

Newton polytopes of Schubert and Grothendieck polynomials

Linus Setiabrata

MIT

AIGeCom XXVI

Joint with Elena Hafner, Karola Mészáros, Avery St. Dizier
and with Jack Chen-An Chou

Schubert polynomials

Definition

For $w \in S_n$, the *Schubert polynomial* is:

$$\mathfrak{S}_w(\mathbf{x}) = \begin{cases} x_1^{n-1} x_2^{n-2} \cdots x_{n-1} & \text{if } w = w_0 \\ \partial_i(\mathfrak{S}_{ws_i}(\mathbf{x})) & \text{if } \ell(w) < \ell(ws_i), \end{cases}$$

where $\partial_i(f) := \frac{f - s_i f}{x_i - x_{i+1}}$.

The \mathfrak{S}_w lift *Schubert cycles* $[X_w] \in H^*(\mathcal{F}\ell(n))$.

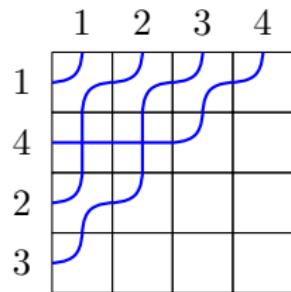
Pipe dreams

Theorem

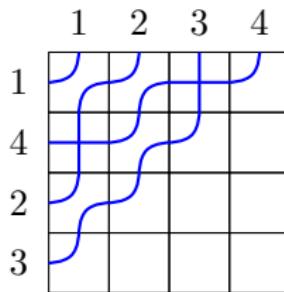
Schubert polynomials are counted by reduced pipe dreams:

$$\mathfrak{S}_w = \sum_{\substack{P \in \text{PD}(w) \\ P \text{ reduced}}} \mathbf{x}^{\text{wt}(P)}.$$

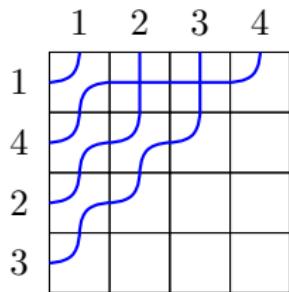
Reduced pipe dreams of $w = 1423$:



$$x_2^2$$



$$x_1 x_2$$

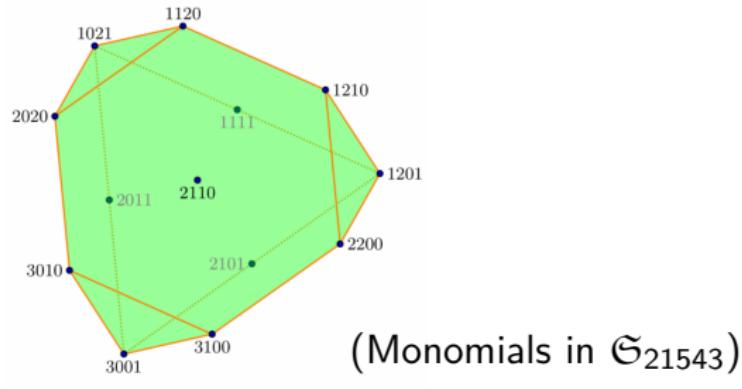


$$x_1^2$$

Saturation

Question

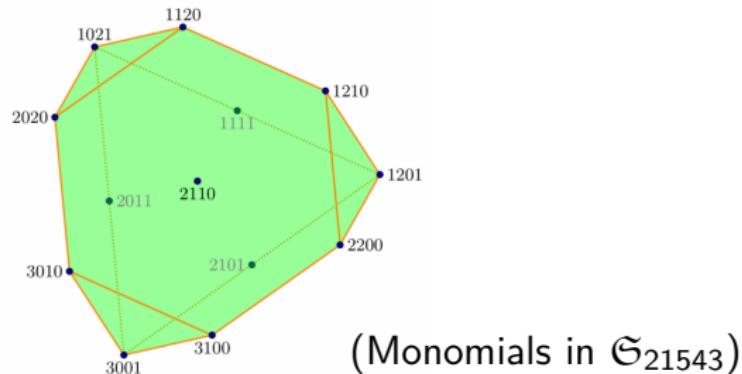
Assume that $x^{\alpha-\beta}$ and $x^{\alpha+\beta}$ appear in \mathfrak{S}_w . Does x^α appear?



Saturation

Question

Assume that $x^{\alpha-\beta}$ and $x^{\alpha+\beta}$ appear in \mathfrak{S}_w . Does x^α appear?



Conjecture (Monical–Tokcan–Yong, '17)

$\text{supp}(\mathfrak{S}_w) := \{\alpha: x^\alpha \text{ appears in } \mathfrak{S}_w\}$ is saturated.

(Saturated: $S = \text{conv}(S) \cap \mathbb{Z}^n$.)

M-convexity?

Conjecture (Monical–Tokcan–Yong, '17)

$\text{supp}(\mathfrak{S}_w) := \{\alpha : \mathbf{x}^\alpha \text{ appears in } \mathfrak{S}_w\}$ is saturated, and

M-convexity?

Conjecture (Monical–Tokcan–Yong, '17)

$\text{supp}(\mathfrak{S}_w) := \{\alpha : \mathbf{x}^\alpha \text{ appears in } \mathfrak{S}_w\}$ is saturated, and

$\text{Newton}(\mathfrak{S}_w) := \text{conv}(\text{supp}(\mathfrak{S}_w))$ is a generalized permutohedron.

(Plus, precise description of which generalized permutohedron it is.)

M-convexity?

Conjecture (Monical–Tokcan–Yong, '17)

$\text{supp}(\mathfrak{S}_w) := \{\alpha : \mathbf{x}^\alpha \text{ appears in } \mathfrak{S}_w\}$ is saturated, and

$\text{Newton}(\mathfrak{S}_w) := \text{conv}(\text{supp}(\mathfrak{S}_w))$ is a generalized permutohedron.

(Plus, precise description of which generalized permutohedron it is.)

Definition

A set $S \subseteq \mathbb{Z}^n$ is M-convex if:

- S is saturated
- $\text{conv}(S)$ is a generalized permutohedron

S, T are saturated $\not\Rightarrow S + T$ is saturated.

S, T are M-convex $\implies S + T$ is M-convex.

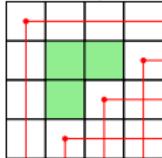
M-convexity!

Theorem (Fink–Mészáros–St. Dizier, '17)

$\text{supp}(\mathfrak{S}_w) := \{\alpha: \mathbf{x}^\alpha \text{ appears in } \mathfrak{S}_w\}$ is M -convex.

- Start with *Rothe diagram* $D(w)$ of w .

$$\underline{D} = D(1432)$$



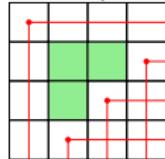
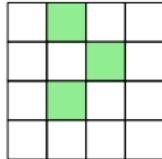
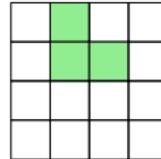
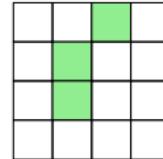
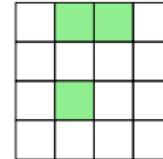
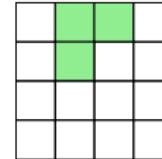
M-convexity!

Theorem (Fink–Mészáros–St. Dizier, '17)

$\text{supp}(\mathfrak{S}_w) := \{\alpha: \mathbf{x}^\alpha \text{ appears in } \mathfrak{S}_w\}$ is M -convex.

