
Topic 7: Hamiltonian Floer flow categories

With the understanding of how to regularize moduli spaces of stable J-holomorphic maps in the

Gromov–Witten setting, we move on to Hamiltonian Floer theory.

1. Flow categories: stratification

We introduce the notion of flow categories and flow bimodules, which captures the natural strat-

ifications of moduli spaces of Morse–Floer trajectories and continuation maps.

Here is the motivation for the following setup. For closed symplectic manifold (M,ω) and a

non-degenerate Hamiltonian Ht : S
1 ×M → R, to set up the Hamiltonian Floer theory, we need

to consider capped 1-periodic orbits of XHt . The action functional assigns to each capped orbit

its energy, and the Conley–Zehnder index assgins to each capped orbit an integer. If we shift a

capped orbit by an element in A ∈ im(π2(M) → H2(M ;Z)), the action is shifted by ω(A) while

the index is shifted by 2c1(A).

Setup 1.1. Let N be a nonnegative integer, Π be an infinite cyclic group, and ω : Π → R be a

group injection.

Let P be a countable poset equipped with the following extra data: a free Π-action and two

functions (called the action and the index)

AP : P → R, indP : P → Z/2N.

Assume the following conditions.

(1) The Π-action is order-preserving. Namely, for all p, q ∈ P and a ∈ Π

p ≤ q ⇐⇒ a · p ≤ a · q.

(2) For all p ∈ P and a ∈ Π,

AP(a · p) = AP(p) + ω(a)

and

indP(a · p) = indP(p).

(3) For all p, q ∈ P,

p < q =⇒ AP(p) < AP(q).

(4) The quotient set P := P/Π is finite.

The conditions that ω : Π → R is injective and that P is finite imply that P is “locally finite-

dimensional,” namely, for any pair of elements p < q of P, there are at most finitely many

elements lying between them.
1
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Notation 1.2. Given a pair of elements p < q in P, we define a poset

AP
pq :=

{
α = pr1 · · · rlq | p < r1 < · · · < rl < q, r1, . . . , rl ∈ P

}
whose partial order is induced by inclusion

ps1 · · · smq ≤ pr1 · · · rlq ⇐⇒ {r1 · · · rl} ⊆ {s1, . . . , sm}.

The poset AP
pq has a unique maximal element pq. We can define its depth function to be

depth(pr1 · · · rlq) = l.

Notation 1.3. Given the poset AP
pq, for an element α ∈ AP

pq, define the poset

∂αAP
pq

consisting of all β ∈ AP
pq such that β ≤ α with the induced partial order.

The following exercise formalizes the observation that the boundary strata of moduli spaces of

Morse–Floer trajectories can be written as a product, namely, broken trajectories.

Exercise 1.4. For the triple prq ∈ AP
pq, show that there is an isomorphism of posets

(1.1) AP
pr × AP

rq
∼= ∂prqAP

pq

under the concatenation of strings.

Now we introduce the notion of flow categories under the setting of Setup 1.1.

Definition 1.5. Let P be as in Setup 1.1. A flow category TP over P is a topologically enriched

category1 with the set of objects given by P, with morphism spaces Tpq satisfying the following

conditions.

(1) Tpq ̸= ∅ only if p ≤ q in P.2

(2) Tpp is the singleton.

(3) Tpq is a compact topological space equipped with stratification indexed by AP
pq.

3

(4) Given a triple p < r < q in P, the composition map factors through a stratified homeo-

morphism4

Tpr × Trq //

��

∂prqTpq

��
AP
pr × AP

rq
// ∂prqAP

pq

1Namely, the set of morphisms are topological spaces and composition maps are continuous.
2In the Morse or Floer case, it is indeed true that Tpq ̸= ∅ if and only if p ≤ q.
3This means that the natural map which assigns a point in Tpq to the stratum from AP

pq in which it lies is a

continuous map, where we equip AP
pq with the topology that ∂αAP

pq generates the closed subsets.
4Just means a homeomorphism respecting the stratification.
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where the underlying poset isomorphism is the map (1.1). We require that whenever

p < r < s < q, the following associativity diagram holds:

Tpr × Trs × Tsq Tps × Tsq

Tpr × Trq Tpq.

(5) Π defines a strict action on TP : for any a ∈ Π and p, q ∈ P, there is a stratified

homeomorphism

Tpq
ϕa //

��

Ta·p a·q

��
AP
pq

// AP
a·p a·q

where the underlying poset map is the natural isomorphism. Moreover, when a1, a2 ∈ Π,

we require that the equation ϕa1·a2 = ϕa1 ◦ ϕa2 holds and ϕ0 is the identity map for

a = 0 ∈ Π.

Lemma 1.6. Given α = pr1 · · · rlq ∈ AP
pq, the space ∂αTpq is homeomorphic to Tpr1 × · · · × Trlq

as AP
pr1 × · · · × AP

rlq
-spaces.

Proof. We prove the statement by induction on depth(α). For depth(α) = 0, this is tautology,

and for depth(α) = 1, the assertion follows from Definition 1.5. Suppose the lemma holds for

all depth(α) ≤ l − 1. Now suppose α = pr1 · · · rlq. Consider the homeomorphism between

AP
pr1 × AP

r1q spaces Tpr1 × Tr1q → ∂pr1qTpq. Restricting the homeomorphism along the closed

stratum AP
pr1 × ∂r1···rlqAP

r1q and using the induction hypothesis, we obtain a homeomorphism of

AP
pr1 × · · · × AP

rlq
-spaces

Tpr1 × · · · × Trlq → ∂αTpq.

