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1 Preliminaries

1.1 Jan 21, 2020

[The standard reference is Silverman’s The arithmetic of elliptic curves. We’ll discuss the material in the
book and hopefully some advanced topics at the end.]

Fix a field K with characteristic not equal to 2 or 3. Choose an algebraic closure K of K. (Some nice
examples are K =R, C,Q,Q,,F,.)

Definition 1.1.1 (Preliminary). Anelliptic curve E over K is the (projective) curve defined by y* = z3 +ax +b
with a,b € K and A := —16(4a® + 27b%) # 0. A

The K-points of F are

E(K) < {(z,y) € K2: y? = 2° + az + b} U{O}

where O is the “point at infinity”.
For K =R, a typical elliptic curve has R-points that look like

A
N

where, as usual in projective geometry, O is vertically “up at infinity”.
The condition A # 0 ensures that our curve is nonsingular. Indeed, suppose FE is singular at (zo,4) €

K. This means that for f=19y?—(2* + ax +b), we have

f(x0,90) =0
fx(l“o,yo) =0
fy(xo,0) = 0.

The third equation says 2y, = 0, and the first two equations say f(z,0) has a double root. This means
discf(x,0) = 0; one can verify that discf(z,0) = A/16.

Example 1.1.2. Let’s consider E/Q given by y? = 2® — 2. Some Q-points are O, (3,5), and (3, —5). There are
more, but they’re hard to find! But we can apply the following theorem:

Theorem 1.1.3 (Bachet, 1621). Fixa c € Z \ {0} and let E/Q be the curve y*> = z° + c. If (z,y) € E(Q) with
y # 0, then

(m4 —8cx x84+ 20cx® — 8¢?

R 37 ) € E(Q)

is a solution.

For the curve in our example,

129 7383> (2340922881 113259286337279)
e d

(3a 5) ~ (77 )
100" 1000 58675600 449455096080

We’d get an infinite sequence of distinct rational points this way. (But the number of digits grows exponen-
tially!)


http://www.pdmi.ras.ru/~lowdimma/BSD/Silverman-Arithmetic_of_EC.pdf

There is a geometric interpretation of this operation: we may consider the tangent line to F at (3,5),
namely, y = 2f2 — 3L The tangent line intersects the curve E at another point: we have

0T —
27 31\2
22y 39
(10x 10) T4

or equivalently

729 837 1161 129
0=g3— 2052 20 - —32( )
0" TR 100 @)
Here the factorization is not an accident: z = 3 is a double root of the cubic because the tangent line intersects
the elliptic curve “twice” at « = 3; the third root of the cubic is rational because its coefficients and two of

its roots are rational. We obtain
_ (129 383 )

100 1000
and we negate the y-coordinate. A

Fact 1.1.4. Consider y* = x3 + c with ¢ € 7\ {0} and 6-th power free, i.e. if n®|c then n = £1. If (z,y) € E(Q)
with xy # 0 and ¢ & {1, —432}, then Bachet’s formula gives infinitely many points in E(Q).

The assumption that c is 6-th power free is essentially without loss of generality, since

2 3 y\2 /T3 c
y=ctrew () =(5) * e

For ¢ = —432, Bachet’s formula interchanges (12,36) and (12, —36). For this elliptic curve, applying the
36—

change of variables u = =¥ and v = 3%# transforms E into u? + v = 1, for which Euler proved in 1760
that the only solutions in Q are (1,0) and (0, 1). So it’s good that there are not infinitely many points to find
in this case.

Let’s return to a general E/K : y*> = 23 + ax + b. Our goal is to use geometry and give F(K) a group
law. Then E(K') will be an abelian group with identity O.

Take any points P,Q € E(K). If P = @, let L be the tangent line of E at P. If P # Q, let L be the unique
line through P and Q. The line L intersects F at three points P, Q, R. (Although R € E(K), it turns out that
since P, € E(K) then R € E(K).) Let L' be the line through R and O. Then L’ intersects E at 3 points:

R, O, and the point which we define to be P @ R.

1 ;. 4 ;
- ’j; 2 _ / 3 B / _ /
a2 T T 7 "
| - { Pl
-“l - F"l'-.l' . {.] - - I'.. - |
P+p=R P;_,‘.(‘;.Q_i? P+Q=10 p=0

Fact 1.1.5. The set E(K) with & is an abelian group with identity O. This is straightforward, except for associativity.

We'll give a conceptual proof of associativity later. (Secretly, E(K) = Pic%(E).) As we become more
comfortable, we’ll replace ® with + and O with 0.

Let’s take Py, P» € F(K). We can assume they are not O, so they have coordinates P, = (z;,y;) € K.
Then:

o Ifxy =20and y; = —yo, then P, & P, = O.

o If 1 # x5, then L is y = Ax + v where

— X — X
N = Y2 — Y1 and v =y — Aoy = 2Y1 1Y2
To — T1 T2 —T1



e If 21 = 25 and y; = yo, then Lis y = Az + v with

2 3 2
\_ 3z +a and v — ] +azry + b.
2y1 2y1
In the final two cases, P; = P; & P, = (z3,y3) is given by
I3 = )\2 — X1 — T2
Yz = —/\1‘3 — V.
Prof. Zywina will later post some code that may be useful for these.
Exercise 1: Let £/Q : y? = 2® — 252. The points O, (0,0), (£5,0), and (4, £6) are in £(Q). Find some

more.
Exercise 2: Let E/Q : y* = 23 —4322+8208. Let P = (24, 108) € E(Q). Compute 5P = P+P+P+P+P.

Theorem 1.1.6 (Mordell). For an elliptic curve E/Q, the abelian group E(Q) is finitely generated.
This implies E(Q) = A x Z" where A is finite and > 0.

Theorem 1.1.7 (Mazur, 1978). The group A is isomorphic to Z/nZ for 1 < n < 12 withn # 11, or Z/2Z x Z/nZ
withn = 2,4,6,8.

The number r = r(FE) is called the rank of E. It's a deep invariant, and it’s unknown whether r(E) is
computable. The BSD conjecture makes an analytic formula for r. It’s also unknown whether or not r is
bounded. Elkies gave an example with rank at least 28.

Example 1.1.8. For E/Q : y? = 23 + 875z, we have r = 0 and in fact E(Q) = {0, (0,0)} & Z/27Z. A

Example 1.1.9. For E/Q : y? = 234877xz. The BSD conjecture (and other things, e.g. Selmer groups) predicts
that r = 1. In fact, E(Q) = ((0,0), (x0,v0)) = Z/27Z x Z with

375494528127162193105504069942092792346201
6215987776871505425463220780697238044100

Ty =

The y-coordinate is worse, but you can find it from zy. [Update:

256256267988926809388776834045513089648669153204356603464 786949
490078023219787588959802933995928925096061616470779979261000

Yo =

seems to work.]
To find rational points on E as large as (o, yo), one needs to make use of secret ingredients (as opposed
to brute force). In this case, the secret ingredient is Heegner points. A

Let C' be a smooth projective geometrically irreducible curve over Q. (These are mild assumptions; e.g.
one can blow up at finitely many singular points to get smoothness.) Let g denote the genus of C. Then:

e If g =0, then C(Q) = () or C = P}, which has lots of Q-points.
e (due to Faltings) If g > 2 we know that C'(Q) is finite. (This used to be the Mordell conjecture.)

e If g =1,and C(Q) # (), we may choose P € C(Q). Then there exists an embedding
C— P

whose image is an elliptic curve E : y? = 22 +ax+bsuch that P — O. (This leads to another definition
of elliptic curves, as we'll see later.)

Thus elliptic curves occupy a Goldilocks zone in the study of smooth projective geometrically irreducible
curves over Q.



1.2 Jan 23,2020

[Again, a basic reference is Silverman’s Arithmetic of Elliptic Curves]
Today will be an algebraic geometry review or crash course.

Definition 1.2.1 (Definitions; K algebraically closed). Fix n > 1 and let K be an algebraically closed field.
(We would like to eventually drop this, for number theoretic purposes.)

Affine n-space is A" et gn (so n-tuples of elements of K). Projective n-space is P* = (K"*1\ {0})/ ~
where a ~ b if a = Ab for some A € K*. The equivalence class of (zo, ..., z,) is denoted [xo, . .., z,].

For a set I of polynomials in K[x1,...,z,], the (affine) variety defined by I is

Vi P e A" f(P)=0forall f € I} C A™.
The set V7 is unchanged if we replace I by the ideal it generates. Foraset I C K{z, ..., z,] of homogeneous
polynomials, the (projective) variety defined by I is
7 {P € P"|f(P) = 0 for all homogeneous f € I}.

(Note that V7 is well defined because f(Ab) = A?f(b).) As before, the set V7 is unchanged if we replace I by
the ideal it generates.

The sets A™ and P™ have the Zariski topology; the closed sets are the V;. Then V; gets a topology induced
from A™ or P™.

We say V = V; is irreducible if whenever V' = V; U V5 for closed Vi, Vs, then V = Vi or V = V5.

The dimension of an irreducible V' is the largest d > 0 such that

V=WaWo---2V

with V; irreducible.
Consider an affine variety V' C A™. We may define its ideal

IV) ¥ (f € K[z1,...,2,]|f(P) = 0for P € V}

and its coordinate ring
KV] < Klzy,... ) /I(V).
These give distinct functions V' — K (by evaluation).