- Start with *Rothe diagram* $D(w)$ of w .
- $B_{D(w)} := \{\text{diagrams obtained by bubbling squares of } D(w) \text{ upwards}\}$.

$$D = D(1432)$$



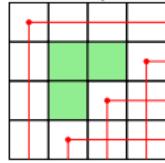
M-convexity!

Theorem (Fink–Mészáros–St. Dizier, '17)

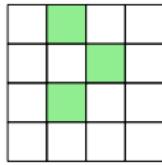
$\text{supp}(\mathfrak{S}_w) := \{\alpha: \mathbf{x}^\alpha \text{ appears in } \mathfrak{S}_w\}$ is M -convex.

- Start with *Rothe diagram* $D(w)$ of w .
- $B_{D(w)} := \{\text{diagrams obtained by bubbling squares of } D(w) \text{ upwards}\}$.
- $S_{D(w)} := \{\text{wt}(C): C \in B_{D(w)}\}$.

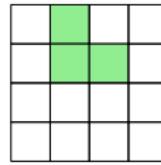
$$D = D(1432)$$



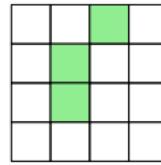
$$x_2^2 x_3$$



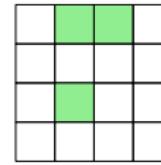
$$x_1 x_2 x_3$$



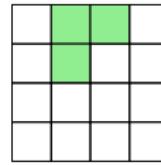
$$x_1 x_2^2$$



$$x_1 x_2 x_3$$



$$x_1^2 x_3$$



$$x_1^2 x_2$$

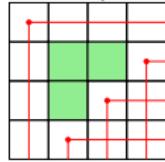
M-convexity!

Theorem (Fink–Mészáros–St. Dizier, '17)

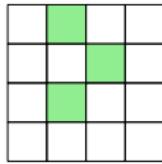
$\text{supp}(\mathfrak{S}_w) := \{\alpha: \mathbf{x}^\alpha \text{ appears in } \mathfrak{S}_w\}$ is M -convex.

- Start with *Rothe diagram* $D(w)$ of w .
- $B_{D(w)} := \{\text{diagrams obtained by bubbling squares of } D(w) \text{ upwards}\}$.
- $S_{D(w)} := \{\text{wt}(C): C \in B_{D(w)}\}$.
- **Rep theory gives:** $\text{supp}(\mathfrak{S}_w) = S_{D(w)}$.

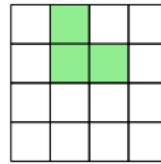
$$D = D(1432)$$



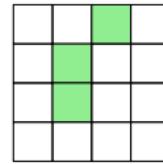
$$x_2^2 x_3$$



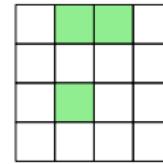
$$x_1 x_2 x_3$$



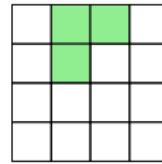
$$x_1 x_2^2$$



$$x_1 x_2 x_3$$



$$x_1^2 x_3$$



$$x_1^2 x_2$$

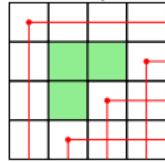
M-convexity!

Theorem (Fink–Mészáros–St. Dizier, '17)

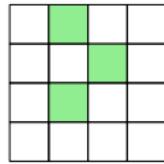
$\text{supp}(\mathfrak{S}_w) := \{\alpha: \mathbf{x}^\alpha \text{ appears in } \mathfrak{S}_w\}$ is M -convex.

- Start with *Rothe diagram* $D(w)$ of w .
- $B_{D(w)} := \{\text{diagrams obtained by bubbling squares of } D(w) \text{ upwards}\}$.
- $S_{D(w)} := \{\text{wt}(C): C \in B_{D(w)}\}$.
- **Rep theory gives:** $\text{supp}(\mathfrak{S}_w) = S_{D(w)}$.
- Column-by-column decomposition: $S_{D(w)} = S_{D(w)_1} + \cdots + S_{D(w)_n}$

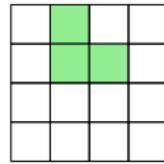
$$D = D(1432)$$



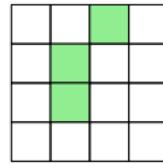
$$x_2^2 x_3$$



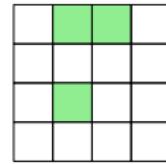
$$x_1 x_2 x_3$$



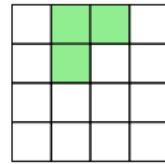
$$x_1 x_2^2$$



$$x_1 x_2 x_3$$



$$x_1^2 x_3$$



$$x_1^2 x_2$$

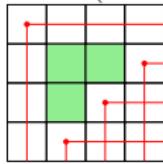
M-convexity!

Theorem (Fink–Mészáros–St. Dizier, '17)

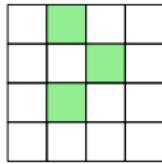
$\text{supp}(\mathfrak{S}_w) := \{\alpha: \mathbf{x}^\alpha \text{ appears in } \mathfrak{S}_w\}$ is M -convex.

- Start with *Rothe diagram* $D(w)$ of w .
- $B_{D(w)} := \{\text{diagrams obtained by bubbling squares of } D(w) \text{ upwards}\}$.
- $S_{D(w)} := \{\text{wt}(C): C \in B_{D(w)}\}$.
- **Rep theory gives:** $\text{supp}(\mathfrak{S}_w) = S_{D(w)}$.
- Column-by-column decomposition: $S_{D(w)} = S_{D(w)_1} + \cdots + S_{D(w)_n}$
- “Easy”: If C is a column, S_C is M -convex. □

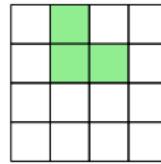
$D = D(1432)$



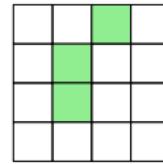
$$x_2^2 x_3$$



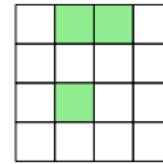
$$x_1 x_2 x_3$$



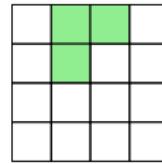
$$x_1 x_2^2$$



$$x_1 x_2 x_3$$



$$x_1^2 x_3$$



$$x_1^2 x_2$$

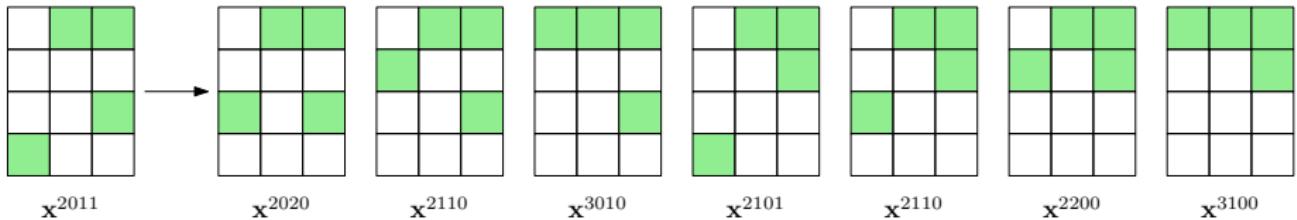
Schubitope

Definition

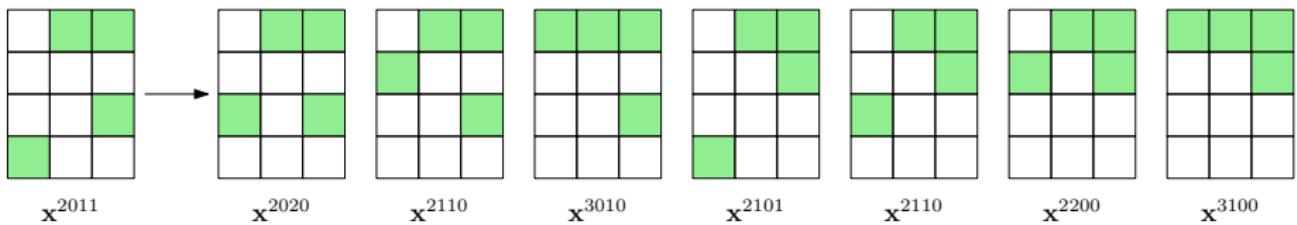
The *Schubitope* of a diagram D is

$$\mathcal{S}_D := \text{conv}\{\text{wt}(C) : C \in B_D\},$$

where $B_D = \{\text{diagrams obtained by bubbling boxes of } D \text{ upwards}\}$.

