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I’m essentially just following Milne’s notes, with some more details added here and there.
In case you have forgotten [since, low-key, I had forgotten...], let’s just state

Definition 1. An abelian variety is a complete, connected group variety. 4

Let me finish the last bit of Chapter 1. It’s a nice structure theorem about morphisms to abelian varieties.
(Last time, we proved the ridiculously nice structure theorem about the varieties themselves, namely, that
the underlying group is abelian...)

Corollary 2. Let V and W be complete varieties over k with k-rational points v0 and w0. Let πV and πW be the
projection maps V × W → V and V × W → W , respectively. Let A be an abelian variety. Then, a morphism
h : V ×W → A such that h(v0, w0) = 0 can be written uniquely as h = f ◦ πV + g ◦ πW , with f : V → A and
g : W → A morphisms with f(v0) = g(w0) = 0.

Proof. Certainly, we would need f = h|V×{w0} and g = h|{v0}×W . The difference map

∆
def
= h− (f ◦ πV + g ◦ πW )

sends V × {w0} and W × {v0} to 0, so rigidity implies ∆ = 0.

Let’s talk about abelian varieties over C. As Guanyu asserted last week, abelian varieties are projective
(although this won’t be proven until a long time from now.)

Since we haven’t proven this yet, let us fix an abelian variety A over C and assume it is projective. [Keep
in mind the case where A is an elliptic curve over C.] Note that A is nonsingular, closed inside Pn(C),
and connected for the Zariski topology (by definition). That is to say, A is a compact, connected complex
manifold (i.e. with holomorphic transition maps). Furthermore, it has a (commutative) group structure, in
particular G × G → G given by (x, y) 7→ x − y is a regular map between complex algebraic varieties and
hence[!] a holomorphic map.

Thus, A(C) is a compact, connected, commutative, complex Lie group, which implies A(C) ∼= Cg/L,
where g def

= dim(A) and L is a full lattice in Cg . Milne gives a more detailed proof; essentially everything
follows from the existence of a homomorphism

exp: T0(A(C))→ A(C)

so that the differential of exp at 0 is the identity map on T0(A(C)). If you have this fact, the inverse function
theorem says that exp is a local isomorphism at 0, hence its image is clopen in the connected space A(C).
So it is surjective. But furthermore, exp is injective around 0, so its kernel is a lattice of T0(A(C)) ∼= Cg , and
since A(C) is compact, its kernel must be a full lattice.

Remark 3. While we’ve shown that A(C) ∼= Cg/L for some full L, and for g = 1 every quotient is an elliptic
curve, the converse does not hold in general. 4

Remark 4. In fact, since abelian varieties were merely defined as complete, connected group varieties, we’ve
shown that a compact, connected, complex Lie group is necessarily abelian. [... right?] 4

Milne goes over some basic algebraic topology [which I think everybody in the room knows better than
I do]. As manifolds, tori obey everything we might want it to, namely:

• It is a finite CW complex, so all cohomologies agree,
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• It obeys the Künneth formula, in particular since Hr((S1)x,Z) and Hs((S1)y,Z) are free Z-modules
for all r, s, there is a canonical isomorphism

Hm((S1)x × (S1)y,Z) ∼=
⊕

r+s=m

Hr(X,Z)⊗Hs(Y,Z)

given by cup producting,

• It satisfiesH1((S1)n,Z) ∼= Hom(π1((S1)n, x),Z), by the universal coefficient theorem and the fact that
H1 = πab

1 ,

• There are canonical isomorphisms

Hr((S1)n,Z) ∼= Hn−r((S1)n,Z) ∼= Hn−r((S1)n,Z)∨,

the first coming from Poincaré and the second from universal coefficient theorem.

The Künneth formula gives

dimHr((S1)n,Z) =

(
n

r

)
,

and even more explicitly we have

Theorem 5. Let X be the torus V/L. There are canonical isomorphisms

r∧
H1(X,Z)→ Hr(X,Z)→ Hom

( r∧
L,Z

)
.

