
Lecture 1: overview

Let (M,ω) be a compact symplectic manifold. Given a 1-periodic smooth Hamiltonian Ht :

S1 ×M → R, its Hamiltonian vector field XHt is defined by

(0.1) dHt = ω(−, XHt
).

Integrating along t, the time-one flow of XHt
defines a diffeomorphism

(0.2) ϕHt
:M →M.

Exercise 0.1. Show that ϕ∗Ht
ω = ω using the Cartan formula LX = dιX + ιXd.

There is a one-to-one correspondence

(0.3) Fix(ϕHt) := {fixed points of ϕHt} ↔ {γ : S1 →M | γ̇(t) = XHt(γ)(t)}.

ϕHt
is called non-degenerate if graph(ϕHt

) intersects ∆ transversely in M ×M .

Exercise 0.2. Show that ϕHt is non-degenerate iff for any x ∈ Fix(ϕHt), the differential dϕHt(x)

does not admit 1 as an eigenvalue.

Exercise 0.3. Show that for a generic choice of Ht, ϕHt
is non-degenerate.

Conjecture 0.4 (Arnold, weak form). Let R be a commutative ring. If ϕHt
is non-degenerate,

then #Fix(ϕHt
) is bounded from below by the mimimal number of generators of any chain complex

over R whose homology is isomorphic to H∗(M ;R).

Much of symplectic topology evolves surrounding variants of and ramifications from this con-

jecture. The following exercise was one of the main motivations for Arnold to introduce the

conjecture, except for an early analogous result due to Poincaré–Birkhoff for the 2-annulus.

Exercise 0.5. If f : M → R is a C2-small Morse function, show that every 1-periodic orbit of

Xf is a critical point of f and vice versa.

Following Floer, let’s see how the proof formally goes. Floer’s fundamental insight is to develop

a Morse theory in infinite dimensions. To be more specific, consider the free loop space LM :=

C∞(S1,M).

Exercise 0.6. Consider the space consisting of pairs (γ, u) with γ : S1 → M and u : D2 → M

such that u|∂D2 = γ, modulo the equivalence relation

(0.4) (γ, u) ∼ (γ′, u′) iff γ = γ′ and u#(−u′) = 0 in π2(M).

Show that this is a model for the universal covering space L̃M of LM .
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Define the energy functional

(0.5)

AHt
: L̃M → R

[γ, u] 7→ −
∫
D2

u∗ω +

∫ 1

0

Ht(γ(t))dt.

Choosing a 1-parameter family of ω-compatibile almost complex structures Jt, write gJt
=

ω(−, Jt−). it defines a Riemannian metric on LM which takes (v1, v2) ∈ Γ(S1, γ∗TM) to∫ 1

0
gJt(γ∗(v1), γ∗(v2))dt.

Exercise 0.7. Show that the formal gradient vector of AHt
is given by

(0.6) [γ, u] 7→
(
t 7→ Jt(γ(t))(γ̇ −XHt

(γ(t)))
)
.

For simplicity, let’s assume that π2(M) = {1}, which includes the important case (T 2n, ωlinear).

The Floer chain complex over R is defined to be

(0.7) CF∗(M,Ht, Jt) :=
⊕

x∈Fix(ϕHt )

R · x,

with differential defined by counting rigid unparametrized gradient flow lines of AHt
, which are

represented by

(0.8) u : S1
t × Rs →M such that ∂su+ Jt(∂tu−XHt(u)) = 0,

with asymptotic condition lims→±∞ u(s, t) = x± ∈ Fix(ϕHt
). For different choices of pairs

(Ht, Jt) and (H ′
t, J

′
t), one can find a family (Hs,t, Js,t) interpolating between them, such that the

counts of solutions of

(0.9) u : S1
t × Rs →M such that ∂su+ Js,t(∂tu−XHs,t(u)) = 0

induces a chain map CF∗(M,Ht, Jt) → CF∗(M,H ′
t, J

′
t) which turns out to be a quasi-isomorphism.

Finally, for a distinguished choice of (Ht, Jt), namely, Ht = f is a C2-small Morse function and

Jt = J is autonomous, there is a canonical isomorphism between CF∗(M,f, J) and the Morse

complex of the pair (f, gJ). Of course, the weak Arnold conjecture follows from the classical

Morse inequality.

In the above sketch, numerous things are assumed. Most notably:

(1) For x± ∈ Fix(ϕHt
), one can produce well-defined counts from the moduli spaceM(x−, x+)

of solutions to the Floer equation. This requiresM(x−, x+) to be a 0-dimensional compact

and oriented manifold. So, we need to compactify the moduli spaces in case that they

are not compact; we need to ensure that such moduli spaces have enough regularity,

which is a matter of transversality ; for orientations, we need index theory for manifolds

with cylindrical ends.

(2) The differential on CF∗(M,Ht, Jt) is indeed a differential, i.e., d2 = 0. This follows from

the assertion that

(0.10) ∂M(x0, x2) =
⋃
x1

M(x0, x1)×M(x1, x2)
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with coherence on their orientations. This is concerned with the gluing construction of

moduli spaces.

(3) The Floer chain complexes should exhibit certain TQFT aspects. We only encounter

cylinders in the above story to address well-definedness and calculation issues. In general,

one can use different Riemann surfaces to construct algebraic structures on the Floer

homology, or even chain-level operations.

These technical problems are relatively easy to deal with under the assumption π2(M) = {1}.
We will cover some topics here depending on the audience’s request.

1. Theme 1: regularizing the moduli spaces

Dropping this assumption, the moduli space M(x−, x+) is rather nasty in nature, as it contains

configurations shown above (cf. Dietmar Salamon’s lecture notes). The spherical components

may have nontrivial automorphism groups, making M(x−, x+) locally only look like a quotient

of a topological space (as opposed to open subsets in Rn) by a finite group. This motivates the

following central question which will be discussed thoroughly in this course.

