

Abelian Varieties (over \mathbb{C})

Sept 15, 2019

I'm essentially just following [Milne's notes](#), with some more details added here and there.
In case you have forgotten [\[since, low-key, I had forgotten...\]](#), let's just state

Definition 1. An *abelian variety* is a complete, connected group variety. \triangle

Let me finish the last bit of Chapter 1. It's a nice structure theorem about morphisms to abelian varieties. (Last time, we proved the ridiculously nice structure theorem about the varieties themselves, namely, that the underlying group is abelian...)

Corollary 2. Let V and W be complete varieties over k with k -rational points v_0 and w_0 . Let π_V and π_W be the projection maps $V \times W \rightarrow V$ and $V \times W \rightarrow W$, respectively. Let A be an abelian variety. Then, a morphism $h: V \times W \rightarrow A$ such that $h(v_0, w_0) = 0$ can be written uniquely as $h = f \circ \pi_V + g \circ \pi_W$, with $f: V \rightarrow A$ and $g: W \rightarrow A$ morphisms with $f(v_0) = g(w_0) = 0$.

Proof. Certainly, we would need $f = h|_{V \times \{w_0\}}$ and $g = h|_{\{v_0\} \times W}$. The difference map

$$\Delta \stackrel{\text{def}}{=} h - (f \circ \pi_V + g \circ \pi_W)$$

sends $V \times \{w_0\}$ and $W \times \{v_0\}$ to 0, so rigidity implies $\Delta = 0$. \square

Let's talk about abelian varieties over \mathbb{C} . As Guanyu asserted last week, abelian varieties are projective (although this won't be proven until a long time from now.)

Since we haven't proven this yet, let us fix an abelian variety A over \mathbb{C} and assume it is projective. [\[Keep in mind the case where \$A\$ is an elliptic curve over \$\mathbb{C}\$.\]](#) Note that A is nonsingular, closed inside $\mathbb{P}^n(\mathbb{C})$, and connected for the Zariski topology (by definition). That is to say, A is a compact, connected complex manifold (i.e. with holomorphic transition maps). Furthermore, it has a (commutative) group structure, in particular $G \times G \rightarrow G$ given by $(x, y) \mapsto x - y$ is a regular map between complex algebraic varieties and hence [\[!\]](#) a holomorphic map.

Thus, $A(\mathbb{C})$ is a compact, connected, commutative, complex Lie group, which implies $A(\mathbb{C}) \cong \mathbb{C}^g / L$, where $g \stackrel{\text{def}}{=} \dim(A)$ and L is a full lattice in \mathbb{C}^g . Milne gives a more detailed proof; essentially everything follows from the existence of a homomorphism

$$\exp: T_0(A(\mathbb{C})) \rightarrow A(\mathbb{C})$$

so that the differential of \exp at 0 is the identity map on $T_0(A(\mathbb{C}))$. If you have this fact, the inverse function theorem says that \exp is a local isomorphism at 0, hence its image is clopen in the connected space $A(\mathbb{C})$. So it is surjective. But furthermore, \exp is injective around 0, so its kernel is a lattice of $T_0(A(\mathbb{C})) \cong \mathbb{C}^g$, and since $A(\mathbb{C})$ is compact, its kernel must be a full lattice.

Remark 3. While we've shown that $A(\mathbb{C}) \cong \mathbb{C}^g / L$ for some full L , and for $g = 1$ every quotient is an elliptic curve, the converse does not hold in general. \triangle

Remark 4. In fact, since abelian varieties were merely defined as complete, connected group varieties, we've shown that a compact, connected, complex Lie group is necessarily abelian. [\[... right?\]](#) \triangle

Milne goes over some basic algebraic topology [\[which I think everybody in the room knows better than I do\]](#). As manifolds, tori obey everything we might want it to, namely:

- It is a finite CW complex, so all cohomologies agree,

- It obeys the Künneth formula, in particular since $H^r((S^1)^x, \mathbb{Z})$ and $H^s((S^1)^y, \mathbb{Z})$ are free \mathbb{Z} -modules for all r, s , there is a canonical isomorphism

$$H^m((S^1)^x \times (S^1)^y, \mathbb{Z}) \cong \bigoplus_{r+s=m} H^r(X, \mathbb{Z}) \otimes H^s(Y, \mathbb{Z})$$

given by cup producting,

- It satisfies $H^1((S^1)^n, \mathbb{Z}) \cong \text{Hom}(\pi_1((S^1)^n, x), \mathbb{Z})$, by the universal coefficient theorem and the fact that $H_1 = \pi_1^{\text{ab}}$,
- There are canonical isomorphisms

$$H^r((S^1)^n, \mathbb{Z}) \cong H_{n-r}((S^1)^n, \mathbb{Z}) \cong H^{n-r}((S^1)^n, \mathbb{Z})^\vee,$$

the first coming from Poincaré and the second from universal coefficient theorem.

