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Schubert polynomials

Definition
For w ∈ Sn, the Schubert polynomial is:

Sw (x) =
{

xn−1
1 xn−2

2 . . . xn−1 if w = w0

∂i(Swsi (x)) if ℓ(w) < ℓ(wsi),

where ∂i(f ) := f −si f
xi −xi+1

.

The Sw lift Schubert cycles [Xw ] ∈ H∗(Fℓ(n)).
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Pipe dreams

Theorem
Schubert polynomials are counted by reduced pipe dreams:

Sw =
∑

P∈PD(w)
P reduced

xwt(P).

Reduced pipe dreams of w = 1423:
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Saturation

Question
Assume that xα−β and xα+β appear in Sw . Does xα appear?

(Monomials in S21543)

Conjecture (Monical–Tokcan–Yong, ’17)
supp(Sw ) := {α : xα appears in Sw} is saturated.

(Saturated: S = conv(S) ∩ Zn.)
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M-convexity?

Conjecture (Monical–Tokcan–Yong, ’17)
supp(Sw ) := {α : xα appears in Sw} is saturated, and

Newton(Sw ) := conv(supp(Sw )) is a generalized permutahedron.

(Plus, precise description of which generalized permutahedron it is.)

Definition
A set S ⊆ Zn is M-convex if:

S is saturated
conv(S) is a generalized permutahedron

S, T are saturated ≠⇒ S + T is saturated.
S, T are M-convex =⇒ S + T is M-convex.
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M-convexity!

Theorem (Fink–Mészáros–St. Dizier, ’17)
supp(Sw ) := {α : xα appears in Sw} is M-convex.

Start with Rothe diagram D(w) of w .

BD(w) := {diagrams obtained by bubbling squares of D(w) upwards}.
SD(w) := {wt(C) : C ∈ BD(w)}.
Rep theory gives: supp(Sw ) = SD(w).
Column-by-column decomposition: SD(w) = SD(w)1 + · · ·+ SD(w)n

“Easy”: If C is a column, SC is M-convex.

D = D(1432)
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Schubitope

Definition
The Schubitope of a diagram D is

SD := conv{wt(C) : C ∈ BD},

where BD = {diagrams obtained by bubbling boxes of D upwards}.

x2011 x2020 x2110 x3010 x2101 x2110 x2200 x3100
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Schubitope fun facts

x2011 x2020 x2110 x3010 x2101 x2110 x2200 x3100

Unique(!!) decomposition SD = SD1 + · · ·+ SDn by columns

When C is a column, SC is a Schubert matroid polytope
⇝ SD is a generalized permutahedron

{Schubitopes} ⊂ {generalized permutahedra} is “set of Z-points of
full dim subcone”. [Hafner–Mészáros–S.–St. Dizier, ’23]
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Applications of Schubitopes

M-convexity of supp(Sw )

Sufficient vanishing criteria for cw
u,v [St. Dizier–Yong, ’20]

Rep theory gives: [xα]Sw ≤ #{C ∈ BD : wt(C) = α}
⇝ [xα]Sw = 1 whenever α is a vertex of SD(w).

Lower bounds: Sw (1, . . . , 1) ≥ |SD(w) ∩ Zn|.
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Pipe dream maximizers
Motivation (Stanley, ’17)
Write u(n) := maxw∈Sn Sw (1, . . . , 1). Then

2n2/4 ≤ u(n) ≤ 2n2/2 (up to “small” factors).

Open: Does limn→∞
log(u(n))

n2 exist? What is its value?

Conjecture (Merzon–Smirnov, ’14)
Sw (1, . . . , 1) is maxed at a layered permutation.

[Morales–Pak–Panova, ’18]: Among layered w ∈ Sn, max Sw (1) ≈ 20.293262762...·n2

[Morales–Panova–Petrov–Yeliussizov, ’24]: G
(β=1)
w (1) is asymptotically maxed at layered.
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Schubitope maximizers
Best lower bound for Sw (1, . . . , 1):

Theorem (Guo–Lin, ’24)
Let pu(w) := number of u-patterns in w. Then |supp(Sw )| is at least

1+p132(w)+p1432(w)+p13524(w)+3p14253(w)+p14352(w)+4p15243(w)+...

Key idea: produce many diagrams C ∈ BD(w).

p132 ⇝ (bubble this!)

(also in [Mészáros–St. Dizier–Tanjaya ’21], [Weigandt ’17])

Question (Guo–Lin, ’24)
What is the asymptotic behavior of β(n) := maxw∈Sn |supp(Sw )|?
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Asymptotically maximal Schubitopes

Theorem (Chou–S., ’25+)
β(n) = maxw∈Sn |supp(Sw )| satisfies

lim
n→∞

log(β(n))
n log(n) = 1.

Also, |supp(Sw )| is asymptotically maxed at a layered permutation.

(Proof idea: produce a layered w ∈ Sn with many diagrams C ∈ BD(w).)

In fact, n!
4n ≤ β(n) ≤ n! (up to “small” factors).

