

The dual abelian variety

Nov 24, 2019

As usual I'm basically following Milne. But today I want to zoom toward a particular result and then reflect on what happened – so I'm going to be jumbling around the order. (I think Milne does it in his order because he has a responsibility to be rigorous. But not me :D)

Let us recall the following corollary of the Theorem of the Square:

Theorem 1. *For every invertible sheaf \mathcal{L} on A , the map $\lambda_{\mathcal{L}}: A(k) \rightarrow \text{Pic } A$ sending $a \mapsto t_a^* \mathcal{L} \otimes \mathcal{L}^{-1}$ is a homomorphism.*

Note that we also have multiplication and projection maps $m, p, q: A \times A \rightarrow A$ (here p is projection onto the first coordinate and q is projection onto the second coordinate). We can consider the sheaf $m^* \mathcal{L} \otimes p^* \mathcal{L}^{-1}$ on $A \times A$, which can be thought of as a family of invertible sheaves on $A = p(A \times A)$, parametrized by $A = q(A \times A)$. Thus, a choice of a point $a \in A(k)$ gives an element in this family, namely, $(m^* \mathcal{L} \otimes p^* \mathcal{L}^{-1})|_{A \times \{a\}}$.

What is this invertible sheaf? Well, on $A \times \{a\}$ the map m is actually t_a , and the map p is the identity, and so

$$(m^* \mathcal{L} \otimes p^* \mathcal{L}^{-1})|_{A \times \{a\}} = t_a^* \mathcal{L} \otimes \mathcal{L}^{-1} = \lambda_{\mathcal{L}}(a).$$

With this discussion in mind, let me define

Definition 2. Let \mathcal{L} be an invertible sheaf on A . Define

$$K(\mathcal{L}) = \{a \in A: (m^* \mathcal{L} \otimes p^* \mathcal{L}^{-1})|_{A \times \{a\}} \text{ is trivial}\}.$$

This is a subset of A . The set of k -points of $K(\mathcal{L})$ is given by

$$K(\mathcal{L})(k) = \{a \in A(k): \lambda_{\mathcal{L}}(a) = \mathcal{O}_A\}. \quad \triangle$$

Apparently, $K(\mathcal{L})$ is a closed subset of A . It follows from the observation that $K(\mathcal{L}) = \text{Supp}(q_*(\mathcal{L}_2)) \cap \text{Supp}(q_*(\mathcal{L}_2^\vee))$, where $\mathcal{L}_2 = (m^* \mathcal{L} \otimes p^* \mathcal{L}^{-1})$. I don't think I understand this, but the observation that outside the support of D , the line bundle $\mathcal{L}(D)$ is trivial sounds relevant (see discussion after Definition 3.1 in [these notes](#)).

The homomorphism-ness of $\lambda_{\mathcal{L}}$ implies that $K(\mathcal{L})$ is actually a closed subgroup of A . Indeed, $K(\mathcal{L})$ commutes with extension of scalars, and for points $a, b \in \bar{k}$ we have $\lambda_{\mathcal{L}}(a + b) = \lambda_{\mathcal{L}}(a) \otimes \lambda_{\mathcal{L}}(b) = \mathcal{O}_A$, hence $K(\mathcal{L})(\bar{k})$ is a subgroup of $A(\bar{k})$. [\[I hope this is enough to guarantee that \$K\(\mathcal{L}\)\$ is a subgroup scheme of \$A\$, but I'm not so sure...\]](#)

We hit our first important result.

Proposition 3 (Proposition 8.4 in Milne). *Let \mathcal{L} be an invertible sheaf on A . Then, the following conditions are equivalent:*

- (a) $K(\mathcal{L}) = A$
- (b) $t_a^* \mathcal{L} \cong \mathcal{L}$ on $A_{\bar{k}}$ for all $a \in A(\bar{k})$,
- (c) $m^* \mathcal{L} \cong p^* \mathcal{L} \otimes q^* \mathcal{L}$.

Note that condition (b) above is really $K(\mathcal{L})(\bar{k}) = A(\bar{k})$.

Proof. The equivalence of (a) and (b) is follows from the fact that $A \setminus K(\mathcal{L})$ is open, hence nonempty if and only if its base change to \bar{k} has a closed point. That (c) implies (a) is also easy, since

$$(m^*\mathcal{L} \otimes p^*\mathcal{L}^{-1})|_{A \times \{a\}} \cong q^*\mathcal{L}|_{A \times \{a\}} = (x \mapsto a)^*\mathcal{L}|_{A \times \{a\}}$$

is trivial. That (b) implies (c) follows from the observations that for every $a \in \bar{k}$,

$$m^*\mathcal{L} \otimes p^*\mathcal{L}^{-1}|_{A \times \{a\}} = t_a^*\mathcal{L} \otimes \mathcal{L}^{-1}$$

is trivial, that the map q on $A \times \{a\}$ is a constant map and hence $q^*\mathcal{L}|_{A \times \{a\}}$ is trivial, that

$$m^*\mathcal{L} \otimes p^*\mathcal{L}^{-1}|_{\{0\} \times A} = q^*\mathcal{L}|_{\{0\} \times A} = \mathcal{L},$$

and that the Seesaw principle (Cor 5.18 in Milne) precisely says that (c) holds now. \square

Definition 4. The set $\text{Pic}^0(A) \subseteq \text{Pic}(A)$ consists of line bundles satisfying the conditions of Proposition 3. Condition (b) of that result, along with theorem of the square, says that $\text{Pic}^0(A)$ is a subgroup of $\text{Pic}(A)$. \triangle

Fact 5. The k -points $A^\vee(k)$ of the dual of A shall be the group $\text{Pic}^0(A)$.

