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A long time ago we saw that projective varieties are complete and that the converse is not true in general;
a few weeks ago Guanyu asserted that abelian varieties were examples of complete varieties which are
projective.

Let’s begin with the case k = k̄, and remove this assumption later.
To make sure we are all on the same page, let us recall some definitions:

Definition 1. Let V be a complete nonsingular variety over k. A divisor (Weil and Cartier agree here) of V
is a formal sum of subvarieties of codimension 1. A divisor is effective if the coefficients are nonnegative. It
is principal if it arises from a function

div(f)
def
=

∑
Y

ordY (f) · Y,

where ordY (f)
def
= length(OX,ξ/〈g〉) − length(OX,ξ/〈h〉), with ξ ∈ Y generic, and f = g/h ∈ Frac(OX,ξ) =

k(X). Two divisors are linearly equivalent if their difference is principal. 4

Definition 2. A complete linear system d is a nonempty linear equivalence class of effective divisors. Thus, if
D0 ∈ d, then

d = {D0 + div(f) : f ∈ L(D0)}.

If W ⊂ L(D0) is a subspace, then
{D0 + div(f) : f ∈W}

will be called a linear system. 4

Remark 3. For any normal projective variety X and any divisor D on X one has dimL(D) < ∞. Since
group varieties are smooth schemes over a field, they are normal, so we may freely take (finite) bases of the
vector space L(D). 4

Proposition 4. If V is a closed subvariety of Pn, then

{V ∩H : H hyperplane in Pn}

is a linear system.

Proof. This follows from the fact that any two hyperplanes in Pn are linearly equivalent: ifH1, H2 are hyper-
planes then they are defined by equations `1, `2 = 0; now f = `1/`2 gives rise to the divisor H1 − H2. Let
HV be a hyperplane intersecting V , and note that

{V ∩H : H hyperplane in Pn}

is the image of the subspace W ⊆ L(V ∩HV ) defined by

W = {f ∈ L(V ∩HV ) : zeros and poles of f intersect V }

under the map W � d ⊆ Div(V ).
[... I think.] In any case, observe that defining the subspace W algebraically (rather than geometrically)

would require using the closed immersion into Pn defining V .
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Now a complete linear system on V gives rise to a rational map V 99K Pn in the following way: if

d = {D0 + div(f) : f ∈ L(D0)}

is a complete linear system and f0, . . . , fn is a basis for L(D0), then we get a rational map

P 7→ (f0(P ) : · · · : fn(P ))

on the open set of V where no fi has a pole at P and at least one fi is nonzero. A change of basis corresponds
to a projective linear transformation, and if we replace D0 with D′ = D0 + div(f) then we can replace the
basis f0, . . . , fn to f0/f, . . . , fn/f gives the same rational map.

When does this rational map define an isomorphism from V onto a closed subvariety of Pn?
Well, if there exists an effective divisor E so that D ≥ E for every D ∈ d, then this means for any D0 ∈ d

we have L(D0 − E) = L(D0) and

d− E def
= {D0 − E + div(f) : f ∈ L(D0 − E) = L(D0)}

is also a complete linear system, and moreover defines the same rational map as d. Such an effective divisor
E is called a fixed divisor, and from the point of view of rational maps we may assume that d does not contain
any fixed divisors.

Definition 5. A point P of V is said to be a base point of d if P ∈ Supp(D) for all D ∈ d. Even when there is
no fixed divisor, there may be base points. 4

Proposition 6. The rational map ϕ : V → Pn defined by d is defined at P if and only if P is not a base point of d.

Proof. Suppose P is not a base point of d, and letD0 be an element of d such that P 6∈ Supp(D0). Pick a basis
f0, . . . , fn for L(D0), and note that the effectiveness of div(fi) + D0 ≥ 0 guarantees that fi does not have a
pole at P (since P isn’t in the support of D0). If fi(P ) = 0 for all i, then every f ∈ L(D0) has a root at P ,
but the constant functions should also be in L(D0) because D0 is effective. Thus P 7→ (f0(P ) : · · · : fn(P ))
is defined.

Conversely, if D0 ∈ d and f0, . . . , fn ∈ L(D0) is a basis, and the map P 7→ (f0(P ) : · · · : fn(P )) is not
defined at P , then they’re not all zero for the same reason as above so some fi must have a pole at P ; the
fact that div(fi) +D0 ≥ 0 implies that P ∈ Supp(D0).

[... I think.] [I don’t know where I used that d has no fixed divisor, but I assume it is at the last step.]

Definition 7. Let d be a linear system.

• We say d separate points if for any P,Q ∈ V there exists D ∈ d so that P ∈ Supp(D) and Q 6∈ Supp(D).

