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Schubert polynomials

Definition
For w € S,,, the Schubert polynomial is:
S0 (x) = X1n_1X2n_2 e Xn—1 ?f w = wp
0i(Gus (%)) if £(w) < l(ws;),

where 0;(f) := X—l'f—_)f::fl'

The &, lift Schubert cycles [Xy]| € H*(F{(n)).
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Pipe dreams

Theorem

Schubert polynomials are counted by reduced pipe dreams:
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Reduced pipe dreams of w = 1423:
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Saturation

Question

Assume that x*~% and x**+# appear in &,,. Does x* appear?

i (Monomials in S21543)
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Saturation

Question

Assume that x*~% and x**+# appear in &,,. Does x* appear?

1201

3001

(Monomials in S21543)

Conjecture (Monical-Tokcan—Yong, '17)
supp(Syw) := {a: x* appears in &, } is saturated.

(Saturated: S = conv(S)NZ".)
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M-convexity?

Conjecture (Monical-Tokcan—Yong, '17)
supp(Sy) := {a: x* appears in &} is saturated, and
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M-convexity?

Conjecture (Monical-Tokcan—Yong, '17)

supp(Sy) := {a: x* appears in &} is saturated, and
Newton(&,, ) := conv(supp(Sy)) is a generalized permutahedron.

(Plus, precise description of which generalized permutahedron it is.)
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M-convexity?

Conjecture (Monical-Tokcan—Yong, '17)

supp(Sy) := {a: x* appears in &} is saturated, and
Newton(&,, ) := conv(supp(Sy)) is a generalized permutahedron.

(Plus, precise description of which generalized permutahedron it is.)
Definition
A set S C Z" is M-convex if:

e S is saturated

e conv(S) is a generalized permutahedron

S, T are saturated =45 S+ T is saturated.
S, T are M-convex =—> S+ T is M-convex.
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M-convexity!

Theorem (Fink—Mészaros—St. Dizier, '17)

supp(Gy ) = {a: x* appears in &, } is M-convex.

e Start with Rothe diagram D(w) of w.
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M-convexity!

Theorem (Fink—Mészaros—St. Dizier, '17)
supp(Gy ) = {a: x* appears in &, } is M-convex. J

e Start with Rothe diagram D(w) of w.
® Bp(w) := {diagrams obtained by bubbling squares of D(w) upwards}.
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M-convexity!

Theorem (Fink—Mészaros-St. Dizier, '17)
supp(Gy ) = {a: x* appears in &, } is M-convex. J

e Start with Rothe diagram D(w) of w.
® Bp(w) := {diagrams obtained by bubbling squares of D(w) upwards}.
° SD(W) = {Wt(C)Z Ce BD(W)}'

x3x3 T1T2T3 123 T1T9T3 zixs zixs
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M-convexity!

Theorem (Fink—Mészaros-St. Dizier, '17)
supp(Gy ) = {a: x* appears in &, } is M-convex. J

Start with Rothe diagram D(w) of w.

Bp(w) := {diagrams obtained by bubbling squares of D(w) upwards}.
SD(W) = {Wt(C)Z Ce BD(W)}'

Rep theory gives: supp(&w) = Sp(w)-

x3x3 T1T2T3 123 T1T9T3 zixs zixs
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M-convexity!

Theorem (Fink—Mészaros-St. Dizier, '17)
supp(Gy ) = {a: x* appears in &, } is M-convex. J

Start with Rothe diagram D(w) of w.

Bp(w) := {diagrams obtained by bubbling squares of D(w) upwards}.
SD(W) ={wt(C): Ce BD(W)}'

Rep theory gives: supp(Sw) = Sp(w)-

Column-by-column decomposition: Sp(w) = Spw), + - + Sp(w).

D = D(1432)

‘r,,
[T

riz; T1T2%3 T113 T1T2%3 2213 2219
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M-convexity!

Theorem (Fink—Mészaros-St. Dizier, '17)
supp(Gy ) = {a: x* appears in &, } is M-convex. J

Start with Rothe diagram D(w) of w.

