stabilization argument.

One can then see that these two maps are inverse to each other. For one direction, the tautological section of $\pi_{\nu}^* \nu \to \nu$ for $\pi_{\nu} : \nu \to M$ indeed cuts out M; for the other direction, the Pontragin–Thom collapsing map indeed reconstructs the original map from the sphere.

The object $\lim_{k\to\infty} \pi_{n+k}(MO(k))$ is easier to manipulate with, and the homotopy groups are eventually calculated by the homology of BO(k). One important consequence is the following theorem by Thom.

Theorem 1.6. For any manifold X and a homology class $\alpha \in H_k(X, \mathbb{F}_2)$, there exists a closed manifold M of dimension k such that

$$f_*([M]) = \alpha,$$

where $[M] \in H_k(M, \mathbb{F}_2)$ is the fundamental class and $f: M \to X$ is a continuous map.

2. Equivariant situation

Let Γ be a finite group. We can then define the Γ -equivariant (unoriented) bordism group

$$\mathcal{N}_{\Gamma}$$

consisting of isomorphism classes of smooth closed Γ -manifolds modulo the Γ -equivariant bordism relation, where the addition law is again given by disjoint union. It also has a ring structure, where Γ acts on $M \times N$ diagonally.

We can consider the analog of $\xi_k \to BO(k)$, replacing BO(k) by the classifying space of Γ -equivariant vector bundles $BO(k)_{\Gamma}$, over which lives the tautological bundle

$$\xi_k^{\Gamma} \to BO(k)_{\Gamma}$$
.

By restricting to connected components, we can prescribe the isomorphism type of the representation of the fiber. We will denote the tautological bundle over the connected component of $BO(k)_{\Gamma}$ indexed by the Γ -representation V by

$$\xi_V \to BO(V)_{\Gamma}$$
.

Then we can consider

$$\lim_{V} \left[S^{V \oplus \mathbb{R}^n}, \operatorname{Th}(\xi_V) \right]^{\Gamma},$$

- (1) here we consider the direct system of finite-dimensional Γ representations;
- (2) $S^{V \oplus \mathbb{R}^k}$ is the one-point compactification of the Γ -representation $V \oplus \mathbb{R}^k$ where Γ acts trivially on \mathbb{R}^k ;
- (3) we only take homotopy classes of Γ -equivariant maps.

Exercise 2.1. Show that there is a well-defined map

$$\mathfrak{N}_n^{\Gamma} \to \lim_V [S^{V \oplus \mathbb{R}^n}, \operatorname{Th}(\xi_V)]^{\Gamma}.$$

The important insight here is that there is an equivariant analog of the Whitney embedding theorem: for a compact Γ -manifold M, there exists a finite-dimensional Γ -representation V such that there exists a Γ -equivariant embedding $M \hookrightarrow V$. If we allow V to be infinite-dimensional, then we can simply take V to be the space of L^2 functions over M with the pull-back Γ -action. To go back to finite dimensions, the point is that a sufficiently large approximation of $L^2(M)$ is good enough to separate points and tangent vectors.

Now let's investigate the other direction of the Pontryagin-Thom construction. We shall look at

$$V \oplus \mathbb{R}^n \xrightarrow{\tilde{f}} BO(V)_{\Gamma}.$$

To get a Γ-manifold, we have to choose a representative \tilde{f} which is Γ-equivariant and transverse to $BO(V)_{\Gamma} \stackrel{0}{\to} \xi_{V}$. However, this *cannot* be achieved in general. As a typical example, consider \mathbb{R} with two different $\mathbb{Z}/2$ -actions: for the first copy $\mathbb{R}(0)$, the groups acts on it trivially; for the second copy $\mathbb{R}(-1)$, we treat it as the sign representation. Then any $\mathbb{Z}/2$ -equivariant map $\mathbb{R}(0) \to \mathbb{R}(-1)$ is necessarily the map which takes all points to 0. In other words, we can never find a section of the vector bundle $\mathbb{R}(-1) \to \mathbb{R}(0)$ which is transverse to the zero section.