Lemma 6 (Lemma 8.8 in Milne). For an invertible sheaf \mathcal{L} on A and any $a \in A(k)$, the invertible sheaf $\lambda_{\mathcal{L}}(a) = t_a^*\mathcal{L} \otimes \mathcal{L}^{-1}$ is in $\text{Pic}^0(A) = A^\vee(k)$.

Proof. Milne prefers to prove this in terms of divisors.

I think you can prove this by noting that

$$t_b^*(t_a^*\mathcal{L} \otimes \mathcal{L}^{-1}) \otimes (t_a^*\mathcal{L} \otimes \mathcal{L}^{-1})^{-1} \cong t_{a+b}^*\mathcal{L} \otimes t_b^*\mathcal{L}^{-1} \otimes t_a^*\mathcal{L}^{-1} \otimes \mathcal{L} \cong \mathcal{O}_A. \quad \square$$

We are thus a stone's throw away from

Theorem 7 (Special case of Theorem 6.18 [here](#)). The maps $\lambda_{\mathcal{L}}: A(k) \rightarrow A^\vee(k)$ give a regular map $\varphi_{\mathcal{L}}: A \rightarrow A^\vee$ and its kernel is the subgroup scheme $K(\mathcal{L})$ of A .

Proposition 8 (Proposition 8.1 in Milne). Let \mathcal{L} be an invertible sheaf such that $\Gamma(A, \mathcal{L}) \neq 0$. Then \mathcal{L} is ample if and only if $K(\mathcal{L})$ has dimension zero.

Proof. Observe that $\Gamma(A, \mathcal{L}) \neq 0$ -ness, ample-ness, and dimension 0-ness is preserved under base change to \bar{k} . The first two is 5.12 and 6.6 in Milne respectively, and the third fact is proven in much more generality [here](#) (it's also Hartshorne, (Ex II.3.20(f))).

Let's prove \mathcal{L} ample implies that $K(\mathcal{L})$ is dimension zero (since that's all Milne does). Let B be the connected component of $K(\mathcal{L})$ passing through 0. It is an abelian variety, hence $\mathcal{L}|_B$ is ample. For any $b \in B$, we have $t_b^*\mathcal{L}|_B \cong \mathcal{L}|_B$; Proposition 3 says that $m^*\mathcal{L}|_B \otimes p^*\mathcal{L}|_B^{-1} \otimes q^*\mathcal{L}|_B^{-1}$ on $B \times B$ is trivial. Take the inverse image of this sheaf by the regular map

$$\begin{aligned} B &\rightarrow B \times B \\ b &\mapsto (b, -b) \end{aligned}$$

to get that $\mathcal{L}|_B \otimes (-1_B)^*\mathcal{L}|_B$ is trivial. We have an ample sheaf $\mathcal{L}|_B$ so that $\mathcal{L}|_B \otimes (-1_B)^*\mathcal{L}|_B$ is trivial; we saw last time that this automatically implies $\dim B = 0$ and hence $B = 0$. (Last time, they key point was that on a connected variety V , the sheaf \mathcal{O}_V can only be very ample if V consists of a single point.) \square

Proposition 9 (Proposition 8.14 in Milne). If \mathcal{L} is ample, then $\lambda_{\mathcal{L}}: A \rightarrow \text{Pic}^0(A)$ is surjective.

Proof. (He cites Mumford 1970, §8, p77 or Lang 1959, p99.) \square

The previous two propositions, along with the fact that A always has an ample line bundle, say

Theorem 10. Let A be an abelian variety and A^\vee be its dual. Then A and A^\vee are isogenous, and for every ample line bundle \mathcal{L} with $\Gamma(A, \mathcal{L}) \neq 0$ the map $\varphi_{\mathcal{L}}$ is an isogeny. Furthermore, in characteristic zero, the geometric quotient $A/K(\mathcal{L})$ exists and $A^\vee \cong A/K(\mathcal{L})$.

The maps $\lambda_{\mathcal{L}}: a \mapsto t_a^* \mathcal{L} \otimes \mathcal{L}^{-1}$ give isomorphisms $A^\vee(k') \cong A(k')/K(\mathcal{L})(k')$ for every $k' \supseteq k$, and I presume this means the regular $\varphi_{\mathcal{L}}$ gives an isomorphism $A^\vee \cong A/K(\mathcal{L})$.

(Of course, we don't even know that A^\vee is a variety yet!)