By associativity, if we construct such a homeomorphism by decomposing α as pr1 · · · rk and

rk · · · rlq for some 1 ≤ k ≤ l, the resulting homeomorphism between the stratified spaces is the

same. □

Next we discuss flow bimodules, which originate from the moduli spaces of continuation maps.

Notation 1.7. Suppose P and P ′ are two posets as in Setup 1.1 equipped with own action and

index functions

(AP , indP) : P → R× (Z/2N), (AP′
, indP

′
) : P ′ → R× (Z/2N).

For p ∈ P and p′ ∈ P ′, define a poset

App′ :=
{
α = pq1 · · · qkq′k′ · · · q′1p′ | p < q1 < · · · < qk, q

′
k′ < · · · < q′1 < p′

}
The partial order is again induced by inclusion:

pq1 · · · qkq′k′ · · · q′1p′ ≤ pq̃1 · · · q̃k̃q̃
′
k̃′
· · · q̃′1p′

⇐⇒ {q̃1, . . . , q̃k̃} ⊆ {q1, . . . , qk} and {q̃′1 · · · q̃′k̃′} ⊆ {q′1 · · · q′k′}.



4 TOPIC 7: HAMILTONIAN FLOER FLOW CATEGORIES

Then App′ is poset with a unique maximal element pp′ and we can define its depth function to be

depth(pq1 · · · qkq′k′ · · · q′1p′) = k + k′.

There are similar characterizations of “broken configurations.”

Exercise 1.8. If p < q are elements in P, show that there is a natural isomorphism of posets

AP
pq × Aqp′ ∼= ∂pqp

′
App′

by concatenation of words. Moreover, prove that such an isomorphism makes the following dia-

gram commute:

AP
pq1 × AP

q1q2 × Aq2p′

((vv
AP
pq2 × Aq2p′

((

AP
pq1 × Aq1p′

vv
App′

Similarly, if q′ < p′ in P ′, one has

Apq′ × AP′

q′p′
∼= ∂pq

′p′App′ ,

which satisfies a similar commutative relation as above, and in this case the poset AP′
acts on

the right. Moreover, these two types of isomorphisms are compatible in the following sense.

Namely, the following diagram is commutative for which the arrows are induced by the obvious

concatenation of words.

AP
pq × Aqq′ × AP′

q′p′

((ww
AP
pq × Aqp′

((

Apq′ × AP′

q′p′

vv
App′

Definition 1.9. Let TP and TP′
be flow categories over P and P ′ respectively. A flow bimodule

M from TP to TP′
consists of the following data.

(1) A compact App′-space Mpp′ (which can be empty) for all p ∈ P and p′ ∈ P ′.

(2) For p < q, a homeomorphism of stratified spaces

TP
pq ×Mqp′

//

��

∂pqp
′
Mpp′

��
AP
pq × Aqp′ ∼=

// ∂pqp
′App′

.
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(3) For q′ < p′, a homeomorphism of stratified spaces

Mpq′ × TP′

q′p′
//

��

∂pq
′p′Mpp′

��
Apq′ × AP′

q′p′ ∼=
// ∂pq

′p′App′

.

These data should be subject to the following conditions.

(1) There is a constant C > 0 such that for all p ∈ P, p′ ∈ P ′,

(1.2) Mpp′ ̸= ∅ =⇒ AP(p) < AP′
(p′) + C.5

(2) For p < q1 < q2 in P and p′ ∈ P ′, the following diagram commutes:

TP
pq1 × TP

q1q2 ×Mq2p′ TP
pq1 ×Mq1p′

TP
pq2 ×Mq2p′ Mpp′

where TP
pq1 ×Mq1p′ →Mpp′ is induced by the composition of the homeomorphism TP

pq1 ×
Mq1p′ → ∂pq1p

′
Mpp′ and the inclusion ∂pq1p

′
Mpp′ ↪→Mpp′ and so forth.

(3) Similarly, for p ∈ P and q′2 < q′1 < p′ in P ′, we have a commutative diagram

Mpq′2
× TP′

q′2q
′
1
× TP′

q′1p
′ Mpq′1

× TP′

q′1p

Mpq′2
× TP′

q′2p
′ Mpp′ .

(4) For p < q in P and q′ < p′ in P ′, we have a commutative diagram

TP
pq ×Mqq′ × TP′

q′p′ Mpq′ × TP′

q′p′

TP
pq ×Mqp′ Mpp′ .

(5) Strict Π-action: for any a ∈ Π, there is a stratified homeomorphism

Mpp′
//

��

Ma·p a·p′

��
App′ // Aa·p a·p′

such that for a1, a2 ∈ Π the equation ϕMa1·a2 = ϕMa1 ◦ ϕMa2 holds, and such that ϕMid is the

identity map. Moreover, we require that the actions

TP
pq1 ×Mq1p′ →Mpp′ ,Mpq′1

× TP′

q′1p
′ →Mpp′

are Π-equivariant.

5The constant is related to the Hofer-type norm of a given family of Hamiltonians.
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The following statement is the analog of Lemma 1.6 for flow bimodules. The associativity condi-

tions from Definition 1.9 guarantees that the maps between the stratified spaces are well-defined.