Note that V is irreducible if and only if (V') is a prime ideal, if and only if K[V] is an integral domain.
If V is irreducible, the function field K (V') of V is the fraction field of K[V]. In this case, dim V = trdeg K (V)
is the transcendence degree of K (V).

For P € V, the local ring of V at P is

KW {1 fg e kIv1.0(P) 20}
consisting of elements of K (V') which are defined (“are reqular”) at P. We can also define
K[Vlp - K
fr= f(P)
with kernel mp. Then V' is non-singular at P if and only if dimgx mp/ m% = dimV.

If V is irreducible and has dimension 1 (e.g. elliptic curves) and P € V is non-singular, then K[V]p is a
discrete valuation ring (this means that the ideals of K[V]p arem%, mp, m%, ... and {0}). In particular, there
isordp: K[V]p — {0,1,2,...} U {00} such that for f € K[V]p \ {0}, the number ordp(f) is the smallest
e > O such that f € m7.

We may extend ordp to amap ordp: K(V) - Z U {oco} by ordp(f/g) = ordp(f) — ordp(g). The idea is
for f € K(V) we may define a map

V- K
P f(P)


http://www.pdmi.ras.ru/~lowdimma/BSD/Silverman-Arithmetic_of_EC.pdf

If ordp(f) > 0, it is the order of the zero at P. If ordp(f) < 0, then —ordp(f) is the order of the pole at
P. A

Definition 1.2.2 (Definitions; K perfect). Consider a perfect field K. (This contains characteristic zero, finite,
and algebraically closed fields.) This assumption simplifies the algebraic geometry greatly.

For K = Q, we asserted last time (Example 1.1.8) that the only solutions of y? — (23 + 875z) = 0 in Q are
(z,y) = (0,0). There’s no interesting geometry here, so something has to be done:

Fix an algebraic closure K of K. Define Galx = G% /i to be the group of automorphisms of K that fixes

K. Then Galg C' K, and the fixed points K% , since K is perfect.
For I C K[z1,...,x,], we may define

V=V, Y {(PecK"|f(P)=0for f eI}

Note that Galx K" and fixes K™. For o € Gal i, f €1I,and P € V, we have
0=0(f(P))=0o(f)(a(P)) = f(aP),

so Galy C'V. It follows that
veils — (pe K"|f(P)=0for f € I}.

Then Galg CK|[x1, ...,z with K[z1,...,2,]%% = K[z,...,z,]. Also, Galg CI(V) with
I(V)Slx = {f e K[z,...,2z,]|f(P) = 0for P € V}.

We denote by I(V/K) def 1(V)Galk |
We may also define

KV Y Kzy, ... 20/ I(V/K) < K[V].

:?[V]GHIK

For aset V C K" with a Galois action Galx 'V, we may ask whether V' is “defined over K” (i.e., if
it comes from a set I C KJz1,...,x,]). The answer (or definition) is that I(V') is generated by I(V/K) =
I(V)N Klx1,...,T,]

We may summarize these sets and their fixed points in the following table:

Set with Galois action Fixed points
KW/ K’I’L
V={PeK"|f(P)=0for f eI} {Pec K"|f(P)=0for f I}
Klz1,. .., 7] Klzy,..., 2]
I(V)={f € Klz1,...,z,)]|f(P) =0for P e V} | I[V/K) ={f € K[z1,...,z,]|f(P)=0for P € V}
K[V] K[V]=Klzi,...,z,)/I(V/K)

There is also a Galois action Gal CP"(K), with fixed points P (K )% = P"(K). (For K = Q, observe
that [v/2, V8] € P!(Q) is stable under the Galg action. But in this case, [v/2, V8] = [1,2].)

For a projective variety V. C P", I(V) is the ideal of K[zo,...,x,] generated by homogeneous f €
Klzo,...,2,) such that f(P) = 0forall P € V.

Then V is “defined over K if I(V') is generated by homogeneous f € I(V) N K|xzo, ..., z,].

For a point P = [z, ..., z,] € P"(K), we have z; # 0 for some i, so P = [zo/x;,...,1,..., 2, /z;]. Then

K(P) e K(xo/xi, ..., xn/x;) is the minimal field of definition of P. A

Let’s consider a projective variety V' C P". Again, V' is irreducible if and only if I(V') is prime. We can
cover P with A™’s. Indeed, for 0 < i < n, we have a map

A" — P"
(a1y... an) = [a1,...,1,... 4]

where the 1 appears in the i-th coordinate. The image of this map is open in P". For a fixed 0 < i < n, we
may restrict V to A" NV C A"; this is an affine variety. Conversely, V' C A" gives rise to its projective closure
V' C P", which is the closed set containing V. Then V N A" = V.



Example 1.2.3 (Elliptic curves). For example, for i = n = 2 we have
A? — P?
(z,y) = [z,y,1]

We may consider the variety V' C A? defined by y*> = 2® + ax + b for a,b € K. Its projective closure V' is
defined by Y?Z = X3 + aX Z? + bZ3. Take a point [z,y,2] € V. If z # 0, then we may assume z = 1 and
y* = 2® + ax + b. On the other hand, if z = 0 then = 0, and [z,y, 2] = [0, 1, 0], which was our point at
infinity O. A

If V C P? is irreducible, then K (V) is the function field of V' N A™. A better definition is that K (V)
consists of 5 with f, g € K|[zo,...,z,] homogeneous of the same degree and g ¢ I(V'); then 5—1 = Z;% if and
only if figs — fog1 € I(V).

Definition 1.2.4 (Morphisms). Let K be algebraically closed and let V; C P and V, C P" be irreducible
varieties. A rational map ¢: Vi --» V, is given by functions fy, ..., f, € K (V1) (not all zero) such that
©(P) = [fo(P),..., fn(P)]isin V; for all P € V; where all f; are defined.

The map ¢ is reqular at P € V if there is g € K (V1) such that gf; are regular at P and (gf;)(P) # 0 for

some 4. In that case,
def

The map ¢ is a morphism if it is regular atall P € V. A

Example 1.2.5. Suppose the characteristic of K is not 2. Consider V C P? defined by z? + y* = 2?. We have
o: Pl -5V

2y x? —y? }

S Pl N |
[.IHy] |:$2+y2’$2+y2’

This map is regular if 22 + y* # 0. On the other hand, ¢ is also the map

22 —y? 22 442
1
[z 91 = [ o 2zy T 2y }
This is regular if zy # 0. Since 22 + y* = 0 and xy = 0 cannot simultaneously happen (unless [z, y] is the
illegal point “[0,0]”), we have verified that ¢ is a morphism.
We may check that it has an inverse V' — P! given by [a, b, ] + [<E2 1] JAN

a

Next time we will talk specifically about curves.



1.3 Jan 28, 2020

[There will be chill OH on Thursdays 1:00-2:30 PM in MLT 555.]

Fix a perfect field K and an algebraic closure K. We have defined A" = K and P" = &\ {0})/ ~.
A set of polynomials S C K[z1,...,z,] or K[z, ...,z,] gives rise to an affine variety

V={PeA"|f(P)=0forall fe S} CA"
and a projective variety
V ={P e P"|f(P) = 0 for all homogeneous f € S} C P"

respectively. We'll say that V' is defined over K if the ideal I(V) is generated by I(V/K) = I(V) N K[x].
Equivalent formulations of defined over K include:

e The absolute Galois group Galy = Gal(K /K), acting on K [x], acts on I(V). There is a notion of Galois
descent of vector spaces which gives I(V)%x @, K =5 I(V).

e The absolute Galois group Galg, acting on A™ or P", actson V.

We use notation A%, and P}, to remind ourselves that our affine and projective space is defined over K.
We'll talk about curves today.

Notation. A variety V' defined over K is nice if it’s smooth, projective, and (geometrically) irreducible.

Let’s consider a nice curve C over K (so C is 1-dimensional). For a point P € C, recall that
K[C]p ={f € K(O)|f isregular at P} C K(C)

is a discrete valuation ring with corresponding valuation ordp: K(C) — Z U {co}. (Warning: in general,
Galk does not necessarily act on K[C]p if P ¢ C(K). Indeed, ordp(f) = ord,py(c(f)), so one should really
consider the conjugates of P.)

Definition 1.3.1. A uniformizer at Pisat € K(C)suchthatordp(t) = 1. (One canin facttaket € K(C).) A

Observation 1.3.2. Consider a rational map ¢: C --» V with V' C P" projective. Then ¢ is a morphism!
Indeed, consider ¢ = [fo,..., fn] with f; € K(C). Then p(P) = [fo(P),..., fo(P)], when defined, is
in V. Now take any point P € C and let m = ming<;<,ordp(f;). Since ¢ = [t~ fy,...,t " fn], and
ordp(t~™f;) > 0 for all i with equality for at least one 7. It follows that p(P) = [(t~" fo)(P), ..., ™™ f»)(P)]
is a well defined point in projective space. A

Example 1.3.3. For f € K(C), we have C --» P} givenby P + [f(P),1]. This gives a morphism f: C — P}
given by
P),1] iford >0
(P = {[f( 1] P(f)

[1,0] otherwise.
In other words, we obtain a bijection
{morphisms C — P}, defined over K} +— K(C) U {o0},
where {co} corresponds to the constant morphism [1, 0]. A

Fact 1.3.4. If ¢: C1 — Cy is a morphism of nice curves, then it is constant or surjective. If p: C1 — Cy isa
non-constant morphism of nice curves over K, we get a homomorphism

" K(Cy) = K(Ch)
frtfop
of fields fixing K.