• We say d separates tangent directions if for every P ∈ V and t tangent to V at P , there is D ∈ d so that
P ∈ D but t 6∈ TP (D), whereTP (D) ⊆ TP (V ) is the subspace of the tangent space defined by (df)P = 0;
in other words, only one prime divisor Z inD can contain P , and Z only occurs with multiplicity one,
and that t 6∈ TP (Z). 4

Proposition 8. The map ϕ : V → Pn defined by a complete linear system d is a closed immersion if and only if d
separates points and separates tangent directions.

According to Hartshorne, this proposition holds for projective schemes over algebraically closed fields.

Proof. Milne references Hartshorne, who simply asserts that this is Prop II.7.3, which states the following:

Proposition 9. Let k be an algebraically closed field, let X be a projective scheme over k, and let ϕ : X → Pnk be a
morphism (over k) corresponding to L [an invertible sheaf] and s0, . . . , sn ∈ Γ(X,L ) [That is, there is a unique
morphism ϕ : X → Pnk such that L = ϕ∗(O(1)) and si = ϕ∗(xi)]. Let V ⊆ Γ(X,L ) be the subspace spanned by
the si. Then ϕ is a closed immersion if and only if elements of V separate points, i.e. for any two distinct closed coints
P,Q ∈ X there is s ∈ V such that s ∈ mPLP but s 6∈ mQLQ, and elements of V separate tangent vectors, i.e. for
each closed point P ∈ X , the set {s ∈ V : sP ∈ mPLP } spans the k-vector space mPLP /m

2
PLP .
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The proof of this is kind of painful, with the forward direction being “not so bad”.
Let me try to convince you that the definitions of “separating points” and “separating tangent directions”

are the same.
Note that a complete linear system is a linear equivalence class of divisors, which are in bijection with

isomorphism classes of invertible sheaves (that this is a bijection is a Hartshorne II.6 theorem: the map
sends D = {(Ui, fi)} 7→ L (D), where L (D) is the subsheaf of K generated by f−1

i on Ui; recall that a
Cartier divisor is obtained by picking, for an open cover {Ui} of V , sections fi ∈ Γ(Ui,K ∗) of the sheaf
of “multiplicative groups of invertible elements in the total quotient ring of O”.) which intersect nicely (so
fi/fj on Ui ∩ Uj is a section in Γ(Ui ∩ Uj ,O∗), where O∗ is the sheaf of invertible elements in O .

Now note that
Γ(X,L (D)) = L(D)/k× = {f ∈ k(X)× : div(f) +D ≥ 0}/k×.

Picking a divisorD ∈ d = {D0 +div(f) : f ∈ L(D0)} corresponds to picking f ∈ L(D0) up to multiplication
by a constant (this requires a theorem, namely II.7.7(c) in H). This is an element s ∈ Γ(X,L (D)), so we need
to show that P ∈ Supp(D) if and only if s ∈ mPL (D0)P . This is true because if we picked D0 to be such
that P 6∈ Supp(D0) and P ∈ Supp(D) then D ≥ 0 means that s must vanish at P . But a section s vanishes
at P if and only if s ∈ mPL (D0)P . [Thanks, Kabir.]

I think you can say something similar for separating tangent spaces: an element inmPL (D0)P /m
2
PL (D0)P

is represented by a function vanishing with order exactly one at P , which comes from a divisor D so that
P only appears in one prime divisor Z, with Z appearing only once. But there are details here that I won’t
check. Sorry :(

Theorem 10. Every abelian variety is projective.

Proof. Suppose we had a finite set of prime divisors, say n many Z1, . . . , Zn, so that the divisor D =
∑
Zi

separates 0 from every other point, and separates tangent directions at 0. Precisely, we want⋂
Zi = {0} ⊆ A and

⋂
T0(Zi) = {0} ⊆ T0(A).

We’ll prove the existence of this in a bit. Our claim is that 3D defines a complete linear system d = {3D +
div(f) : f ∈ L(3D)} that separates all points and all tangent directions. This would make the map ϕ a closed
immersion.

To show that 3D separates all points and all tangent directions, we first recall the Theorem of the Square,
which was proven in a previous section of the book but we haven’t proven yet:

Theorem 11. Let L be a line bundle on an abelian variety A and let a, b ∈ A(k) be two k-rational points. Then

t∗a+bL ⊗L ∼= t∗aL ⊗ t∗bL ,

where tx is translation by x.