Bp(w) := {diagrams obtained by bubbling squares of D(w) upwards}.
SD(W) ={wt(C): Ce BD(W)}'

Rep theory gives: supp(Sw) = Sp(w)-

Column-by-column decomposition: Sp(w) = Spw), + - + Sp(w).
e "Easy”: If Cis a column, S¢ is M-convex. O

D = D(1432)

‘r,,

Il
2 T1X9X 2 1292 2 2
st 14223 xr1x 12223 T3 Ti{x9
243 149 1 1
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Schubitope

Definition
The Schubitope of a diagram D is

Sp = conv{wt(C): C € Bp},

where Bp = {diagrams obtained by bubbling boxes of D upwards}.

x2011 %2020 x2110 %3010 x2101 x2110 %2200 %3100
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Schubitope fun facts

x2011 %2020 x2110 %3010 x2101 x2110 %2200 %3100

@ Unique(!!) decomposition Sp = Sp, + - - - + Sp, by columns
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Schubitope fun facts

x201] x2020 x2] 10 x3010 x2]01 x2] 10 x2200 XSJOO
@ Unique(!!) decomposition Sp = Sp, + - - - + Sp, by columns
@ When C is a column, S¢ is a Schubert matroid polytope
~ Sp is a generalized permutahedron
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Schubitope fun facts

x2011 %2020 x2110 %3010 x2101 x2110 %2200 %3100

@ Unique(!!) decomposition Sp = Sp, + - - - + Sp, by columns

@ When C is a column, S¢ is a Schubert matroid polytope
~ Sp is a generalized permutahedron

@ {Schubitopes} C {generalized permutahedra} is “set of Z-points of

fu” d|m Subcone”. [Hafner-Mészaros—S.—St. Dizier, '23]
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Applications of Schubitopes

e M-convexity of supp(Sy)

o Sufficient vanishing criteria for ¢, [St. Dizier-Yong, '20]
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Applications of Schubitopes

e M-convexity of supp(Sy)
o Sufficient vanishing criteria for ¢, [St. Dizier-Yong, '20]

@ Rep theory gives: [x¥|&,, < #{C € Bp: wt(C) = a}
~ [x¥]&,, = 1 whenever « is a vertex of Sp(y).
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Applications of Schubitopes

e M-convexity of supp(Sy)

Sufficient vanishing criteria for ¢, [St. Dizier-Yong, '20]

Rep theory gives: [x*]S,, < #{C € Bp: wt(C) = a}
~ [x¥]&,, = 1 whenever « is a vertex of Sp(y).

o Lower bounds: &,/(1,...,1) > [Spw) NZ".
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Pipe dream maximizers

Motivation (Stanley, '17)
Write u(n) := maxyes, ©w(l,...,1). Then
on*/4 < u(n) < /2 (up to “small” factors).

Open: Does lim,_ %’@ exist? What is its value?
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Pipe dream maximizers

Motivation (Stanley, '17)
Write u(n) := maxyes, ©w(l,...,1). Then

2n2/4 < u(n) < 2n2/2

Open: Does lim,_ %’@ exist? What is its value?

(up to “small” factors).

Conjecture (Merzon-Smirnov, '14)

Sw(l,...,1) is maxed at a layered permutation.
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Pipe dream maximizers

Motivation (Stanley, '17)
Write u(n) := maxyes, ©w(l,...,1). Then

2n2/4 < u(n) < 2n2/2

log(u(n))

Open: Does lim;_;o0 =7~ exis

t? What is its value?

(up to “small” factors).

Conjecture (Merzon-Smirnov, '14)

Sw(l,...,1) is maxed at a layered permutation.

"[}%
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I

o

’

[aas

P

4

[Morales—Pak—Panova, '18]: Among layered w € S,, max &, (1) ~ 20-208262762....n2
[Morales—Panova—Petrov—Yeliussizov, '24]: &=
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Schubitope maximizers
Best lower bound for &,(1,...,1):

Theorem (Guo-Lin, '24)
Let p,(w) := number of u-patterns in w. Then |supp(S )| is at least

L+ p132(w)+p1az2(w) +p13s2a(w) +3p1a2ss(w) +prazsa (W) +4p1saaz(w) +...