Proof. The first isomorphism is given by taking the cup product; because X is a manifold it is an iso-
morphism. (Alternatively, because all cohomology theories agree, we can take H∗ = H∗dR.) In light of
H1(X,Z) ∼= Hom(π1(X,x),Z) [cf. algtop final!], and the fact that V is a universal cover of X = V/L, we get
π1(X,x) = L and

H1(X,Z) ∼= Hom(L,Z).

Furthermore, we have a pairing

r∧
L∨ ×

r∧
L→ Z (f1 ∧ · · · ∧ fr, e1 ∧ · · · ∧ er) 7→ det(fi(ej))

realizing each group as the Z-linear dual of the other. Since L∨ = H1(X,Z), we get

r∧
H1(X,Z) ∼= Hom

( r∧
L,Z

)
.

Let me recall some definitions/theory, which I promise will be useful for us.

Definition 6. A Hermitian form on a complex vector space V is a map H : V × V → C that is linear in the
first coordinate and conjugate-symmetric, so:

1. H(av1 + bv2, w) = aH(v1, w) + bH(v2, w), and

2. H(v, w) = H(w, v).

A skew-symmetric form on a complex vector space V is a map E : V × V → C that is, bilinear and well,
skew-symmetric, so:

1. E(av1 + bv2, w) = aE(v1, w) + bE(v2, w)

2. H(v, w) = −H(w, v)

4
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Lemma 7. Let V be a complex vector space. There is a one-to-one correspondence

{Hermitian forms on V } ↔ {R-valued, R-bilinear, skew-symmetric forms on V with E(iv, iw) = E(v, w)}
H(v, w) 7→ Im(H(v, w))

E(iv, w) + iE(v, w)←[ E(v, w)

Proof. Check that the forms satisfy everything they should, and check that these maps are inverses.

Definition 8. LetX = V/L be a complex torus of dimension g. LetE be a skew-symmetric form L×L→ Z.
Since L ⊗ R = V , we can extend E to a skew-symmetric R-bilinear form ER : V × V → R. We say E is a
Riemannian form if:

1. ER(iv, iw) = ER(v, w)

2. The Hermitian form is positive-definite. 4

Definition 9. We say X is polarizable if it admits a Riemannian form. 4

Remark 10. Most other sources I’ve found define a Riemann form to be a Hermitian form H : V × V → C
so that Im(H(L× L)) ⊆ Z. Then a Riemann form in the sense of Milne is a positive-definite Riemann form
in the sense of other sources, and a polarization is a choice of positive-definite Riemann form. 4

Remark 11. With the above definition it’s really easy to check that when X = V/L has complex dimension
1, then X is polarizable; let L = Zω1 + Zω2, and check that

H(z, w) =
zw

Im(ω1ω2)

works. 4

Remark 12. “Most” complex tori are not polarizable. 4

Theorem 13. A complex torus X is of the form A(C) if and only if it is polarizable.

Proof. The data of a positive-definite Riemannian form is the same as the data of an ample line bundle (this
is the Appel-Humbert theorem++), which is more or less the same as giving an embedding ofX into projective
space. I’m stealing punchlines from page 3 of Brian Conrad’s writeup. The proof sketch in Milne essentially
says the same thing; my understanding is that this is quite a nontrivial theorem.

Definition 14. A morphism V/L→ V ′/L′ between complex tori is a C linear map V → V ′ mapping L into
L′. (These are in fact all the holomorphic homomorphisms X → X ′.) 4

Theorem 15. The functor A 7→ A(C) is an equivalence from the category of abelian varieties over C to the category
of polarizable tori.

Definition 16. An isogeny of polarizable tori is a surjective homomorphism with finite kernel. The degree
of the isogeny is the order of he kernel. Polarizable tori X and Y are said to be isogenous if there exists an
isogeny X → Y . 4
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