
Topic 6: Abouzaid–McLean–Smith

1. Framings as stabilization data

Let (M2n, J) be an almost complex manifold, and suppose Ω is a closed 2-form such that Ωn ̸= 0

everywhere and [Ω] ∈ H2(M,R) lifts to H2(M,Z) which tames J . In reality, such datum arises

from:

• (M,ω) is a compact symplectic manifold and J is compatible with or tamed by ω;

• Ω is a (large) integral multiple of a symplectic form ω′ such that [ω′] ∈ H2(M,Q) and ω′

is sufficiently close to ω in the C∞-sense.

Fix β ∈ H2(M,Z), let M0,k(M,J, β) be the moduli space of stable maps with prescribed data.

We wish to explain the following statement.

Proposition 1.1. There is a compact Lie group G and a compact topological space V such that

there exists a homeomorphism

V/G
∼−→ M0,k(M,J, β)

such that for a given representative u ∈ M0,k(M,J, β), the stabilizer of the G-orbit in V corre-

sponding to u is isomorphic to the automorphism group of the stable map u.

In other words, at the expense of introducing Lie groups, M0,k(M,J, β) can be presented as a

global quotient.

Lemma 1.2. Let u : Σ → M be a J-holomorphic stable map in M0,k(M,J, β). Then there exists

a holomorphic Hermitian line bundle Lu → Σ whose Chern connection has curvature 2-form

given by −2πiu∗Ω. Moreover, such a line bundle is unique up to isomorphism.

Proof. Let L → Σ be the complex line bundle with c1(L) = [u∗Ω]. Because g(Σ) = 0, the

line bundle L admits a unique holomorphic structure. Equipping L with an arbitrary Hermitian

metric h, whose associated Chern connection has curvature −2πiα. We wish to find f : C∞(Σ,R)
such that the Chern connection with respect to e−f/2h has curvature −2πiu∗Ω. In other words,

we should solve

∂∂f = −2πi(u∗Ω− α).

Using the Kähler identity [∂∗, L] = −i∂ where L is taking wedge with the Kähler form, it is

equivalent to

∆f = ∗2π(u∗Ω− α).

Because [u∗Ω] and [α] cohomologous, the above equation admits a solution unique up to a con-

stant. Note that this argument is fully rigorous when Σ is smooth; in general, just carry out the

argument over the irreducible components. □
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Introduce the quantity d = Ω(β). Using the Riemann–Roch theorem, we know that for any

[u] ∈ M0,k(M,J, β), we have dimC H0(Σ,Lu) = d + 1 and H1(Σ,Lu) = {0} by Ω(β) ≥ 0.

Choosing a complex basis

{f0, . . . , fd} ⊂ H0(Σ,Lu),

the Kodaira-type embedding map

F : Σ → CP d

x 7→ [f0(x) : · · · : fd(x)]

has the property that the image of Σ under F is not contained in any hyperplane of CP d.

Lemma 1.3. Let F0,k(d) ⊂ M0,k(CP d, d[line]) be the subspace consisting of stable maps whose

image is not contained in any hyperplane. Then F0,k(d) and the universal family of nodal curves

C0,k(d) → F0,k(d) are smooth complex manifolds.

Proof. Firstly, we show that for any v : Σ → CP d representing an element in F0,k(d), the

linearized ∂-operator is surjective. The cokernel of such a ∂-operator can be identified with the

cohomology group

H1(Σ, v∗TCP d).

Using the Euler short exact sequence

0 −→ C −→ O(1)⊕d+1 −→ TCP d → 0,

we deduce from the long exact sequence of cohomology groups

H1(Σ, v∗O(1))⊕d+1 −→ H1(Σ, v∗TCP d) −→ 0.

As H1(Σ, v∗O(1)) = {0} by positivity, we see that H1(Σ, v∗TCP d) = {0}.

The above calculation works for all M0,k(CP d, d[line]). To see that F0,k(d) has a manifold struc-

ture, we need to argue that the automorphism groups are trivial. Using the Kodaira-type embed-

ding described as above, any [v] ∈ F0,k(d) corresponds to the data of a k-pointed genus 0 nodal

Riemann surface Σ, a line bundle L → Σ, and a basis of H0(Σ,L). Accordingly, an automorphism

of v corresponds to a line bundle isomorphism of L which fixes the given basis. This means that

• any automorphism must fix the effective components as a map, because it acts as identity

on the restriction of the basis;

• any automorphism cannot act as a nontrivial tree automorphism: for nodal curves, a

global section is extended by constant to other irreducible components;

• for uneffective componenets, stability means that the automorphism acts trivially.