Nevertheless, we can consider the Γ -equivariant vector bundle

$$\tilde{f}^* \xi_V \to V \oplus \mathbb{R}^n$$
,

which comes with a proper section $s: V \oplus \mathbb{R}^n \to \tilde{f}^*\xi_V$ induced from \tilde{f} . This triple

$$(V \oplus \mathbb{R}^n, \tilde{f}^* \xi_V, s)$$

records enough homotopical information to remedy the failure of the Pontryagin–Thom isomorphism in the equivariant setting.

Definition 2.2. A Γ -equivariant Kuranishi chart is a triple

where M is a Γ -manifold, $E \to M$ is a Γ -equivariant vector bundle, $s: M \to E$ is a Γ -equivariant section such that $s^{-1}(0)$ is compact.

Motivated by the desire to salvage the Pontryagin–Thom isomorphism, what we really care about a Γ -equivariant Kuranishi chart (M, E, s) is actually behavior of $s^{-1}(0)$ and how it can be thickened up to be a smooth manifold. Therefore, we consider the following relations:

- (1) Shrinking: it replaces (M, E, s) by $(M', E|_{M'}, s|_{M'})$, where $M' \subset M$ is an open neighborhood of $s^{-1}(0)$.
- (2) Stabilization: given another Γ -equivariant vector bundle $\pi_F: F \to M$, it replaces (M, E, s) by

$$(F, \pi_F^* F \oplus \pi_F^* E, \tau_F \oplus \pi^* s)$$

where $\tau: F \to \pi_F^* F$ is the tautological section.

The notion of bordism can be extended to triples: we say (M, E, s) and (M', E', s') are bordant if there exists a Γ -manifold with boundary W, and a Γ -equivariant vector bundle $\tilde{E} \to W$ with a Γ -equivariant section $S: W \to \tilde{E}$ such that

$$(\partial W, \tilde{E}|_{\partial W}, S|_{\partial W}) = (M \coprod M', E \coprod E', s \coprod s').$$

Then we can define a new bordism group

$$dN_*$$

which consists of isomorphism classes of Γ -equivariant Kuranishi charts, modulo the equivalence reltions generated by shrinking, stabilization, and bordism. It is an abelian group under disjoint union.

Proposition 2.3. There exists an isomorphism

$$d\mathcal{N}_n \to \lim_V \left[S^{V \oplus \mathbb{R}^n}, \operatorname{Th}(\xi_V) \right]^{\Gamma}$$

from the Pontryagin-Thom construction.

The only missing piece is the following: given (M, E, s), the bundle E admits a stable inverse in the sense that we can find a Γ -equivariant vector bundle $\pi_F : F \to M$ such that $E \oplus F \cong \underline{V}$ for some Γ -representation V. Using the stabilization relation, we can replace (M, E, s) by $(F, \underline{V}, \pi_F^* s \oplus \tau_F)$. We need to find a commutative square

$$\begin{array}{ccc}
V & \longrightarrow & \xi_V \\
 & \downarrow & \downarrow \\
F & \longrightarrow & BO(V)_{\Gamma}
\end{array}$$

where $\tilde{f}: F \to \xi_V$ is induced by a Whitney embedding into a representation. This can be done even if F is not compact: it only has finitely many orbit types.

Exercise 2.4. Complete the above construction and prove the Pontryagin-Thom isomorphism in the equivariant setting.

The group $d\mathcal{N}_*$ is usually called the homotopical Γ -equivariant bordism group.

3. Kuranishi reduction

What's the relation between the above classical algebraic topology and moduli spaces of pseudo-holomorphic curves? The answer is, via a finite-dimensional reduction, called the *Kuranishi* reduction, Kuranishi charts naturally arise from nonlinear Fredholm problems.

Let \mathcal{X}, \mathcal{Y} be (possibly finite dimensional) Banach spaces and let

$$(3.1) \Phi: \mathcal{X} \to \mathcal{Y}$$

be a smooth Fredholm map, defined on an open neighborhood of $0 \in \mathcal{X}$, such that we have $\Phi(0) = 0 \in \mathcal{Y}$. Consider the linearization

