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As usual I’m basically following Milne. But today I want to zoom toward a particular result and then
reflect on what happened – so I’m going to be jumbling around the order. (I think Milne does it in his order
because he has a responsibility to be rigorous. But not me :D)

Let us recall the following corollary of the Theorem of the Square:

Theorem 1. For every invertible sheaf L on A, the map λL : A(k) → PicA sending a 7→ t∗aL ⊗ L −1 is a
homomorphism.

Note that we also have multiplication and projection maps m, p, q : A×A→ A (here p is projection onto
the first coordinate and q is projection onto the second coordinate). We can consider the sheafm∗L ⊗p∗L −1
on A×A, which can be thought of as a family of invertible sheaves on A = p(A×A), parametrized by A =
q(A×A). Thus, a choice of a point a ∈ A(k) gives an element in this family, namely, (m∗L ⊗p∗L −1)|A×{a}.

What is this invertible sheaf? Well, on A × {a} the map m is actually ta, and the map p is the identity,
and so

(m∗L ⊗ p∗L −1)|A×{a} = t∗aL ⊗L −1 = λL (a).

With this discussion in mind, let me define

Definition 2. Let L be an invertible sheaf on A. Define

K(L ) = {a ∈ A : (m∗L ⊗ p∗L −1)|A×{a} is trivial}.

This is a subset of A. The set of k-points of K(L ) is given by

K(L )(k) = {a ∈ A(k) : λL (a) = OA}. 4

Apparently, K(L ) is a closed subset of A. It follows from the observation thatK(L ) = Supp(q∗(L2))∩
Supp(q∗(L ∨2 )), where L2 = (m∗L ⊗ p∗L −1). I don’t think I understand this, but the observation that
outside the support ofD, the line bundle L (D) is trivial sounds relevant (see discussion after Definition 3.1
in these notes).

The homomorphism-ness of λL implies that K(L ) is actually a closed subgroup of A. Indeed, K(L )
commutes with extension of scalars, and for points a, b ∈ k we have λL (a + b) = λL (a) ⊗ λL (b) = OA,
henceK(L )(k) is a subgroup of A(k). [I hope this is enough to guarantee thatK(L ) is a subgroup scheme
of A, but I’m not so sure...]

We hit our first important result.

Proposition 3 (Proposition 8.4 in Milne). Let L be an invertible sheaf on A. Then, the following conditions are
equivalent:

(a) K(L ) = A

(b) t∗aL ∼= L on Ak for all a ∈ A(k),

(c) m∗L ∼= p∗L ⊗ q∗L .
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Note that condition (b) above is really K(L )(k) = A(k).

Proof. The equivalence of (a) and (b) is follows from the fact that A \K(L ) is open, hence nonempty if and
only if its base change to k has a closed point. That (c) implies (a) is also easy, since

(m∗L ⊗ p∗L −1)|A×{a} ∼= q∗L |A×{a} = (x 7→ a)∗L |A×{a}

is trivial. That (b) implies (c) follows from the observations that for every a ∈ k,

m∗L ⊗ p∗L −1|A×{a} = t∗aL ⊗L −1

is trivial, that the map q on A× {a} is a constant map and hence q∗L |A×{a} is trivial, that

m∗L ⊗ p∗L −1|{0}×A = q∗L |{0}×A = L ,

and that the Seesaw principle (Cor 5.18 in Milne) precisely says that (c) holds now.

Definition 4. The set Pic0(A) ⊆ Pic(A) consists of line bundles satisfying the conditions of Proposition 3.
Condition (b) of that result, along with theorem of the square, says that Pic0(A) is a subgroup of Pic(A). 4

Fact 5. The k-points A∨(k) of the dual of A shall be the group Pic0(A).

Lemma 6 (Lemma 8.8 in Milne). For an invertible sheaf L on A and any a ∈ A(k), the invertible sheaf λL (a) =
t∗aL ⊗L −1 is in Pic0(A) = A∨(k).

Proof. Milne prefers to prove this in terms of divisors.

I think you can prove this by noting that

t∗b(t
∗
aL ⊗L −1)⊗ (t∗aL ⊗L −1)−1 ∼= t∗a+bL ⊗ t∗bL −1 ⊗ t∗aL −1 ⊗L ∼= OA.

We are thus a stone’s throw away from

Theorem 7 (Special case of Theorem 6.18 here). The maps λL : A(k)→ A∨(k) give a regular map ϕL : A→ A∨

and its kernel is the subgroup scheme K(L ) of A.

Proposition 8 (Proposition 8.1 in Milne). Let L be an invertible sheaf such that Γ(A,L ) 6= 0. Then L is ample
if and only if K(L ) has dimension zero.

Proof. Observe that Γ(A,L ) 6= 0-ness, ample-ness, and dimension 0-ness is preserved under base change
to k. The first two is 5.12 and 6.6 in Milne respectively, and the third fact is proven in much more generality
here (it’s also Hartshorne, (Ex II.3.20(f))).

