Abelian Varieties (are Projective)
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A long time ago we saw that projective varieties are complete and that the converse is not true in general;
a few weeks ago Guanyu asserted that abelian varieties were examples of complete varieties which are
projective.

Let’s begin with the case k = k, and remove this assumption later.

To make sure we are all on the same page, let us recall some definitions:

Definition 1. Let V be a complete nonsingular variety over k. A divisor (Weil and Cartier agree here) of V/
is a formal sum of subvarieties of codimension 1. A divisor is effective if the coefficients are nonnegative. It
is principal if it arises from a function

div(f) € ordy (f) Y,
Y

where ordy (f) def length(Ox ¢/(g)) — length(Ox ¢/(h)), with £ € Y generic, and f = g/h € Frac(Ox¢) =
k(X). Two divisors are linearly equivalent if their difference is principal. A

Definition 2. A complete linear system 9 is a nonempty linear equivalence class of effective divisors. Thus, if
Dy €0, then
0= {Dg+div(f): f € L(Dy)}.

If W C L(Dy) is a subspace, then
{Do +div(f): fe W}

will be called a linear system. A

Remark 3. For any normal projective variety X and any divisor D on X one has dim L(D) < oco. Since
group varieties are smooth schemes over a field, they are normal, so we may freely take (finite) bases of the
vector space L(D). A

Proposition 4. If V is a closed subvariety of P, then
{V.Nn H: H hyperplane in P"}
is a linear system.

Proof. This follows from the fact that any two hyperplanes in P" are linearly equivalent: if H;, H; are hyper-
planes then they are defined by equations ¢, ¢y = 0; now f = {1 /{5 gives rise to the divisor H; — Hs. Let
Hy be a hyperplane intersecting V, and note that

{V N H: H hyperplane in P"}
is the image of the subspace W C L(V N Hy ) defined by
W ={f € L(VN Hy): zeros and poles of f intersect V'}
under the map W — o C Div(V).

[... I think.] In any case, observe that defining the subspace W algebraically (rather than geometrically)
would require using the closed immersion into P defining V. O



Now a complete linear system on V' gives rise to a rational map V' --» P" in the following way: if
0 ={Do +div(f): f € L(Do)}
is a complete linear system and fo, . .., f, is a basis for L(Dy), then we get a rational map

P (fo(P): - fu(P))

on the open set of VV where no f; has a pole at P and at least one f; is nonzero. A change of basis corresponds
to a projective linear transformation, and if we replace Dy with D’ = D, + div(f) then we can replace the
basis fo,. .., fn to fo/f, ..., fn/f gives the same rational map.

When does this rational map define an isomorphism from V' onto a closed subvariety of P"?

Well, if there exists an effective divisor £ so that D > E for every D € 0, then this means for any Dy € d
we have L(Dy — E) = L(Dy) and

V- EY{Dy— E+div(f): f € L(Dy — E) = L(Dy)}

is also a complete linear system, and moreover defines the same rational map as 9. Such an effective divisor

E is called a fixed divisor, and from the point of view of rational maps we may assume that 9 does not contain
any fixed divisors.

Definition 5. A point P of V' is said to be a base point of 0 if P € Supp(D) for all D € d. Even when there is
no fixed divisor, there may be base points. A

Proposition 6. The rational map p: V. — P™ defined by 0 is defined at P if and only if P is not a base point of 0.

Proof. Suppose P is not a base point of 9, and let D be an element of ? such that P ¢ Supp(Dy). Pick a basis
fo, .-, fn for L(Dy), and note that the effectiveness of div(f;) + Dy > 0 guarantees that f; does not have a
pole at P (since P isn't in the support of Dy). If f;(P) = 0 for all 4, then every f € L(Dy) has a root at P,

but the constant functions should also be in L(Dy) because Dy is effective. Thus P — (fo(P) : --- : fu(P))
is defined.
Conversely, if Dy € 0 and fo, ..., fn € L(Dy) is a basis, and the map P — (fo(P) : --- : fn(P)) is not

defined at P, then they’re not all zero for the same reason as above so some f; must have a pole at P; the
fact that div(f;) + Do > 0 implies that P € Supp(Dy).
[... Ithink.] [I don’t know where I used that © has no fixed divisor, but I assume it is at the last step.] O

Definition 7. Let 9 be a linear system.
e We say 0 separate points if for any P, () € V there exists D € 9 so that P € Supp(D) and @ ¢ Supp(D).

o We say 0 separates tangent directions if for every P € V and ¢ tangent to V at P, there is D € 0 so that
P € Dbutt ¢ Tp(D), where Tp(D) C Tp(V) is the subspace of the tangent space defined by (df ) p = 0;
in other words, only one prime divisor Z in D can contain P, and Z only occurs with multiplicity one,
and thatt ¢ Tp(Z2). A

Proposition 8. The map ¢: V. — P" defined by a complete linear system 9 is a closed immersion if and only if ®
separates points and separates tangent directions.