Key idea: produce many diagrams C € Bp(y).
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Schubitope maximizers
Best lower bound for &,,(1,...,1):

Theorem (Guo-Lin, '24)
Let p,(w) := number of u-patterns in w. Then |supp(S )| is at least

L+ p132(w)+p1az2(w) +p13s2a(w) +3p1a2ss(w) +prazsa (W) +4p1saaz(w) +...

Key idea: produce many diagrams C € Bp(y).

p132  ~ ?—P (bubble this!)

(also in [Mészaros—St. Dizier—Tanjaya '21], [Weigandt '17])
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Schubitope maximizers
Best lower bound for &,(1,...,1):

Theorem (Guo-Lin, '24)

Let p,(w) := number of u-patterns in w. Then |supp(S )| is at least

L+ p132(w)+p1az2(w) +p13s2a(w) +3p1a2ss(w) +prazsa (W) +4p1saaz(w) +...

Key idea: produce many diagrams C € Bp(y).

p132  ~ ?—P (bubble this!)

(also in [Mészaros—St. Dizier—Tanjaya '21], [Weigandt '17])

Question (Guo-Lin, '24)
What is the asymptotic behavior of B(n) := maxycs, |[supp(Sw)|? J
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Asymptotically maximal Schubitopes

Theorem (Chou-S., '25+)
B(n) = maxyes, |[supp(Sy)| satisfies

o log(3(n))

=1
n—oo nlog(n)

Also,

supp(Sy)| is asymptotically maxed at a layered permutation.

(Proof idea: produce a layered w € S, with many diagrams C € Bp(y.)
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Asymptotically maximal Schubitopes

Theorem (Chou-S., '25+)
B(n) = maxyes, |[supp(Sy)| satisfies

o log(3(n))

=1
n—oo nlog(n)

Also,

supp(Sy,)| is asymptotically maxed at a layered permutation.

(Proof idea: produce a layered w € S, with many diagrams C € Bp(y.)

In fact, n

!
— < B(n) < n! up to “small” factors).
4n

Open: Does lim,_ o0 M exist? If so, what is its value?
(Answer is yes for &,,.)
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Part Il: Newton polytopes of Grothendieck polynomials
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Grothendieck polynomials

Definition

For w € S,,, the Grothendieck polynomial is:
xl”_lxz"_2 o Xpe1 fw=wg

Bu(x) = {a,-(csws,(x)) if (w) < £(wsy),
where 5,(f) = 8,((]. — X;+1)f).
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Grothendieck polynomials
Definition
For w € S,,, the Grothendieck polynomial is:

xl"_lxz"_2 o Xpe1  ifw=wy
0i(Bus (X)) if {(w) < (ws;),

where 5,(f) = 8,((1 — X;+1)f).

Theorem
Grothendieck polynomials are counted by pipe dreams:

®W: Z ( 1 |P|— Z Wt(P).

PePD(w)
v
12 3 4 12 3 4 12 3 4 12 3 4 12 3 4
11 T

T opT T T i
AT A Eaa AT A
2P P Bep) 2P P
3/ 3 3 3/ 3

23 129 22 173 zizy
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Support of Grothendieck polynomials
Open: Is supp(®,) M-convex?
or, at least, is it saturated?
or, is conv(supp(®,,)) a generalized permutahedron?

*Technically you should homogenize &,,...
*Known for some pattern avoidance classes: &, is symmetric, G, is zero-one...
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Support of Grothendieck polynomials

Open: Is supp(®,,) M-convex?
or, at least, is it saturated?
or, is conv(supp(®,,)) a generalized permutahedron?

*Technically you should homogenize &,,...
*Known for some pattern avoidance classes: &, is symmetric, G, is zero-one...

Conjecture (Mészaros—S.-St. Dizier, '22)

@ For any a € supp(®,) with |a| < deg(®,,), there exists i so that
a+e; € supp(Gy).