Open: Does limn→∞
log(β(n))−n log(n)

n exist? If so, what is its value?
(Answer is yes for Gw .)
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Part II: Newton polytopes of Grothendieck polynomials
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Grothendieck polynomials
Definition
For w ∈ Sn, the Grothendieck polynomial is:

Gw (x) =
{

xn−1
1 xn−2

2 . . . xn−1 if w = w0

∂ i(Gwsi (x)) if ℓ(w) < ℓ(wsi),

where ∂ i(f ) := ∂i((1− xi+1)f ).

Theorem
Grothendieck polynomials are counted by pipe dreams:

Gw =
∑

P∈PD(w)
(−1)|P|−ℓ(w)xwt(P).

x2
2

2 3 41

1

4

2

3

x1x2

2 3 41

1

4

2

3

x2
1

2 3 41

1

4

2

3

x1x
2
2

2 3 41

1

4

2

3

x2
1x2

2 3 41

1

4

2

3

Linus Setiabrata (MIT) Newton(Sw ) and Newton(Gw ) November 8, 2025 14 / 30



Grothendieck polynomials
Definition
For w ∈ Sn, the Grothendieck polynomial is:

Gw (x) =
{

xn−1
1 xn−2

2 . . . xn−1 if w = w0

∂ i(Gwsi (x)) if ℓ(w) < ℓ(wsi),

where ∂ i(f ) := ∂i((1− xi+1)f ).

Theorem
Grothendieck polynomials are counted by pipe dreams:

Gw =
∑

P∈PD(w)
(−1)|P|−ℓ(w)xwt(P).

x2
2

2 3 41

1

4

2

3

x1x2

2 3 41

1

4

2

3

x2
1

2 3 41

1

4

2

3

x1x
2
2

2 3 41

1

4

2

3

x2
1x2

2 3 41

1

4

2

3

Linus Setiabrata (MIT) Newton(Sw ) and Newton(Gw ) November 8, 2025 14 / 30



Support of Grothendieck polynomials
Open: Is supp(Gw ) M-convex?

or, at least, is it saturated?
or, is conv(supp(Gw )) a generalized permutahedron?

*Technically you should homogenize Gw ...
*Known for some pattern avoidance classes: Gw is symmetric, Sw is zero-one...

Conjecture (Mészáros–S.–St. Dizier, ’22)
For any α ∈ supp(Gw ) with |α| < deg(Gw ), there exists i so that
α + ei ∈ supp(Gw ).
If α, γ ∈ supp(Gw ), then {β : α ≤ β ≤ γ} ⊆ supp(Gw ).

Equivalently:
supp(Gw ) =

⋃
α∈supp(Sw )

γ∈supp(Gtop
w )

[α, γ].
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Master formula
Conjecture (Mészáros–S.–St. Dizier, ’22)

supp(Gw ) =
⋃

α∈supp(Sw )
γ∈supp(Gtop

w )

[α, γ]. (“master formula”)

Remark
“supp(Sw ) is easy, supp(Gtop

w ) is small, and everything else follows”.

410 320 230 140401 311 221 131 041

421 331 241

321420411 330 231 240 141

Figure: Hasse diagram for supp(G163245).
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Fireworks permutations

Definition
w ∈ Sn is fireworks if the initial elements of decreasing runs are increasing.

w = 4 1 7 5 3 2 9 8 6
w = 4 1 7 5 3 9 2 8 6

Proposition
For fireworks w, we have Gtop

w = cw · xwt(D(w)). D(w) := up-closure of D(w).

⇝ Gtop
417532986 = cw x655432210
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Master formula for fireworks Grothendieck polynomials

Theorem (Chou–S., ’25)
For fireworks w, the master formula holds:

supp(Gw ) =
⋃

α∈supp(Sw )
[α, wt(D(w))].

(Proof: explicit pipe dream construction)

Goal: Polytope for
⋃

α∈SD(w)

[α, wt(D(w))]?
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K -bubbling
Definition
Let D be a diagram. Define Bsp,D := diagrams that can be obtained by:

Any square can bubble normally
Any square can bubble normally and leave behind a copy of itself.

Let Ssp,D := {wt(C) : C ∈ Bsp,D}.

x021 x111 x121 x111 x201 x211 x120 x210 x220 x121 x211 x221

conv(Ssp,D) will play the role of the Schubitope.

Proposition
Have a column-wise decomposition Ssp,D = Ssp,D1 + · · ·+ Ssp,Dn .
In particular, after homogenizing, S̃sp,D is M-convex.
Ssp,D =

⋃
α∈SD

[α, wt(D)]
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M-convexity of fireworks Gw

Corollary (Chou–S., ’25)
For fireworks w,

There is a Minkowski sum decomposition

supp(Gw ) = Ssp,D(w)1 + · · ·+ Ssp,D(w)n

refining the column-wise decomposition of supp(Sw ).
supp(G̃w ) is M-convex.

In particular, each supp(G(c)
w ) is M-convex and |supp(G(c)

w )| is a
log-concave sequence.