Remark 11 (Remark 8.2 in Milne). In Proposition 8 we said that if $\Gamma(A, \mathcal{L}) \neq 0$ then \mathcal{L} is ample if and only if $K(\mathcal{L})$ has dimension zero. Well, an effective divisor D always has global sections [e.g., it always contains k^\times , right?] so Proposition 8 says that an effective divisor D is ample if and only if $\lambda_D: A(\bar{k}) \rightarrow \text{Pic}(A_{\bar{k}})$ has finite kernel [is this because $K(\mathcal{L})$ has dimension zero if and only if it has finitely many closed points after base change to \bar{k} ?]. \triangle

Remark 12 (Remark 8.5 in Milne). Let α, β be two regular maps $V \rightarrow A$. Their sum is the composition $m \circ (\alpha \times \beta)$. If $\mathcal{L} \in \text{Pic}^0(A)$, then

$$m^* \mathcal{L} \cong p^* \mathcal{L} \otimes q^* \mathcal{L}.$$

Applying $(\alpha \times \beta)^*$ to both sides we obtain

$$(\alpha + \beta)^* \mathcal{L} \cong \alpha^* \mathcal{L} \otimes \beta^* \mathcal{L}.$$

This means that

$$\begin{aligned} \text{Hom}(V, A) &\rightarrow \text{Hom}(\text{Pic}^0(A), \text{Pic}(V)) \\ \alpha &\mapsto (\mathcal{L} \mapsto \alpha^* \mathcal{L}) \end{aligned}$$

is a homomorphism of groups. I want to claim to you that for $V = A$ that this becomes a map $\text{End}(A) \rightarrow \text{End}(\text{Pic}^0(A)) \subseteq \text{Hom}(\text{Pic}^0(A), \text{Pic}(A))$. If you believe that $\text{Pic}^0(A) = A^\vee$ is equal to the connected component of the identity in $\text{Pic}(A)$ then we win. Alternatively, we have a homomorphism

$$\begin{aligned} \text{Hom}(V, A) &\rightarrow \text{Hom}(\text{Pic}^0(A_{\bar{k}}), \text{Pic}^0(V_{\bar{k}})) \\ \alpha &\mapsto (\mathcal{L} \mapsto \alpha_{\bar{k}}^* \mathcal{L}), \end{aligned}$$

because if $\mathcal{L}_2 = m_k^* \mathcal{L} \otimes p_k^* \mathcal{L}^{-1}$ is trivial on $A_{\bar{k}} \times \{a\}$ then $(\alpha_{\bar{k}} \times 1_{A_{\bar{k}}})^*(\mathcal{L}_2)$ is also trivial on $A_{\bar{k}} \times \{a\}$ (see Example 4.13 in [here](#)). [I'm not sure why this is true but it seems base change to \bar{k} is needed here.]

In particular, $n_A \in \text{End}(A)$ gets mapped to $(\mathcal{L} \mapsto \mathcal{L}^n) \in \text{End}(\text{Pic}^0(A))$. That is to say, $(n_A)^* \mathcal{L} \cong \mathcal{L}^n$ for every $\mathcal{L} \in \text{Pic}^0(A)$. Milne specifically notes that when \mathcal{L} is symmetric then we've seen before $(n_A)^* \mathcal{L} \cong \mathcal{L}^{n^2}$, and that $(n_A)^* \mathcal{L} \cong \mathcal{L}^n$ is not a contradiction to this because if $\mathcal{L} \in \text{Pic}^0(A)$ then $(-1)_A^* \mathcal{L} \cong \mathcal{L}^{-1}$, so \mathcal{L} is antisymmetric. \triangle

Remark 13 (Remark 8.6 in Milne). Let $\alpha: A \rightarrow B$ be an isogeny, and suppose $\ker(\alpha) \subseteq A_n$ lives inside the n -torsion of A . Then α factors into

$$A \xrightarrow{\alpha} B \xrightarrow{\beta} C,$$

where $\beta \circ \alpha = n$ and $\deg \alpha \cdot \deg \beta = n^{2g}$. I suspect he means that $C = A/A_n$ exists and that $\beta \circ \alpha$ is the composite map

$$A \xrightarrow{n_A} A \xrightarrow{\pi} A/A_n.$$

\triangle

I hope I have just enough time to state what the dual abelian variety really is.

Definition 14. Consider a pair (A^\vee, \mathcal{P}) where A^\vee is an algebraic variety over k and \mathcal{P} is an invertible sheaf on $A \times A^\vee$. Assume that $\mathcal{P}|_{A \times \{b\}} \in \text{Pic}^0(A_b)$ for all $b \in A^\vee$, and $\mathcal{P}|_{\{0\} \times A^\vee}$ is trivial.

We say A^\vee is the dual abelian variety of A and \mathcal{P} the Poincaré sheaf if (A^\vee, \mathcal{P}) has the following universal property: for any pair (T, \mathcal{L}) consisting of a variety T over k and an invertible sheaf \mathcal{L} such that $\mathcal{L}|_{A \times \{t\}} \in \text{Pic}^0(A_t)$ for all $t \in T$ and $\mathcal{L}|_{\{0\} \times T}$ is trivial, there is a unique regular map $\alpha: T \rightarrow A$ so that $(1 \times \alpha)^* \mathcal{P} = \mathcal{L}$. \triangle