Fact 1.3.5 (Facts).

o The field extension

K(Cy)

©*(K(C2))
has finite degree; its degree is the degree of  and is denoted deg ¢. This extension factors

K(Cy)

L

" (K(C2))

where K (C1)/L is purely inseparable and L/o* K (CY) is separable. We denote the degrees of these extensions
by deg; ¢ and deg, ¢ respectively, and we say ¢ is separable if deg, ¢ = deg . (Warning: if K has positive
characteristic, then K (C;) is not perfect.)

o Any homomorphism i: K(Cs) — K (Ch) of fields that fixes K is of the form ¢* for a unique ¢: Ci; — Co.

e Fixafinite index subfield F' C K (Ch) containing K. There is a nice curve Cy over K (unique up to isomorphism)
and a morphism ¢: C1 — Cy such that ¢*(K(Cy)) = F. Thus we get an equivalence of categories between
curves and function fields (see Silverman for details).

Let ¢: C1 — C3 be anonconstant morphism of nice curves over K. For P € C1,We define the ramification
index of p at P to be

ep(P) = ordp(p71),
where t € K(C5) is a uniformizer of ¢(P). We say ¢ is unramified in P if e, (P) = 1.
Fact 1.3.6 (Facts).
o When ¢ is separable, we have e, (P) = 1 for all but finitely many P € C\.

e ForQ € Csy,
Z e, (P) = dego.

Pep=1(Q)

e For all but finitely many Q € Ca, #¢01(Q) = deg, ».

Divisors.
Let’s fix a nice curve C'/ K.

Definition 1.3.7 (Divisors). The divisor group of C, denoted Div(C), is the free abelian group on the set of
points of C.
An element is a divisor, i.e. a formal sum

D:anP

pPeC

where np € Z and np = 0 for all but finitely many P. When C is an elliptic curve, we may write

D= np(P)

preC


http://www.pdmi.ras.ru/~lowdimma/BSD/Silverman-Arithmetic_of_EC.pdf

to distinguish divisors from the group law on the elliptic curves. The degree of D is

deg D = Z np,
PeC

and Div®(G) ' ker(Div(C) <% 7).
The group of divisors of C over K is

Divg (C) = Div(C)%alx

where Galx CDiv(C) by (> npP) = > npo(P). Note that Divg (C) is not generated by C(K). Indeed,
given P € C, adding the orbits under the Gal action gives an element of Div x (C). (This produces a basis
of Divg (C) )

We also define

Div% (C) = Div?(C)%alx
= Div"(C) N Divg (C).

Take f € K(C)*. Its divisor is div(f) = Y_ pc ordp(f)P. A

Fact 1.3.8. We have deg(div(f)) = 0,and div(f) = Oifandonlyif f € K. If f € K(C), then div(f) € Divg (C).

Example 1.3.9. Suppose K does not have characteristic 2. Take C' C P% given by an affine model y* = f(x)
with f(x) € K[z] cubic, monic, and separable. This implies C is a nice curve.

Take z,y € K(C). Let’s compute div(y). Note that C has a single point O = [0, 1, 0] which is “at co”.

Take f(x) = (v — e1)(x — e2)(z — e3) with e; € K distinct. Define P; = (e;,0) € C.

We claim that ordp, (y) = 1. Let’s consider i = 1. Note that the discrete valuation ring K[C]p, O m
contains a unique maximal ideal m = (z — e, y). Since

y2

rTas (z —ex)(x —e3)’

where (z — e3)(x — e3) is a unit in K[C]p,, it follows that m = (y). In other words, y is a uniformizer.

It follows that that div(y) = Py + P, + Ps — 30. YAN

Next time we’ll state Riemann-Roch and get to elliptic curves.
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14 Jan 30,2020

[OH on 1:00-2:30PM in MLT 555 today is canceled. There will be an extra one next Tuesday. By the way;,
a canvas page exists.]

Let C be a nice curve over a perfect field K. (Here, nice means smooth, projective, and geometrically
irreducible.) We defined the divisor group Div(C), which is the free abelian group on C (ie. on K-points).

Thus a divisor D is of the form
D= Z npP = Z np(P).

PeC PeC

The brackets (P) are to distinguish divisors from the group law on an elliptic curve. Only finitely many np
can be nonzero. We also defined o
Div g (C) = Div(C)SUE/EK),

We had a degree map deg: Div(C) — Z, which is a homomorphism of groups; it sends each point P +—
deg(P) = 1. We have Div’(C) = ker(deg) and DivY;, which can be defined in either of the reasonable ways
one might define it. There is a homomorphism

div: K(C)* — Div’(C)
fr Y ordp(f)- P.

PeC

The map restricts to K (C)* A, Div) (C). Let’s get to Riemann-Roch now.

Definition 1.4.1. A divisor D = > npP is effective if np > 0 for all P € C. We write D > 0.

Wesay D > D'if D — D’ > 0, or equivalently if np > n/, for every P, where np is the coefficient of P in
D and n/, is the coefficient of P in D’.

For D € Divg (C), define

L(D) = {f € K(C)*: div(f) + D > 0} U {0}. A

Note that £(D) is a vector space over K. (It's closed under addition since ord p(f+¢) > min{ordp(f),ordp(g)}.)
If D=3 pcenpP, then

feL(D) < ordp(f)+np >0forall P € C.

Thus asking for f € £(D) is asking for f to have high order zeros whenever np < 0, and asking for f to have
not-too-high order poles whenever np > 0. Even though K (C)* is an infinite dimensional vector space, it
turns out that £(D) is finite dimensional for each D.

Theorem 1.4.2 (Riemann-Roch). Let C be a nice curve over a perfect field K. There is an integer g > 0, called
genus of C, such that if D € Divg (C) with deg D > 2g — 2, then

dimg £(D) =degD — g + 1.

(There’s a fancier version for all degrees that involves a correction term which is interesting in its own
right. We’ll be applying this theorem for elliptic curves, which has genus 1.)

The result follows from the case K = K, since one can verify that

def
Lz(D) =

{f e K(C)*: div(f) + D > 0} U {0}
is acted on by Galg; by Galois descent of vector spaces we obtain

L7z(D)% @ K =5 L(D)
and one can check L(D)%x = £(D).

Definition 1.4.3. An elliptic curve over K is a nice curve E over K of genus 1 with a distinguished point
0 € E(K). A

11



(Warning: there are genus 1 curves C/K with C(K) = 0.)
Let’s apply Riemann-Roch (Theorem 1.4.2) to E/K and D = n - O for n > 1. Then

dimg L(D)=n—1+1=n.

Note, of course, that £(O) consists of functions which are regular everywhere except with at worst a simple
pole at O. Since £(0O) is one-dimensional, and K C £(0), it follows that £L(O) = K.
Since £(2 - O) is 2-dimensional and contains £(0) = K, we obtain

L(2-0)=K®&Kzx

for some x € K(C)* with ordp & = —2. (We know its order is exactly 2 because if it was 1 it would’ve shown
up in £(0O).) Observe also that
LB-0)=K®Kzd Ky

for some y € K(C)* with ordp y = —3. It now follows that
L(4-O)=Ka® Kz ® Ky® Ka?,
since 22 has ordp z? = —4. Similarly,
LGB-0)=K®&Kx® Ky® Ka?> ® Kry

and
L6-O)=K®dKx® Ky® Ka®> ® Key ® Kv,

where v = 3 (since ordp 2° = —6), or v = y? (since ordp y> = —6). In particular, if we pick v = 3, then
y* € L(6 - O) gives a linear dependence

y2 + a1y +asy = cx® + a2z2 + aqx + ag
with a; € K and ¢ € K*. We can replace x by cz and y by ¢?y to obtain

Y2 + arxy + asy = 2° + asz® + asx + ag. ©)
This is the Weierstrass model (cf. Definition 1.1.1)

Remark 1.4.4. Where is a5? We should think of the equation as a degree 6 homogenous, where degz = 2
and degy = 3, and deg a; = i. A

Lemma 1.4.5. We have K (F) = K(z,y).

Proof. By definition (Fact 1.3.5), we have [K (E) : K(z)] = deg(z: E — P}). Our claim is that this degree is
equal to 2. This is because given a point in P}, then there are two preimages. More rigorously, deg(z: E —
P}, = ordo (L) = 2, because the only pole of z is at O. Similarly, [K (E) : K(y)] = 3. Then [K(E) : K(z,y)]
is a number dividing both 2 and 3, hence is equal to 1. O

Let C' C P% be the curve defined by (©). We have a morphism

0: E— CCP%
P [a(P),y(P),1] P #0
x

O s K;)(O),l, G)(O)} = [0,1,0],

since ordo(§) = 1 and ordo () = 3.

Note thatdeg ¢ = [K(E) : K(z,y)] = 1. If we can prove C'is nice, then ¢ is automatically an isomorphism
(since it is on function fields); the hard part is showing C' is smooth.

Assume C C P2 given by (¥) is not smooth.

Exercise 3: Show that C is smooth at [0, 1, 0].