Lemma 1.10. Suppose Mpp′ is nonempty. Given an element α = pq1 · · · qkq′k′ · · · q′1p′ ∈ App′ ,
we have a stratified homeomorphism

TP
pq1 × · · · ×Mqkq′k′

× · · · × TP′

q′1p
′

//

��

∂αMpp′

��
AP
pq1 × · · · × Aqk,q′k′

× · · · × AP′

q′1,p
′

∼= // ∂αApp′

. □

2. Orbifolds and vector bundles

Although we look at compact Lie group actions in the definition of global Kuanishi charts, it’s

more useful to look at the associated orbifold constructions for many purposes. This is crash

course on orbifolds and related notions.

Let U be a Hausdorff and second countable topological space. We discuss how to equip it with

an effective orbifold structure following Thurston’s traditional approach.

Definition 2.1. An n-dimensional orbifold chart of U is a triple

C = (G,U, ψ)

where U ⊂ Rn is a nonempty open subset, G is a finite group acting effectively and smoothly on

U , and ψ : U → U is a G-invariant continuous map such that the induced map

ψ : U/G→ U

is a homeomorphism onto an open subset of U . If p ∈ ψ(U) we also say that x is contained in

the chart C.

A chart embedding from another chart C ′ = (G′, U ′, ψ′) to C is a smooth open embedding

ι : U ′ ↪→ U such that

ψ ◦ ι = ψ′.

The following statement allows us to include the group injection as part of the data of a chart

embedding.

Lemma 2.2. Given a chart embedding ι as above there exists a canonical group injection G′ ↪→ G

such that ι is equivariant.

Proof. We need to use the following fact: given two embeddings of orbifold charts

λ, µ : (G′, U ′, ψ′) ↪→ (G,U, ψ),

there exists a unique g ∈ G such that µ = g · λ. For a proof, see [MP97, Appendix] Assuming

this, given any g′ ∈ G′, we can regard it as a chart embedding of (G′, U ′, ψ′) to itself. Then for a

chart embedding λ : (G′, U ′, ψ′) ↪→ (G,U, ψ), we can find g ∈ G such that the chart embeddings

λ and λ · g′ differs by g ∈ G. We define λ(g′) := g, which defines a monomorphism of groups. □
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As we are in the smooth category, we can always find “linear” charts around any point. An

orbifold chart C = (G,U, ψ) is called linear if G acts linearly on Rn and U ⊂ Rn is an invariant

open subset. We say that a linear chart is centered at p ∈ X if 0 ∈ U and p = ψ(0). Going from

a smooth chart to a linear done can be achieved by looking at the tangent space and compose

with the (equivariant) exponential map.

Definition 2.3. We say two charts Ci = (Gi, Ui, ψi), i = 1, 2 are compatible if for each

p ∈ ψ1(U1) ∩ ψ2(U2), there exists an orbifold chart Cp = (Gp, Up, ψp) containing p and chart

embeddings into both C1 and C2.

An orbifold atlas A = {Ci | i ∈ I} on X is a collection of mutually compatible charts Ci which

cover U . We say an atlas A′ = {C ′
j | j ∈ J} refines A, equivalently, A′ is a refinement of A, if

for each C ′
j there exists a chart embedding C ′

j ↪→ Ci for some i ∈ I. We say two orbifold atlases

are equivalent if they have a common refinement.

Definition 2.4. A Hausdorff and second countable topological space U together with an equiva-

lence class of orbifold atlases is called a smooth effective orbifold.

Every smooth effective orbifold has a unique maximal atlas; two atlases are equivalent if they are

contained in the common maximal atlas. It is convenient to work with the maximal atlas. For

our discussions, an orbifold chart of a smooth effective orbifold means a chart in the maximal

atlas. We often use |U| to denote the underlying topological space (called the coarse space) of an

effective orbifold U while forgetting the orbifold structure.

We do not define the general form of orbifold morphisms, whose definition would require the

language of stacks. Below are a few special cases of “maps” between orbifolds.

(1) A continuous function on an effective orbifold is smooth if its pullback to each chart is a

smooth function.

(2) An isomorphism of orbifolds from U to U ′ is a homeomorphism f : |U| → |U ′| such
that for each point x ∈ U , there exist a chart C = (G,U, ψ) of U containing x, chart

C ′ = (G′, U ′, ψ′) of U ′ containing f(x), a group isomorphism G′ ∼= G, and an equivariant

diffeomorphism f̃ : U ′ → U which descends to f |ψ(U).

(3) An open embedding from U to U ′ is an isomorphism from U to an open subset of U ′.

Remark 2.5. We also need the notion of orbifolds with boundary or corners. In that case, the

domain of a chart C = (G,U, ψ) is allowed to be a smooth manifold with boundary or corners

such that the group G acts trivially on the normal directions to the boundary strata.

The definition of orbifold vector bundles is very similar to that of effective orbifolds. Let U be

an effective orbifold, E be a topological space, and πE : E → U be a continuous map.

Definition 2.6. A bundle chart of πE : E → U consists of an orbifold chart C = (G,U, ψ) of U , a
G-equivariant smooth vector bundle πE : E → U , and a G-invariant continuous map ψ̂ : E → E
such that the induced map from E/G to E is a homeomorphism onto π−1

E (ψ(U)) and such that
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the following diagram commutes:

E
ψ̂ //

πE

��

E

πE

��
U

ψ
// U

.

In notation we will use a quadruple Ĉ = (G,U,E, ψ̂) to denote the bundle chart where the map

ψ : U → U is determined by the map ψ̂ : E → E .