Linus Setiabrata (MIT) Newton(&, ) and Newton(&,,) November 8, 2025 15 /30



Support of Grothendieck polynomials

Open: Is supp(®,,) M-convex?
or, at least, is it saturated?
or, is conv(supp(®,,)) a generalized permutahedron?

*Technically you should homogenize &,,...
*Known for some pattern avoidance classes: &, is symmetric, G, is zero-one...

Conjecture (Mészaros—S.-St. Dizier, '22)
@ For any a € supp(®,) with |a| < deg(®,,), there exists i so that
a+e; € supp(Gy).
o Ifa,y € supp(By,), then {f: a < B <~} C supp(By).
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Support of Grothendieck polynomials

Open: Is supp(®,,) M-convex?
or, at least, is it saturated?
or, is conv(supp(®,,)) a generalized permutahedron?

*Technically you should homogenize &,,...
*Known for some pattern avoidance classes: &, is symmetric, G, is zero-one...
Conjecture (Mészaros—S.-St. Dizier, '22)
@ For any a € supp(®,) with |a| < deg(®,,), there exists i so that
a+e; € supp(Gy).
o Ifa,y € supp(By,), then {f: a < B <~} C supp(By).

Equivalently:
supp(6,,) = |J [l

aesupp(Sw)
vEsupp(6,,°°)
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Master formula
Conjecture (Mészaros—S.-St. Dizier, '22)

supp(B,,) = U [, 7] (“master formula")

aesupp(Sw)

yEsupp(B1®)

Remark

“supp(S,) is easy, supp(Bw’) is small, and everything else follows".

v
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Master formula
Conjecture (Mészaros—S.-St. Dizier, '22)

supp(B,,) = U [, 7] (“master formula")

aesupp(Sw)

yEsupp(B1®)

Remark

“supp(S,) is easy, supp(Bw’) is small, and everything else follows".

421 331 241
411 420 321 330 231 240 141
401 410 311 320 221 230 131 140 041

Figure: Hasse diagram for supp(®163245)-
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Fireworks permutations

w € S, is fireworks if the initial elements of decreasing runs are increasing.

Definition J

w=417532986
w=417539286
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Fireworks permutations

w € S, is fireworks if the initial elements of decreasing runs are increasing.

Definition J

532986
539286

I-l> |-|>
I\l I\l
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Fireworks permutations

Definition J

w € S, is fireworks if the initial elements of decreasing runs are increasing.

I
I¢> I¢>

532986
539286

I\l I\l

Proposition

For fireworks w, we have B3P = ¢, - x""PW)) Dy := up-closure of D(w). J

655432210

top o
~ G 417530086 = CwX
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Master formula for fireworks Grothendieck polynomials

Theorem (Chou-S., '25)

For fireworks w, the master formula holds:

supp(6,) = |J [, wt(D(w))].

aesupp(Sw)

(Proof: explicit pipe dream construction)
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Master formula for fireworks Grothendieck polynomials

Theorem (Chou-S., '25)

For fireworks w, the master formula holds:

supp(6,) = |J [, wt(D(w))].

aesupp(Sw)

(Proof: explicit pipe dream construction)

Goal: Polytope for U [, wt(D(w))]?
aGSD(W)
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K-bubbling

Definition

Let D be a diagram. Define By, p := diagrams that can be obtained by:
@ Any square can bubble normally

@ Any square can bubble normally and leave behind a copy of itself.
Let Ssp,D = {Wt(C) Ce Bsp,D}-

021 111 X121 111 201

x220 121
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K-bubbling

Definition

Let D be a diagram. Define By, p := diagrams that can be obtained by:
@ Any square can bubble normally

@ Any square can bubble normally and leave behind a copy of itself.
Let Ssp,D = {Wt(C) Ce Bsp,D}-

X021 X111

X121 X111 X201 X211 X120 X210 x220 X121

conv(Ssp, p) will play the role of the Schubitope.

X211 X221

Proposition

@ Have a column-wise decomposition S, p = Ssp.p; + -+ + Ssp.D,-
In particular, after homogenizing, S, p is M-convex.
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K-bubbling

Definition

Let D be a diagram. Define By, p := diagrams that can be obtained by:
@ Any square can bubble normally

@ Any square can bubble normally and leave behind a copy of itself.
Let Ssp,D = {Wt(C) Ce Bsp,D}-

X021 X111 X121 X111 X201 X211 X120 X210

x220 X121

conv(Ssp, p) will play the role of the Schubitope.

