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The goal for today is to formulate the Artin reciprocity law. Jessie already did part of this section so
I have the luxury of going slowly. I hope to shove fewer-than-usual many things under the rug, but that
means I probably won’t get to Chapter 6 today.

I’ve talked about this once before, but let’s go over it again. Suppose K/Q is an abelian extension. By
Kronecker-Weber, we have K ⊆ Q(ζm) for some m. The minimal such m for which this holds is called the
conductor of K, and from now on m will denote the conductor of K/Q.

We get a surjective homomorphism

ϕ : Gal(Q(ζm)/Q) � Gal(K/Q)

σ 7→ σ|K ,

also known as a surjective homomorphism

ϕ : (Z/mZ)× � Gal(K/Q)

r 7→ {ζm 7→ ζrm}|K .

[?The fact that σ|K is an automorphism of K is guaranteed to us because (Z/mZ)× is abelian, hence all
subgroups are normal.?]

In fact, we can find this homomorphism in another way. Suppose p - m; since K is unramified above p
we have the automorphism {x 7→ xp (mod p)} =: Frobp ∈ Gal(K/Q). Now let Sm denote the subgroup of Q
generated by all primes not dividingm. We can extend the map p 7→ Frobp ∈ Gal(K/Q) to a homomorphism
Sm → Gal(K/Q) by multiplicativity. So for example, with m = 3, the element 2/5 7→ Frob2 Frob

−1
5 (or

Frob−15 Frob2; it doesn’t matter since Gal(K/Q) is abelian!). This is called the Artin map of K/Q.

Proposition 1. Let ϕ be the projection defined above. As automorphisms of K/Q, we have ϕ(r) = Frobp if and only
if r ≡ p (mod m).

Proof. If r ≡ p (mod m) then (ϕ(r))(1) = Frobp(1) and

(ϕ(r))(ζm) = ζrm = ζpm ≡ Frobp(ζm) (mod p),

so ϕ(r) = Frobp.

Now suppose that ϕ(r) = Frobp. So in particular ζrm ≡ ζpm (mod p) for some prime p above p. This says
that ζrm(1 − ζp−rm ) ∈ p ⊆ OK ; I want to claim that r ≡ p (mod m). One way of seeing this is via machinery
whack (I don’t know how else to do it, but I bet this isn’t necessary): go up to P ⊆ Z[ζm] over p to get rid
of ζrm, and then if p 6≡ r (mod m) write 1 − ζp−rm = 1 − ζkd where (d, k) = 1, and use Proposition 2.8 in
Washington’s book.
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The punchline is that the Artin map ofK/Q, a priori from Sm ⊆ Q to Gal(K/Q), actually factors through
ϕ. Namely, consider the projection

π : Sm → (Z/mZ)×
n∏
i=1

peii 7→
n∏
i=1

peii

where the ei should be interpreted the way they’re interpreted, e.g. ifm = 6 we have π(7/13) 7→ 1. Then we
have the commutative diagram

Sm Gal(K/Q)

(Z/mZ)×

p 7→Frobp

π ϕ

This follows because we checked that the diagram commutes on the generators of Sm; this is Proposition 1.
The homomorphism-ness of everything takes care of the rest.

Let me remark that not much math was done here. A lot of it was setup, we applied Kronecker-Weber to
get this magical numberm, and a relatively silly Proposition 1 gave us some result about how Frobs behave.

The Artin reciprocity law is a generalization of this to arbitrary abelian extensions L/K. But the relevant
generalization of Kronecker-Weber is unknown so we don’t instantly get the magical quantity m, and there
are other complicating factors (e.g. the ring of integers of the base field is not always a PID). But for now
none of these matter because I only need to state Artin reciprocity :)

Fix a number field K (as a running example, the above considerations corresponded to K = Q).

Let m be a formal product of places of K (as a running example, let m = (m)∞, so an integer m along
with the real infinite place∞ corresponding to the unique Q ↪→ R).

Let ImK be the group of fractional ideals of K which are coprime to each finite place of K occurring in m
(in our running example, ImQ = Sm defined earlier).

Let Pm
K ⊆ ImK be the group of principal fractional ideals generated by α ∈ K such that for pe|m finite,

α ≡ 1 (mod pe), and for every real place τ in m, we have τ(α) > 0 (in our example, we are modding out by
those 〈α〉with α ≡ 1 (mod m) and α > 0).

Definition 2. The ray class group, denoted Clm(K) is the quotient ImK/Pm
K . A quotient of a ray class group

is called a generalized ideal class group.

The usual ideal class group is obtained when m is the empty product of places, and in general for any m,
the ideal class group is a quotient of Clm(K).

In our running example, Clm(K) ∼= (Z/mZ)×. Indeed, every p−1 ∈ Sm is equivalent, in Clm(K), to the
element p−1 ∈ (Z/mZ)×.

Now let L/K be an abelian extension, let p be a prime ofK that doesn’t ramify and q a prime of L above
p; put Fp = OK/p and Fq = OL/q. Since Fq/Fp is a finite extension of finite fields we can pull back the
generator Frobp ∈ Gal(L/K) which sends x 7→ x#Fp (mod q).

Now if m is divisible by all primes of K which ramify in L (e.g. let K = Q and m be the conductor of L),
we can define the Artin map that sends p 7→ Frobp and extend multiplicatively to ImK .
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Theorem 3. (Artin reciprocity.) There exists a formal product m of places of K, including all places over which L
ramifies, such that Pm

K is contained in the kernel ImK → Gal(L/K).

So we get a map, for some m, from Clm(K) → Gal(L/K) that turns out to be surjective. So the Artin
reciprocity theorem gives the magical m that used to be supplied by Kronecker-Weber. It’s also no longer
clear to me why it’s surjective (but Kedlaya punts it to an exercise).

The conductor m of L/K is the smallest formal product for which this Artin reciprocity holds. If L/K
has conductor dividing m, and Clm(K) ∼= Gal(L/K), then we say L is the ray class field of m. For example,
if K = Q, then the ray class field of m = (m)∞ is Q(ζm) and if m = m then it is Q(ζm + ζ−1m ), since
(Z/mZ)×/{1,−1} ∼= Gal(Q(ζm + ζ−1m )/Q).

Theorem 4. There exists a ray class field for any K and m.

On the other hand, we don’t “know” what the ray class fields are, in the sense that whenK = Q, the ray
class fields are simply “adjoin ζm or ζm + ζ−1m depending on where there is∞ or not”. It turns out that for
imaginary quadratic fields, the theory of elliptic curves with complex multiplication tells us which algebraic
numbers to adjoin, and more generally Shimura extended this to CM fields (these are totally imaginary fields
Lwhich have an index 2 totally real subfieldK). In the function field case, there are these Drinfeld modules
that “do something similar”, whatever that means.
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