Class Field Theory

Linus Setiabrata

Lecture 1. Feb 10, 2019

I will try to give a very quick review of “basic” algebraic number theory and then hopefully get through
the beginning of Kedlaya’s notes, which is a preamble on Kronecker-Weber. In this chapter, Kedlaya follows
Lawrence Washington’s book (which GTM are you?); Kedlaya’s proofs are super condensed, but Washing-
ton’s are more detailed. Guillot’s book also builds up to this theorem, so regardless of whether we want to
follow the Brian group or do our own thing, it doesn’t hurt to flesh out this theorem.

Let me begin by stealing the following definition from MIT number theory lecture notes. This perspective
is different from the definition Zywina used in his 6370, so I was caught off guard a little the first time I saw
it:

Definition 1. Let A C B be rings. An element b € B is integral over A if b is a root of a monic polynomial
in A[z]. The ring B is integral over A if all its elements are.

Definition 2. Given a ring extension B/A, the ring A:={be B: bis integral over A} is the integral closure
of Ain B. When A = A we say that A is integrally closed in B.

Definition 3. A number field K is a finite extension of Q. Its ring of integers Oy is the integral closure of
Z in K.

And then sometimes instead of Z you want to put other rings, which gives this AK L B-setup: in general
we let A be a Dedekind domain with field of fractions K, and L a finite separable extension, and B the
integral closure of A in L. By the way, a Dedekind domain is a integrally closed, Noetherian domain of Krull
dimension 1 (i.e., this is equivalent to having all nonzero ideals factor uniquely as a product of prime ideals).

Proposition 4. If B is an integral extension of A, then dim(B) = dim(A). Hence Ok has dimension 1 for
any number field K.

Some highlights of 6370, which hopefully suffice as a refresher:

Definition 5. A fractional ideal of K is a nonzero finitely generated O submodule I C K. The set of
fractional ideals is denoted Jg and they form an abelian group under multiplication.

Definition 6. The ideal class group Clg of K is Jx/Pk, where Pk is the subgroup of Jg consisting of
those fractional ideals which are principal. The ideal class group Cli happens to also be the Picard group
of Spec(Ok).

Theorem 7. The ideal class group Clg is finite. Specifically, every class in the class group contains an

ideal J of O with norm at most
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Proof. This rests on the fact that if I is a nonzero ideal of Ok, then I contains an element « satisfying
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which pops out of some Minkowski Theory (geometry of numbers).

Afterwards it is a matter of trickery to conclude that Clg is finite (e.g. there are only finitely many ideals
of a given norm, bla bla bla...). O
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Theorem 8. Let K be a number field of degree n with r real embeddings and s pairs of complexr embeddings.
Then O} is isomorphic to px x Z™ 71 where px denotes the roots of unity of Ok .

Proof. You can define a map 1: K* — R""* with some nice properties, in particular that 1| ox has kernel

prc, and that ¢(OF) is a lattice in the subspace {z € R""*: 21 + -+, 5 = 0}. The rest is a long, painful
computation. O

Let’s talk about field extensions and get more into CFT.

Definition 9. Let L/K be a separable extension. We say L/K is Galois if K is the fixed field of
Auwt(L/K) =: Gal(L/K).

Definition 10. We say L/K is abelian if Gal(L/K) is abelian.

For example, you have all the cyclotomic fields Q(¢,,), whose Galois group is (Z/nZ)*, and all of its sub-
fields (which correspond to subgroups of (Z/nZ)* by the fundamental theorem of Galois theory). Kronecker-
Weber states that this is the complete list of abelian extensions of Q:

Theorem 11. If K/Q is an abelian extension, then K C Q((,) for some n.