This shows that F0,k(d) is a smooth manifold, in fact, a smooth quasi-projective complex variety.

As for C0,k(d), we can identify it with F0,k+1(d), which finishes the proof. □

Definition 1.4. A framed curve is an isomorphism class of the triple (u,Σ, F ) where u : Σ → M

represents an element in M0,k(M,J, β) and F is the holomorphic map F : Σ → CP d defined by

the Kodaira-type embedding from a complex basis of H0(Σ,Lu). A framed curve (u,Σ, F ) is called

unitary if F is a unitary basis with respect to the Hermitian metric on H0(Σ,Lu) up to a constant

multiple.
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We can define the moduli space of framed curves in a different way. Consider the family of curves

C0,k(d) → F0,k(d),

and we consider the space of maps

W k,p(C0,k(d),M).

There exists a Banach vector bundle over W k,p(C0,k(d),M) whose fiber over u : Σ → M (here Σ

should be thought of as a point in the base F0,k(d), which parametrizes domains) is

W k,p(Σ,Ω0,1
Σ ⊗ u∗TM).

Then the ∂J -operator defines a section. If we restrict to the open subset of W k,p(C0,k(d),M)

which consists of u : Σ → M such that

• u∗Ω ≥ 0;

• u∗Ω > 0 on unstable components,

we can construct a unique holomorphic Hermitian line bundle Lu → Σ as before. Then the

moduli space of framed curves is described as (u,Σ) ∈ W k,p(C0,k(d),M) such that u : Σ → M

defines a J-holomorphic stable map. This is becasue the “domain map” (u,Σ) 7→ Σ defines the

basis of H0(Σ,Lu) by pulling back the standard basis of H0(CP d,O(1)), thus the “framing”

F : Σ → CP d. Certainly, starting from M0,k(M,J, β), we know how to get a point in this

parametrized moduli space: just pick a basis as before. We will denote the moduli space of

framed curves by Ṽ . Note that Ṽ admit a U(d + 1)-action from permuting the framing by a

unitary matrix.

Lemma 1.5. The moduli space of unitary framed curves in Ṽ can be identified with the zero

locus of a section of the equivariant product bundle Ṽ × Hd+1, where Hn denotes the space of

n× n Hermitian matrices.

Proof. The induced Hermitian metric ⟨−,−⟩u on H0(Σ,Lu) varies continuously in u. Then given

a framed curve (u,Σ, F ) where F = {f0, . . . , fd}, we can consider the (d+1)× (d+1) Hermitian

matrix H(u,Σ, F ) whose (i, j)-entry is

⟨fi, fj⟩u.
We can define our section to be the inverse of the exponential map exp−1 on this matrix. The

vanishing condition is equivalent to unitarity. □

Lemma 1.6. The stabilizer of (u,Σ, F ) ∈ Ṽ under the U(d+1)-action agrees with the automor-

phism of the stable map u : Σ → M , and there exists a homeomorphism (exp−1 H)−1(0)/u(d +

1)
∼−→ M0,k(M,J, β).

Proof. The automorphism group of u : Σ → M embeds in U(d + 1): any automorphism can

be lifted to a unitary line bundle endomorphism of Lu which acts as unitary matrices on the

space of basis, this is an embedding by the proof of Lemma 1.3. The action of Aut(u) on Cd+1

induced from Aut(u) ↪→ U(d + 1) is faithful, thus taking unitary framings exactly records the

automorphism group. □
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As a consequence, we can take V = (exp−1 H)−1(0) and G = U(d + 1) in Proposition 1.1. The

proof also tells us that the map

V → F0,k(d)

(u,Σ, F ) 7→ (F : Σ → CP d)

does not collapse the unstable components. Therefore, F0,k(d) provides a good model for con-

trolling the domains of stable maps.

To compare with the stabilization construction via intersecting with divisors, we need the fol-

lowing observation. Given any [v] ∈ F0,k(d), we can take sufficiently many hypersurfaces in CP d

which intersects v transversely to define a map

F0,k(d) → M0,k+d′

near v by recording the marked points, which is a biholomorphism onto its image. We can “pull

back” these divisors locally to reduce to the stabilization scheme we discussed before. However,

this loses the advantage to have a single space to stabilize the moduli space.