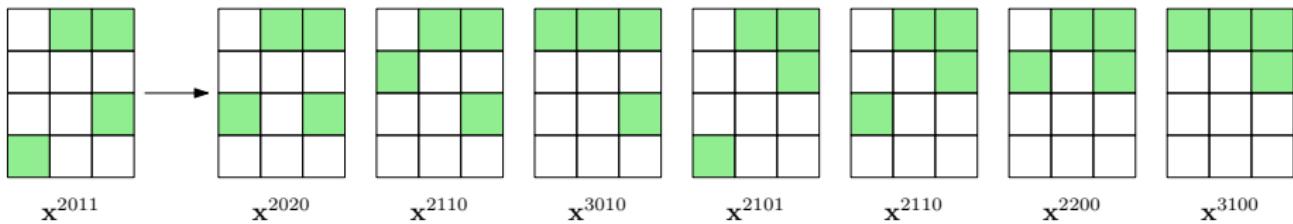


Schubitope fun facts



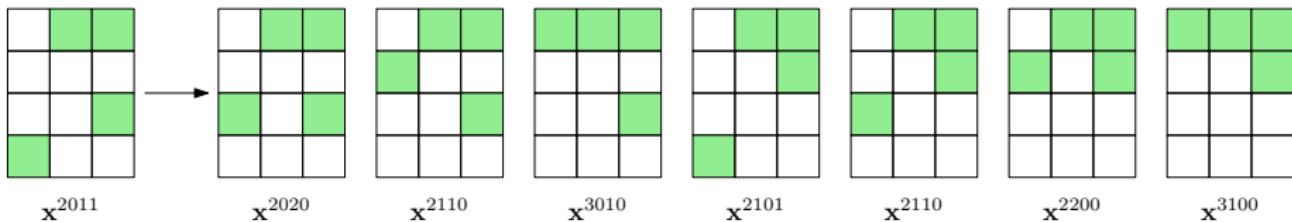
- Unique(!!) decomposition $\mathcal{S}_D = \mathcal{S}_{D_1} + \cdots + \mathcal{S}_{D_n}$ by columns

Schubitope fun facts



- Unique(!!) decomposition $\mathcal{S}_D = \mathcal{S}_{D_1} + \cdots + \mathcal{S}_{D_n}$ by columns
- When C is a column, \mathcal{S}_C is a *Schubert matroid polytope*
~~ \mathcal{S}_D is a generalized permutohedron

Schubitope fun facts



- Unique(!!) decomposition $S_D = S_{D_1} + \cdots + S_{D_n}$ by columns
- When C is a column, S_C is a *Schubert matroid polytope*
~~ S_D is a generalized permutohedron
- $\{\text{Schubitopes}\} \subset \{\text{generalized permutohedra}\}$ is “set of \mathbb{Z} -points of full dim subcone”. [Hafner–Mészáros–S.–St. Dizier, '23]

Applications of Schubitopes

- M-convexity of $\text{supp}(\mathfrak{S}_w)$
- Sufficient vanishing criteria for $c_{u,v}^w$ [St. Dizier–Yong, '20]

Applications of Schubitopes

- M-convexity of $\text{supp}(\mathfrak{S}_w)$
- Sufficient vanishing criteria for $c_{u,v}^w$ [St. Dizier–Yong, '20]
- **Rep theory gives:** $[x^\alpha]\mathfrak{S}_w \leq \#\{C \in B_D : \text{wt}(C) = \alpha\}$
 $\rightsquigarrow [x^\alpha]\mathfrak{S}_w = 1$ whenever α is a vertex of $\mathcal{S}_{D(w)}$.

Applications of Schubitopes

- M-convexity of $\text{supp}(\mathfrak{S}_w)$
- Sufficient vanishing criteria for $c_{u,v}^w$ [St. Dizier–Yong, '20]
- **Rep theory gives:** $[x^\alpha]\mathfrak{S}_w \leq \#\{C \in B_D : \text{wt}(C) = \alpha\}$
 $\rightsquigarrow [x^\alpha]\mathfrak{S}_w = 1$ whenever α is a vertex of $\mathcal{S}_{D(w)}$.
- Lower bounds: $\mathfrak{S}_w(1, \dots, 1) \geq |\mathcal{S}_{D(w)} \cap \mathbb{Z}^n|$.

Pipe dream maximizers

Motivation (Stanley, '17)

Write $u(n) := \max_{w \in S_n} \mathfrak{S}_w(1, \dots, 1)$. Then

$$2^{n^2/4} \leq u(n) \leq 2^{n^2/2} \quad (\text{up to "small" factors}).$$

Open: Does $\lim_{n \rightarrow \infty} \frac{\log(u(n))}{n^2}$ exist? What is its value?

Pipe dream maximizers

Motivation (Stanley, '17)

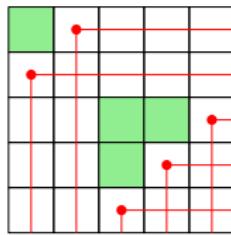
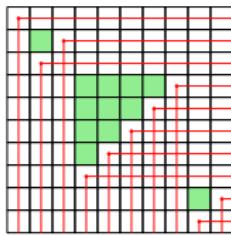
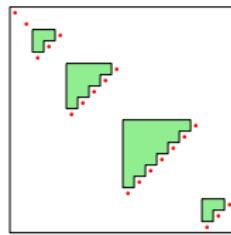
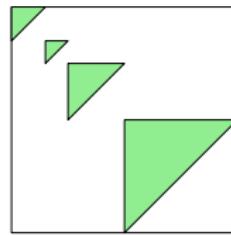
Write $u(n) := \max_{w \in S_n} \mathfrak{S}_w(1, \dots, 1)$. Then

$$2^{n^2/4} \leq u(n) \leq 2^{n^2/2} \quad (\text{up to "small" factors}).$$

Open: Does $\lim_{n \rightarrow \infty} \frac{\log(u(n))}{n^2}$ exist? What is its value?

Conjecture (Merzon–Smirnov, '14)

$\mathfrak{S}_w(1, \dots, 1)$ is maxed at a layered permutation.