$$\tilde{D} = D\Phi(0) : \mathcal{X} \to \mathcal{Y}$$

and define the (necessarily finite dimensional) vector spaces $T := \ker \tilde{D}$ and $E := \operatorname{coker} \tilde{D}$. Split the inclusion $T \to \mathcal{X}$ and the projection $\mathcal{Y} \to E$ by choosing a Banach space complement $\mathcal{X}' \subset \mathcal{X}$ of T and a linear subspace lift $E \subset \mathcal{Y}$. Applying the implicit function theorem now shows that $\Phi^{-1}(E) \subset \mathcal{X}$ is identified (near $0 \in \mathcal{X}$) with the graph of a smooth map $\Psi : T \to \mathcal{X}'$ defined on a neighborhood of $0 \in T$. This map satisfies $\Psi(0) = 0 \in \mathcal{X}'$ and $D\Psi(0) = 0$. The associated Kuranishi map

$$(3.3) F: T \to E,$$

defined near $0 \in T$, is given by $F(\kappa) := \Phi(\kappa + \Psi(\kappa))$ for $\kappa \in T$. It satisfies F(0) = 0 and DF(0) = 0 by construction. We refer to the process of constructing F from Φ as Kuranishi reduction and note that it depends on the choices of splittings of the maps $T \to \mathcal{X}$ and $\mathcal{Y} \to E$.

Lemma 3.1 (Splitting dependence of Kuranishi map). Let $\tilde{F}: T \to E$ be a Kuranishi map obtained using a different choice of splittings than in (3.3). Then, there exists a local diffeomorphism

$$(3.4) \psi: T \to T$$

with $\psi(0) = 0$ and $D\psi(0) = \mathrm{id}_T$ and a smooth map

(3.5)
$$\tilde{\psi}: T \to \operatorname{End}(E)$$

with $\tilde{\psi}(0) = \mathrm{id}_E$ such that, for all $\kappa \in T$ near 0, we have

(3.6)
$$\tilde{F}(\kappa) = \tilde{\psi}(\kappa)F(\psi(\kappa)).$$

Proof. Via the splitting used to define (3.3), we get direct sum decompositions $\mathcal{X} = \mathcal{X}' \oplus T$ and $\mathcal{Y} = \operatorname{im}(\tilde{D}) \oplus E$.

Consider first the case when \tilde{F} is obtained by the changing the splitting of $T \to \mathcal{X}$ but using the same splitting of $\mathcal{Y} \to E$ as in (3.3). Denote the resulting complement of T by $\tilde{\mathcal{X}}' \subset \mathcal{X}$. Using the implicit function theorem, we write $\Phi^{-1}(E)$ as the graph of a smooth map $\tilde{\Psi}: T \to \tilde{\mathcal{X}}'$ near $0 \in \mathcal{X}$, with $\tilde{\Psi}(0) = 0$ and $D\tilde{\Psi}(0) = 0$. Since $\Phi^{-1}(E)$ is locally also the graph of the smooth map $\Psi: T \to \mathcal{X}'$, we must have

(3.7)
$$\Pi_{\mathcal{X}'}\tilde{\Psi}(\kappa) = \Psi(\kappa + \Pi_T\tilde{\Psi}(\kappa))$$

for all $\kappa \in T$ near 0, where $\Pi_{\mathcal{X}'}$ and Π_T denote the projections onto the summands of the decomposition $\mathcal{X} = \mathcal{X}' \oplus T$. This immediately yields $\tilde{F}(\kappa) \equiv F(\psi(\kappa))$ with $\psi : T \to T$ defined by

(3.8)
$$\psi(\kappa) = \kappa + \Pi_T \tilde{\Psi}(\kappa).$$

Since $\tilde{\Psi}(0) = 0$ and $D\tilde{\Psi}(0) = 0$, we see that ψ satisfies $\psi(0) = 0$ and $D\psi(0) = \mathrm{id}_T$ and is thus a local diffeomorphism.

Consider next the case when \tilde{F} is obtained by keeping the same splitting of $T \to \mathcal{X}$ as in (3.3) but changing the splitting of the map $\mathcal{Y} \to E$. Denote the resulting complement $\operatorname{im}(\tilde{D})$ by $\tilde{E} \subset \mathcal{Y}$. Consider the map

$$(3.9) \Phi_E: \mathcal{X} \oplus E \to \mathcal{Y}$$

given by $\Phi_E(x,e) = \Phi(x) - e$. Using the implicit function theorem, we may write $\Phi_E^{-1}(\tilde{E})$, near 0, as the graph of a smooth map $\tilde{\Psi}_E : T \oplus E \to \mathcal{X}'$. Using $\tilde{\Psi}_E$, we define the smooth map $\tilde{F}_E : T \oplus E \to E$ by the formula