Definition 2.7. If Ĉ ′ = (G′, U ′, E′, ψ̂′) is another bundle chart, a bundle chart embedding from

Ĉ ′ to Ĉ consists of an orbifold chart embedding ι : U ′ ↪→ U (equivariant with respect to a group

injection G′ ↪→ G) covered by a vector bundle embedding ι̂ : E′ → E such that

ψ̂ ◦ ι̂ = ψ̂′.

We can similarly define the notions of compatibility between bundle charts and bundle atlases.

Then an orbifold vector bundle structure over πE : E → U is defined to be an equivalence class

of bundle atlases as before. Similarly, an orbifold vector bundle has a unique maximal atlas and

two atlases are equivalent if and only if they are contained in a common maximal atlas. A bundle

chart then means a chart in the maximal atlas.

We spell out the definition of sections of an orbifold vector bundle because of their importance

in the discussion of regularizations of moduli spaces.

Definition 2.8 (Sections). Let E → U be an orbifold vector bundle.

(1) Let Ĉi = (Gi, Ui, Ei, ψ̂i), i = 1, 2 be two bundle charts. We say that a G1-equivariant

section S1 : U1 → E1 and a G2-equivariant section S2 : U2 → E2 are compatible if for

any bundle chart Ĉ0 = (G0, U0, E0, ψ̂0) of E and chart embeddings ι̂i : Ĉ0 ↪→ Ĉi, i = 1, 2

there holds

ι̂−1
1 ◦ S1 ◦ ι1 = ι̂−1

2 ◦ S2 ◦ ι2
as sections of E0 → U0.

(2) A section of E, denoted by S : U → E, is a collection of mutually compatible Gi-equivariant

sections Si : Ui → Ei for all bundle charts Ĉi belonging to the maximal atlas of E.

On each single chart Ĉ = (G,U,E, ψ̂), there are a lot of G-equivariant sections S : U → E. The

existence of partitions of unity implies that any orbifold vector bundle over an effective orbifold

has a lot of smooth sections. In particular there is a zero section. Any section S : U → E induces

a continuous map |S| : |U| → |E| between the coarse spaces.

Now we can combine the above definitions to talk about the orbifold counterpart of global Ku-

ranishi charts.

Definition 2.9. A derived orbifold (with or without boundary) is a triple D = (U , E ,S) where

U is an effective orbifold (with or without boundary), E → U is an orbifold vector bundle, and

S : U → E is a continuous section.
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(1) D is called compact if S−1(0) is compact.

(2) An orientation on D is an orientation on the orbifold real vector bundle TU ⊗ E∗.

(3) The virtual dimension of D is the integer

dimvir(D) = dimU − rankE .

There are a few standard and basic operations on derived orbifolds. First, when D = (U , E ,S)
has boundary, one can restrict to the boundary

∂D = (∂U , E|∂U ,S|∂U ).

If D is oriented and normally complex, so is ∂D. On the other hand, one can reverse the

orientation on D while keeping the normal complex structure. The corresponding object is

denoted by −D. One can also take the disjoint union D1 ⊔ D2 of two such D-charts.

Definition 2.10. Let M be a compact topological space and ∂M ⊂ M is a (possibly empty)

closed subset such that the interior IntM := M\∂M is dense. A derived orbifold chart (D-chart

for short) of (M, ∂M) consists of a derived orbifold D = (U , E ,S) (possibly with boundary) and

a homeomorphism L : (S−1(0),S−1(0) ∩ ∂U) ∼= (M, ∂M). When ∂M = ∅, we also call (D,L) a
D-chart of M.

We introduce the following moves, which are the counterparts of the moves we discussed for

global Kuranishi charts in the orbifold setting.

Definition 2.11. Let M be a compact topological space.

(1) A shrinking of a D-chart (D,L) is a D-chart (D′,L′) where D′ is the shrinking of D onto

an open neighborhood U ′ ⊂ U of S−1(0) and L′ = L.
(2) A stabilization of a D-chart (D,L) is a D-chart (D̂, L̂) where D̂ is the stabilization of D

by a vector bundle F → U (with the zero section ι : U → F) and L̂ = L ◦ ι−1.

(3) A cobordism of stably complex D-chart from (D0,L0) to (D1,L1) consists of a D-chart

(D̃, L̃) = ((Ũ , Ẽ , S̃), L̃) of the pair ([0, 1] × M, {0, 1} × M), an isomorphism of derived

orbifolds

ϕ0 ⊔ ϕ1 : (−D0) ⊔ D1
∼= ∂D̃

such that for i = 0, 1, the diagram

S−1
i (0)

Li //

ϕi

��

M

ιi

��
S̃−1(0)

L̃
// [0, 1]×M

commutes. Here ιi : M → {i} ×M → [0, 1] ×M is the natural inclusion map. If there

exists a cobordism from (D0,L0) to (D1,L1), then we say that they are cobordant.

It is straightforward to define (derived) orbifolds with corners, and, more specifically, (derived)

orbifolds stratified by a given poset. We leave this as an exercise.
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3. Stable complex structures and normal complex structures

The following is the analog of stable complex structures in the context of derived orbifolds.

Definition 3.1. Let D = (U , E ,S) be a derived orbifold.