Pipe dream maximizers

Motivation (Stanley, '17)

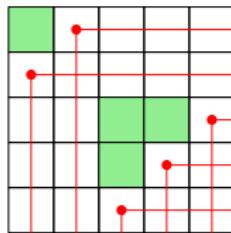
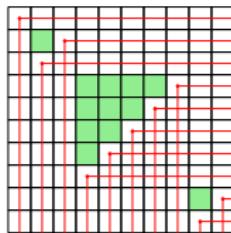
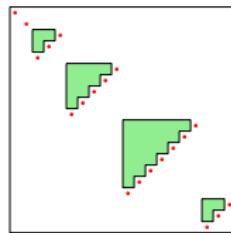
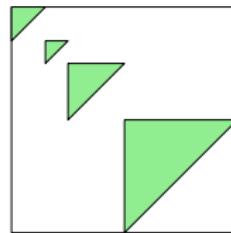
Write $u(n) := \max_{w \in S_n} \mathfrak{S}_w(1, \dots, 1)$. Then

$$2^{n^2/4} \leq u(n) \leq 2^{n^2/2} \quad (\text{up to "small" factors}).$$

Open: Does $\lim_{n \rightarrow \infty} \frac{\log(u(n))}{n^2}$ exist? What is its value?

Conjecture (Merzon–Smirnov, '14)

$\mathfrak{S}_w(1, \dots, 1)$ is maxed at a layered permutation.



[Morales–Pak–Panova, '18]: Among layered $w \in S_n$, $\max \mathfrak{S}_w(\mathbf{1}) \approx 2^{0.293262762\dots n^2}$

[Morales–Panova–Petrov–Yeliussizov, '24]: $\mathfrak{G}_w^{(\beta=1)}(\mathbf{1})$ is asymptotically maxed at layered.

Schubitope maximizers

Best lower bound for $\mathfrak{S}_w(1, \dots, 1)$:

Theorem (Guo–Lin, '24)

Let $p_u(w) :=$ number of u -patterns in w . Then $|\text{supp}(\mathfrak{S}_w)|$ is at least

$$1 + p_{132}(w) + p_{1432}(w) + p_{13524}(w) + 3p_{14253}(w) + p_{14352}(w) + 4p_{15243}(w) + \dots$$

Key idea: produce many diagrams $C \in B_{D(w)}$.

Schubitope maximizers

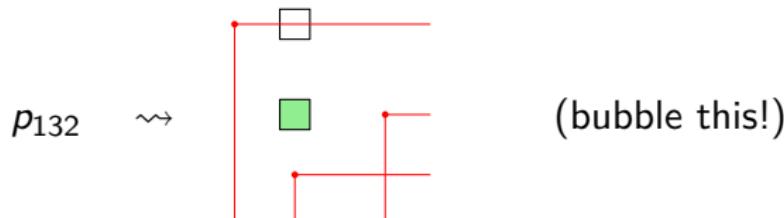
Best lower bound for $\mathfrak{S}_w(1, \dots, 1)$:

Theorem (Guo–Lin, '24)

Let $p_u(w) :=$ number of u -patterns in w . Then $|\text{supp}(\mathfrak{S}_w)|$ is at least

$$1 + p_{132}(w) + p_{1432}(w) + p_{13524}(w) + 3p_{14253}(w) + p_{14352}(w) + 4p_{15243}(w) + \dots$$

Key idea: produce many diagrams $C \in B_{D(w)}$.



(also in [Mészáros–St. Dizier–Tanjaya '21], [Weigandt '17])

Schubitope maximizers

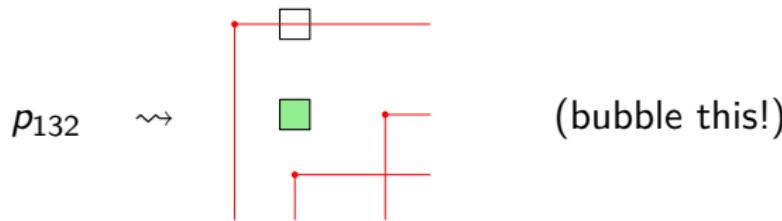
Best lower bound for $\mathfrak{S}_w(1, \dots, 1)$:

Theorem (Guo–Lin, '24)

Let $p_u(w) :=$ number of u -patterns in w . Then $|\text{supp}(\mathfrak{S}_w)|$ is at least

$$1 + p_{132}(w) + p_{1432}(w) + p_{13524}(w) + 3p_{14253}(w) + p_{14352}(w) + 4p_{15243}(w) + \dots$$

Key idea: produce many diagrams $C \in B_{D(w)}$.



(also in [Mészáros–St. Dizier–Tanjaya '21], [Weigandt '17])

Question (Guo–Lin, '24)

What is the asymptotic behavior of $\beta(n) := \max_{w \in S_n} |\text{supp}(\mathfrak{S}_w)|$?

Asymptotically maximal Schubitopes

Theorem (Chou–S., '25+)

$\beta(n) = \max_{w \in S_n} |\text{supp}(\mathfrak{S}_w)|$ satisfies

$$\lim_{n \rightarrow \infty} \frac{\log(\beta(n))}{n \log(n)} = 1.$$

Also, $|\text{supp}(\mathfrak{S}_w)|$ is asymptotically maxed at a layered permutation.

(Proof idea: produce a layered $w \in S_n$ with many diagrams $C \in B_{D(w)}$.)

Asymptotically maximal Schubitopes

Theorem (Chou–S., '25+)

$\beta(n) = \max_{w \in S_n} |\text{supp}(\mathfrak{S}_w)|$ satisfies

$$\lim_{n \rightarrow \infty} \frac{\log(\beta(n))}{n \log(n)} = 1.$$

Also, $|\text{supp}(\mathfrak{S}_w)|$ is asymptotically maxed at a layered permutation.

(Proof idea: produce a layered $w \in S_n$ with many diagrams $C \in B_{D(w)}$.)

In fact,

$$\frac{n!}{4^n} \leq \beta(n) \leq n! \quad (\text{up to "small" factors}).$$

Open: Does $\lim_{n \rightarrow \infty} \frac{\log(\beta(n)) - n \log(n)}{n}$ exist? If so, what is its value?
(Answer is yes for \mathfrak{S}_w .)

Part II: Newton polytopes of Grothendieck polynomials

Grothendieck polynomials

Definition

For $w \in S_n$, the *Grothendieck polynomial* is:

$$\mathfrak{G}_w(\mathbf{x}) = \begin{cases} x_1^{n-1} x_2^{n-2} \cdots x_{n-1} & \text{if } w = w_0 \\ \bar{\partial}_i(\mathfrak{G}_{ws_i}(\mathbf{x})) & \text{if } \ell(w) < \ell(ws_i), \end{cases}$$

where $\bar{\partial}_i(f) := \partial_i((1 - x_{i+1})f)$.

Grothendieck polynomials

Definition

For $w \in S_n$, the *Grothendieck polynomial* is:

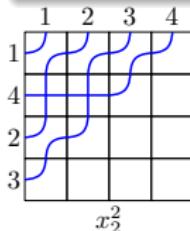
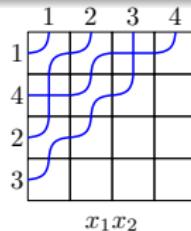
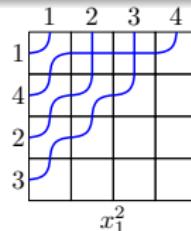
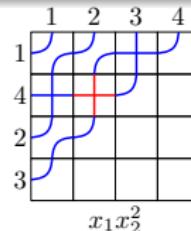
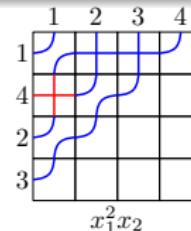
$$\mathfrak{G}_w(\mathbf{x}) = \begin{cases} x_1^{n-1} x_2^{n-2} \dots x_{n-1} & \text{if } w = w_0 \\ \bar{\partial}_i(\mathfrak{G}_{ws_i}(\mathbf{x})) & \text{if } \ell(w) < \ell(ws_i), \end{cases}$$

where $\bar{\partial}_i(f) := \partial_i((1 - x_{i+1})f)$.

