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We’ll talk about adeles and ideles today, because homological algebra confuses me. References include
Chapter 3 of Pete Clark’s Algebraic Number Theory II Notes, Chapter 7 of Lang’s Algebraic Number Theory,
and Chapter 5 of Ramakrishnan and Valenza’s Fourier Analysis on Number Fields. The first five lectures of
Sam Mundy’s Local Compactness and Number Theory also seem really good.

A lot of sources motivate these definitions by saying that adeles AK and ideles IK allow one to do
harmonic/Fourier analysis on global fields (not that I will be doing any Fourier analysis today). Over local
fields, this is doable: to do harmonic analysis, one only needs a locally compact abelian group, so it just
kinda happens. Since I have the luxury of time I can say a few words about why we want locally compact
groups:

Definition 1. A Radon measure µ on a topological space X is a measure defined on the Borel sets such
that for any E,

µ(E) = sup
K⊆E compact

µ(K) = inf
U⊇E open

µ(U).

A Radon measure µ on a locally compact abelian group G that is translation invariant in the sense that for
all g ∈ G and measurable E,

µ(E) = µ(gE)

is called a Haar measure.

It turns out that Haar measures always exist and are unique up to mulitplication by a positive real
number.

Definition 2. Let G be a locally compact abelian group. Then the Pontryagin dual group Ĝ is the set of
continuous group homomorphisms χ : G→ C×. The Fourier transform of a function f ∈ L1(G) is a function

f̂ ∈ L1(Ĝ) given by

f̂(χ) =

∫
G

f(x)χ(x) dµ(x)

where µ(x) is a Haar measure.

Back to not-analysis. We want to do harmonic analysis on global fields, so you’d want to complete the
global field to even get started, and you want this AK so that K ↪→ AK . But if you’re reasonable you want
to not have to pick a completion (rather, you should consider them all at once), so the definition of the
adeles is such that all of the (individually locally compact) completions are incorporated together to get a
locally compact thingy. Unfortunately, for a global field K,

K ↪→
∏

v a place

Kv

x 7→ (x, x, . . . )

is not necessarily locally compact:

Observation 3. Suppose {Ki}i∈I are locally compact. Then∏
i∈I

Ki locally compact ⇐⇒ |{i ∈ I : Ki not compact}| <∞.
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So how do we fix this? Well notice that for any fixed x ∈ K, the image of x in Kv actually lies in the
the (compact!) valuation ring Rv for all but finitely many places v (only finitely many primes divide any
fixed y ∈ K). We only need a locally compact group containing K, so instead of “reaching in” to the infinite
direct product, we only ever need to reach into arbitrarily finitely many. With this in mind, we define:

Definition 4. For a finite set S ⊆ {v : v a finite place}, define

AK(S) :=
∏

v infinite

Kv ×
∏
v∈S

Kv ×
∏
v 6∈S

Ov.

These locally compact groups form a directed system: if S1 ⊆ S2 we get an embedding

id: AK(S1) ↪→ AK(S2),

so we can take a direct limit
AK := lim

S
AK(S)

and endow it with the final topology: the finest topology on AK so that all of the fS : AK(S) → AK are
continuous (this is apparently a standard thing to do with direct limits of topological groups).

Observe that each AK(S) is locally compact. It’s a general fact that the directed limit of locally compact
things is locally compact, and apparently this follows from the fact that U ⊆ X := limS X(S) is open in the
final topology if and only if f−1

S (U) is open in X(S).

Some sources seem to call this particular kind of directed limit, where you have groups {Gi}i∈I and
{Hi}i∈I with Hi ≤ Gi and you look at “things which are in Hi for almost all i”, as the restricted directed
product.

Back to AK . Given an element α ∈ K we can define

||α||AK
:=

∏
τ complex

|ατ |2C
∏
σ real

|ασ|R
∏

p finite

|αp|p = 1

by the product formula. This isn’t so hard to prove; the version over Q is Ostrowski, and in general you can
reduce it to Q. In particular, this implies that K sits discretely inside AK .

Definition 5. Sitting inside the adeles AK are the multiplicative units A×K =: IK , which we call the ideles.
It is the restricted direct product of {K×v }v a place with {O×v }v a place, and it is given the topology that way.
(Importantly, it does not agree with the subspace topology of AK)

The nonzero elements of K sit inside IK ; these are called principal ideles. Thus the idele class group is
defined to be

CK := IK/K×

and it inherits a norm from IK because it is trivial on K×. We let C1
K be the kernel of this norm map; this

is sometimes called the norm 1 idele class group.

Here’s something Kedlaya calls a proposition, but I promise it is a theorem:

Theorem 6. The group C1
K is compact.

Proof. We need to show that the inverse image of 1 under | · | : CK → R>0. If ρ > 0 is any other number,
then the inverse images are homeomorphic (just compose with multiplication by an element of norm ρ). Now
Kedlaya asserts that there is c with the property that if ρ > c then every idele of norm ρ is congruent mod
K× to an idele, all of whose components have norms in [1, ρ].
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We pick such a ρ > c. The inverse image of ρ is a closed subset of the set IK;ρ of ideles whose components
have norm in [1, ρ]. But

IK;ρ =

{
α :


1 ≤ |ατ |C ≤

√
ρ : τ complex

1 ≤ |ασ|R ≤ ρ : σ real

1 ≤ |αp|p ≤ ρ : p : N(p) ≤ ρ finite

|αp|p = 1: N(p) > ρ

}

is a finite product of compact sets so we’re compact! (Sorry for the sacrilegious tex)

If you care, Ramakrishnan and Valenza’s proof uses measures. Let’s use this theorem to prove some cool
results:

Corollary 7. The class number is finite.

Proof. We have a surjection IK � JK to the group of fractional ideals of K, given by

(αv)v a place 7→
∏
p

pvp(αp)

which is continuous when JK is given the discrete topology. The principal ideles α ∈ K× map to principal
ideals 〈α〉 ∈ PK , so we get a surjection

CK = IK/K× � JK/PK = ClK .

Since the surjection does not depend on the infinite places, we actually get a surjection C1
K � ClK (take the

preimage of any ideal class and adjust the infinite places). Hence ClK is both discrete and compact.

Corollary 8. The group O×K has rank r + s − 1, and more generally the group of S-units K×S , ie. the
elements with valuation zero at at each finite place not contained in S, has rank #S − 1.

As an example, note that Q×{3,5} = Z×[ 1
3 ,

1
5 ] ∼= Z2.

Proof. Consider the map IK(S)→ R#S by taking log of the absolute value of the norm of each component
in S. The image of I1K(S) is necessarily the hyperplane

H =

{
(x1, . . . , x#S) ∈ R#S :

∑
xi = 0

}
.

Now K×S is discrete in this image, since given a bounded subset Hb of H, the preimage of Hb consists of
things in K×S with bounded | · |v for each v ∈ S, so the preimage of Hb is finite. Let W be the H-span of the
image of K×S . We have a continuous homomorphism

I1K(S)/K×S → H/W,

and the real vector space H/W has a compact discrete subgroup, namely, the image of I1K(S)/K×S , so
necessarily dimRH/W = 0.
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