12



Suppose C is singular at some P € C \ {[0, 1,0]}. Without loss of generality, we my assume P = (0, 0)
after a linear change of coordinates of x and y. Set

f def y? + a1zy + asy — (CES + asz® + as + ag) = 0.

and observe that

0
— = a1y — 32% — 2a02 — a4 and —f =2y + a1z + as.
ox dy

So if C is singular then C is given by the equation C : y* + a1zy = 23 + asz.
This gives a rational map
p: C - Pk
(,y) — [z, y].
(Note that C is singular so this rational map doesn’t necessarily become a morphism.)
The map v has degree 1. The morphism is birational, with inverse given by
P - C
[1,t] — (£ 4 a1 — ag, t* + a1t? — ayt)

(This is automatically a morphism, since P is a nice curve!) We obtain the composition
E—f5 0ty Pl

giving a morphism ¢ o ¢: E — Pk with degree 1. Thus E — P} since they are nice It follows that the
genus of F is equal to the genus of P},. But the latter is zero, so that’s a contradiction.
This means that p: E — C C P2..
Last remark: the model (V) is not unique. Any two such models for E (that map O — [0, 1, 0]) are related
by
z=u?z +r
Yy = ugy’ + sulx’ +t
forr,s,t € Kandu e K*.
In conclusion, an elliptic curve is a genus 1 curve with a distinguished point (Definition 1.4.3). Riemann-

Roch (Theorem 1.4.2) gives Equation (7). Any two such equations are related by a change of variables as
above.
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1.5 Feb 4, 2020

[There will be usual OH on Thursdays, from 1-2:30pm. Today, there will be OH 2:30-4pm.]

Recall that an elliptic curve over K is a nice curve E over K of genus 1 with a distinguished point O €
E(K). (Recall that nice means smooth, projective, and geometrically irreducible.)

Using Riemann-Roch (Theorem 1.4.2) we showed that there is an embedding

©: E — P%
so that the image is cut out by a Weierstrass equation
v+ arzy + asy = 23 + asx + agx + ag, ©)
and ¢(O) = [0,1,0]. We've been calling this equation (V). (The idea is to choose z € L£(20) \ L(0), so

ordpz = —2,and y € L(30) \ L(2),so ordp y = —3.)
Other such embeddings are related by a change of basis, specifically by
r=u?2 +r
y = u3y/+su2x’+t
withu € K* andr,s,t € K.
One would need to show that any smooth model given by (©) is an elliptic curve. (The hard part is
showing curves defined by (V) has genus 1. We'll do that later, once we understand the genus better.)
Suppose char K # 2. By completing the square in y, we may assume a; = a3 = 0. If further char K # 2, 3,
we may also take ay = 0, since we may “complete the cube” (replace x — = — as/3). We arrive at the short
Weierstrass equation
vV =a34+ar+0b

with a,b € K and A % —16(4a3 + 27%) # 0.

With the short form, the model is unique up to change of basis:

= u2,

y = udy'
with u € K*. In this basis, (y')? = (2/)® + a2’ + b turns into

y? =2 +au'r +bub, (ue K*)
We may define
def 1728A(4a)3 €K,
called the j-invariant of E. Note that j(E) does not depend on the model.

i(E)

Proposition 1.5.1. For elliptic curves E and E' over K, E and E' are isomorphic if and only if j(E) = j(E').

The backwards direction can fail for K non-algebraically closed. For example, y* = 2°+1and y* = 2% +2
are isomorphic over Q but not over Q. This is because we need 1 = u® - 2, and u € Q but u ¢ Q. (We say
elliptic curves are isomorphic if there is an isomorphism of curves that matches distinguished points.)

Proof of Proposition 1.5.1. Let’s prove the backwards direction. If j = 0, then y?> = 2® + b is isomorphic to
y2 = 23 + 1, because there isu € K such that u®b = 1.
If j # 0, then a # 0 and a change of coordinates allows us to assume a = 1 (i.e., we may find u € K"
such that u*a = 1). Our Weierstrass equation becomes
P =23+ +0.
This form is unique up to a sign in b (since u* = 1 implies u® = £1). But
) 1728(4 - 1)3
iB) = g
—16(4 - 12 + 27b2)

determines b up to a sign as well. O
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Given j € K with char K # 2, 3, there is an elliptic curve E/K with j(E) = j. Indeed, for j = 0 we have
y? =23 + 1, and for j = 1728 we have y? = 3 + z. For j # 0, 1728, the curve
2

y:z3+£ J _A

S RS L - 1
4717287 4 j 1728 @

suffices. (This curve has A = 263'252/(j — 1728)3 # 0.)

The automorphisms of the elliptic curve in Equation (1) are Z/2Z, generated by (z,y) — (z, —y), whereas
the automorphisms of y? = z3 + 1 are Z/6Z, generated by (z,y) — ({32, —y) and the automorphisms of
y? = 2% + x are Z /47, generated by (z,y) — (—z,4y). (These are, of course, automorphisms over K.)

We also have a definition of j(£) when char K is arbitrary. See the book for details.

Now let’s assume char K # 2 (so possibly char K = 3), and suppose

E:y* = f(x) € K[x]

with f monic, cubic, and separable, so that E is an elliptic curve. Assume that f splits over K. Then a linear
change in x will give a Legendre form
Ey:y?=z(x—1)(z -\
with A € K\ {0,1}. Then
285N —X+1)3
A2(N—1)2

For j € K \ {0,1728}, then there are exactly six A € K such that j(E)) = j.

J(Ey) =

Let’s think about divisors. Take a nice curve C over a perfect field K. We defined the group of divisors
Div(C) of C, as well as the subgroup Div’(C') C Div(C) consisting of degree zero divisors, and the subgroup
div(K(C)*) C Div’(C) consisting of “divisors coming from functions”, i.e.

div(f) = Y ordp(f)- (P).
pPeC

(We claimed without proof that div(K (C)*) C Div®(C).)
From these groups we can define the Picard group, or divisor class group

Pic(C) ¥ Div(C)/div(E(C)*) and Pic®(C) & DivO(C)/div(E(C)).

Alternatively, the degree map Div(C) 8, 7 descends to a map on Pic(C), and Pic’(C) is the kernel. As
usual we may define

Pick (C') ¥ Pic(C)Calx

Note that in general, Pic(C')%% is not equal to Div (C)/div(K (C)*) (it turns out equality will hold for
elliptic curves).
We have
Pic% (C) = Pic® (€)%l = Pick (C) N Pic®(C).

Then:
e A divisor D € Div(C) gives rise to an equivalence class [D] € Pic(C).

e Given two divisors D, D’ € Div(C) we say D and D’ are linearly equivalent if [D] = [D’], and we write
D ~ D'. (This means D = D’ + div(f).)

Example 1.5.2. Consider P! = A' U{[1,0]} = K U {oo}. Then Div’(P') is generated by D = (a) — (c0) with
a € K. Note that D is principal, i.e. D = div(f) for some f € K(P')*, namely, if ¢ is a coordinate for P!,
div(t — a) = (a) — (c0). It follows that Pic’(P') = 0. A

Lemma 1.5.3. Let E be an elliptic curve over K. For any divisor D € Div"(E), there is a unique point P € F such
that D ~ (P) — (O).
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Proof. Existence follows from Riemann-Roch (Theorem 1.4.2). Namely, Riemann-Roch says
dimz L(D + (0)) =deg(D+ (0))+1—g=1.

where L(D + (0)) = {f € K(E)*: D + (0) +div(f) > 0} U {0}.

In particular we may take f € £(D + (0O)) \ {0}. By definition, D + (O) +div(f) > 0 has degree 1. Thus
this divisor isjust a point, i.e. D+ (O)+div(f) = (P) for some P € E. It follows that D = (P)— (O)—div(f),
and D ~ (P) — (0).

Let’s prove uniqueness of P. Suppose (P) — (O) ~ (P’) — (O) for P,P’ € E. Then (P) — (P’) ~ 0, so
div(f) = (P) — (P') for some f € K(E)*. It follows that f + (P') > 0,and f € L((P’)), which is a vector
space of dimension 1 by Riemann-Roch. Since the constants are contained in £((P’)), it follows that f is
constant. So div(f) = 0 implies (P) = (P’). O

Lemma 1.5.3 gives a bijection

¢: B = Pic’(E)
P ((P) - (O)].

Thus we may give F a group law by stealing it from Pic’(E). (One can verify that this group law agrees
with the geometric definition from the first lecture. We’ll do this next time.)
Note that the identity element of the group E is necessarily O, since ¢(O) = [(O) — (O)] = 0.

Remark 1.5.4. The bijection ¢ gives a way to check if a divisor on £ is principal, i.e. is div(f) for some
feK(E)*. If
D= Z np(P) € Div(E),

PeE

then D is principal if and only if } ., np = 0and ),y np - P = O, where the second sum is the group
law in E. A
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1.6 Feb 6, 2020

Let E be an elliptic curve over K, with distinguished point O € E(K). We have a bijection

¢: E = Pic®(E) = Div?(E) /div(K (E)>)
P [(P)—(0)]

We give E the (abelian!) group law from Pic’(E) using ¢.
Observe that ¢ is compatible with the Galx-action: for o € Galg, we have

a(p(P)) = o([(P) = (0)]) = [(¢(P)) = (¢(0))] = [(¢(P)) = (O)] = ¢(a(P)),

where in particular we used that O € E(K) is fixed by o. Thus ¢ descends to an isomorphism ¢: E(K) =
Pic% (E). Note also that ¢(O) = [(O) — (0)] = 0, so O is the identity of E. Let’s show that this group law
on E is compatible with the geometric group law we saw in the first lecture.

Let’s assume E C P2 is defined by

y? + arzy + asy = 2° + agx”® + a4 + ae ©)

witha; € K and O = [0, 1,0].