(1) A stable complex strucutre on E is an equivalence class of quadruples

(k,F0,F1, ψ)

where k ≥ 0 is an integer, F0,F1 → U are complex vector bundles, and

ψ : R⊕k ⊕ E ⊕ F0
∼= F1

is an isomorphism of orbifold vector bundles. The equivalence relation is generated by

the following two relations: 1) we require that

(k,F0,F1, ψ) ∼ (k + 2,F0,C⊕F1, ψ0 ⊕ ψ)

where ψ0 : R⊕2 → C is the map (x, y) 7→ x+ iy; 2) we require that

(k,F0,F1, ψ) ∼ (k,F0 ⊕F ,F1 ⊕F , ψ ⊕ IdF )

where F → U is an arbitrary complex vector bundle.

(2) A stable complex structure on D consists of a stable complex structure on TU and a stable

complex structure on E.

Exercise 3.2. Define the notion of a stably complex cobordism between a pair of stably complex

derived orbifolds.

For a lot of applications, the following notion is much more flexible. We will see that it covers

the stable complex structure as a special case.

Let’s introduce some notations that will be used all the time.

Definition 3.3. Suppose W is a finite-dimensional real representation of a finite group G. Then

W can be decomposed as the direct sum of irreducible representations. We call the (canonical)

decomposition

W =WG ⊕ W̌G

where WG is the direct sum of all trivial summands (i.e. G-fixed points) and W̌G is the direct

sum of all nontrivial summands the basic decomposition of W with respect to G. Notice that

when W is a complex representation, the basic decomposition is complex linear.

More generally, if M is a G-manifold and E → M is a G-equivariant vector bundle, then over

the G-fixed points MG ⊂ M , the fibrewise basic decomposition of E|MG
induces a decomposition

of vector bundles

E = EG ⊕ ĚG

where EG ⊂ E|MG
coincides with the set of G-fixed points of E.

Going back to normal complex structures, we start by considering a single chart.
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Definition 3.4. Let G be a finite group and U be an effective G-manifold.

(1) Let E → U be a G-equivariant vector bundle. A normal complex structure (NC structure

for short) on E, denoted by IE consists, for each U -essential subgroup H ⊂ G, an H-

invariant complex structure IĚH on the normal bundle ĚH → UH satisfying the following

compatibility condition: for each pair of subgroups H ⊊ K, one has the H-equivariant

decomposition

ĚK = (EH ∩ ĚK)⊕ ĚH |UK
.

We require that the restriction of IĚK on the second summand ĚH |UK
coincides with IĚH

restricted to UK .

(2) An NC structure on U is an NC structure on the tangent bundle TU → U .

Definition 3.5. Let U be an effective orbifold.

(1) An NC structure on an orbifold vector bundle E → U , denoted by IE , consists, for each

chart Ĉ = (G,U,E, ψ̂) of E, an NC structure IE = (IĚH ) on E satisfying the following

conditions. For each chart embedding from Ĉ ′ = (G′, U ′, E′, ϕ̂′) to Ĉ = (G,U,E, ψ̂) given

by a group injection G′ ↪→ G, an equivariant open embedding ι : U ′ ↪→ U covered by an

equivariant bundle isomorphism ι̂ : E′ → E, for any subgroup H ′ ⊆ G′ mapped onto

H ⊆ G, ι̂ maps E′|U ′
H′

into E|UH
, we require that the induced bundle isomorphism

Ě′|U ′
H′

→ Ě|UH

is complex linear with respect to the complex structures IĚ
′
H′ and IĚH .

(2) An NC structure on U is an NC structure on the tangent bundle TU .

As examples, if U is almost complex, then the almost complex structure induces an NC structure.

Similarly, if E is a complex vector bundle, then there is a naturally induced NC structure on E .

Definition 3.6. An NC vector bundle over an effective orbifold U is an orbifold vector bundle

E → U together with an NC structure IE on E. An NC orbifold is an effective orbifold U together

with an NC structure ITU on U .

For normally complex a derived orbifold (U , E ,S), we mean that (U , E) is pair where U is an NC

orbifold and E is an NC vector bundle over U .

Below is another important model of normally complex orbifolds.

Lemma 3.7. Let G be a finite group. Let X be a smooth manifold and F → X be a complex

vector bundle equipped with a fiberwise effective linear G-action. Then the complex structure IF

on F induces a canonical NC structure on the total space of F .

Proof. Indeed, for each subgroup H ⊂ G, the fixed point set of H is the total space of FH ⊂ F

and the normal bundle is π∗
FH
F̌H → FH . The restriction of IF to F̌H is pulled back to an

H-invariant complex structure on this normal bundle, which gives an NC structure on F . □
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Example 3.8. In addition, if E → X is a real vector bundle equipped with a fiberwise linear G-

action and a G-invariant complex structure IĚG on ĚG, then the bundle π∗
FE carries a canonical

NC structure: for each subgroup H ⊂ G, over FH , the complex structure on the bundle π∗
F ĚH ⊂

π∗
FE is the pullback of the restriction of IĚG to ĚH .

Exercise 3.9. Let (U , E ,S) be a normally complex derived orbifold. Let πF : F → U be a

complex vector bundle. Then the stabilization of the pair (U , E), (F , π∗
FE ⊕ π∗

FF), carries a

naturally induced NC structure.

Proposition 3.10. Any stably complex D = (U , E ,S) carries a natural normal complex structure.

