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I will try to give a very quick review of “basic” algebraic number theory and then hopefully get through
the beginning of Kedlaya’s notes, which is a preamble on Kronecker-Weber. In this chapter, Kedlaya follows
Lawrence Washington’s book (which GTM are you?); Kedlaya’s proofs are super condensed, but Washing-
ton’s are more detailed. Guillot’s book also builds up to this theorem, so regardless of whether we want to
follow the Brian group or do our own thing, it doesn’t hurt to flesh out this theorem.

Let me begin by stealing the following definition from MIT number theory lecture notes. This perspective
is different from the definition Zywina used in his 6370, so I was caught off guard a little the first time I saw
it:

Definition 1. Let A ⊆ B be rings. An element b ∈ B is integral over A if b is a root of a monic polynomial
in A[x]. The ring B is integral over A if all its elements are.

Definition 2. Given a ring extension B/A, the ring Ã := {b ∈ B : b is integral over A} is the integral closure
of A in B. When Ã = A we say that A is integrally closed in B.

Definition 3. A number field K is a finite extension of Q. Its ring of integers OK is the integral closure of
Z in K.

And then sometimes instead of Z you want to put other rings, which gives this AKLB-setup: in general
we let A be a Dedekind domain with field of fractions K, and L a finite separable extension, and B the
integral closure of A in L. By the way, a Dedekind domain is a integrally closed, Noetherian domain of Krull
dimension 1 (i.e., this is equivalent to having all nonzero ideals factor uniquely as a product of prime ideals).

Proposition 4. If B is an integral extension of A, then dim(B) = dim(A). Hence OK has dimension 1 for
any number field K.

Some highlights of 6370, which hopefully suffice as a refresher:

Definition 5. A fractional ideal of K is a nonzero finitely generated OK submodule I ⊆ K. The set of
fractional ideals is denoted JK and they form an abelian group under multiplication.

Definition 6. The ideal class group ClK of K is JK/PK , where PK is the subgroup of JK consisting of
those fractional ideals which are principal. The ideal class group ClK happens to also be the Picard group
of Spec(OK).

Theorem 7. The ideal class group ClK is finite. Specifically, every class in the class group contains an
ideal J of OK with norm at most (
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Proof. This rests on the fact that if I is a nonzero ideal of OK , then I contains an element α satisfying

|NK/Q(α)| ≤
(

4

π

)s
n!

nn

√
|disc(K)| ·N(I),

which pops out of some Minkowski Theory (geometry of numbers).

Afterwards it is a matter of trickery to conclude that ClK is finite (e.g. there are only finitely many ideals
of a given norm, bla bla bla...).
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Theorem 8. Let K be a number field of degree n with r real embeddings and s pairs of complex embeddings.
Then O×K is isomorphic to µK × Zr+s−1, where µK denotes the roots of unity of OK .

Proof. You can define a map ψ : K× → Rr+s with some nice properties, in particular that ψ|O×K has kernel

µK , and that ψ(O×K) is a lattice in the subspace {x ∈ Rr+s : x1 + · · ·+xr+s = 0}. The rest is a long, painful
computation.

Let’s talk about field extensions and get more into CFT.

Definition 9. Let L/K be a separable extension. We say L/K is Galois if K is the fixed field of
Aut(L/K) =: Gal(L/K).

Definition 10. We say L/K is abelian if Gal(L/K) is abelian.

For example, you have all the cyclotomic fields Q(ζn), whose Galois group is (Z/nZ)×, and all of its sub-
fields (which correspond to subgroups of (Z/nZ)× by the fundamental theorem of Galois theory). Kronecker-
Weber states that this is the complete list of abelian extensions of Q:

Theorem 11. If K/Q is an abelian extension, then K ⊆ Q(ζn) for some n.

Then given an abelian extension K/Q, there is a smallest n for which K ⊆ Q(ζn); this n is called its
conductor.

You can easily deduce this theorem from a local analogue, which we’ll rove:

Theorem 12. If K/Qp is an abelian extension, then K ⊆ Qp(ζn) for some n.