Take any P, () € E. Let’s describe P + (); assume P and () are not O. Let L be the line through P and @
(or the tangent line if P = ). Then L intersects £ at three points P, Q), R € E (with multiplicity). We may
write

L:ax+by=1

with a,b € K not both zero. Then ax + by — 1 € K(E) gives rise to a divisor

div(az +by — 1) = (P) + (Q) + (R) — 3 - (O)
=(P)—(0)+(@Q) - (0) + (R) - (0)

so in Pic’(E) we obtain
0=¢(P) +¢(Q) + ¢(R).

In particular, in £ we have
P+Q+R=0,

or in other words P + Q = —R. So giving a geometric description of P + () reduces to giving a geometric
description of — R from R.

Assume R # O. Consider the line through R and O. This intersects E at three points, and we saw that
they add to O. Thus the third pointis —R = P + Q.

1 Ry~
-
bl
"\H_ - w\\
R
P+ =R

We have operations —: E — F and +: E x E — E, as well as a distinguished point O € E(K).

Claim 1.6.1. The operations — and + are morphisms of varieties.
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Proof. We have a rational map

—FE-—»F
(@,y) = (z,—y — a1z — ag)
that extends to a morphism O — O.

To make the notion of E x E precise in Silverman conventions (i.e., giving an embedding into projective
space), we observe that the Segre embedding sends

P % P s P(m+1)(n+1)—1
([1’07 e 7xm]7 [y07 e 7yn]) — [x0y07 cee 733iyj> e 7wmyn}

Then E x FE lives in P? x P? — P&,
Now +: E x E — FE is a rational map: on the open subset

UL {(PQeEEXE P#0,Q+0,P#+Q}
we have a morphism
+:U — E;

explicit equations for this morphism are given in Silverman, Ch 3. (Warning: The rational map + does not
automatically extend to a morphism, because E x E is not a curve!)

To extend + to a morphism, one could play with the explicit equations and make it defined on E x E\U.
Alternatively, we may translate U around by the group structure:

Take any @) € E. The translation by Q map 7¢: E — Eisgivenby P — P+(Q). Note that 7¢ is a morphism,
because it's a morphism on E \ {O, —Q}: now 7¢ extends to a morphism on all of E because it’s a curve. In
fact, 7¢ is an isomorphism, since it has inverse given by 7_¢.

Given two points P and @, 7p x 7¢ is an automorphism of £ x E. Then we may consider

VY (7p x 7)(U) CE x E.

The claim is that the V’s cover E x E as P, € E vary. We are done because to define + on each V we may
use the commutative diagram

V—F
T_pXT_QJ TTFH»Q
U—>E
so +: V — E, and gluing these morphisms together we get that £ x E S Eisa morphism. O
We say that E is a group variety.

Aside 1.6.2. We focus on Weierstrass models since they are simple and every E/K has such a model. One
should keep in mind how much we are using these models. There are higher dimensional generalizations
of elliptic curves called abelian varieties, and proofs that don’t use the model often generalize to abelian
varieties. A

Example 1.6.3 (Edward’s curve). Suppose char K # 2. Fixa d € K* that’s not a square. Then
E/K : 2® +y* = 1 + da*y?,

with O = (0, 1), is a smooth affine model for E. The projective model is singular, and you need to blow up.
The blowup is an elliptic curve over K.

Then E(K) = {(z,y) € K*: 2% + y> = 1 + dz?y?}. (The points at infinity are defined over K (v/d).)

For (z1,y1), (x2,y2) € E(K), we have

T1Y2 + Tay1 Y1Y2 — T1T2 )

J/‘ b + x bl - ( b
(@15) + (@2,42) 1+drizeyiye 1 — drizay1y2
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Nice properties of Edward’s curve is that the group law is given by just one equation and that there is
symmetry. Computing the group law is also more efficient. There are applications to cryptography. Un-
fortunately, not all elliptic curves are of this form; for example, the point (1,0) € E(K) has order 4 - the
existence of such a point is a pretty special condition to impose on an elliptic curve. A

Definition 1.6.4. A homomorphism ¢: E — E’ of elliptic curves is a morphism of curves where ¢(O) = O.
A

Proposition 1.6.5. The map ¢ is a homomorphism of groups.

Some more background will be useful: Consider a morphism ¢: C' — C’ of nice curves over K. This
induces a morphism

¢.: Div(C) — Div(C")
S ne(P) o 3 np(e(P)

peC peC
that preserves degrees, i.e. deg v.D = deg D for each D. Thus this induces an isomorphism
¢.: Pic?(C) — Pic’(C”).

This is because ¢, sends principal divisors to principal divisors, i.e. p.(divf) = div(p.f), where ¢, f is
defined as follows: Note that ¢ defines an inclusion

0" K(C") = K(C)
given by g — g oy, and now ¢, f = N?(C)/f(c,)(f).
Proof of Proposition 1.6.5. Consider the diagram

~ .0
Em} Pic (E)

‘| ¥
E' —=—— Pic’(E)
P—[P-0]

It commutes because
([P = 0]) = [p(P) — O] = [p(P) — ¢(O)],

50 ¢ = ,, of which the latter is a group homomorphism. O
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2 The Geometry of Elliptic Curves

2.7 Feb 11, 2020

Let /K be an elliptic curve over a perfect field K, with distinguished point O € F(K). (We have made
a choice of K.)
Then FE is an abelian group with an isomorphism

E = Pic’(E)
P—[(P)—(O)]

Z npP +— [ Z np(P)}

PeE PcE

where the sum > np P uses the group law in E.
We said a homomorphism ¢: E — E’ of elliptic curves is a morphism of curves such that ¢(O) = O.
We saw that such a ¢ is a group homomorphism (Proposition 1.6.5).

Definition 2.7.1. We say ¢ is defined over K if it’s defined over K as a morphism (or if it’s stable under
Galg). A

Example 2.7.2. For m € Z, we have a homomorphism [m]: E — E where
[m|(P)=P+---+P (fm>0)
S
m tmes

and
m](P)=—-P—---—P (ifm<0). A

—m times

Non-Example 2.7.3. FixQ € E\ {O}. Theng: E — E givenby P — P + @ is not a homomorphism, since
7Q(0) # O.

However, take any O € E(K), and let E’ be the elliptic curve E with distinguished point ©’. Then the
translation 7o/ : E — E’ with respect to E is an isomorphism of elliptic curves. A

More generally, for any morphism ¢: E — E’ of curves,
T_yp)o: E— E'
is a homomorphism of elliptic curves!
Definition 2.7.4. We say a homomorphism ¢: E — E’ is an isogeny if it is nonconstant, i.e. ¢ # 0. A

Warning: what we call a homomorphism, Silverman calls an isogeny. (The only difference is whether
we call the zero map an isogeny or not.)

Let ¢: E — E’ be an isogeny, and define ker ¢ C E; it’s stable under Galk if ¢ is defined over K. Take
any Q € E’, and choose P € ¢~1(Q) (the fiber is nonempty since ¢ is nonconstant, hence surjective). It
follows that ¢~ *(Q) = {P + R: R € ker ¢}, since on the level of groups ¢ induces an isomorphism

E/kero = E'.
So all the fibers have the same size:

#071Q) = #kerp forallQ € E'.

One can show that # ker ¢ = deg, ¢ is the separable degree of ¢ (cf. Fact 1.3.5).
Suppose now that ¢ is separable. For any Q) € E’,

D ep(P) =degyp = #kerp = #071(Q),

Pep=1(Q)
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where e, (P) is the ramification index of ¢ at P. Since each e, (P) is a positive integer, we conclude that
e,(P)=1forall P € E,i.e., ¢ is unramified.

The Frobenius isogeny. Let us assume p = char K > 0 and take ¢ = p" for some > 1. We have an
automorphism of fields

K— K

x> xd,

(here surjectivity is the assumption that K is perfect).
Let’s consider a general nice curve C' C P}. Let C(? C P be the nice curve over K with homogeneous
ideal

[(CD)y = {fD: feI(0)}

where f(9) is the polynomial obtained by raising the coefficients of f to the g-th power. Then the g-th power
Frobenius morphism of C is a map

¢q: C — CD

[T0, ... xp] = [2d, ... 2d].
Indeed, if P = [x¢,...,z,] € C and f € I(C) is homogeneous, then f(P) = 0 and taking ¢-th powers
0= f(P) = fO([af,....a%])
—_———
=pq(P)
implies ¢, (P) € C(@,

Fact 2.7.5 (Silverman Ch 11, §2). The morphism o, is purely inseparable of degree q. Furthermore, @y (K (C@)) =
{f7: f e K(O)}.

Fact 2.7.6. Let v: C — C' be a nonconstant morphism of nice curves over K with char K > 0. Then 1) factors as

P: 0 2 ol A, ¢
where @, is the g-th Frobenius morphism, with ¢ = deg; v, and X is separable.

This fact was that the decomposition

K(C)
L
|

YK (C)

where K (C)/L is purely inseparable and L/¢*K(C") is separable, and satisfies L = {f?: f € K(C)}.

If E is an elliptic curve, and ¢ = p” where p = char K > 0, then ¢, : E — E(@ is an isogeny. If E is given
by E : y? = 2% + az + b, then E(9 is given by E(9) : y? = 2 + a%z + b?. Here, ¢ (z,y) = (29, y7).

In this case, kerp, = {0}. Then ¢,: E — E@ is an isomorphism of groups. However, it is not an
isomorphism of elliptic curves, since deg p, = ¢ > 1.