Let’s prove L ample implies that K(L ) is dimension zero (since that’s all Milne does). Let B be the
connected component of K(L ) passing through 0. It is an abelian variety, hence L |B is ample. For any
b ∈ B, we have t∗bL |B ∼= L |B ; Proposition 3 says that m∗L |B ⊗ p∗L |−1B ⊗ q∗L |

−1
B on B ×B is trivial. Take

the inverse image of this sheaf by the regular map

B → B ×B
b 7→ (b,−b)

to get that L |B ⊗ (−1B)∗L |B is trivial. We have an ample sheaf L |B so that L |B ⊗ (−1B)∗L |B is trivial;
we saw last time that this automatically implies dimB = 0 and hence B = 0. (Last time, they key point was
that on a connected variety V , the sheaf OV can only be very ample if V consists of a single point.)

Proposition 9 (Proposition 8.14 in Milne). If L is ample, then λL : A→ Pic0(A) is surjective.

Proof. (He cites Mumford 1970, §8, p77 or Lang 1959, p99.)

The previous two propositions, along with the fact that A always has an ample line bundle, say
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Theorem 10. Let A be an abelian variety and A∨ be its dual. Then A and A∨ are isogenous, and for every ample line
bundle L with Γ(A,L ) 6= 0 the map ϕL is an isogeny. Furthermore, in characteristic zero, the geometric quotient
A/K(L ) exists and A∨ ∼= A/K(L ).

The maps λL : a 7→ t∗aL ⊗L −1 give isomorphisms A∨(k′) ∼= A(k′)/K(L )(k′) for every k′ ⊇ k, and I
presume this means the regular ϕL gives an isomorphism A∨ ∼= A/K(L ).

(Of course, we don’t even know that A∨ is a variety yet!)
Remark 11 (Remark 8.2 in Milne). In Proposition 8 we said that if Γ(A,L ) 6= 0 then L is ample if and only
ifK(L ) has dimension zero. Well, an effective divisorD always has global sections [e.g., it always contains
k×, right?] so Proposition 8 says that an effective divisor D is ample if and only if λD : A(k)→ Pic(Ak) has
finite kernel [is this because K(L ) has dimension zero if and only if it has finitely many closed points after
base change to k?]. 4
Remark 12 (Remark 8.5 in Milne). Let α, β be two regular maps V → A. Their sum is the composition
m ◦ (α× β). If L ∈ Pic0(A), then

m∗L ∼= p∗L ⊗ q∗L .

Applying (α× β)∗ to both sides we obtain

(α+ β)∗L ∼= α∗L ⊗ β∗L .

This means that

Hom(V,A)→ Hom(Pic0(A),Pic(V ))

α 7→ (L 7→ α∗L )

is a homomorphism of groups. I want to claim to you that for V = A that this becomes a map End(A) →
End(Pic0(A)) ⊆ Hom(Pic0(A),Pic(A)). If you believe that Pic0(A) = A∨ is equal to the connected compo-
nent of the identity in Pic(A) then we win. Alternatively, we have a homomorphism

Hom(V,A)→ Hom(Pic0(Ak),Pic0(Vk))

α 7→ (L 7→ α∗
k
L ),

because if L2 = m∗
k
L ⊗ p∗

k
L −1 is trivial on Ak × {a} then (αk × 1Ak

)∗(L2) is also trivial on Ak × {a} (see
Example 4.13 in here). [I’m not sure why this is true but it seems base change to k is needed here.]

In particular, nA ∈ End(A) gets mapped to (L 7→ L n) ∈ End(Pic0(A)). That is to say, (nA)∗L ∼= L n for
every L ∈ Pic0(A). Milne specifically notes that when L is symmetric then we’ve seen before (nA)∗L ∼=
L n2 , and that (nA)∗L ∼= L n is not a contradiction to this because if L ∈ Pic0(A) then (−1)∗AL ∼= L −1, so
L is antisymmetric. 4
Remark 13 (Remark 8.6 in Milne). Let α : A → B be an isogeny, and suppose ker(α) ⊆ An lives inside the
n-torsion of A. Then α factors into

A
α−→ B

β−→ C,

where β ◦ α = n and degα · deg β = n2g . I suspect he means that C = A/An exists and that β ◦ α is the
composite map

A
nA−−→ A

π−→ A/An.

4
I hope I have just enough time to state what the dual abelian variety really is.

Definition 14. Consider a pair (A∨,P) whereA∨ is an algebraic variety over k and P is an invertible sheaf
on A×A∨. Assume that P|A×{b} ∈ Pic0(Ab) for all b ∈ A∨, and P|{0}×A∨ is trivial.

We say A∨ is the dual abelian variety of A and P the Poincaré sheaf if (A∨,P) has the following uni-
versal property: for any pair (T,L ) consisting of a variety T over k and an invertible sheaf L such that
L |A×{t} ∈ Pic0(At) for all t ∈ T and L |{0}×T is trivial, there is a unique regular map α : T → A so that
(1× α)∗P = L .
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