Recall (hopefully)

Definition 13. Let L/K be a Galois extension and say that q is a prime ideal of OL so that q lies over p
in OK . The decomposition group of q, called Dq, is the subgroup of Gal(L/K) that fixes q.

Thus if σ ∈ Dq you get an automorphism

OL/q→ OL/q

x+ q 7→ σ(x) + q

and hence a homomorphism
ϕ : Dq → Gal(Fq/Fp),

where Fq := OL/q (it’s a field because OL has dimension 1) and Fp := OK/p. This homomorphism is
apparently surjective (Mehrle’s 6.17). In any case, we can now define

Definition 14. The kernel of this homomorphism ϕ is the inertia group Iq of q.

Now the Galois group Gal(L/K) acts transitively on the set of primes q of L dividing a fixed p of K;
hence if q′ = σ(q) we have Dq′ = σDqσ

−1 and Iq′ = σIqσ
−1 and if L/K is abelian then Dq′ = Dq and

Iq′ = Iq. Hence we can talk about Dp and Ip instead.

Okay, let’s let K/Q be an abelian extension, with conductor m. There is a surjective homomorphism

(Z/mZ)× → Gal(K/Q).

If p is a prime not dividing m, then K/Q is unramified above p, and the homomorphism ϕ : Dp → Gal(Fp/Fp)
is injective and hence an isomorphism. Thus Dp is cyclic and, like Gal(K/Q), is generated by the Frobenius
element σp : x 7→ xp (mod p) for any p over p. Thus we can define a map p 7→ σp, which we can formally
extend to to the group Sm ⊆ Q generated by primes not dividing m (as an example, the element 6/5 ∈ S7

gets mapped to σ2σ3(σ5)−1 ∈ Gal(K/Q)).

Definition 15. This map Sm → Gal(K/Q) is the Artin map of K/Q.
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The Artin map factors through ϕ : (Z/mZ)× → Gal(K/Q), that is to say, note that ϕ(r) 7→ {ζm 7→ ζrm}.
If the automorphism {ζm 7→ ζrm} is equal to the automorphism Fp we need ζrm ≡ ζpm (mod p) for some p
over p, and this is only true when r ≡ p (mod m) (“see exercises”, thanks Kedlaya).

Anyways, the Artin reciprocity law states that a similar phenomenon arises for abelian extensions over
any number field: Frobenius elements of primes are governed by how they “reduce” modulo some other
quantity.

Okay, let’s prove Kronecker-Weber from its local analogue.

Proof. Fix a field K/Q; for each prime p where K ramifies pick a p over p and note that Kp, the completion
of K with respect to p, is such that Gal(Kp/Qp) ∼= Dp ⊆ Gal(K/Q) (the isomorphism is magic) and hence
Kp is an abelian extension of Qp. Hence by local Kronecker-Weber we have Kp ⊆ Qp(ζnp) for some np. Let
ep be the highest power of p dividing np and define n =

∏
p p

ep . We show that L := K(ζn) = Q(ζn).

Note that L is the compositum of K and Q(ζn) and hence Gal(L/Q) ↪→ Gal(K/Q)×Gal(Q(ζn)/Q) and
is hence an abelian extension; pick a q in L lying above p, and let U be the maximal unramified subextension
of Lq over Qp. Then Lq/U is totally ramified, and Gal(Lq/U) ∼= Ip. Notice that Lq ⊇ U(ζpep ) and that
Kp ⊆ Qp(np) ⊆ U(ζpep ), so Lq = Kp(ζn) ⊆ U(ζpep ). It follows that Lq = U(ζpep ) so Ip ∼= (Z/pepZ)×. Now
if I is the group generated by all the Ip, we have

|I| ≤
∏
|Ip| =

∏
φ(pn) = φ(n) = [Q(ζn) : Q].

The fixed field LI/Q of I is contained in LIp/Q for all p, and LIp/Q is unramified at p. Hence LI/Q is
unramified everywhere and so LI = Q. So I = Gal(L/Q) and

[L : Q] = |I| ≤ [Q(ζn) : Q].

Because Q(ζn) ⊆ L, we get Q(ζn) = L as desired.
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