(3.10)
$$\tilde{F}_E(\kappa, e) = \Pi_E(\Phi(\kappa + \tilde{\Psi}_E(\kappa, e)) - e)$$

where $\Pi_E: \mathcal{Y} \to E$ denotes the projection. Restricting $\tilde{\Psi}_E$ to $T \oplus \{0\}$ recovers the map $\tilde{\Psi}: T \to \mathcal{X}'$ whose graph coincides with $\Phi^{-1}(\tilde{E})$ near $0 \in \mathcal{X}$ (which also shows that $\tilde{F}_E(\kappa,0) = \tilde{F}(\kappa)$ for $\kappa \in T$). Therefore, as before, we have $\tilde{\Psi}(0) = 0$ and $D\tilde{\Psi}(0) = 0$ which shows that $D\tilde{F}_E(0,0)$ is given by (the negative of) the projection onto E. Now, if (κ,e) is a point where \tilde{F}_E vanishes, then since $\Pi_E|_{\tilde{E}}:\tilde{E}\to E$ is an isomorphism it follows that $\Phi(\kappa+\tilde{\Psi}_E(\kappa,e))-e=0$. This, in turn, implies that we must in fact have $\tilde{\Psi}_E(\kappa,e)=\Psi(\kappa)$ and $e=F(\kappa)$. Conversely, if $e=F(\kappa)$, then $\Phi_E(\kappa+\Psi(\kappa),e)=\Phi(\kappa+\Psi(\kappa))-e=0\in \tilde{E}$ and thus, $\tilde{\Psi}_E(\kappa,e)=\Psi(\kappa)$ and $\tilde{F}_E(\kappa,e)=0$. In summary, \tilde{F}_E is a defining equation, near (0,0), for the submanifold of $T\oplus E$ given by the graph of the map $F:T\to E$, i.e., the equation $\tilde{F}_E=0$ transversely cuts out the graph of F near (0,0). Since $F_E(\kappa,e):=F(\kappa)-e$ is also a defining equation for the graph of F, and $DF_E(0,0)=D\tilde{F}_E(0,0)$, it follows that there exists a smooth map $\tilde{\psi}_E:T\oplus E\to \mathrm{End}(E)$ with $\tilde{\psi}_E(0,0)=\mathrm{id}_E$ such that

(3.11)
$$\tilde{F}_E(\kappa, e) = \tilde{\psi}_E(\kappa, e) \cdot F_E(\kappa, e)$$

for all $(\kappa, e) \in T \oplus E$ near (0, 0). Restricting to e = 0 and defining the map $\tilde{\psi} : T \to GL(E)$ by $\tilde{\psi}(\kappa) = \tilde{\psi}_E(\kappa, 0)$, we obtain $\tilde{F}(\kappa) \equiv \tilde{\psi}(\kappa)F(\kappa)$.

Combining the arguments of the preceding two paragraphs produces $\psi, \tilde{\psi}$ and the identity (3.6) in the general case.

As one can see from the proof, when \mathcal{X} and \mathcal{Y} are endowed with Γ -actions, if Φ is further assumed to be Γ -equivariant, the Kuranishi map $F:T\to E$ is also Γ -equivariant because the implicit function theorem carries out without modification in the equivariant setting. If this procedure can be performed in a global fashion, meaning that $\Phi:\mathcal{X}\to\mathcal{Y}$ is actually a Fredholm section of a Banach vector bundle over a Banach manifold, the output in the Γ -equivariant setting is exactly a Γ -equivariant Kuranishi model.

4. Local Kuranishi model for stable maps

Let (M, J) be an almost complex manifold. Suppose (Σ, j) is a Riemann surface with at worst nodal singularities, i.e., locally modeled on $\{xy = 0\} \subset \mathbb{C}^2$. A smooth map $u : \Sigma \to M$ is defined to be a smooth map over the normalization of Σ (separating the branches at nodal points) whose takes the same value at the preimages of a given nodal point. It is said to be J-holomorphic if

$$du \circ j = J \circ du$$

holds over the normalization of Σ .

Definition 4.1. A J-holomorphic map $u:(\Sigma,j)\to (M,J)$ is called stable if there exists only definitely many automorphisms $\phi:(\Sigma,j)\to (\Sigma,j)$ such that $u\circ\phi=u$.