X211 X221

Proposition

@ Have a column-wise decomposition S, p = Ssp.p; + -+ + Ssp.D,-
In particular, after homogenizing, S, p is M-convex.
® SopD = UQGSD[a7Wt(D)]
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M-convexity of fireworks &,,

Corollary (Chou-S., '25)

For fireworks w,
@ There is a Minkowski sum decomposition
SupP(Gw) = Sep,p(w)s T+ + Ssp,D(w)s
refining the column-wise decomposition of supp(S,,).

o supp(®,,) is M-convex.

Linus Setiabrata (MIT) Newton(&, ) and Newton(&,,) November 8, 2025

20/30



M-convexity of fireworks &,,

Corollary (Chou-S., '25)

For fireworks w,

@ There is a Minkowski sum decomposition

SUPP(Gw) = Ssp,p(w)s T+ F Sep,0(w),
refining the column-wise decomposition of supp(S,,).
o supp(®,,) is M-convex.

()

@ In particular, each supp(®y,’) is M-convex and |supp((’5(.,.f))| is a
log-concave sequence.

(There are superexponentially many fireworks permutations.)
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Application: Layered permutations

Theorem (Pechenik—Speyer-Weigandt, '21)

For every w € S, there exists a unique inverse fireworks w(w) € S, so

that P = ¢, - P  for some ¢, € Z.
m(w)
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Application: Layered permutations

Theorem (Pechenik—Speyer-Weigandt, '21)

For every w € S, there exists a unique inverse fireworks w(w) € S, so

that P = ¢, - P  for some ¢, € Z.
m(w)

When w is fireworks, m(w) is layered (and hence also fireworks).

~~ can apply master formula to supp(®.) and supp(&(,))
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Application: Layered permutations

Theorem (Pechenik—Speyer-Weigandt, '21)

For every w € S, there exists a unique inverse fireworks w(w) € S, so
that BP = ¢, - 6;‘2‘;/) for some c,, € 7.

When w is fireworks, m(w) is layered (and hence also fireworks).

~~ can apply master formula to supp(®.) and supp(&(,))

Corollary (Chou-S., '25)

If w is fireworks, the layered permutation 7(w) satisfies

SUpP(Gr(w)) 2 supp(Sy).

As long as master formula holds for &, and &), we get this inclusion.
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Grassmannian permutations

Definition
w € S, is Grassmannian if it has one descent.

Equivalently, w is 321, 2143, and 3142-avoiding.
Equivalently, G,, is a Schur polynomial sy .
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Grassmannian permutations

Definition J

w € S, is Grassmannian if it has one descent.

Equivalently, w is 321, 2143, and 3142-avoiding.

Equivalently, &, is a Schur polynomial sy.

{Grassmannian permutations} «+— {Partitions}

Theorem (Lenart, '00)

For Grassmannian w = w;,

G, (x) = (=1 ay s (x)

I

where ay , = #{strictly increasing row-flagged tableaux of shape 11/A}.

Linus Setiabrata (MIT) Newton(&, ) and Newton(&,,) November 8, 2025 22/30



SNP for Grassmannian w

Theorem (Lenart, '00)
For Grassmannian w = wy, the Schur expansion is
Gu(x) = (- May s.(x)

m
where ay , = ##{strictly increasing row-flagged tableaux of shape 11/}

Observation (Escobar—Yong, '17)

Support of degree component supp((’j‘(,vc)) is equal to supp(s,(x)).

i.e., among s,'s appearing in a given Qi(vf), one has inclusion maximal support.
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SNP for Grassmannian w

Theorem (Lenart, '00)
For Grassmannian w = wy, the Schur expansion is
Gu(x) = (- May s.(x)

m
where ay , = #{strictly increasing row-flagged tableaux of shape 11/A}.

