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The goal for today is to formulate the Artin reciprocity law. Jessie already did part of this section so
I have the luxury of going slowly. I hope to shove fewer-than-usual many things under the rug, but that
means I probably won't get to Chapter 6 today.

I've talked about this once before, but let’s go over it again. Suppose K/Q is an abelian extension. By
Kronecker-Weber, we have K C Q((,,) for some m. The minimal such m for which this holds is called the
conductor of K, and from now on m will denote the conductor of K/Q.

We get a surjective homomorphism

¢: Gal(Q(Cm)/Q) — Gal(K/Q)

ook,
also known as a surjective homomorphism

w: (Z/mZ)* — Gal(K/Q)
[lan g {Cm = ernHK

[xThe fact that 0|k is an automorphism of K is guaranteed to us because (Z/mZ)* is abelian, hence all
subgroups are normal.*]

In fact, we can find this homomorphism in another way. Suppose p { m; since K is unramified above p
we have the automorphism {z — 2P (mod p)} =: Frob, € Gal(K/Q). Now let S,,, denote the subgroup of Q
generated by all primes not dividing m. We can extend the map p — Frob, € Gal(X/Q) to a homomorphism
S,, — Gal(K/Q) by multiplicativity. So for example, with m = 3, the element 2/5 + Frob, Frob; ' (or
Frobs ! Froby; it doesn’t matter since Gal(K/Q) is abelian!). This is called the Artin map of K/Q.

Proposition 1. Let ¢ be the projection defined above. As automorphisms of K/Q, we have ¢(r) = Frob,, if and only
ifr =p (mod m).

Proof. If r = p (mod m) then (¢(r))(1) = Frob,(1) and

(p(r)(Cm) = G = ¢, = Froby(¢m)  (mod p),
so ¢(r) = Frob,,.

Now suppose that ¢(r) = Frob,. So in particular ¢/, = (&, (mod p) for some prime p above p. This says
that ¢, (1 — (2 ") € p C Og; I want to claim that » = p (mod m). One way of seeing this is via machinery
whack (I don’t know how else to do it, but I bet this isn't necessary): go up to ‘B C Z[(,,] over p to get rid
of ¢",, and then if p # r (mod m) write 1 — (27" = 1 — ¢¥ where (d,k) = 1, and use Proposition 2.8 in
Washington’s book. O
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The punchline is that the Artin map of K/Q, a priori from S,,, C Q to Gal(K/Q), actually factors through
. Namely, consider the projection

7w Sy — (Z/mZ)*
[ = 1»
i=1 i=1

where the e; should be interpreted the way they're interpreted, e.g. if m = 6 we have 7(7/13) — 1. Then we
have the commutative diagram

p—Frob,,

S Gal(K/Q)

N 7

(Z/mZ)*

This follows because we checked that the diagram commutes on the generators of S,,; this is Proposition 1.
The homomorphism-ness of everything takes care of the rest.

Let me remark that not much math was done here. A lot of it was setup, we applied Kronecker-Weber to
get this magical number m, and a relatively silly Proposition 1 gave us some result about how Frobs behave.

The Artin reciprocity law is a generalization of this to arbitrary abelian extensions L/ K. But the relevant
generalization of Kronecker-Weber is unknown so we don't instantly get the magical quantity m, and there
are other complicating factors (e.g. the ring of integers of the base field is not always a PID). But for now
none of these matter because I only need to state Artin reciprocity :)

Fix a number field K (as a running example, the above considerations corresponded to K = Q).

Let m be a formal product of places of K (as a running example, let m = (m)oo, so an integer m along
with the real infinite place oo corresponding to the unique Q — R).

Let I} be the group of fractional ideals of K which are coprime to each finite place of K occurring in m
(in our running example, I} = S, defined earlier).

Let Pg C I be the group of principal fractional ideals generated by o € K such that for p¢|m finite,
a =1 (mod p°), and for every real place 7 in m, we have 7(a) > 0 (in our example, we are modding out by
those (o) witha =1 (mod m) and « > 0).

Definition 2. The ray class group, denoted C1™(K) is the quotient I}¢/Pj?. A quotient of a ray class group
is called a generalized ideal class group.

The usual ideal class group is obtained when m is the empty product of places, and in general for any m,
the ideal class group is a quotient of C1™(K).

In our running example, C1™(K) = (Z/mZ)*. Indeed, every p—* € S, is equivalent, in C1™(K), to the
element p~! € (Z/mZ)*.

Now let L/ K be an abelian extension, let p be a prime of K that doesn’t ramify and q a prime of L above
p; put Fy = Ok /pand Fy = Op/q. Since Fy/F, is a finite extension of finite fields we can pull back the
generator Frob, € Gal(L/K) which sends z — z#F» (mod q).

Now if m is divisible by all primes of K which ramify in L (e.g. let X' = Q and m be the conductor of L),
we can define the Artin map that sends p — Frob, and extend multiplicatively to I}.



Theorem 3. (Artin reciprocity.) There exists a formal product m of places of K, including all places over which L
ramifies, such that P is contained in the kernel I}t — Gal(L/K).

So we get a map, for some m, from CI™(K) — Gal(L/K) that turns out to be surjective. So the Artin
reciprocity theorem gives the magical m that used to be supplied by Kronecker-Weber. It’s also no longer
clear to me why it’s surjective (but Kedlaya punts it to an exercise).

The conductor m of L/ K is the smallest formal product for which this Artin reciprocity holds. If L/K
has conductor dividing m, and C1™(K') = Gal(L/K), then we say L is the ray class field of m. For example,
if K = Q, then the ray class field of m = (m)oc is Q(¢,,) and if m = m then it is Q(¢n + ('), since
(Z/mZ)* /{1, -1} = Gal(Q(¢m + (1) /Q)-

Theorem 4. There exists a ray class field for any K and m.

On the other hand, we don’t “know” what the ray class fields are, in the sense that when K = Q, the ray
class fields are simply “adjoin ¢, or ¢, + ¢,,,! depending on where there is co or not”. It turns out that for
imaginary quadratic fields, the theory of elliptic curves with complex multiplication tells us which algebraic
numbers to adjoin, and more generally Shimura extended this to CM fields (these are totally imaginary fields
L which have an index 2 totally real subfield K). In the function field case, there are these Drinfeld modules
that “do something similar”, whatever that means.