Then given an abelian extension K/Q, there is a smallest n for which K C Q((,); this n is called its
conductor.
You can easily deduce this theorem from a local analogue, which we’ll rove:

Theorem 12. If K/Q, is an abelian extension, then K C Q,((y,) for some n.
Recall (hopefully)

Definition 13. Let L/K be a Galois extension and say that q is a prime ideal of Op, so that q lies over p
in Og. The decomposition group of q, called Dy, is the subgroup of Gal(L/K) that fixes g.

Thus if 0 € Dy you get an automorphism
OL/a—Or/q
x+q—o(x)+q

and hence a homomorphism

p: Dy — Gal(Fy/F,),
where Fy := Or/q (it’s a field because Oy, has dimension 1) and F, := Og/p. This homomorphism is
apparently surjective (Mehrle’s 6.17). In any case, we can now define

Definition 14. The kernel of this homomorphism ¢ is the inertia group I of g.

Now the Galois group Gal(L/K) acts transitively on the set of primes q of L dividing a fixed p of K;
hence if ' = o(q) we have Dy = 0Dqo~! and Iy = ol;o~! and if L/K is abelian then Dy = Dy and
Iy = Iy. Hence we can talk about Dy, and I, instead.

OXkay, let’s let K/Q be an abelian extension, with conductor m. There is a surjective homomorphism
(Z/mZ)* — Gal(K/Q).

If p is a prime not dividing m, then K/Q is unramified above p, and the homomorphism ¢: D, — Gal(F, /F,)
is injective and hence an isomorphism. Thus D, is cyclic and, like Gal(K/Q), is generated by the Frobenius
element o,: & — 2P (mod p) for any p over p. Thus we can define a map p — o,, which we can formally
extend to to the group S,, C Q generated by primes not dividing m (as an example, the element 6/5 € Sy
gets mapped to o203(05) ! € Gal(K/Q)).

Definition 15. This map S,, — Gal(K/Q) is the Artin map of K/Q.


http://pi.math.cornell.edu/~dmehrle/notes/cornell/18sp/6370notes.pdf

The Artin map factors through ¢: (Z/mZ)* — Gal(K/Q), that is to say, note that ¢(r) — {(m — 7}
If the automorphism {¢,, — ¢},} is equal to the automorphism F), we need (, = ¢?, (mod p) for some p
over p, and this is only true when r = p (mod m) (“see exercises”, thanks Kedlaya).

Anyways, the Artin reciprocity law states that a similar phenomenon arises for abelian extensions over
any number field: Frobenius elements of primes are governed by how they “reduce” modulo some other
quantity.

Okay, let’s prove Kronecker-Weber from its local analogue.

Proof. Fix a field K/Q; for each prime p where K ramifies pick a p over p and note that K,,, the completion
of K with respect to p, is such that Gal(K,/Q,) = D, C Gal(K/Q) (the isomorphism is magic) and hence
K, is an abelian extension of Q,. Hence by local Kronecker-Weber we have K, C Q,((,,) for some n,. Let
ep be the highest power of p dividing n, and define n = Hp p». We show that L := K((,) = Q(¢n).

Note that L is the compositum of K and Q(¢,) and hence Gal(L/Q) — Gal(K/Q) x Gal(Q(¢,)/Q) and
is hence an abelian extension; pick a q in L lying above p, and let U be the maximal unramified subextension
of Ly over Q. Then L,/U is totally ramified, and Gal(L,/U) = I,. Notice that Ly D U((per) and that
K, CQp(ny) CU(Cer), 50 Lg = Ky(Cn) C U(Cper ). It follows that Lg = U(Cper ) so I, = (Z/p®rZ)*. Now
if I is the group generated by all the I,,, we have

1 < T[5!I =] 60" = ¢(n) = Q) : Q.

The fixed field L /Q of I is contained in L!» /Q for all p, and L’ /Q is unramified at p. Hence L!/Q is
unramified everywhere and so L/ = Q. So I = Gal(L/Q) and

[L:Q] =[] <[Q(¢) : Q]

Because Q(¢,) C L, we get Q(¢,) = L as desired. O
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