2. Digression: K-theory

Recall that given a topological space Y , its complex K-theory in degree 0 is defined to be the

group completion of the semi-group of isomorphism classes of vector bundles over Y , where

addition is given by taking direct sum. In other words, an element of K0(X) is represented by a

virtual vector bundle

V1 − V2

where V1 → X and V2 → X are genuinely complex vector bundles. Let’s discuss two ways of

constructing classes in K0(X), whose ideas will be used to address transversality problems for

global Kuranishi charts.

(2a) Index for families.

Suppose Y is a compact and Hausdorff topological space.

Definition 2.1. Let Z be a topological space. It is said to be a manifold over Y if it is a

topological fiber bundle over Y with fibers given by a smooth manifold X, such that:

(1) the transition maps take value in Diff(X);

(2) the transition maps depend continuously on the parameter of Y .

Definition 2.2. Suppose π : Z → Y is a manifold over Y with fiber X. Then a vector bundle

p : Ẽ → Z is smooth over Y if the composition π ◦ p : Ẽ → Y is a fiber bundle such that

its structure group is reduced to Diff(X,E): here E := Ẽ|X is the vector bundle obtained by

restricting to a fiber, and Diff(X,E) denotes the group of bundle isomorphisms of E covering

diffeomorphisms of X.
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With the above two definitions, we can discuss bundles of pseudo-differential operators, which

are the sources of families of Fredholm operators that will lead to K-theoretic classes. Given

a smooth manifold X, suppose E,F → X are smooth vector bundles. Let Pm(X,E, F ) be

the space of order-m pseduo-differential operators from Γ(E) to Γ(F ), and we can consider the

Sobolev completion Pm
(X,E, F ).

Suppose we have two vector bundles Ẽ, F̃ → Z smooth over Y . Inside the group Diff(X,E) ×
Diff(X,F ), we can consider the subgroup Diff(X,E, F ) consisting of pairs covering the same

diffeomorphism of X. Then an element (Φ,Ψ) ∈ Diff(X,E, F ) acts on Pm(X,E, F ) by mapping

a pseudo-differential opertor P to Ψ−1 ◦P ◦Φ. This extends to an action of Diff(X,E, F ) on the

completion Pm
(X,E, F ).

Exercise 2.3. Show that the action of Diff(X,E, F ) on Pm
(X,E, F ) is continuous. (Hint: for

a complete discussion, see the Appendix of Atiyah–Singer IV).

With the above exercise, using the principal Diff(X,E, F )-bundle over Y induced from Ẽ, F̃ → Z,

we obtain a Pm
(X,E, F )-bundle Pm

(Z, Ẽ, F̃ ) by taking the associate bundle of the Diff(X,E, F )-

representation Pm
(X,E, F ). On the other hand, for the bundle Ẽ → Z, we can take fiberwisely

the space of Sobolev sections of class W 2,s to obtain the Hilbert space bundle Hs(Z, Ẽ), similarly

the Hilbert space bundle Hs(Z, F̃ ). Then we have the natural action

Pm
(Z, Ẽ, F̃ )×Hs(Z, Ẽ) → Hs−m(Z, F̃ ).

Definition 2.4. A family of pseudo-differential operators parametrized by Y is a continuous

section P of the bundle Pm
(Z, Ẽ, F̃ ) → Y . The family is called elliptic if for each y ∈ Y , the

operator Py is elliptic.

The most natural source for us is the following situation. Suppose M is a compact moduli space

of pseudo-holomorphic maps to (M,J), over which we have the family of curves C → M equipped

with the evaluation map ev : C → M . Suppose for simplicity that the topological type of Riemann

surfaces parametrized by M is unchanged in this family. Then there are two vector bundles

ev∗TM → C, Ω0,1
C/M ⊗ ev∗TM

which are smooth over M. Then the linearized Cauchy–Riemann operator Du∂J at u ∈ M

assembles to define a section of Pm(C, ev∗TM,Ω0,1
C/M ⊗ ev∗TM). It is elliptic because Du∂J is

elliptic.

The next statement, which is due to Atiyah–Singer, allows us to construct K-theory classes from

families of elliptic operators.