For an isogeny ¢: E — E’, we get a factorization

o B2y gl A, By

where ¢, is Frobenius, and ) is a separable isogeny.
For m € Z, define E[m] = ker[m] to be the m-torsion subgroup of E.
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Example 2.7.7. Let’s compute E[2]. When char K # 2, then
E/K :y* = f(x)
for some cubic and separable f. Since [-1](z,y) = (z, —y), the 2-torsion has a nice description:
E2]={P€E:[-1]P =P} ={(z,0): 2 € K arootof f}U{0}.

Since E[2] is a group of order 4, killed by [2], we see E[2] = Z/2Z x Z/2Z.
When char K = 2, then
E:y? 4+ aizy + asy = 2° + asz® + sz + ag

and
[—1](z,y) = (¥, —y —a1v — a3) = (v, y + a1z + az)

Then (z,y) € E[2] if and only if [-1](x,y) = (z,y), if and only if a;x 4+ a3 = 0. Then:
e If a; # 0, there is a unique x and E[2] = Z/2Z.
e If a1 =0, then as # 0 (otherwise our model is singular). Then E[2] = {0}, and in fact E[2"] = {0}. A
The story here is that for m # 0, the map [m]: E — E has degree m?. Then:
e If m is not divisible by char K, then [m] is separable.
e If m is divisible by p = char K, then [m] is not separable. Consider [p]: E — E, which has degree p?.
Then either [p]: E — E factors as

p: E 25 E®) 2, p

where ¢, is the p-th power Frobenius and ) is a separable isogeny of degree p, and Ep] = Z/pZ, or
[p]: E — E factors as

p: E 25 B0Y) A, p

where A: E?*) &5 Eis degree 1. In this case, E[p] = {0}.
Proposition 2.7.8. For m € Z\ {0}, [m] is an isogeny.

Proof. In the case char K # 2, suppose [m] = 0. We can assume m = p is a prime, since [m] o [n] = [mn].
In particular, [p|P = 0 for all P € E[2]. Since E[2] is nontrivial, p cannot be odd. It follows that p = 2. But
[2] # 0, since E[2] = ker[2] has order 4.

In the case char K = 2, the proof uses the same idea, but we first show that E/[3] is finite and nontrivial.

O
Example 2.7.9. Consider
E/Fy:y? +ay+y =2+ 1.
In this case E[2] = Z/2Z. Then
E-23F-25FE
for some degree 2 isogeny . One can explicitly compute
M y) = (m2+x+1 x2y+x+l)
W= r+1 7 x2+1 /)
A
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Consider a separable isogeny ¢: E — E’. (Recall that this means the field extension K (E)/¢*K(FE’) is
separable; the degree of this extension is denoted deg ¢.)

We saw that for any @ € E’, the fiber has size #¢~!(Q) = deg . In particular, ker ¢ is an abelian group
of order deg ¢. Also, p is unramified.

For @@ € ker ¢, we have a translation map 7g: £ — E given by translation by @); it an isomorphism of
curves, since

@OTQ:@.

(In the language of algebraic topology, the map ¢ is a covering map, and 7 is a deck transformation.)
In other words, we have defined a map

ker ¢ — Aut(K(E)/p*K(E"))
Q75

This is an injective homomorphism. (Injectivity follows from the fact that the induced map on function
fields determines the morphism.)

Since # ker ¢ = deg ¢ and #Aut(K (E)/p*K(E')) < deg ¢, it follows that the extension K(E)/¢*K(E')
is Galois, and the that map

ker p = Gal(K(E)/¢*K(E"))
Q=75
is an isomorphism; note that the Galois group is an abelian group.
Remark 2.8.1. If ¢ is defined over K, then Galx C ker . A

Now take a finite abelian subgroup A C E. Our goal is to construct a separable isogeny ¢ with ker ¢ = A.
(We will succeed, and we’ll see that ¢ is essentially unique.)
We have an injective homomorphism

A Aut(K(E)/K)
Q=75

Galois theory says the field extension K (E)/K (FE)* is Galois with Galois group A. The curve-to-function-
field correspondence (Fact 1.3.5) implies K(E)* = ¢*K(C) where C is a nice curve and ¢: E — C'is a
nonconstant morphism. (We want to show that the genus of C'is 1.)

The morphism ¢ is unramified. For any @ € C, choose P € ¢~ !(Q). Then

o '(Q)={P+R: Rec A}
has cardinality |A|. We apply a black box:

Theorem 2.8.2 (Hurwitz formula; Silverman Ch1I, §5). Let ¢: C' — C' be a nonconstant morphism of nice curves
of genus g and g’ respectively. Then

29— 2 = (deg)(29' —2) + D _ (ex(P) = 1)
pPeC

if
a) char K =0, or
b) char K =p > 0and pte,(P) forall P € C.

In general, we always have “>".
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In our setting, e, (P) = 1 for all P € E, so Theorem 2.8.2 says
2-1-2=degy-(2-genus(C) —2)

implies that the genus of C'is 1. Let E’ = C' with distinguished point ¢(O). Then E’ is an elliptic curves,
and ¢: E — E'is an isogeny. It is separable and ker ¢ = A.

Fix an elliptic curve E/K. We get

{ separable isogenies ¢: E — E’

up to an isomorphism of E’ } — {ﬁnite subgroups of E}

@ — ker ¢
Remark 2.8.3. For E/K, if A C E is Galk-stable, then there is a separable isogeny ¢: E — E’ over K with
kernel A. Since Galx C K (E)4 C K(E), one can play the same game with (K (E)#)%x = p*K(E"). A
For A C E finite, the isogeny ¢ whose kernel is A is denoted by
v: E— E/A.
This is the usual quotient as a group, and the content is that £/A has a curve structure.
Example 2.8.4. Let char K # 2. Let’s take E/K with a point of order 2. Up to a translation,
E/K :y* = 2(2* + ax +b)
for (a? — 4b)b # 0; the point of order 2 is P = (0,0) € E(K). Whatis E/(P)?
Let’s do some [high school] algebra. Note that

z(z? +b) = y? — ax?

z2(2% + b)? — dbaz* = (3 — az®)? — 4ba?
22(2? = b)? = y* — 2a2%y* + (a® — 4b)2?
y(@® =b\2_ vyt y?
(T) == — Qag + (a® — 4b)ﬁ (away from (0, 0))
so we have an elliptic curve
E'/K :Y? = X® - 2aX + (a® — 4b) X
with a morphism
p: E— E
2 2
y~ y(@” - b)
(z,y) = (ﬁ’7>
The map ¢ is an isogeny. (The only thing one needs to check is the point at infinity is mapped to the point
at infinity.) In fact ¢ is separable, and ker ¢ = {O, (0,0)}. A
Proposition 2.8.5. Let ¢: E1 — E» be a separable isogeny. Let ¢ : £y — E3 be an isogeny. Assume ker ¢ C ker 1.
Then ¢ = X o p for a unique isgeony \: Ey — Es.

Proof idea. Since ker ¢ C ker ¢, we have ker ¢ < Aut(K(E,)/4*K(F3)) given by Q — 7(,. We get a tower of
extensions



The extension ¢* K (Es)/v* (K (Es3)) gives . O

Example 2.8.6. Consider a separable isogeny ¢: E — E’ of degree n. Then ker ¢ is an abelian group of order
n, and
ker ¢ C E[n] = ker[n].

This gives a factorization
m:ESE S E

for a unique ¢. The map ¢ is called the dual isogeny of ¢. It satisfies ¢ o ¢ = [n]. We'll see later that ¢
exists for all isogenies. We say E and E’ are isogenous if there is an isogeny; the dual isogeny will show that
isogenousness is an equivalence relation. A

Let Hom(E, E') be the group of homomorphisms £ — E’ (It has + using the group law of E’, i.e. ¢ + 1
is the map sending P to p(P) + ¢(P).)

Let End(F) = Hom(FE, E) be the ring of endomorphisms of F, with + as above and multiplication being
composition of functions.

We define Homg (E, E') and End g (E) in the same way, except everything needs to be defined over K.

Observation 2.8.7.

e Hom(E, E') is torsion-free. Indeed, take ¢ € Hom(E, E’) and m > 1 and suppose m - ¢ = 0. That
means [m] o ¢ = 0. Since [m] is an isogeny (Proposition 2.7.8), it follows that ¢ = 0.

e Similarly, Z — End(E) given by m + [m] is an injective homomorphism of rings.
e End(F) has no zerodivisors. A
Fact 2.8.8.

o We'll see later that the group Hom(E, E') is finitely generated abelian group [hence, a free Z-module].

In fact, rankz;Hom(E, E') < 4, and rankzHom(E, E') < 2 when char K = 1.

When char K = 0, we “usually” have End(E) = Z [so End(E) consists of multiplication maps [m]].

We will describe the possible rings End(E).
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We're going to talk about differentials today. (This is covered in Silverman, [Ch II, §4].)
Let C be a nice curve over K.

Definition 2.9.1. The space of (meromorphic) differential forms on C, denoted by Q¢, is the K (C)-vector space
generated by symbols dz (for € K(C')) subject to the relations

o dzx+y)=dx+dy
e d(zy) =xzdy+ydx
e d(a) =0fora € K. A
Let ¢: C'— C’ be a nonconstant morphism. We have ¢*: Q¢ — Qc: from the map

" K(C") = K(C)

fr=foop,
we get the map
0" Qo — Q¢

Z fidx; — Z " (fi) d(¢™ ;).