According to Hartshorne, this proposition holds for projective schemes over algebraically closed fields.

Proof. Milne references Hartshorne, who simply asserts that this is Prop 11.7.3, which states the following:

Proposition 9. Let k be an algebraically closed field, let X be a projective scheme over k, and let ¢: X — P} bea
morphism (over k) corresponding to £ [an invertible sheaf] and so, ..., s, € I'(X,.Z) [That is, there is a unique
morphism ¢: X — P} such that £ = ¢*(0(1)) and s; = ¢*(x;)]. Let V C I'(X, &£) be the subspace spanned by
the s;. Then ¢ is a closed immersion if and only if elements of V separate points, i.e. for any two distinct closed coints
P,Q € X thereis s € V such that s € mp.Zp but s & mg. 2y, and elements of V' separate tangent vectors, i.e. for
each closed point P € X, the set {s € V: sp € mp.Zp} spans the k-vector space mp Lp /m% Lp.



The proof of this is kind of painful, with the forward direction being “not so bad”.

Let me try to convince you that the definitions of “separating points” and “separating tangent directions”
are the same.

Note that a complete linear system is a linear equivalence class of divisors, which are in bijection with
isomorphism classes of invertible sheaves (that this is a bijection is a Hartshorne II.6 theorem: the map
sends D = {(U;, f;)} +— Z(D), where .Z(D) is the subsheaf of .#" generated by f; ' on Uj; recall that a
Cartier divisor is obtained by picking, for an open cover {U;} of V, sections f; € I'(U;, #*) of the sheaf
of “multiplicative groups of invertible elements in the total quotient ring of &”.) which intersect nicely (so
fi/ fjonU; NUj, is a section in I'(U; N U, €*), where 0* is the sheaf of invertible elements in &.

Now note that

I'(X,Z(D)) = L(D)/k* ={f € k(X)*: div(f)+ D > 0} /k*.

Picking a divisor D € @ = {Dy +div(f): f € L(Dy)} corresponds to picking f € L(Dy) up to multiplication
by a constant (this requires a theorem, namely I1.7.7(c) in H). This is an element s € I'(X, .Z (D)), so we need
to show that P € Supp(D) if and only if s € mp.Z(Dy)p. This is true because if we picked Dy to be such
that P ¢ Supp(Dy) and P € Supp(D) then D > 0 means that s must vanish at P. But a section s vanishes
at P if and only if s € mp.Z(Dy) p. [Thanks, Kabir.]

I think you can say something similar for separating tangent spaces: an elementinmp.¥(Dg) p/m%.%(Dy) p
is represented by a function vanishing with order exactly one at P, which comes from a divisor D so that
P only appears in one prime divisor Z, with Z appearing only once. But there are details here that I won't
check. Sorry :( O

Theorem 10. Every abelian variety is projective.

Proof. Suppose we had a finite set of prime divisors, say n many Zi, ..., Z,, so that the divisor D = ) Z;
separates 0 from every other point, and separates tangent directions at 0. Precisely, we want

(12={0}CA and [)To(Z)=/{0} C To(A).

We'll prove the existence of this in a bit. Our claim is that 3D defines a complete linear system @ = {3D +
div(f): f € L(3D)} that separates all points and all tangent directions. This would make the map ¢ a closed
immersion.

To show that 3D separates all points and all tangent directions, we first recall the Theorem of the Square,
which was proven in a previous section of the book but we haven’t proven yet:

Theorem 11. Let £ be a line bundle on an abelian variety A and let a,b € A(k) be two k-rational points. Then
lopl L =1, 24,27,

where t, is translation by x.