The Künneth formula gives

$$\dim H^r((S^1)^n, \mathbb{Z}) = \binom{n}{r},$$

and even more explicitly we have

Theorem 5. *Let X be the torus V/L . There are canonical isomorphisms*

$$\bigwedge^r H^1(X, \mathbb{Z}) \rightarrow H^r(X, \mathbb{Z}) \rightarrow \text{Hom}\left(\bigwedge^r L, \mathbb{Z}\right).$$

Proof. The first isomorphism is given by taking the cup product; because X is a manifold it is an isomorphism. (Alternatively, because all cohomology theories agree, we can take $H^* = H_{dR}^*$.) In light of $H^1(X, \mathbb{Z}) \cong \text{Hom}(\pi_1(X, x), \mathbb{Z})$ [cf. [algtop final!](#)], and the fact that V is a universal cover of $X = V/L$, we get $\pi_1(X, x) = L$ and

$$H^1(X, \mathbb{Z}) \cong \text{Hom}(L, \mathbb{Z}).$$

Furthermore, we have a pairing

$$\bigwedge^r L^\vee \times \bigwedge^r L \rightarrow \mathbb{Z} \quad (f_1 \wedge \cdots \wedge f_r, e_1 \wedge \cdots \wedge e_r) \mapsto \det(f_i(e_j))$$

realizing each group as the \mathbb{Z} -linear dual of the other. Since $L^\vee = H^1(X, \mathbb{Z})$, we get

$$\bigwedge^r H^1(X, \mathbb{Z}) \cong \text{Hom}\left(\bigwedge^r L, \mathbb{Z}\right).$$

□

Let me recall some definitions/theory, which I promise will be useful for us.

Definition 6. A *Hermitian form* on a complex vector space V is a map $H: V \times V \rightarrow \mathbb{C}$ that is linear in the first coordinate and conjugate-symmetric, so:

1. $H(av_1 + bv_2, w) = aH(v_1, w) + bH(v_2, w)$, and
2. $H(v, w) = \overline{H(w, v)}$.

A *skew-symmetric form* on a complex vector space V is a map $E: V \times V \rightarrow \mathbb{C}$ that is, bilinear and well, skew-symmetric, so:

1. $E(av_1 + bv_2, w) = aE(v_1, w) + bE(v_2, w)$
2. $E(v, w) = -E(w, v)$

△

Lemma 7. Let V be a complex vector space. There is a one-to-one correspondence

$$\begin{aligned} \{\text{Hermitian forms on } V\} &\leftrightarrow \{\mathbb{R}\text{-valued, } \mathbb{R}\text{-bilinear, skew-symmetric forms on } V \text{ with } E(iv, iw) = E(v, w)\} \\ H(v, w) &\mapsto \text{Im}(H(v, w)) \\ E(iv, w) + iE(v, w) &\leftrightarrow E(v, w) \end{aligned}$$

Proof. Check that the forms satisfy everything they should, and check that these maps are inverses. \square

Definition 8. Let $X = V/L$ be a complex torus of dimension g . Let E be a skew-symmetric form $L \times L \rightarrow \mathbb{Z}$. Since $L \otimes \mathbb{R} = V$, we can extend E to a skew-symmetric \mathbb{R} -bilinear form $E_{\mathbb{R}}: V \times V \rightarrow \mathbb{R}$. We say E is a *Riemannian form* if:

1. $E_{\mathbb{R}}(iv, iw) = E_{\mathbb{R}}(v, w)$
2. The Hermitian form is positive-definite. \triangle

Definition 9. We say X is *polarizable* if it admits a Riemannian form. \triangle

Remark 10. Most other sources I've found define a Riemann form to be a Hermitian form $H: V \times V \rightarrow \mathbb{C}$ so that $\text{Im}(H(L \times L)) \subseteq \mathbb{Z}$. Then a Riemann form in the sense of Milne is a positive-definite Riemann form in the sense of other sources, and a polarization is a choice of positive-definite Riemann form. \triangle

Remark 11. With the above definition it's really easy to check that when $X = V/L$ has complex dimension 1, then X is polarizable; let $L = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$, and check that

$$H(z, w) = \frac{z\bar{w}}{\text{Im}(\omega_1\bar{\omega_2})}$$

works. \triangle

Remark 12. "Most" complex tori are not polarizable. \triangle

Theorem 13. A complex torus X is of the form $A(\mathbb{C})$ if and only if it is polarizable.

Proof. The data of a positive-definite Riemannian form is the same as the data of an ample line bundle (this is the *Appel-Humbert theorem*⁺⁺), which is more or less the same as giving an embedding of X into projective space. I'm stealing punchlines from page 3 of [Brian Conrad's writeup](#). The proof sketch in Milne essentially says the same thing; my understanding is that this is quite a nontrivial theorem. \square

Definition 14. A morphism $V/L \rightarrow V'/L'$ between complex tori is a \mathbb{C} linear map $V \rightarrow V'$ mapping L into L' . (These are in fact all the holomorphic homomorphisms $X \rightarrow X'$.) \triangle

Theorem 15. The functor $A \mapsto A(\mathbb{C})$ is an equivalence from the category of abelian varieties over \mathbb{C} to the category of polarizable tori.

Definition 16. An *isogeny* of polarizable tori is a surjective homomorphism with finite kernel. The *degree* of the isogeny is the order of the kernel. Polarizable tori X and Y are said to be *isogenous* if there exists an isogeny $X \rightarrow Y$. \triangle