Observation (Escobar—Yong, '17)

Support of degree component supp((’j‘(,.,c)) is equal to supp(s,(x)).

i.e., among s,'s appearing in a given Qi(.,.f), one has inclusion maximal support.

~> supp(Qi\(,VC)) is a Schubitope for all c.

~ supp(®,,) is M-convex.

~ supp(®,,) satisfies master formula.
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Vexillary permutations
Definition
w € S, is vexillary if it is 2143-avoiding. J

Equivalently, G, is a flagged Schur polynomial, or is a key polynomial.
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Vexillary permutations

Definition
w € S, is vexillary if it is 2143-avoiding.

Equivalently, G, is a flagged Schur polynomial, or is a key polynomial.

Theorem (Hafner, '22)
For vexillary w, master formula holds:

supp(6y) = |J  [an]
aesupp(Sw)

yEsupp(&yP)

(Proof: Epic BPD combinatorics)

Linus Setiabrata (MIT) Newton(&, ) and Newton(&,,) November 8, 2025

24/30



Vexillary permutations

Definition
w € S, is vexillary if it is 2143-avoiding.

Equivalently, G, is a flagged Schur polynomial, or is a key polynomial.

Theorem (Hafner, '22)
For vexillary w, master formula holds:

supp(6y) = |J  [an]
aesupp(Sw)

yEsupp(&yP)

(Proof: Epic BPD combinatorics)

Goal: Polytope for U [, 7]?

aesupp(Sw)

y€supp(BL®)

(Bsp,p construction only produces |supp(&w?)| = 1...)
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Bubbling diagrams

Definition
Write D = (D, A) where D is a diagram and A C D.
@ Squares in A are called distinguished,

@ Any square can bubble normally,
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Bubbling diagrams

Definition

Write D = (D, A) where D is a diagram and A C D.
@ Squares in A are called distinguished,
@ Any square can bubble normally,

o Distinguished squares can bubble and leave behind a normal square.

B(D) := {diagrams obtained from D using these moves}.
Sp :={wt(C): C € B(D)}.
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Example: By,

Take A := {lowest square in each column} C D.

In this case: B(D) = By p.

Corollary

For fireworks w, supp(®,) is computed by B(D(w)). J
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Bubbling and M-convexity

Proposition (Hafner-Mészaros—S.-St. Dizier, '23)
@ Have a column-wise decomposition Sp = Sp, +---+ Sp,.
e After homogenizing, Sp is M-convex.

o conv(S2P) is a Schubitope. Not true for other degree components S/
D P D

D = ~  DtoP —
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M-convexity of vexillary &,
We give a recipe for D(w) = (D(w), A):
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M-convexity of vexillary &,
We give a recipe for D(w) = (D(w), A):

v
[T+

Theorem (Hafner—-Mészéaros—S.-St. Dizier, '23)
For vexillary w € Sp, supp(®w) = Sp(w)-

In particular, supp(®,,) is M-convex and supp( .t,‘.,)p) is a Schubitope.

More generally, supp(£&P) is a Schubitope; cf. Snow diagrams [Pan—Yu, '23], [Yu, '23]
@ For other c, supp(@.(,.,c)) is not always a Schubitope.

@ For nonvexillary w, supp(@}ﬁ,ﬁ)p) is not always a Schubitope.
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Back to Grassmannian permutations

Example: Grassmannian case.

:
e

Can show directly that supp((’5\(,\,c)) is a Schubitope, with supports:

() (6) (M (8) (9) (10) (11) (12) (13)
SD(w) SD(w) SD(w) SD(w) SD(w) SD(w) SD(w) SD(w) SD(w)
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Thank you!

Theorem (Chou-S., '25+)

maxyes, |supp(Sw)| ~ n!, and is asymptotically maxed at layered.

Theorem (Chou-S., '25)

For fireworks w € Sy, we have supp(&w) = Uacsupp(s,,)[@ wt(D(w))].
In particular supp(®,,) is M-convex and computed by B(D(w)).

Theorem (Hafner—Mészéaros—S.-St. Dizier, '23)
Vexillary w € Sp,: supp(®8,,) is M-convex and computed by B(D(w)).
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