Proof. By definition, there exist two quadruples (k,F0,F1, ψ) and (l, E0, E1, η) where

ψ : R⊕k ⊕ TU ⊕ F0
∼= F1

and

η : R⊕l ⊕ E ⊕ E0 ∼= E1
are isomorphisms. By taking equivalent quadruples, i.e,. finding a simultaneous stabilization, we

can assume F0 = E0. The above two isomorphisms can be pulled back to the total space of F0 as

π∗
F0
ψ : R⊕k ⊕ π∗

F0
TU ⊕ π∗

F0
F0

∼= π∗
F0

F1

and

π∗
F0
η : R⊕l ⊕ π∗

F0
E ⊕ π∗

F0
F0

∼= π∗
F0

E1.

Upon choosing an isomorphism, induced from a connection (an affine space, therefore the choices

of the isomorphisms are weakly contractible),

∆ : π∗
F0
TU ⊕ π∗

F0
F0

∼= TF0

the pullback isomorphism π∗
F0
ψ becomes an isomorphism

R⊕k ⊕ TF0
∼= π∗

F0
F1.

As R⊕k and R⊕l do not affect the isotropy type, the above two isomorphism induce a normal

complex structure on the stabilization of D by F0. □

Exercise 3.11. Show that for any two pairs of quadruples which give rise to stably isomor-

phic stable complex structures on D, there exists a common stabilization with compatible normal

complex structure.

4. D-chart lifts of flow categories

The goal is to describe what it means for a flow category or a flow bimodule to admit a coherent

system of derived orbifold charts.

Definition 4.1. A system of D-chart presentation of an A-space X consists of the following

objects.
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(1) A collection of derived orbifold presentations{
Cα = (Uα, Eα,Sα, ψα)

}
α∈A

of the collection of boundary strata {∂αX}α∈A as stratified spaces.

(2) A collection of chart embeddings{
ιβα : Cα → ∂αCβ

}
α≤β .

These objects need to satisfy the following conditions.

(A) The collection of chart embeddings satisfy the cocycle condition. More precisely, for any

triple of strata α ≤ β ≤ γ, there holds

ιγβ ◦ ιβα = ιγα.

(B) Adjacent strata differ by a stabilization. More precisely, for any pair of strata α ≤ β,

there exist an orbifold vector bundle Fβα → Uα and a germ equivalence

StabFβα
(Cα) ≃ ∂αCβ

The following definition imposes certain regular structures on morphism spaces of flow categories

and flow bimodules.

Definition 4.2. Let TP be a flow category over the poset P. A derived orbifold lift of TP ,

denoted by DP , consists of the following objects.

(1) A collection {
Cpq = (Upq, Epq,Spq, ψpq)

}
p≤q

of derived orbifold presentations of the AP
pq-space Tpq such that for each connected com-

ponent Upq,j ⊂ Upq, one has

(4.1) dimRUpq,j − rankREpq|Upq,j ≡ indP(p)− indP(q)− 1 mod 2N.

(2) A collection of chart embeddings{
ιprq : Cpr × Crq ↪→ ∂prqCpq

}
p≤r≤q

(with the underlying poset identification AP
pr × AP

rq
∼= ∂prqAP

pq). In particular, if ιprq :

Upr × Urq ↪→ Upq is the associated domain embedding and ι̂prq : Epr ⊞ Erq ↪→ Epq is the

associated bundle embedding, then the following diagram commutes.

(4.2)

Epr ⊞ Erq
ι̂prq //

��

Epq

��
Upr × Urq ιprq

//

Spr×Srq

DD

Upq

Spq

ZZ

These objects need to satisfy the following conditions.

(A) For p = q, the space Upp is a singleton with trivial isotropy and Epp = {0} is the trivial

bundle.
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(B) The chart embeddings satisfy the associativity. More precisely, whenever p < r < s < q,

the following diagram commutes.

Cpr × Crs × Crq
id×ιrsq

((

ιprs×id

vv
∂prsCps × Crq

ιpsq ((

Cpr × ∂rsqCrq

ιprqvv
∂prsqCpq

(C) For each pq and all α = pr1 · · · rlq ∈ AP
pq, define

Cα := Cpr1 × · · · × Crlq.

Then condition (B) implies that for each pair of elements α ≤ β in AP
pq, there is a

well-defined chart embedding

ιβα : Cα ↪→ ∂αCβ .

Then we require that the collection {Cα}α∈AP
pq

of derived orbifold presentations and the

collection {ιβα}α≤β of chart embeddings constitute a system derived orbifold presentations

of Tpq.

(D) The strict Π-equivariance condition: for any a ∈ Π and p < q, there is an isomorphism

between derived orbifold charts (in the obvious sense) ϕ̃a : Cpq → Ca·p a·q satisfying

ϕ̃a1·a2 = ϕ̃a1 ◦ ϕ̃a2 , and ϕ̃a restricts to ϕa along the zero locus S−1
pq (0) to the map ϕa from

Definition 1.5. Furthermore, ϕ̃0 = Id for a = 0 ∈ Π should be the identity map.

Now consider derived orbifold lifts of bimodules.

Definition 4.3. Let M be a flow bimodule from a flow category TP to TP′
as in Definition 1.9.

Suppose TP resp. TP′
is endowed with a derived orbifold lift

DP =
({
CP
pq = (UP

pq, EP
pq,SP

pq, ψ
P
pq)

}
p<q

,
{
ιPβα

}
α≤β

)
resp.

DP′
=

({
CP′

p′q′ = (UP′

p′q′ , EP′

p′q′ ,SP′

p′q′ , ψ
P′

p′q′)
}
p′<q′

,
{
ιP

′

β′α′

}
α′≤β′

)
.