A Riemann surface (Σ, j) with marked points is called stable if there are only finitely many automorphisms of (Σ, j) fixing the marked points.

Let $\overline{\mathbb{M}}$ be the moduli space of J-holomorphic stable maps to M, and we have chosen to be deliberately vague with the additional data entering into the definition. We wish to find a local Kuranishi model near $u:(\Sigma,j)\to (M,J)$ for $[u]\in \overline{\mathbb{M}}$ in the following sense: we want to find a quadruple (Γ,V_1,V_2,f) where Γ is a finite group, V_1 and V_2 are finite-dimensional Γ -representations, $f:V_1\to V_2$ is a Γ -equivariant continuous map, such that there exists a continuous map

$$\psi: f^{-1}(0)/\Gamma \to \mathfrak{M}$$

which defines a homeomorphism onto an open subset of \mathcal{M} containing [u].

For the first step, we need a method to *stabilize the domain* of u such that after adding some marked points, (Σ, j) becomes stable as a Riemann surface.

Lemma 4.2. Let $u:(\Sigma,j)\to (M,J)$ be a stable J-holomorphic map. Then there exists a codimension 2 submanifold with boundary $D\subset M$ such that D only intersects u away from the nodes with transverse intersectin points, and if (Σ,j) is equipped with marked points coming from the intersection points with D, the domain becomes stable.

Proof. Note that if u is a stable map, an irreducible component is unstable only if u is not constant when restricted along it. Therefore, the differential du must be injective at a smooth point x over such an irreducible component. Then we can choose D to be (a disjoint union) of manifolds-with-boundary coming from a small disk in the normal direction of du_x . This ensures the stability of the domain if we choose sufficiently many submanifolds.

Now suppose that (Σ, j) is a genus g Riemann surface with k marked points. Choosing a D in Lemma 4.2, let $r := \#u^{-1}(D)$. Ordering these r points requires a choice, which defines a $\operatorname{Sym}(r)$ -torsor, the symmetric group of r-elements. In other words, the moduli space of genus g curves with k + r marked points quotient out by the $\operatorname{Sym}(r)$ -action

$$\overline{\mathcal{M}}_{g,k+r}/\mathrm{Sym}(r)$$

defines a local model for the possible domains of curves in \mathcal{M} near [u]. The family of curves

$$\overline{\mathbb{C}}_{q,k+r}/\mathrm{Sym}(r) \to \overline{\mathfrak{M}}_{q,k+r}/\mathrm{Sym}(r)$$

parametrized by this moduli space provides the stage for applying the Kuranishi reduction. Indeed, we can present $\overline{\mathcal{M}}_{q,k+r}/\mathrm{Sym}(r)$ locally as a quotient of a manifold

$$\mathcal{M}/\Gamma$$
.

over which we have the Γ -equivariant family of curves $\mathcal{C} \to \mathcal{M}$.

For the final step, we note that the moduli space \mathcal{M} near [u] is the zero locus of the $\overline{\partial}$ -section of the Banach bundle over

$$W^{k,p}(\mathcal{C},M)$$

whose fiber at $((\Sigma', j'), v)$ is given by $W^{k-1,p}(\Sigma'; \Omega^{0,1}_{\Sigma',j'} \otimes v^*TM)$ modulo the Γ -action. Applying the Kuranishi reduction, we obtain our (Γ, V_1, V_2, f) , where V_1 and V_2 are respectively the kernel and cokernel of the linearization $D_u\bar{\partial}$.

Remark 4.3. Recall that the Kuranishi reduction is constructed by applying the implicit function theorem to the stabilization by $\operatorname{coker}(D_u\overline{\partial})$. This says that the extra piece of thickening we should take to ensure the manifold structure of the moduli space exactly comes from enlarging the domain by $\operatorname{coker}(D_u\overline{\partial})$. As a comparison, in the equivariant Pontryagin-Thom construction, we can obtain a genuine manifold from the equivariant homotopy group in general only by thickening up using an equivariant vector bundle.

It is evident that if we could present \mathcal{M} globally as $s^{-1}(0)/\Gamma$ for a Γ -equivariant Kuranishi chart (M, E, s), we can import algebraic topology to investigate the topology of moduli spaces of J-holomorphic maps.