(There are superexponentially many fireworks permutations.)
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Application: Layered permutations

Theorem (Pechenik–Speyer–Weigandt, ’21)
For every w ∈ Sn, there exists a unique inverse fireworks π(w) ∈ Sn so
that Gtop

w = cw ·Gtop
π(w) for some cw ∈ Z.

When w is fireworks, π(w) is layered (and hence also fireworks).
⇝ can apply master formula to supp(Gw ) and supp(Gπ(w))

Corollary (Chou–S., ’25)
If w is fireworks, the layered permutation π(w) satisfies

supp(Gπ(w)) ⊇ supp(Gw ).

As long as master formula holds for Gw and Gπ(w), we get this inclusion.
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Grassmannian permutations

Definition
w ∈ Sn is Grassmannian if it has one descent.

Equivalently, w is 321, 2143, and 3142-avoiding.
Equivalently, Sw is a Schur polynomial sλ.

{Grassmannian permutations} ←→ {Partitions}

Theorem (Lenart, ’00)
For Grassmannian w = wλ,

Gwλ
(x) =

∑
µ

(−1)|µ|−|λ|aλ,µsµ(x)

where aλ,µ = #{strictly increasing row-flagged tableaux of shape µ/λ}.
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SNP for Grassmannian w

Theorem (Lenart, ’00)
For Grassmannian w = wλ, the Schur expansion is

Gw (x) =
∑

µ

(−1)|µ|−|λ|aλ,µsµ(x)

where aλ,µ = #{strictly increasing row-flagged tableaux of shape µ/λ}.

Observation (Escobar–Yong, ’17)

Support of degree component supp(G(c)
w ) is equal to supp(sµ(x)).

i.e., among sµ’s appearing in a given G
(c)
w , one has inclusion maximal support.

⇝ supp(G(c)
w ) is a Schubitope for all c.

⇝ supp(G̃w ) is M-convex.
⇝ supp(Gw ) satisfies master formula.
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Vexillary permutations
Definition
w ∈ Sn is vexillary if it is 2143-avoiding.

Equivalently, Sw is a flagged Schur polynomial, or is a key polynomial.

Theorem (Hafner, ’22)
For vexillary w, master formula holds:

supp(Gw ) =
⋃

α∈supp(Sw )
γ∈supp(Gtop

w )

[α, γ].

(Proof: Epic BPD combinatorics)

Goal: Polytope for
⋃

α∈supp(Sw )
γ∈supp(Gtop

w )

[α, γ]?

(Bsp,D construction only produces |supp(Gtop
w )| = 1...)
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Bubbling diagrams

Definition
Write D = (D, A) where D is a diagram and A ⊆ D.

Squares in A are called distinguished,
Any square can bubble normally,

Distinguished squares can bubble and leave behind a normal square.

B(D) := {diagrams obtained from D using these moves}.
SD := {wt(C) : C ∈ B(D)}.
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Example: Bsp

Take A := {lowest square in each column} ⊆ D.

In this case: B(D) = Bsp,D.

Corollary
For fireworks w, supp(Gw ) is computed by B(D(w)).
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Bubbling and M-convexity

Proposition (Hafner–Mészáros–S.–St. Dizier, ’23)
Have a column-wise decomposition SD = SD1 + · · ·+ SDn .
After homogenizing, S̃D is M-convex.
conv(Stop

D ) is a Schubitope. Not true for other degree components S(c)
D !

D = ⇝ Dtop =
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M-convexity of vexillary Gw

We give a recipe for D(w) = (D(w), A):

Theorem (Hafner–Mészáros–S.–St. Dizier, ’23)
For vexillary w ∈ Sn, supp(Gw ) = SD(w).

In particular, supp(G̃w ) is M-convex and supp(Gtop
w ) is a Schubitope.

More generally, supp(Ltop
α ) is a Schubitope; cf. Snow diagrams [Pan–Yu, ’23], [Yu, ’23]

For other c, supp(G(c)
w ) is not always a Schubitope.

For nonvexillary w , supp(Gtop
w ) is not always a Schubitope.
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Back to Grassmannian permutations
Example: Grassmannian case.

Can show directly that supp(G(c)
w ) is a Schubitope, with supports:

S
(5)
D(w) S

(6)
D(w) S

(7)
D(w) S

(8)
D(w) S

(9)
D(w) S

(10)
D(w) S

(11)
D(w) S

(12)
D(w) S

(13)
D(w)
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Thank you!

Theorem (Chou–S., ’25+)
maxw∈Sn |supp(Sw )| ≈ n!, and is asymptotically maxed at layered.

Theorem (Chou–S., ’25)
For fireworks w ∈ Sn, we have supp(Gw ) =

⋃
α∈supp(Sw )[α, wt(D(w))].

In particular supp(Gw ) is M-convex and computed by B(D(w)).

Theorem (Hafner–Mészáros–S.–St. Dizier, ’23)
Vexillary w ∈ Sn: supp(Gw ) is M-convex and computed by B(D(w)).
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