Thus,
t∗a+bL ⊗L −1 ∼= (t∗aL ⊗L −1)⊗ (t∗bL ⊗L −1)

implies that a 7→ t∗aL
−1 is a homomorphism A 7→ PicA. In particular, we have for any a, b ∈ A the isomor-

phism
t∗aL ⊗ t∗bL ⊗ t∗−a−bL ∼= L ⊗3

In light of the fact that the bijection D 7→ L (D) from divisors mod linear equivalence to line bundles mod
isomorphisms, we get a linear equivalence

Za + Zb + Z−a−b ∼ 3Z

for any prime divisor Z. Let us pick 2n points {a1, . . . , an; b1, . . . , bn} of A, and note that

3D =
∑

3Zi ∼
∑

(Zi,ai + Zi,bi + Zi,−ai−bi).
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Let us also pick two distinct points a, b ∈ A, and observe that b − a 6= 0 so some Zi (WLOG Z1) doesn’t
contain b− a. Let a1 = 1, and observe that Z1,a1 passes through a but not b. Since

{b1 : Z1,b1 passes through b} ∪ {b1 : Z1,−a1−b1 passes through b}

is a union of proper closed subsets, there exists b1 in neither. We can also choose ai, bi so that none of
Zi,ai , Zi,bi , Zi,−ai−bi pass through b, and a is in the support of

∑
(Zi,ai + Zi,bi + Zi,−ai−bi), but b is not.

Hence 3D separates points. The proof that it separates tangents is similar; for any a ∈ A and t 6= 0 ∈ Ta(A)
we have ⋂

T0(Zi) = {0} ⊆ T0(A) =⇒
⋂

T0(Zi,a) = {0}

so there exists j so that t 6∈ Zj,a. Then we pick aj = a and all other ai, bi to be so that Zi,ai , Zi,bi , Zi,−ai−bi
are out of the way. I think this proof is really cute.

As promised, I have to tell you why there exist Zi so that⋂
Zi = {0} ⊆ A and

⋂
T0(Zi) = {0} ⊆ T0(A).

We first show that for any point P 6= 0 ∈ A, there is an open affine containing both 0 and P . Indeed, if
U is an open affine containing 0, take a point u ∈ U ∩ (U + P ) and observe that u ∈ U + P means that
0 ∈ U +P −u, and u ∈ U means that P ∈ U +P −u. Hence U ′ = U +P −u is an open affine neighborhood.
Thus we can identify U ′ with a closed subset of An, take a hyperplane H passing through 0 but not P , and
take Z1 to be the closure of H ∩ U ′ in A. If there is P ′ on Z1 other than 0, choose Z2 to pass through 0 but
not P ′. Continue in this fashion; by the descending chain condition we win after finitely many steps. Then
∩Zi = {0}. Now choose any open affine U around 0, and suppose t ∈ T0(Zi) for all i. Then embed U ↪→ An
and choose a hyperplane through 0 not containing t. Add the closure Z of H ∩ U in A to the set {Zi} and
continue in this way until ∩T0(Zi) = {0}. [I don’t understand what Milne does, I hope it is a typo]

Definition 12. A divisorD onV is very ample if the complete linear system it defines gives a closed immersion
of V into Pn. A divisor D on V is ample if nD is very ample for some n ≥ 0. 4

[In the case that V is a smooth projective variety over algebraically closed k, a divisor is (very) ample
if and only if the isomorphism class of invertible sheaves associated to its complete linear system is (very)
ample. I think this is essentially the content of the Hartshorne proposition above.]

Milne asserts that if D is ample on an abelian variety A, then 3D is always very ample. He also asserts
that it’s difficult to prove (and doesn’t prove it), but we saw an example of this a bit earlier.

Proposition 13. We have:

(a) If D and D′ are ample, then so is D +D′.

(b) If D is an ample divisor on V , then D|W is ample for any closed subvariety W of V , assuming D|W is defined.

(c) A divisor D on V is ample if and only if its extension of scalars to k̄ is ample

(d) A variety V has an ample divisor if Vk̄ has an ample divisor.

Proof. For part (a), take n so that nD and nD′ are very ample; observe that nD′ is linearly equivalent to an
effective divisor D2, and L(nD +D2) ⊇ L(nD). Hence nD +D2 is very ample, and since nD +D2 defines
the same complete linear system as nD + nD′, it follows that nD + nD′ is very ample, we win.

For part (b), we observe that “the restriction of the map defined by D to W is the map defined by the
restriction of D to W”.

For part (c), the map obtained by the extension of scalars from the map V → Pn defined by D is that
defined by Dk̄.

For part (d), letD be an ample divisor on Vk̄. SinceD is defined over some finite extension k′ of k, the set
{σD : σ ∈ Aut(k̄/k)} is finite. The sum of the σD, which is again a divisor we will denote by D0, is ample
by part (a). Note that D0 is defined over a purely inseparable extension of k. Possibly having to multiply by
some power of char k, we get that D0 is defined over k. Part (c) finishes the proof.

4