Theorem

Grothendieck polynomials are counted by pipe dreams:

$$\mathfrak{G}_w = \sum_{P \in \text{PD}(w)} (-1)^{|P| - \ell(w)} \mathbf{x}^{\text{wt}(P)}.$$



Support of Grothendieck polynomials

Open: Is $\text{supp}(\mathfrak{G}_w)$ M-convex?

or, at least, is it saturated?

or, is $\text{conv}(\text{supp}(\mathfrak{G}_w))$ a generalized permutohedron?

*Technically you should homogenize \mathfrak{G}_w ...

*Known for some pattern avoidance classes: \mathfrak{G}_w is symmetric, \mathfrak{S}_w is zero-one...

Support of Grothendieck polynomials

Open: Is $\text{supp}(\mathfrak{G}_w)$ M-convex?

or, at least, is it saturated?

or, is $\text{conv}(\text{supp}(\mathfrak{G}_w))$ a generalized permutohedron?

*Technically you should homogenize \mathfrak{G}_w ...

*Known for some pattern avoidance classes: \mathfrak{G}_w is symmetric, \mathfrak{S}_w is zero-one...

Conjecture (Mészáros–S.–St. Dizier, '22)

- For any $\alpha \in \text{supp}(\mathfrak{G}_w)$ with $|\alpha| < \deg(\mathfrak{G}_w)$, there exists i so that $\alpha + \mathbf{e}_i \in \text{supp}(\mathfrak{G}_w)$.

Support of Grothendieck polynomials

Open: Is $\text{supp}(\mathfrak{G}_w)$ M-convex?

or, at least, is it saturated?

or, is $\text{conv}(\text{supp}(\mathfrak{G}_w))$ a generalized permutohedron?

*Technically you should homogenize \mathfrak{G}_w ...

*Known for some pattern avoidance classes: \mathfrak{G}_w is symmetric, \mathfrak{S}_w is zero-one...

Conjecture (Mészáros–S.–St. Dizier, '22)

- For any $\alpha \in \text{supp}(\mathfrak{G}_w)$ with $|\alpha| < \deg(\mathfrak{G}_w)$, there exists i so that $\alpha + \mathbf{e}_i \in \text{supp}(\mathfrak{G}_w)$.
- If $\alpha, \gamma \in \text{supp}(\mathfrak{G}_w)$, then $\{\beta: \alpha \leq \beta \leq \gamma\} \subseteq \text{supp}(\mathfrak{G}_w)$.

Support of Grothendieck polynomials

Open: Is $\text{supp}(\mathfrak{G}_w)$ M-convex?

or, at least, is it saturated?

or, is $\text{conv}(\text{supp}(\mathfrak{G}_w))$ a generalized permutohedron?

*Technically you should homogenize \mathfrak{G}_w ...

*Known for some pattern avoidance classes: \mathfrak{G}_w is symmetric, \mathfrak{S}_w is zero-one...

Conjecture (Mészáros–S.–St. Dizier, '22)

- For any $\alpha \in \text{supp}(\mathfrak{G}_w)$ with $|\alpha| < \deg(\mathfrak{G}_w)$, there exists i so that $\alpha + \mathbf{e}_i \in \text{supp}(\mathfrak{G}_w)$.
- If $\alpha, \gamma \in \text{supp}(\mathfrak{G}_w)$, then $\{\beta: \alpha \leq \beta \leq \gamma\} \subseteq \text{supp}(\mathfrak{G}_w)$.

Equivalently:

$$\text{supp}(\mathfrak{G}_w) = \bigcup_{\substack{\alpha \in \text{supp}(\mathfrak{S}_w) \\ \gamma \in \text{supp}(\mathfrak{G}_w^{\text{top}})}} [\alpha, \gamma].$$

Master formula

Conjecture (Mészáros–S.–St. Dizier, '22)

$$\text{supp}(\mathfrak{G}_w) = \bigcup_{\substack{\alpha \in \text{supp}(\mathfrak{S}_w) \\ \gamma \in \text{supp}(\mathfrak{G}_w^{\text{top}})}} [\alpha, \gamma]. \quad (\text{"master formula"})$$

Remark

“ $\text{supp}(\mathfrak{S}_w)$ is easy, $\text{supp}(\mathfrak{G}_w^{\text{top}})$ is small, and everything else follows”.

Master formula

Conjecture (Mészáros–S.–St. Dizier, '22)

$$\text{supp}(\mathfrak{G}_w) = \bigcup_{\substack{\alpha \in \text{supp}(\mathfrak{S}_w) \\ \gamma \in \text{supp}(\mathfrak{G}_w^{\text{top}})}} [\alpha, \gamma]. \quad (\text{"master formula"})$$

Remark

“ $\text{supp}(\mathfrak{S}_w)$ is easy, $\text{supp}(\mathfrak{G}_w^{\text{top}})$ is small, and everything else follows”.

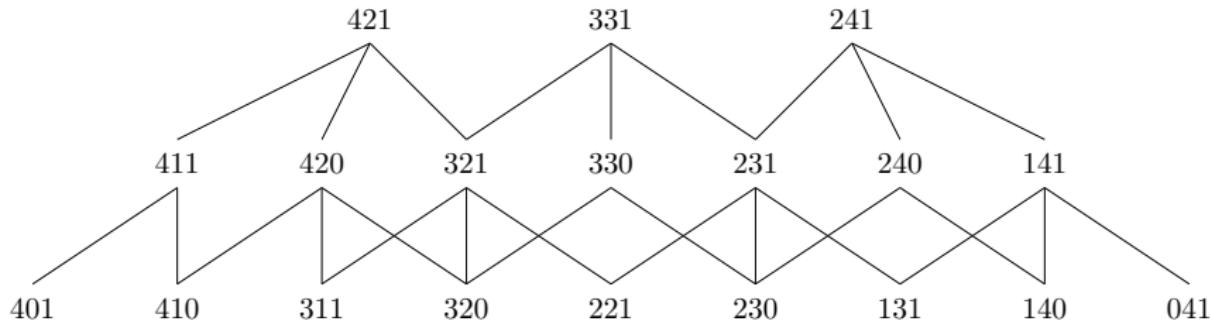


Figure: Hasse diagram for $\text{supp}(\mathfrak{G}_{163245})$.