Fact 2.9.2. We have:
° dlm?(c) QC =1
o o is separable if and only if p*: Q¢ — Q¢ is injective (equivalently, nonzero).

_ Now takeany P € C. Lett € K(C) be a uniformizer at P (so ordp(t) = 1). We have di # 0 (because
K (C)/K(t) is separable; see Silverman §1). For w € Q¢, we have w = g dt for a unique g € K(C). We use

the notation
W def

i
Exercise 4: Take » € K(C) with dz # 0 and take y = f(z) with f(z) € K(z) (so f is a rational function).

Show that
d

== f),

where f’(z) is the usual derivative. (The exercise shows that the relations in Definition 2.9.1 encode enough
calculus.)

Fact 2.9.3. We have
o For w # 0, the number ord p(w) < ord p(5) € Zis independent of t.
e ordp(w) = 0 for all but finitely many P € C.
e Forz, f € K(C) with x(P) = 0, then
ordp(fdr) = ordp(f) +ordp(z) —1
if char K = 0 or char K { ordp(z).

Define, for w # 0,
div(w) = Y _ ordp(w) - (P) € Div(C).
prPeC

This is called a canonical divisor. For f € K(C)*, we have

div(fw) = div(w) + div(f).
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Thus there is a unique equivalence class
[div(w)] € Pic(C),
called the canonical divisor class of C. In particular, deg(div(w)) € Z is well-defined.

Example 2.9.4. Let C' = P! and let ¢ be the coordinate function, sending ¢([z, 1]) = z. Let’s compute div(dt).

Note that P* = K U {cc}. For a € K, note that ord,(t — o) = 1, so serves as a uniformizer at a. Thus
ord, (dt) = orda(d(t — o)) = ords(1) = 0. At oo, note that orde (1) = 1, so this serves as a uniformizer at
co. Then d(1) = —%dt, and

ord. (dt) = ordoo( - t%l(%)) = ord.. (#?) = -2,

so div(dt) = =2 (o0) A

Example 2.9.5. Let E C P2 : y? = (2 — e1)(z — e2)(z — e3) for distinct e; € K, where char K # 2. As usual,

denote by O = [0,1,0]. Letw e % dz € Qp. Let’s compute div(w).

Denote by P = (o, ) € E and P’ = (o, —f3) € E.
Observe that ordp = —2, and div(z) + 20 > 0 with no other poles. It follows that

div(z — a) = (P) + (P') —2- (0).

Then
R
Now X
2div(y) = div(y?) = div((@ - 1)(x = e2) (@ — e)) = Y_(2((e1,0)) = 2(0)),
and it follows that ; -
div(y) = (Y- ((e.0) - 3(0),
and a

ordp(w) = ordp(id(x - a)) = ordp(i) +ordp(z — a) — 1.

We have two cases:
0+1—1 if o & {e1,e2,€3}
—1+2-1 ifac{e e ez}’

ordp(w) = {

so ordp(w) = 0 always. Finally, let'’s compute ordp w. Since d(2) = —; dz, we have

.’1?2

ordp(w) = ord@(é dx) = ordo( — 9;2 d( )) = ordo(;) + ordo(é) —1=0.

1
x
In other words,
div (d—m> =0,
and in particular it has degree zero. A

Definition 2.9.6. We'll say w € Q¢ is holomorphic if ordp(w) > 0 for all P € C, i.e., div(w) > 0. VAN
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Fix wg € Q¢, with wy # 0. Define K¢ def div(wp). We have
{w € Q¢ wholomorphic} «— {f € K(C)*: div(wy) + div(f) > 0} U {0}
fwo <— f. (*)
(Recall that we had defined for D € Div(C),

(D)%

So the right hand side in (x) is £(K¢).)
Theorem 2.9.7 (Riemann-Roch, full version). For D € Div(C),
{D)—¥4(Kc—D)=degD —g+1,

{f € K(C)*: D +div(f) > 0}uU{0}.

where g is the genus of C.
[This theorem is a big black box. B.] Let’s consider the case D = 0 of Theorem 2.9.7. Then
£(0) —¢(K¢c) = deg0—g + 1.
~— ——
=1 =0
In other words, /(K¢) = g. Explicitly,
dimzp{w € Q¢ w holomorphic} = g.

This is a good definition of the (geometric) genus of C.
When D = K¢, Theorem 2.9.7 says

UKc)—4(0) =degKc — g +1,
~—

>
and this gives deg K¢ = 2g — 2.
Example 2.9.8. For P!, we computed deg(div(dt)) = —2,s0 g = 0. A
Example 2.9.9. For E : y* = f(z), where f is cubic and separable, and char K # 2, we computed deg(div(%”g) =
0,so0g =1.

Finally, when deg D > 2g— 2, we recover the old Riemann-Roch (Theorem 1.4.2), because {(Kc—D) =0,
as we now show. Indeed, suppose there exists f € L(Kc — D) \ {0}. Then K¢ — D + divf > 0. Taking
degrees,

(29 —2) —degD+0 >0,

and deg D < 2g — 2. Since {(Kc — D) = 0, the full version of Riemann-Roch (Theorem 2.9.7) says exactly
that
{(D)=degD —g+1,

as the old Riemann-Roch (Theorem 1.4.2) asserts.
Example 2.9.10. Consider E C P? defined by a smooth model Equation (V)

Y2+ arzy + asy = 2° + axx® + asx + ag, ©)
for a; € K. The claim is that F has genus 1, so that F is an elliptic curve with O = [0, 1,0]. Indeed, let us
differentiate (V) to obtain

2y dy + arz dy + ary de + as dy = 32% dx + 2a0x dx + ay dz.
Collecting like terms,
(22 + a1z + a3) dy = (322 + 2a9x + a4 — ary) dz

Define
def dy dx

W 322 4+ 2a0x + a4 — a1y - 2y + a1 + as
We have div(w) = 0, and 2g — 2 = deg(div(w)) = 0 implies g = 1. We say w is the invariant differential of E.
It is a basis over K of {w € Qg : wholomorphic}. A

€ Og.
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[I was out of town. This is essentially copied from Arthur Tanjaya’s pristinely latexed notes.]
Consider an elliptic curve F/K, E C P? defined by

y* + arzy +azy = 2° + azx’ + asx + ag, (@)
for a; € K. We defined the invariant differential of E as

dx dy

= = € Qp.
v 2y +a1x+az  3x%+ 2as + ayg — ary b

Recall that Q5 is a 1-dimensional K ( E)-vector space generated by dx, z € K (E), with “usual” rules (linear-
ity, product rule, and constants should have derivative zero). The invariant differential w is holomorphic,
i.e.ordp(w) > 0 forall P € E. (We write div(w) > 0 for this.)

Also recall that dimp{wo € Qg wo is holomorphic} = 1. So w is unique up to a scalar factor. As always,
Galg acts on Qg by o(f dx) = o(f) d(o(x)).

Given Q € E, we have defined 7o: E — E, which is translation by Q). The pullback was defined as
follows: given ¢: C — C’,and f,z € K(C’), we have p*(f dz) = p*(f)d(p*z) = fopd(z o ).

Proposition 2.10.1. For any Q € E, we have 75 (w) = w.
[Hence the name invariant.]

Proof. Note that 75w € Qg is also holomorphic (7 is an isomorphism, and being an isomorphism guaran-

tees that the valuations will match up when you pull back). So 7j,w = aqw for some aq € K. (The constant
aq is nonzero because you can go in reverse).

Now consider a: E — K= C Al given by ) — ag. This is a morphism. (If you don’t believe this,
keep doing computations until you do.) Since this is a morphism from an elliptic curve to A', but it’s not
surjective (missing 0), it must be constant. [This is from a big black box of Chapter 2. You can think of it as
“bounded holomorphic function is constant” from complex analysis.]

So now consider Q = O; note that Tjyw = w,soag = 1 forall Q € E. O

As an aside, the additive group G, = K has invariant differential dz, since d(z + ¢) = dz, and the multi-

plicative group G,,, = K has invariant differential 92, because d(ccaj”) =4z

Later we'll see that [m]*w = mw, which implies [m|: E — E is separable if and only if char K { m.

Proposition 2.10.2. Take ¢, € Hom(E', E). Let w be the invariant differential of E. Then

(p+9)'w=9p"w+ v w.

(Note that these are two different additions; the left hand side uses + in £ and the right hand side uses

Proof. For an “elementary” proof see AEC III §5. [The proof is really about the surface E x E, but all of
Silverman'’s algebraic geometry is about curves so he’s stuck.] Here is the framework:
Consider

w:ExE—FE
(P,Q)—P+Q

and let py,p2: I x E — E be the respective projection maps. We want to show that
prw = piw+ piw € QpxE.
We will use crucially that w is the invariant differential. The first step is to show that

pww= fipiw + fopsw (“ugly expression”)
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with f1, f» € K(E x E). (Moreover, {p;w,p5w} generate Qpyp over K(E x E).) (Silverman takes the
formula for addition and differentiates it to show this.) Intuitively, this is because the two copies of E are
independent of each other.
After that, take any () € E. Consider
g E = ExE
P (PQ),

and a L O u expression 1vVin
d apply ¢, to “ugly expression” giving
wor'w =15(f1) opiw +i5(f2) Lopiw.
N—— N——
(porg)*w (prorg)*w (p2otg)*w

Since 1o tg = 7 and w is the invariant differential, the left hand side of the above equation is just w. On the
other hand, p; o ¢¢ is the identity map whereas p, o ¢ is the constant map sending everything to Q. So the
right hand side is equal to ¢(, (f1)w = (f1 © @)w. In total, we've verified that

w=(frow)w forall@ e E.