Proposition 2.5. Let P ∈ Pm
(Z, Ẽ, F̃ ) be elliptic. Then there exists a finite collection of

sections s1, . . . , sk of C∞(Z, F̃ ) such that the map given by

Qy : C∞(Z, Ẽ)⊕ Ck → C∞(Z, F̃ )

(u, λ1, . . . , λk) 7→ Py(u) +
∑
j

λjsj
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is surjective for all y. The spaces ker(Qy) forms a vector bundle ker(Q) → Y over Y . Further-

more,

ker(Q)− Ck

defines a well-defined K-theory class only depending on (the symbol of) P .

Proof. Locally, given a point y0 ∈ Y , the family is a product family so the operator P comes

from a continuous map

Y → Pm
(Z, Ẽ, F̃ )

near y0, which gives rise to a continuous map

Y → Fred(Hs(Z, Ẽ), Hs−m(Z, F̃ ))

to the space of bounded Fredholm operators. Let Vy0 = kerP ∗
y0
. Then the extension

Hs(Z, Ẽ)⊕ Vy0
→ Hs−m(Z, F̃ )

(u, v) 7→ Py(u) + v

is surjective at y0, and this property remains to hold over an open neighborhood of y0 ∈ Uy0
⊂ Y .

Because Y is compact and Hausdorff, we can take a finite cover {Uy1
, . . . , UyN

} from the open

cover {Uy}y∈Y and a partition of unity subordinate to this cover. Then we can consider the space

Vy1
⊕ · · · ⊕ VyN

and use the partition of unity to extend the cokernel elements to be globally defined over Y . This

constructs the sections s1, . . . , sk. The kernel spaces ker(Q) have the local triviality property:

one can fix a right inverse at a reference point to construct right inverses for nearby points, which

allow one to project. This also ensures the continuity of the transitions maps.

For two different constructions Q1 and Q2 with associated sections s
(1)
1 , . . . , s

(1)
k1

and s
(2)
1 , . . . , s

(2)
k2

,

we can consider the “double stabilization”

Q̃ : C∞(Z, Ẽ)⊕ Ck1+k2 → C∞(Z, F̃ )

(u, λ1, . . . , λk1
, µ1, . . . , µk2

) 7→ Py(u) +
∑
j

λjs
(1)
j +

∑
i

µis
(2)
i .

We can use such to construct to homotopies over the interval [0, 1]

Py(u) + t
∑
j

λjs
(1)
j +

∑
i

µis
(2)
i and Py(u) +

∑
j

λjs
(1)
j + t

∑
i

µis
(2)
i ,

which shows that ker(Q̃)− Ck1+k2 is equivalent to both ker(Q̃1)− Ck1 and ker(Q̃2)− Ck2 . □

What we will see later for the moduli spaces of pseudo-holomorphic maps is nothing but just a

slight generalization of the above arguments, with a slight extension to the nonlinear context.

(2b) Push-forward in algebraic geometry.

Taking family indices is just integrating along the fiber in K-theory. Let’s see how it can be

defined algebro-geometrically.
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Proposition 2.6. Suppose π : C → T is a proper family of algebraic curves, and suppose T is

proper. Let E → C be a vector bundle. If C admits a relative ample line bundle L → C (i.e.,

it restricts to ample line bundles over the fibers), then the derived pushforward Rπ∗E has global

resolutions.

Proof. Using the ampleness of L, we know that for N sufficiently large,

(1) π∗π∗(E ⊗LN ) → E ⊗LN is surjective: this is because of the relative ampleness assump-

tion;

(2) R1π∗(E ⊗ LN ) = 0: this follows from “Kodaira vanishing”;

(3) for any t ∈ T , for the fiber Ct, we have that H0(Ct, L
−N
t ) = 0.

Consider the bundle F := π∗π∗(L
N ⊗ E)⊗ L−N , and let H be the kernel of F → E induced by

the pairing L⊗ L−N → k. Then we have a short exact sequence of vector bundles

0 −→ H −→ F −→ E −→ 0,

which induces the long exact sequence of cohomology groups

H0(Ct, F ) −→ H0(Ct, E) −→ H1(Ct, H) −→ H1(Ct, F ) −→ H1(Ct, E) −→ 0.

Note that for any t ∈ T , we necessarily have H0(Ct, F ) = π∗π∗(L
N ⊗ E)⊗H0(Ct, L

−N
t ) = {0}.