Questions 1.1. What’s the most approporiate structure to put on M(x−, x+) when it’s not a

manifold?

Let’s set things up in the appropriate context. Denote by j the standard complex structure on

R× S1. Over the manifold R× S1 ×M , consider the endomorphism on its tangent bundle

(1.1) J̃ =

(
j 0

Jt ◦XHt
−XHt

◦ j J

)
.

Exercise 1.2. Show that u : S1 × R → M satisfies ∂su + Jt(∂tu − XHt(u)) = 0 iff the graph

ũ(s, t) = (s, t, u(s, t)) satisfies the J̃-holomorphic curve equation

(1.2) dũ ◦ j = J̃ ◦ dũ.
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So the slightly more general question is:

Questions 1.3. What’s the most approporiate structure to put on the moduli spaces M of pseudo-

holomorphic curves?

Pioneering work of Kuranishi on the moduli problem of complex sturctures on manifolds provides

a uniform local solution to all nonlinear Fredholm problems, known as the Kuranishi models. The

general assertion in our setting is the following.

Proposition 1.4. For any point x ∈ M, there exists an open subset x ∈ Ux ⊂ M and a tuple

(Γ, U,E, s, ψ) such that Γ is a finite group which acts linearly on an open subset U in some

Euclidean space Rm; E is a finite-dimensional Γ-represenation; s : U → E is a Γ-equivariant

map; ψ : s−1(0)/Γ
∼−→ Ux is a homeomorphism onto its image.

In this course, we will see a global version of the above result. It asserts that for moduli spaces M

coming from Gromov–Witten theory or Hamiltonian Floer theory, one can find a tuple, known

as derived orbifold charts,

(1.3) D = (U , E ,S,Ψ)

where U is an orbifold, E → U is an orbifold vector bundle, S : U → E is section, and Ψ :

|S−1(0)| ∼−→ M is a homeomorphism. Moreover, D has suitable orientation structures; in the

setting of Floer theory, the derived orbifold charts are coherent under the description of the

“boundary strata” of the moduli spaces ∂M = M
′ × M

′′
. This is the global Kuranishi chart

approach to the regularization problem.

2. Theme 2: counting theory from derived orbifolds

Once the moduli spaces are regularized using derived orbifold charts, to define the Floer chain

complex, we should ask ourselves the following.

Questions 2.1. Given D = (U , E ,S,Ψ) with suitable orientation structures, how to produce

a count or fundamental class of |S−1(0)|, such that when S is transverse to the 0 section and

|S−1(0)| is finite, the count agrees with the ordinary count of points?

This question is most natural viewed from algebraic topology. The starting point is the following

general result of Pardon.

Theorem 2.2. There is bordism theory of derived orbifolds dΩ∗ which defines a homology theory

for topological spaces.

So, the question concerning counting can be alternatively formulated as:

Questions 2.3. Suppose E∗ is a (generalized) (co)homology theory, including HQ, HZ, complex

K-theory, K(n)∗-local cohomology theories, and complex bordism ΩU
∗ , how to construct natural

transformations of functors

(2.1) dΩ∗ −→ E∗
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generalizing the map which assigns to an oriented vector bundle over a compact manifold E →M

its Euler class?

Of course, for Floer theories, since we have to deal with chain-level objects, any answer to the

above question is only an initial step.

The following diagram summarizes the existing answer to the above question. To be more precise,

we need to specialize to the unitary version dΩU
∗ , which consists of D such that the virtual vector

bundle TU − E admits a lift in the complex K-theory.

(2.2)

H∗(−,Q)

H∗(−,Z)

dΩU
∗ KU∗

K(n)∗

ΩU
∗

Multivalued perturbations/rational P.D.

Fukaya-Parker-Ono sections

Index theory

Ambidexterity

Resolution of singularities

Some lectures will be devoted to the second and fifth arrow in the diagram. The natural transfor-

mations with target H∗(−,Q), KU∗, and K(n)∗ are defined following the same scheme, namely,

by exploring the Poincaré–Lefschetz duality of (complex-)oriented cohomology theories.

3. Theme 3: Applications to symplectic topology

Once the counting theory is set up for the integral homology theory, the weak Arnold conjecture

follows as a consequence of the formal discussion we had before. Time permitting, we wish to

cover some concrete applications.

Theorem 3.1 (Abouzaid–McLean–Smith, following Seidel, Lalonde–McDuff–Polterovich). If

M ↪→ P → S2 is a Hamiltonian fibration, then

(3.1) H∗(P,Z) ∼= H∗(M,Z)⊗H∗(S2,Z).

This result has been used to address the integral formality problem.

Theorem 3.2 (Bai–Pomerleano). Let M be acted on by the unitary group U(k) in the Hamil-

tonian fashion. Then

(3.2) H∗
U(k)(M,Z) ∼= H∗(BU(k),Z)⊗H∗(M,Z).
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The above two results do not touch upon Floer theory in any serious way. Instead, they come from

studying moduli spaces of pseudo-holomorphic maps with closed domains. As for applications

based on Floer theory, the possibility of defining counts of Floer trajectories and variants thereof

as integers enables applications in Hamiltonian dynamics.

Theorem 3.3 (Shelukhin, Sugimoto). A Hamiltonian diffeomorphism ϕHt
: M → M admits

infinitely many periodic points provided one of the following holds.

• M has semi-simple quantum cohomology and #Fix(ϕHt
) exceeds the Arnold lower bound.

• M has a non-contractible periodic orbit which is “homologically visible”.

There are more to say under the broader slogan “Floer homotopy theory”, and such a field is

under rapid development. Hopefully, this course will serve as a useful introduction.
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