Thus,
L2t et Lo L)
implies that a — t%.¢~! is a homomorphism A — Pic A. In particular, we have for any a, b € A the isomor-
phism ‘
tLRGL Ot L =L

In light of the fact that the bijection D — £ (D) from divisors mod linear equivalence to line bundles mod
isomorphisms, we get a linear equivalence

Zao+ Zy+Z_oq p~3Z

for any prime divisor Z. Let us pick 2n points {a1, ..., an;b1,...,b,} of A, and note that

3D = 3Zi~ > (Zia, + Ziv, + Zi—a,—b,)-



Let us also pick two distinct points a,b € A, and observe that b — a # 0 so some Z; (WLOG Z;) doesn’t
contain b — a. Let a; = 1, and observe that Z; ,, passes through a but not b. Since

{b1: Z1p, passes through b} U {b1: Z1 _,, s, passes through b}

is a union of proper closed subsets, there exists b; in neither. We can also choose a;, b; so that none of
Ziais Zipys Zi,—as—b; pass through b, and a is in the support of > (Z; o, + Zi v, + Zi,—a,—b;), but b is not.
Hence 3D separates points. The proof that it separates tangents is similar; forany a € Aand t # 0 € T,(A)

we have
(To(Z:) = {0} S To(A) = [ To(Z:.a) = {0}

so there exists j so that t & Z; ,. Then we pick a; = a and all other a;, b; to be so that Z; .., Zis,, Zi —a,—b,
are out of the way. I think this proof is really cute.
As promised, I have to tell you why there exist Z; so that

((Zi={0}CA and [To(Z)=/{0} C To(A).

We first show that for any point P # 0 € A, there is an open affine containing both 0 and P. Indeed, if
U is an open affine containing 0, take a point u € U N (U + P) and observe that v € U + P means that
0 € U+ P —u,and u € U means that P € U + P —u. Hence U’ = U + P — u is an open affine neighborhood.
Thus we can identify U’ with a closed subset of A", take a hyperplane H passing through 0 but not P, and
take Z; to be the closure of H N U’ in A. If there is P’ on Z; other than 0, choose Z; to pass through 0 but
not P’. Continue in this fashion; by the descending chain condition we win after finitely many steps. Then
NZ; = {0}. Now choose any open affine U around 0, and suppose t € To(Z;) for all i. Then embed U — A™
and choose a hyperplane through 0 not containing ¢. Add the closure Z of H N U in A to the set {Z;} and
continue in this way until NT(Z;) = {0}. [I don’t understand what Milne does, I hope it is a typo] O

Definition 12. A divisor D onV is very ample if the complete linear system it defines gives a closed immersion
of V into P". A divisor D on V is ample if n.D is very ample for some n > 0. A

[In the case that V' is a smooth projective variety over algebraically closed k, a divisor is (very) ample
if and only if the isomorphism class of invertible sheaves associated to its complete linear system is (very)
ample. I think this is essentially the content of the Hartshorne proposition above.]

Milne asserts that if D is ample on an abelian variety A, then 3D is always very ample. He also asserts
that it’s difficult to prove (and doesn’t prove it), but we saw an example of this a bit earlier.

Proposition 13. We have:

(a) If D and D' are ample, then so is D + D'.

(b) If D is an ample divisor on 'V, then D\ is ample for any closed subvariety W of V', assuming D|w is defined.
(c) Adivisor D on'V is ample if and only if its extension of scalars to k is ample

(d) Awvariety V has an ample divisor if Vi, has an ample divisor.

Proof. For part (a), take n so that n.D and nD’ are very ample; observe that nD’ is linearly equivalent to an
effective divisor Dy, and L(nD + Ds) DO L(nD). Hence nD + D is very ample, and since nD + D, defines
the same complete linear system as n.D + nD’, it follows that n.D + nD' is very ample, we win.

For part (b), we observe that “the restriction of the map defined by D to W is the map defined by the
restriction of D to W”.

For part (c), the map obtained by the extension of scalars from the map V' — P" defined by D is that
defined by Dj.

For part (d), let D be an ample divisor on V;. Since D is defined over some finite extension &’ of k, the set
{oD: o € Aut(k/k)} is finite. The sum of the oD, which is again a divisor we will denote by D, is ample
by part (a). Note that D is defined over a purely inseparable extension of k. Possibly having to multiply by
some power of char k, we get that Dy is defined over k. Part (c) finishes the proof. O



