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Flag variety

Variety X ⇝ coordinate ring C[X ]
⇝ cohomology H∗(X ) (or H∗

T (X ))

Theorem (Borel, 1953)
Write Fℓn := (type A) flag variety in Cn. Then

H∗(Fℓn) = C[x1, . . . , xn]
⟨p1(x), . . . , pn(x)⟩ , pi(x) := x i

1 + · · · + x i
n

H∗
TSLn

(Fℓn) = C[x1, . . . , xn; y1, . . . , yn]〈
pi(x) − pi(y), i ∈ [n],
x1 + · · · + xn

〉

where t = {x1 + · · · + xn = 0} ⊆ Cn.
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Who is H∗
T (Fℓn)?

Claim
t ×t/Sn t is your friend.

t ×t/Sn t =
{

(x1, . . . , xn), (y1, . . . , yn) : {{x}} = {{y}}
}

=
⋃

w∈Sn

{xi = yw(i) for all i}︸ ︷︷ ︸
:=Vw

Vw = graph
(

t → t
ti 7→ tw(i)

)
∼= t

⇝ t ×t/Sn t is a subspace arrangement.

Conclusion

C[t ×t/Sn t] = {(fw )w∈Sn ∈ C[t]⊕n! : fw glue well} (cf. [GKM])
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Who is H∗(Fℓn)?

N = {nilpotent n × n matrices}

C[N ] = C[Matn,n]
⟨tr(A), tr(A2), . . . ⟩

T ↷ N by conjugation ⇝ schemey fixed points N T = N ∩ t

Conclusion

C[N T ] = C[N ∩ t] = C[x1, . . . , xn]
⟨p1(x), p2(x), . . . ⟩

= H∗(Fℓn).
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Hikita’s observation
Observation/Conjecture (Hikita, 2017)
For many varieties X̃ of representation theoretic interest,

H∗(X̃ ) = C[(X !)T ! ]

for some other interesting variety X ! and torus T !.

Example (Hikita, 2017)

X̃ = Fℓn ⇝ X ! = N [Borel, ’53]

X̃ = Springer fiber⇝ X ! = nilpotent orbit [de Concini–Procesi, ’81]

X̃ = Hilbn(C2)⇝ X ! = Symn(C2)
X̃ = G/P ⇝ X ! = Slodowy slice

X̃ = hypertoric variety⇝ X ! = Gale dual
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Physics magic...
Observation/Conjecture (Hikita, 2017)
For many varieties X̃ of representation theoretic interest,

H∗(X̃ ) = C[(X !)T ! ]

for some other interesting variety X ! and torus T !.

Prediction (Dancer–Hanany–Kirwan, 2021)
Theory of symplectic duality predicts...

The variety N ///T = {x ∈ N : diag(x) = 0}�T has a symplectic
resolution Ñ ///T ,

The Hikita conjecture holds for X̃ = Ñ ///T and X ! = T ∗(SLn/U),

where U =
{[ 1 ∗. . .

1

]}
.
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Hikita surjectivity

Theorem (S.)

N ///T has a symplectic resolution Ñ ///T, and there is a surjection

C
[
T ∗(SLn/U)T×B/U

]
φ∗

−↠ H∗
(

Ñ ///T
)

.

(The T and B/U actions on T ∗(SLn/U) are induced by left, right mult. on SLn/U.)

Remark
Hikita conj. is equivalent to dimC[·] = dim H∗(·). idk either dimension count

Hodd(Ñ ///T ) = 0, so dim H∗(·) = χ(·). C× acts on Ñ ///T but idk (Ñ ///T )C
×

N ///T is a Nakajima quiver variety; Kirwan map descends to φ∗.
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Ñ ///T
)

.

(The T and B/U actions on T ∗(SLn/U) are induced by left, right mult. on SLn/U.)

Remark
Hikita conj. is equivalent to dimC[·] = dim H∗(·). idk either dimension count
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Geometry of T ∗(SLn/U)
Theorem (S.)
For A, B ⊆ [n], set fA,B :=

∏
a∈A
b∈B

(xa − yb) ∈ C[t ×t/Sn t]. Then

C
[
T ∗(SLn/U)T×B/U

]
∼=

C[t ×t/Sn t]
⟨fA,B : |A| + |B| = n⟩

.

Remark
Proof uses Gelfand–Graev action of Sn on T ∗(SLn/U):

B/U acts freely on T ∗(SLn/U) with quotient g̃.
As a representation of B/U,

C[T ∗(SLn/U)] ∼=
⊕

α∈ΛB/U

Γ(g̃, Og̃(α)).

Gelfand–Graev supplies Γ(g̃, Og̃(α)) ∼−→ Γ(g̃, Og̃(wα)).
T ∗(SLn/U) is not Sn-invariant!
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Thank you!

Theorem (S.)
Surjectivity part of Hikita conjecture for X = N ///T:

C
[
T ∗(SLn/U)T×B/U

]
φ∗

−↠ H∗
(

Ñ ///T
)

.

Theorem (S.)
Coordinate ring has an explicit description:

C
[
T ∗(SLn/U)T×B/U

]
∼=

C[t ×t/Sn t]
⟨fA,B : |A| + |B| = n⟩

, fA,B :=
∏
a∈A
b∈B

(xa − yb)

Hope and dream
Show dimC[·] = dim H∗(·), or compute anything...
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