Fireworks permutations

Definition

$w \in S_n$ is *fireworks* if the initial elements of decreasing runs are increasing.

$$w = 417532986$$

$$w = 417539286$$

Fireworks permutations

Definition

$w \in S_n$ is *fireworks* if the initial elements of decreasing runs are increasing.

$$w = \underline{4} \underline{1} \underline{7} \underline{5} \underline{3} \underline{2} \underline{9} \underline{8} \underline{6}$$

$$w = \underline{4} \underline{1} \underline{7} \underline{5} \underline{3} \underline{9} \underline{2} \underline{\color{red}{8}} \underline{6}$$

Fireworks permutations

Definition

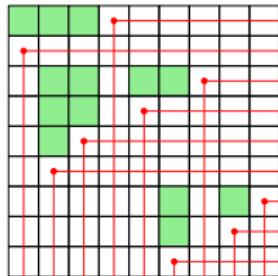
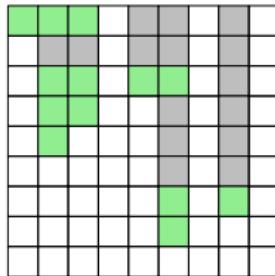
$w \in S_n$ is *fireworks* if the initial elements of decreasing runs are increasing.

$$w = \underline{4} \ 1 \ \underline{7} \ 5 \ 3 \ 2 \ \underline{9} \ 8 \ 6$$

$$w = \underline{4} \ 1 \ \underline{7} \ 5 \ 3 \ 9 \ 2 \ \underline{8} \ 6$$

Proposition

For fireworks w , we have $\mathfrak{G}_w^{\text{top}} = c_w \cdot \mathbf{x}^{\text{wt}(\overline{D(w)})}$. $\overline{D(w)}$:= up-closure of $D(w)$.



$$\rightsquigarrow \mathfrak{G}_{417532986}^{\text{top}} = c_w \mathbf{x}^{655432210}$$

Master formula for fireworks Grothendieck polynomials

Theorem (Chou–S., '25)

For fireworks w , the master formula holds:

$$\text{supp}(\mathfrak{G}_w) = \bigcup_{\alpha \in \text{supp}(\mathfrak{S}_w)} [\alpha, \text{wt}(\overline{D(w)})].$$

(Proof: explicit pipe dream construction)

Master formula for fireworks Grothendieck polynomials

Theorem (Chou–S., '25)

For fireworks w , the master formula holds:

$$\text{supp}(\mathfrak{G}_w) = \bigcup_{\alpha \in \text{supp}(\mathfrak{S}_w)} [\alpha, \text{wt}(\overline{D(w)})].$$

(Proof: explicit pipe dream construction)

Goal: Polytope for $\bigcup_{\alpha \in \mathcal{S}_{D(w)}} [\alpha, \text{wt}(\overline{D(w)})]?$

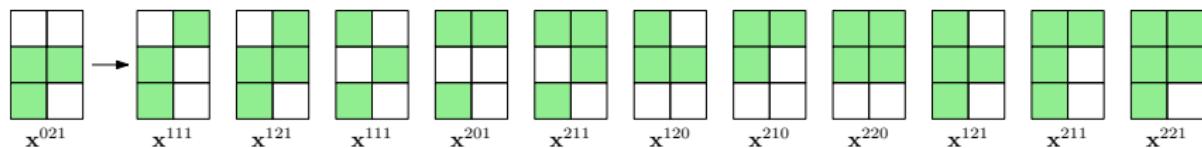
K -bubbling

Definition

Let D be a diagram. Define $B_{\text{sp}, D} :=$ diagrams that can be obtained by:

- Any square can bubble normally
- Any square can bubble normally and leave behind a copy of itself.

Let $S_{\text{sp}, D} := \{\text{wt}(C) : C \in B_{\text{sp}, D}\}$.



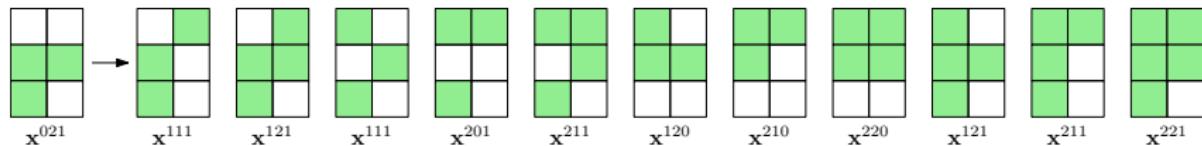
K -bubbling

Definition

Let D be a diagram. Define $B_{\text{sp},D} :=$ diagrams that can be obtained by:

- Any square can bubble normally
- Any square can bubble normally and leave behind a copy of itself.

Let $S_{\text{sp},D} := \{\text{wt}(C) : C \in B_{\text{sp},D}\}$.



$\text{conv}(S_{\text{sp},D})$ will play the role of the Schubitope.

Proposition

- Have a column-wise decomposition $S_{\text{sp},D} = S_{\text{sp},D_1} + \cdots + S_{\text{sp},D_n}$.
In particular, after homogenizing, $\tilde{S}_{\text{sp},D}$ is M -convex.

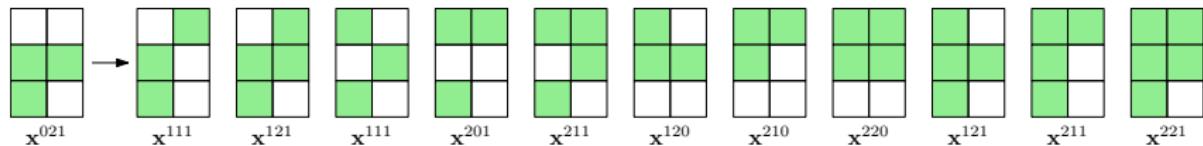
K -bubbling

Definition

Let D be a diagram. Define $B_{\text{sp},D} :=$ diagrams that can be obtained by:

- Any square can bubble normally
- Any square can bubble normally and leave behind a copy of itself.

Let $S_{\text{sp},D} := \{\text{wt}(C) : C \in B_{\text{sp},D}\}$.



$\text{conv}(S_{\text{sp},D})$ will play the role of the Schubitope.

Proposition

- Have a column-wise decomposition $S_{\text{sp},D} = S_{\text{sp},D_1} + \cdots + S_{\text{sp},D_n}$.
In particular, after homogenizing, $\tilde{S}_{\text{sp},D}$ is M -convex.
- $S_{\text{sp},D} = \bigcup_{\alpha \in S_D} [\alpha, \text{wt}(\overline{D})]$

M-convexity of fireworks \mathfrak{G}_w

Corollary (Chou–S., '25)

For fireworks w ,

- There is a Minkowski sum decomposition

$$\text{supp}(\mathfrak{G}_w) = S_{\text{sp}, D(w)_1} + \cdots + S_{\text{sp}, D(w)_n}$$

refining the column-wise decomposition of $\text{supp}(\mathfrak{G}_w)$.

- $\text{supp}(\tilde{\mathfrak{G}}_w)$ is M -convex.

M-convexity of fireworks \mathfrak{G}_w

Corollary (Chou–S., '25)

For fireworks w ,

- There is a Minkowski sum decomposition

$$\text{supp}(\mathfrak{G}_w) = S_{\text{sp}, D(w)_1} + \cdots + S_{\text{sp}, D(w)_n}$$

refining the column-wise decomposition of $\text{supp}(\mathfrak{G}_w)$.

- $\text{supp}(\tilde{\mathfrak{G}}_w)$ is M-convex.
- In particular, each $\text{supp}(\mathfrak{G}_w^{(c)})$ is M-convex and $|\text{supp}(\mathfrak{G}_w^{(c)})|$ is a log-concave sequence.

(There are superexponentially many fireworks permutations.)

Application: Layered permutations

Theorem (Pechenik–Speyer–Weigandt, '21)

For every $w \in S_n$, there exists a unique inverse fireworks $\pi(w) \in S_n$ so that $\mathfrak{G}_w^{\text{top}} = c_w \cdot \mathfrak{G}_{\pi(w)}^{\text{top}}$ for some $c_w \in \mathbb{Z}$.

Application: Layered permutations

Theorem (Pechenik–Speyer–Weigandt, '21)

For every $w \in S_n$, there exists a unique inverse fireworks $\pi(w) \in S_n$ so that $\mathfrak{G}_w^{\text{top}} = c_w \cdot \mathfrak{G}_{\pi(w)}^{\text{top}}$ for some $c_w \in \mathbb{Z}$.