A derived orbifold lift of M compatible with (or extending) DP and DP′
consists of the

following objects.

(1) A collection {
CMpp′ = (UMpp′ , EMpp′ ,SMpp′ , ψMpp′)

}
p∈P,p′∈P′

of derived orbifold presentations of Mpp′ for Mpp′ as an App′-space such that for each

connected component UMpp′,j ⊂ UMpp′ , one has

(4.3) dimRUMpp′,j − rankREMpp′ |UM
pp′,j

≡ indP(p)− indP
′
(p′) mod 2N.
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(2) Given p ∈ P and p′ ∈ P ′ for Mpp′ ̸= ∅, for any p ≤ q, a chart embedding

ιMpqp′ : C
P
pq × CMqp′ ↪→ ∂pqp

′
CMpp′ ,

and for any q′ ≤ p′, a chart embedding

ιMpq′p′ : C
M
pq′ × CP′

q′p′ ↪→ ∂pq
′p′CMpp′ .

The precise meaning can be spelled out as in Equation (4.2).

These objects are required to satisfy the following conditions.

(A) For p = q, the chart embedding ιMpqp′ is the identity map after identifying CP
pq with the

trivial chart for the singleton. Similarly, for q′ = p′, the chart embedding ιMpq′p′ is also

the identity map.

(B) The chart embeddings satisfy the associativity. Namely, given Mpp′ ̸= ∅, the following

three diagrams commute if the relevant topological spaces are nonempty.

For p < q1 < q2, we have

CP
pq1 × CP

q1q2 × CMq2p′
id×ιM

q1q2p′

))

ιPpq1q2
×id

uu
∂pq1q2CP

pq2 × CMq2p′

ιM
pq2p′ ))

CP
pq1 × ∂q1q2p

′
CMq1p′

ιM
pq1p′uu

∂pq1q2p
′
CMpp′ .

For q′2 < q′1 < p′, we have

CMpq′2
× CP′

q′2q
′
1
× CP′

q′1p
′

id×ιP
′

q′1q′2p′

))

ιM
pq′2q′1

×id

uu
∂pq

′
2q

′
1CMpq′1

× CP′

q′1p
′

ιM
pq′1p′ ))

CMpq′2
× ∂q

′
2q

′
1p

′
CP′

q′2p
′

ιM
pq′2p′uu

∂pq
′
2q

′
1p

′
CMpp′ .

Finally, for p < q and q′ < p′, we have

CP
pq × CMqq′ × CP′

q′p′

id×ιM
qq′p′

((

ιM
pqq′×id

vv
∂pqq

′
CMpq′ × CP′

q′p′

ιM
pq′p′ ((

CP
pq × ∂qq

′p′CMqp′

ιM
pqp′vv

∂pqq
′p′CMpp′ .
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(C) For each p, p′ and all α = pr1 · · · rlr′l · · · r′1p′, define

CMα = CP
pr1 × · · · × CMrlr′l

× · · · × CP′

r′1p
′ .

As in Definition 4.2, for each pair α ≤ β in App′ , there is a well-defined chart embedding

ιMβα : CMα ↪→ CMβ .

It is required that the derived orbifold presentations {CMα }α∈App′ and the collection of

chart embeddings {ιβα}α≤β constitute a system of derived orbifold presentations of Mpp′ .

(D) The strict Π-equivariance condition: for any a ∈ Π and Mpp′ ̸= ∅, there is an isomor-

phism between derived orbifold charts ϕ̃Ma : CMpp′ → CMa·p a·p′ satisfying ϕ̃
M
a1·a2 = ϕ̃Ma1 ◦ ϕ̃

M
a2 ,

and ϕ̃Ma restricts to the map ϕMa from Definition 1.9 along the zero locus (SMpp′)−1(0).

Moreover, ϕ̃Mid for a = id ∈ Π is the identity map. Moreover, the left and right actions

of the charts from TP and TP′
on the charts of M should be Π-equivariant.

We introduce the following notion to rigidify the stabilization bundle required for the discussion

of compatibility of derived orbifold charts.

Definition 4.4. A scaffolding of a system of D-chart presentations ((Cα)α∈A, (ιβα)α≤β) of an

A-space X is a collection of data (
Fβα,θβα

)
α≤β

where for each pair α ≤ β

(1) the difference bundle Fβα → Uα is an orbifold vector bundle Fβα → Uα. In notation,

when A = AP
pq resp. App′ and β is the maximal element pq resp. pp′, denote Fβα by

Fpq,α resp. Fpp′,α.
(2) the stabilization map θβα is a germ equivalence

(4.4) θβα = (θβα, θ̂βα) : StabFβα
(Cα) ≃ ∂αCβ

which extends the chart embedding ιβα : Cα ↪→ ∂αCβ. This germ equivalence induces a

projection map

πβα : ∂αCβ → Cα

as well as a bundle splitting

(4.5) Eβ |Uα = Eα ⊕Fβα

where Eβ |Uα = ι∗βαEβ and a bundle isomorphism

(4.6) ϑβα : π∗
βα(Eβ |Uα

) ∼= Eβ |∂αUβ
.

These objects need to satisfy the following conditions.

(A) For any triple of stratum α ≤ β ≤ γ, as subbundles of Eγ |Uα
there holds

(4.7) Fγα = Fβα ⊕Fγβ |Uα
.
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(B) The stabilization map preserves stratum. More precisely, the following diagram commutes

StabFβα
(Cα)

θβα //

��

∂αCβ

ιγβ

��
StabFγα

(Cα)
θγα

// ∂αCγ

.