This also implies the vanishing of H0(Ct, H). Therefore, Riemann–Roch implies that H1(C,H)

and H1(C,F ) are vector bundles because π∗H and π∗F are trivial. This shows that

Rπ∗E = [R1π∗H → R1π∗F ],

a 2-step resolution by vector bundles. □

For us, C → T is the family of k-marked stable maps to some smooth projective variety X, which

is endowed with the map rm : C → X. Given an ample line bundle L → X, it is a classical fact

that the line bundle

ωC/T (x1 + · · ·xk)⊗ ev∗L3

is a relatively ample line bundle over C. If we let E = ev∗TX, we know that

[Rπ∗E] = H0(Ct, ev
∗TX)−H0(Ct, ev

∗TX),

which is isomorphic to the difference

ker(D∂J)− coker(D∂J).

The above discussion shows that we have a surjection

H1(Ct, F ) coker(D∂J).

We can then thicken up our moduli space T by the bundle H1(Ct, F ) to achieve transversality.
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3. Thickening in global Kuranishi charts

(3a) Finite-dimensional approximations.

This is the analogue of Atiyah–Singer’s thickening trick in the context of J-holomorphic curves.

In the following definition, C◦
0,k(d) is the G-manifold which comes from the complement of images

of marked point sections of C0,k(d) → F0,k(d) and nodal points.

Definition 3.1. A finite dimensional approximation scheme for Ω0,1
C◦

0,k(d)/F0,k(d)
⊠C TM is a

collection of tuples (Vµ, λµ)µ∈N indexed by the natural numbers satisfying the following conditions.

(1) For each µ ∈ N, the vector space Vµ is a G-representation and

(3.1) λµ : Vµ → C∞
c (Ω0,1

C◦
0,k(d)/F0,k(d)

⊠C TM)

is a G-equivariant linear embedding.

(2) Each Vµ is a subrepresentation of Vµ+1 and λu+1|Vµ
agrees with λµ.

(3) Given each element ϕ ∈ F0,k(d), for the curve C◦
0,k(d)|ϕ, the restriction of the image

∪µ∈Nλµ(Vµ) to C◦
0,k(d)|ϕ is dense in C∞(Ω0,1

C◦
0,k(d)|ϕ

⊠C TM) under the C∞-topology.

Lemma 3.2. Ω0,1
C◦

0,k(d)/F0,k(d)
⊠C TM admits a finite dimensional approximation scheme.

Proof. Let’s introduce the notation B := F0,k(d)×M and let E := Ω0,1
C◦

0,k(d)/F0,k(d)
⊠C TM . Then

B is a smooth G-manifold and E → B is a G-equivariant vector bundle. The existence of finite

dimensional approximation schemes follows from the following sequence of observations.

(1) If E → B is a G-equivariant vector bundle over a closed manifold, then after choosing

a connection on E, a G-invariant Riemannian metric on B, and a G-invariant bundle

metric on E, we can define the Laplacian operator ∆ on Γ(E). Using the eigenspace

decomposition of L2(Γ(E)), we can simply define Vµ to be the direct sum of the first

µ-eigenspaces of ∆.

(2) If B is instead a manifold with boundary, we can close it up by taking the doubling

construction to obtain aG×Z/2-manifold B̃ and a bundle thereon Ẽ equivariant under the

G×Z/2-action. Then we can take the Z/2-invariant subspaces from the finite dimensional

approximation scheme discussed in (1).

(3) In general, we can find an exhaustion of B by compact codimension 0 submanifolds with

boundary B = ∪kBk, then a suitable cut-off of the λµ constructed in (2) works.

This procedure does not really ensure the fiberwise approximation requirement: one can do this

using some covering argument. □

Note that for two different finite dimensional approximation schemes, one can take their direct

sum to obtain a new one.

(3b) The global chart.
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Let’s go back to the moduli space M0,k(M,J, β). Recall the following definition.

Definition 3.3. A global Kuranishi chart for M0,k(M,J, β) is a tuple

(G,V,E, S,Ψ)

where G is a compact Lie group, V is a topological manifold admitting a G-action, E → V is a

G-equivariant vector bundle, S : V → E is a continuous G-equivariant section such that

Ψ : S−1(0)/G
∼−→ M0,k(M,J, β)

is a homeomorphism respecting the stabilizers.

There are certain moves among global Kuranishi charts.