When w is fireworks, $\pi(w)$ is layered (and hence also fireworks).

~~ can apply master formula to $\text{supp}(\mathfrak{G}_w)$ and $\text{supp}(\mathfrak{G}_{\pi(w)})$

Application: Layered permutations

Theorem (Pechenik–Speyer–Weigandt, '21)

For every $w \in S_n$, there exists a unique inverse fireworks $\pi(w) \in S_n$ so that $\mathfrak{G}_w^{\text{top}} = c_w \cdot \mathfrak{G}_{\pi(w)}^{\text{top}}$ for some $c_w \in \mathbb{Z}$.

When w is fireworks, $\pi(w)$ is layered (and hence also fireworks).

~~ can apply master formula to $\text{supp}(\mathfrak{G}_w)$ and $\text{supp}(\mathfrak{G}_{\pi(w)})$

Corollary (Chou–S., '25)

If w is fireworks, the layered permutation $\pi(w)$ satisfies

$$\text{supp}(\mathfrak{G}_{\pi(w)}) \supseteq \text{supp}(\mathfrak{G}_w).$$

As long as master formula holds for \mathfrak{G}_w and $\mathfrak{G}_{\pi(w)}$, we get this inclusion.

Grassmannian permutations

Definition

$w \in S_n$ is *Grassmannian* if it has one descent.

Equivalently, w is 321, 2143, and 3142-avoiding.

Equivalently, \mathfrak{S}_w is a Schur polynomial s_λ .

Grassmannian permutations

Definition

$w \in S_n$ is *Grassmannian* if it has one descent.

Equivalently, w is 321, 2143, and 3142-avoiding.

Equivalently, \mathfrak{G}_w is a Schur polynomial s_λ .

$$\{\text{Grassmannian permutations}\} \longleftrightarrow \{\text{Partitions}\}$$

Theorem (Lenart, '00)

For Grassmannian $w = w_\lambda$,

$$\mathfrak{G}_{w_\lambda}(\mathbf{x}) = \sum_{\mu} (-1)^{|\mu| - |\lambda|} a_{\lambda, \mu} s_\mu(\mathbf{x})$$

where $a_{\lambda, \mu} = \#\{\text{strictly increasing row-flagged tableaux of shape } \mu/\lambda\}$.

SNP for Grassmannian w

Theorem (Lenart, '00)

For Grassmannian $w = w_\lambda$, the Schur expansion is

$$\mathfrak{G}_w(\mathbf{x}) = \sum_{\mu} (-1)^{|\mu| - |\lambda|} a_{\lambda, \mu} s_{\mu}(\mathbf{x})$$

where $a_{\lambda, \mu} = \#\{\text{strictly increasing row-flagged tableaux of shape } \mu/\lambda\}$.

Observation (Escobar–Yong, '17)

Support of degree component $\text{supp}(\mathfrak{G}_w^{(c)})$ is equal to $\text{supp}(s_{\mu}(\mathbf{x}))$.
i.e., among s_{μ} 's appearing in a given $\mathfrak{G}_w^{(c)}$, one has inclusion maximal support.

SNP for Grassmannian w

Theorem (Lenart, '00)

For Grassmannian $w = w_\lambda$, the Schur expansion is

$$\mathfrak{G}_w(\mathbf{x}) = \sum_{\mu} (-1)^{|\mu| - |\lambda|} a_{\lambda, \mu} s_{\mu}(\mathbf{x})$$

where $a_{\lambda, \mu} = \#\{\text{strictly increasing row-flagged tableaux of shape } \mu/\lambda\}$.

Observation (Escobar–Yong, '17)

Support of degree component $\text{supp}(\mathfrak{G}_w^{(c)})$ is equal to $\text{supp}(s_{\mu}(\mathbf{x}))$.
i.e., among s_{μ} 's appearing in a given $\mathfrak{G}_w^{(c)}$, one has inclusion maximal support.

$\rightsquigarrow \text{supp}(\mathfrak{G}_w^{(c)})$ is a Schubitope for all c .

$\rightsquigarrow \text{supp}(\tilde{\mathfrak{G}}_w)$ is M-convex.

$\rightsquigarrow \text{supp}(\mathfrak{G}_w)$ satisfies master formula.

Vexillary permutations

Definition

$w \in S_n$ is *vexillary* if it is 2143-avoiding.

Equivalently, \mathfrak{S}_w is a flagged Schur polynomial, or is a key polynomial.

Vexillary permutations

Definition

$w \in S_n$ is *vexillary* if it is 2143-avoiding.

Equivalently, \mathfrak{S}_w is a flagged Schur polynomial, or is a key polynomial.

Theorem (Hafner, '22)

For vexillary w , master formula holds:

$$\text{supp}(\mathfrak{G}_w) = \bigcup_{\substack{\alpha \in \text{supp}(\mathfrak{S}_w) \\ \gamma \in \text{supp}(\mathfrak{G}_w^{\text{top}})}} [\alpha, \gamma].$$

(Proof: Epic BPD combinatorics)

Vexillary permutations

Definition

$w \in S_n$ is *vexillary* if it is 2143-avoiding.

Equivalently, \mathfrak{G}_w is a flagged Schur polynomial, or is a key polynomial.

Theorem (Hafner, '22)

For vexillary w , master formula holds:

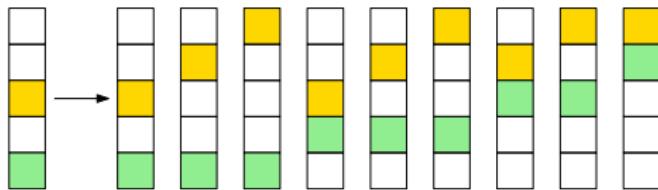
$$\text{supp}(\mathfrak{G}_w) = \bigcup_{\substack{\alpha \in \text{supp}(\mathfrak{G}_w) \\ \gamma \in \text{supp}(\mathfrak{G}_w^{\text{top}})}} [\alpha, \gamma].$$

(Proof: Epic BPD combinatorics)

Goal: Polytope for $\bigcup_{\substack{\alpha \in \text{supp}(\mathfrak{G}_w) \\ \gamma \in \text{supp}(\mathfrak{G}_w^{\text{top}})}} [\alpha, \gamma]$?

($B_{\text{sp},D}$ construction only produces $|\text{supp}(\mathfrak{G}_w^{\text{top}})| = 1 \dots$)

Bubbling diagrams

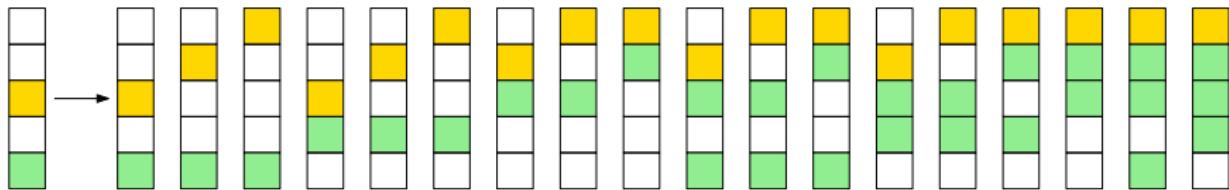


Definition

Write $\mathcal{D} = (D, A)$ where D is a diagram and $A \subseteq D$.

- Squares in A are called *distinguished*,
- Any square can bubble normally,

Bubbling diagrams



Definition

Write $\mathcal{D} = (D, A)$ where D is a diagram and $A \subseteq D$.