It follows that

(4.8) πγα ◦ (ιγβ |∂αUβ
) = πβα.

(C) The bundle isomorphism (4.6) preserves stratum. More precisely, for any triple of strata

α ≤ β ≤ γ, consider the following diagram

π∗
γα (Eγ |Uα

) |∂αUβ

ϑγα|∂αUβ // Eγ |∂αUβ

π∗
βα (Eγ |Uα)

π∗
βα (Eβ |Uα

⊕Fγβ |Uα
)

ϑβα⊕ϑγβα

// Eβ |∂αUβ
⊕Fγβ |∂αUβ

.

We explain the notations here. The first vertical equal arrow on the left is due to (4.8)

and the second one is due to (4.5). Here the requirement is that, we require

ϑγα
(
π∗
βα(Fγβ |Uα)

)
= Fγβ |∂αUβ

and the restriction to ϑγα to π∗
βα(Fγβ |Uα

) is equal to a linear isomorphism ϑγβα (which

is in the above commutative diagram). And we require that the above diagram commutes.

(D) The stabilization maps satisfy the cocycle condition. Namely, for each triple of strata

α ≤ β ≤ γ, the following diagram commutes.

(4.9)

StabFγα
(Cα)

θγα

��

StabFγβ |Uα⊕Fβα
(Cα)

θβα

��
Stabπ∗

βα(Fγβ |Uα )(∂
αCβ)

ϑγα

��
∂αCγ StabFγβ

(∂αCβ)
θγβ

oo

.

Here the “=” arrow is induced from the identity Fγα = Fγβ |Uα ⊕Fβα.

Now consider a derived orbifold lift of a flow category.

Definition 4.5. A scaffolding of a derived orbifold lift of a flow category TP consists of a

collection of scaffoldings for the induced system of derived orbifold chart presentations of Tpq((
Fβα,θβα

)
α≤β

)
p<q
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satisfying

(1) Suppose pr1 · · · rlq = α ≤ β = ps1 · · · smq. Denote α0 = pr1 · · · s1, . . ., αm = sm · · · rlq.
Then as subbundles of Eβ |Uα , in view of the identification Uα = Uα0 × · · ·×Uαm , one has

Fβα = Fps1,α0 ⊞ · · ·⊞ Fsmq,αm .

(2) With respect to the last identity, one has (as germs of maps)

θβα = θps1,α0
× · · · × θsmq,αm

.

Definition 4.6. Given two flow categories TP and TP′
endowed with derived orbifold lifts DP ,

DP′
respectively, let M be a flow bimodule from TP to TP′

endowed with a compatible derived

orbifold lift DM . Suppose DP and DP′
come with scaffoldings({

FP
βα,θ

P
βα

}
α≤β

)
p<q

,
({

FP′

β′α′ ,θP′

β′α′

}
α′≤β′

)
p′<q′

.

A scaffolding of such a derived orbifold lift compatible with the given scaffoldings is given by

a collection of scaffoldings for the induced system of derived orbifold chart presentations({
Fβ̃α̃,θβ̃α̃

}
α̃≤β̃

)
α̃,β̃∈AM

pp′

satisfying similar conditions as in Definition 4.5 using the factorization of the boundary strata

(see Definition 4.3 (C)).

5. Stable complex structures on flow categories

To make sense of complex orientations on a derived orbifold lift of TP , it requires the following

addtional data. We omit the strict Π-equivariance for simplicity.

First, for each object p ∈ P, we associate it with a virtual vector space Vp = (V +
p , V

−
p ). We can

additionally require that V −
p is a complex vector space.

Second, we can discuss the meaning of a “relative” complex structure on a derived orbifold chart

Cpq = (Upq, Epq,Spq, ψpq) of the morphism space TP
pq. It is the data of a complex orbifold vector

bundle ICpq → Upq, an orbifold vector bundle Wpq → Upq, together with an isomorphism of vector

bundles

TUpq ⊕ V +
q ⊕ V −

p ⊕ R⊕Wpq
∼= Epq ⊕ ICpq ⊕ V −

q ⊕ V +
p ⊕Wpq,

which can be more compactly written as

TUpq ⊖ Epq ⊕ V q ⊕ R⊕Wpq
∼= ICpq ⊕ V p ⊕Wpq.

To be consistent with our convention, we ask Wpq is a direct sum of a real vector bundle pulled

back from the coarse space |Upq| and a complex orbifold vector bundle over Upq.

Third, we need an associativity relation. Note that for a triple p, r, q ∈ P, we know that ∂Cpq
defines a stabilization of Cpr × Crq via the difference bundle Fpq,prq. We ask Fpq,prq to be a
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complex vector bundle. Then the associativity relation is expressed as the commutativity of

equivalences

TUpr ⊖ Epr ⊕ V r ⊕ R⊕Wpr

TUrq ⊖ Erq ⊕ V q ⊕ R⊕Wrq

ICpr ⊕ V p ⊕Wpr

ICrq ⊕ V r ⊕Wrq

TUpq ⊖ Epq ⊕ V q ⊕ R⊕Wpq ICpq ⊕ V p ⊕Wpq

The R denotes the translation direction one needs to mod out.

Exercise 5.1. Define the notation of normal complex structures on a derived orbifold lift and

show that stable complex structures give rise to normal complex structures.
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