(1) Group enlargement: let G′ be another compact Lie group and suppose πP : P → V is a

principal G′-bundle. This procedure replaces (G,V,E, S,Ψ) by (G×G′, P, π∗
PE, π∗

PS,Ψ).

(2) Shrinking: suppose U ⊂ V is aG-invariant open subset of V containing S−1(0). Shrinking

means replacing (G,V,E, S,Ψ) by (G,U,E|U , S|U ,Ψ).

(3) Stabilization: let πF : F → V be a G-equivariant vector bundle. The stabilization of

(G,V,E, S,Ψ) by F is (G,F, π∗
FF ⊕ π∗

FE, τF ⊕ π∗
FS,Ψ), where τF : F → π∗

FF is the

tautological section.

Theorem 3.4. The moduli space M0,k(M,J, β) admits a global Kuranishi chart. Moreover,

different constructions are related via the three moves described above.

Proof. We first describe the chart. The choices to make involve the following.

(1) The 2-form Ω, which defines d = Ω(β) and the moduli spaces F0,k(d) and C0,k(d).

(2) A finite-dimensional approximation scheme (Vµ, λµ)µ∈N for Ω0,1
C◦

0,k(d)/F0,k(d)
⊠C TM .

With these choices, we claim that the following defines a global Kuranishi chart for M0,k(M,J, β).

• We set the compact Lie group G = U(d+ 1).

• We define V to be the following moduli space: it consists of pairs

([Σ], u, e) ∈ C∞(C0,k(d),M)× Vµ

for a sufficiently large µ, where Σ represents a “domain” in F0,k(d) and u : Σ → M

satisfying the perturbed Cauchy–Riemann equation

∂Ju|C◦|Σ + λµ(e) ◦ Γu = 0

in which Γu denotes the graph of u : Σ → M in C◦
0,k(d)×M .

• Let the bundle E → V be the product bundle V ×Hd+1 × Vµ endowed with the natural

G-action.

• As for the section S, for an element ([Σ], u, e) with the corresponding framing F , we map

it to (exp−1(F ), e).
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• Based on the description of S, it is immediate that we have a homeomorphism S−1(0)/G
∼−→

M0,k(M,J, β) respecting the stabilizers: this is what we discussed above. The topology

on both sides can be compared because the Gromov topology can be understood as the

Hausdorff topology of graphs provided that the bubbling phenomena have been taken

care of.

To show that the tuple (G,V,E, S,Ψ) is qualified to be called a global Kuranishi chart, we only

need to show that with the assumption that µ is sufficiently large, V is a topological manifold.

This straightforward: upon restricting to an open neighborhood of S−1(0), the compactness of

the moduli space means that for µ large enough, the image of Vµ can annihilate the cokernels of

all the linearized ∂J -operators.

For a different chart (G′, V ′, E′, S′,Ψ′) produced from d′ := Ω′(β) and V ′
µ′ , we can consider the

following doubling construction.

• We set the Lie group G̃ to be G×G′.

• Let Ṽ be the space consisting of (u, [Σ], [Σ′], e, e′) where [Σ] ∈ F0,k(d) and [Σ′] ∈ F0,k(d
′)

represent framed curves with the same domain curve, u : Σ → M satisfies

∂Ju|C◦|Σ + λµ(e) ◦ Γu + λµ(e
′) ◦ Γu = 0

for e ∈ Vµ and e′ ∈ V ′
µ′ .

• Let Ẽ = V ×Hd+1 × Vµ ×Hd′+1 × V ′
µ′ with the product G̃ = G×G′-action.

• Let S̃ be the map (exp−1(F ), exp−1(F ′), e, e′) where F and F ′ are the framings from Σ1

and Σ2. The map Ψ̃ is defined in the natural way.

Then one can see that (G̃, Ṽ , Ẽ, S̃, Ψ̃) serves as the “roof” for (G,V,E, S,Ψ) and (G′, V ′, E′, S′,Ψ′).

□

To sum up, other than the global quotient presentation of M0,k(M,J, β) using framed curves,

the additional step for constructing the global Kuranishi chart is to “thicken up” the Cauchy–

Riemann equation. The very existence of such a thickening is a nonlinear generalization of

Atiyah–Singer’s construction of K-theory classes from families of elliptic operators. The proof of

invariance, which is based on a doubling discussion, already appeared in the linear index theory.

Next time: relative smooth structures from standard gluing, complex orientations.
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