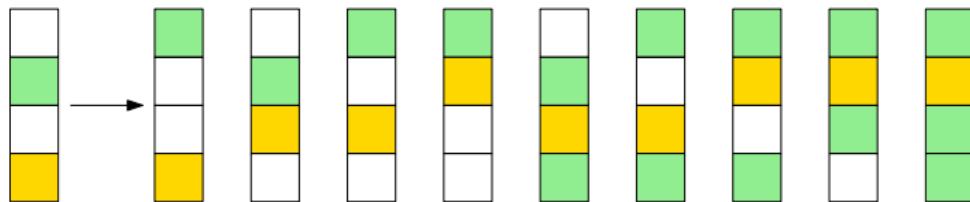
- Squares in A are called *distinguished*,
- Any square can bubble normally,
- Distinguished squares can bubble and leave behind a normal square.

$\mathcal{B}(\mathcal{D}) := \{\text{diagrams obtained from } \mathcal{D} \text{ using these moves}\}.$

$S_{\mathcal{D}} := \{\text{wt}(C) : C \in \mathcal{B}(\mathcal{D})\}.$

Example: B_{sp}

Take $A := \{\text{lowest square in each column}\} \subseteq D$.



In this case: $\mathcal{B}(\mathcal{D}) = B_{\text{sp}, D}$.

Corollary

For fireworks w , $\text{supp}(\mathfrak{G}_w)$ is computed by $\mathcal{B}(\mathcal{D}(w))$.

Bubbling and M-convexity

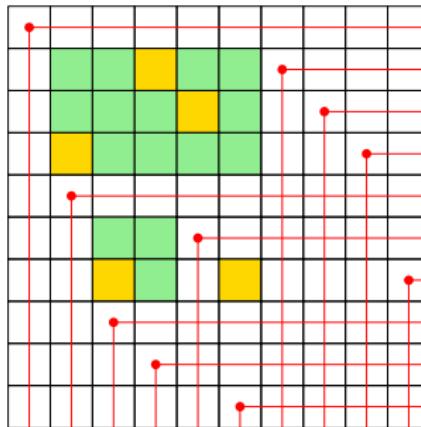
Proposition (Hafner–Mészáros–S.–St. Dizier, '23)

- Have a *column-wise decomposition* $S_{\mathcal{D}} = S_{\mathcal{D}_1} + \cdots + S_{\mathcal{D}_n}$.
- After homogenizing, $\tilde{S}_{\mathcal{D}}$ is M-convex.
- $\text{conv}(S_{\mathcal{D}}^{\text{top}})$ is a Schubitope. Not true for other degree components $S_{\mathcal{D}}^{(c)}$!

$$\mathcal{D} = \begin{array}{|c|c|c|c|} \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline \text{yellow} & & & \text{green} \\ \hline & & & \\ \hline & & & \\ \hline \text{green} & & & \\ \hline & & & \\ \hline \end{array} \rightsquigarrow \mathcal{D}^{\text{top}} = \begin{array}{|c|c|c|c|} \hline \text{yellow} & & & \\ \hline \text{green} & & & \\ \hline & & \text{yellow} & \\ \hline & & \text{green} & \\ \hline & & & \\ \hline \text{green} & & & \\ \hline & & & \\ \hline \end{array}$$

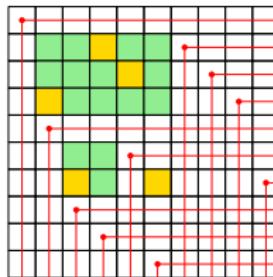
M-convexity of vexillary \mathfrak{G}_w

We give a recipe for $\mathcal{D}(w) = (D(w), A)$:



M-convexity of vexillary \mathfrak{G}_w

We give a recipe for $\mathcal{D}(w) = (D(w), A)$:



Theorem (Hafner–Mészáros–S.–St. Dizier, '23)

For vexillary $w \in S_n$, $\text{supp}(\mathfrak{G}_w) = S_{\mathcal{D}(w)}$.

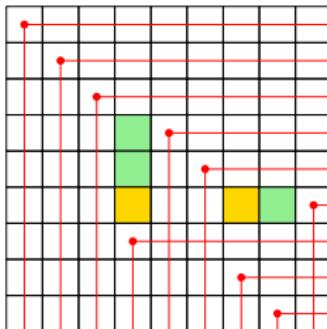
In particular, $\text{supp}(\tilde{\mathfrak{G}}_w)$ is M-convex and $\text{supp}(\mathfrak{G}_w^{\text{top}})$ is a Schubitope.

More generally, $\text{supp}(\mathfrak{L}_\alpha^{\text{top}})$ is a Schubitope; cf. Snow diagrams [Pan–Yu, '23], [Yu, '23]

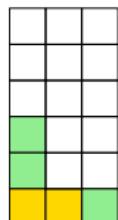
- For other c , $\text{supp}(\mathfrak{G}_w^{(c)})$ is not always a Schubitope.
- For nonvexillary w , $\text{supp}(\mathfrak{G}_w^{\text{top}})$ is not always a Schubitope.

Back to Grassmannian permutations

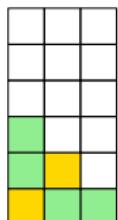
Example: Grassmannian case.



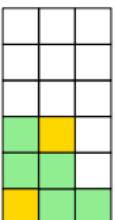
Can show directly that $\text{supp}(\mathfrak{G}_w^{(c)})$ is a Schubitope, with supports:



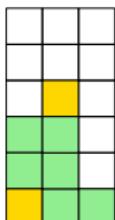
$$S_{\mathcal{D}(w)}^{(5)}$$



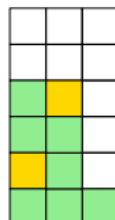
$$S_{\mathcal{D}(w)}^{(6)}$$



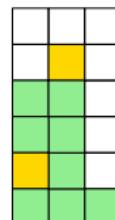
$$S_{\mathcal{D}(w)}^{(7)}$$



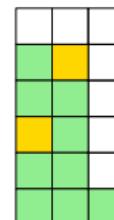
$$S_{\mathcal{D}(w)}^{(8)}$$



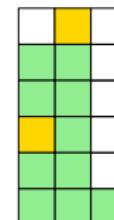
$$S_{\mathcal{D}(w)}^{(9)}$$



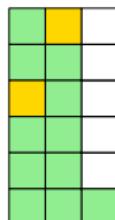
$$S_{\mathcal{D}(w)}^{(10)}$$



$$S_{\mathcal{D}(w)}^{(11)}$$



$$S_{\mathcal{D}(w)}^{(12)}$$



$$S_{\mathcal{D}(w)}^{(13)}$$

Thank you!

Theorem (Chou–S., '25+)

$\max_{w \in S_n} |\text{supp}(\mathfrak{G}_w)| \approx n!$, and is asymptotically maxed at layered.

Theorem (Chou–S., '25)

For fireworks $w \in S_n$, we have $\text{supp}(\mathfrak{G}_w) = \bigcup_{\alpha \in \text{supp}(\mathfrak{G}_w)} [\alpha, \text{wt}(\overline{D(w)})]$.
In particular $\text{supp}(\mathfrak{G}_w)$ is M -convex and computed by $\mathcal{B}(\mathcal{D}(w))$.

Theorem (Hafner–Mészáros–S.–St. Dizier, '23)

Vexillary $w \in S_n$: $\text{supp}(\mathfrak{G}_w)$ is M -convex and computed by $\mathcal{B}(\mathcal{D}(w))$.