Thus we obtain f; = 1, and a similar argument shows that f, = 1 as well.
Now we can prove the proposition. Define
g B S ExE S EXE
P+—— (P,P)

Then we have

o+ =pog: B - E
p=prog: ' = E
W=pyog: B — E,

and so
(p+¥)w=g"p'w
= g" (pjw + p3w)
= g'piw + g"prw
=p'w+¢Pw
since ¢, ¥ € Hom(E', E). O

We will study the ring End(E) = Hom(E, E) over the next few classes. The addition is pointwise and
the multiplication is composition of functions. Take ¢ € End(E) and consider ¢*w, which is equal to a,w
for some a, € K(F) (since Qg is 1-dimensional over K (E)).

Claim 2.10.3. We have a, € K, i.e. a, is constant.

Proof. Take @ € E and consider 75 (¢*w). The idea is to expand this two ways and show that they're both
the same. On one hand,

TH(p*w) = 7 (apw)
=a,o TQTéw

= Gy O TQW.
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On the other hand,
(poTQ)'w=(TyqQ) o) w
=¥ v
= gp*w
= a,w.

Soa, o1y = a, forall Q € E, which implies that a,, € K (take @ = —P in the equation a, (P + Q) = a,(P)).
O

Proposition 2.10.4. The map
(+x): End(E) — K
Y ag,
is a homomorphism of rings.
Proof. The map (x) respects addition by Proposition 2.10.2. The map (*) also respects multiplication:
(pod)w =y p'w
=" (aww)
= a,¥*w
= AuQyWw.

(Note that if a, was not constant then you have to compose with ¢ and you get mixed terms; we can pull
the a,, across because it’s constant.)
This map also respects the identities. O

For ¢ # 0 € End(E), ¢ is in the kernel of () if and only if p*w = 0, or equivalently if ¢ is inseparable.
In theory, this gives us a way to compute whether something is separable or not without having to compute
function fields.

Corollary 2.10.5. If char K = 0, then End(FE) is commutative
Proof. Isogenies are always separable in characteristic 0, so End(E) — K is an injective homomorphism. [

Corollary 2.10.6. For any m € Z, [m|*w = mw (because the map is a ring homomorphism). Also, [m]: E — E
(with m # 0) is separable if and only if char K { m.

Here’s an example where End(FE) is non-commutative:

Example 2.10.7. Take p = 3 (mod 4). Consider E/F, defined by y?> = 2® — 2. Choose i € F, such that

i? = —1. We have two homomorphisms

Vv E—=E p:E—=FE
(z,y) = (2P, y") (z,y) = (—=,iy).

We claim these two don’t commute. We find:

(Y oo)(z,y) = (—2¥,iy")
(pod)(z,y) = (—aP,iPy?) = (=a”, —iy")
because p =3 (mod 4). Thus p o) # 1p o .

Later we'll see Z[p, ¥] C End(FE) is of finite index. Moreover, End(E) is an order in a quaternion algebra
over Q (i.e., it has basis over Q consisting of 1,4, j,4j with i*> = —1, j2> = —p, and ij = —ji). A
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Let E/K be an elliptic curve and let w € Qg be its invariant differential. (Thus, w is holomorphic and
Tow = wq for Q € E.) For m € Z, we have [m]*w = mw. Thus, [m] is separable if and only if m # 0 € K, or
equivalently char K { m.

The short term goal is to describe the torsion group E[m] and to show that the torsion group Hom(E, E”)
is finitely generated as a group.

Proposition 2.11.1. For any isogeny : E — E’, there is a unique isogeny ¢: E' — E such that ¢ o ¢ = [deg ¢].
We call ¢ the dual of .

Proof. Uniqueness is the easy part: if
Yop=[degyp] =9 o0,

then (¢ — ¢) o ¢ = 0. Because ¢ is surjective, it follows that ¢ = .
Existence is harder. We proved this already for ¢ separable (Example 2.8.6), where we used that ker ¢ C
E[deg ] = ker[deg ¢]. Note thatif p o F — E’ and ¢: E’ — E" have duals, then so does 1 o ¢:

—

hop=gpoy.

This is because

(WYop)o(poy)) =1 o(pop)oy =[degy]o (o)) =[degyp-degy] = [deg(s) o ¢)].
—— ——
=[deg ¢] =[deg ¢]

We saw that any isogeny is the composition of a separable isogeny and a Frobenius. Thus it suffices to show
that the p-th power Frobenius ¢ has a dual. Recall that deg ¢ = p and that [p] is not separable. Thus [p] = Aop
for some isogeny A. Then A = ¢. O

We say E and E’ are isogenous if there exists an isogeny between them. This forms an equivalence relation
on elliptic curves; it’s weaker than isomorphism. There’s also a notion of isogenous over K, defined in the
natural way.

If o = 0 then we decree ¢ = 0 and deg ¢ = 0.

Theorem 2.11.2 (Properties of duals). Let ¢: E — E’ be a homomorphism.
a) Withm = degp, then p oo = [m]on E, and p o $ = [m]on F'.

b) For another v = E' — E", we have ¢/o\go = po1.

c) Foranyvy: E — E’, wehavem =@+

d) Form € Z, [m] = [m], and deg[m] = m?.

e) degp = dego.

P é=¢

Proof. Let’s assume all homomorphisms are nonzero.
To prove item a) we need to show ¢ o ¢ = [m] on E’. Then note that

(po@)op=ypo(poyp)=¢polm]=[mloyp.
Because ¢ is surjective, ¢ o ¢ = [m)].

We’ve done item b).
Item c) is legitimately hard. See Silverman for a proof in characteristic 0. We'll give an idea later.

32


http://www.pdmi.ras.ru/~lowdimma/BSD/Silverman-Arithmetic_of_EC.pdf

o~ —~

To prove item d), first observe [0] = [0] and [1] = [1], and induction says

[m+1] = [m] + [1] = [m] + [1] = [m] + [1] = [m +1].
We now have [deg[m]] = [m] o [m] = [m] o [m] = [m?]. It follows that deg[m] = m?.
Item e) follows from the fact that pop = [deg ¢], since we may take degrees to get deg ¢-deg p = (deg ¢)?,
so deg ¢ = deg ¢.
Item f) follows from a) and e). O

Corollary 2.11.3. Fix an elliptic curve E/K and an integer m > 1.
a) If char K ¥ m, then E[m] = Z/mZ x Z/mZ as a group.

b) If p = char K > 0, then either
E[p"] = {0} foralln > 1

or
Ep"| =Z/p"Zforalln > 1.

Proof. For part a), we use that [m] is separable. Then
#E[m] = # ker[m] = deg[m] = m?.

We have good understanding of the subgroups E[d] C E[m)] for d|n; where F[d] has order d?. Without loss

of generality, suppose m = p". Then E[p"] = Z/p"Z x --- x Z/p*Z for 1 < a; < n since everything is

p"-torsion. We know also that a; + - - - + a, = 2n, since #E[p"] = p*". It follows that E[p] = Z/pZ x Z/pZ,

hence E[p"] = Z/p™Z x Z/p*?Z for a1, a2 < n and a; + ag = 2n. It follows that E[p"] 2 Z/p"Z x Z/p™Z.
For part b), note that [p] is inseparable of degree p?. Then the separable degree

deg,[p] = 1L orp.

If deg,[p] = 1, then deg,[p"] = (deg,[p])" = 1, s0 E[p"] = {0}.
If deg, [p] = p, then deg,[p"] = p", and similar to a), we have E[p"| = Z/p"Z. O

Aside 2.11.4. If E/C is an elliptic curve over C, the Riemann surface £(C) has homology
H(E(C),Z/mZ) = Z/mZ x Z/mZ. A
Let’s study deg: Hom(E, E’) — Z.

Corollary 2.11.5. The map
deg: Hom(E,E') — Z

is a positive definite quadratic form. We have
o deg([m] o) =m?degp
e degy > 0, and degp = 0 if and only if ¢ = 0.
o The map
(,-): Hom(E,E") x Hom(E,E') - Z
(¥, ¢) = deg(p + ) — degp — deg¥)
is bilinear.

Proof. For the last part, let us identify Z C End(E). Then

(p,9) = deg(¢ +¢) — deg o — deg ¥
=g+ dolp+y)—pop—Po
=(@+v)o(p+¢)—pop—1tpop
=pop+o. O
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Let’s consider an elliptic curve E/F,,.
Lemma 2.11.6. We have |E(F,)| = deg(1 — @), where ¢: E — E is the g-th power Frobenius isogeny.
Proof. Note that E(9) = E, so
E(F,) = {P € B: ¢(P) = P} = ker(1 — ).

(This is because for a € F,, we have a? = a if and only if a € F,.)
We need to show 1 — ¢ is separable. This is follows from the computation

(1-p)'w=wt(—p)w=w#0.

(Note that —¢ is not separable, so (—¢)*w = 0.)
Because 1 — ¢ is separable, we have

#E(Fq) = #ker(1 — ¢) = deg(1 — ¢).

We obtain
#E(F,) = deg(l — ) =degl+degp+ (1,—p) =q+1—(1,9).

Later, we'll prove

Theorem 2.11.7 (Hasse). For E/F,, we have

[#EF,) — (¢ + D] <2Vq
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[I was out of town. This is once again essentially copied from Arthur Tanjaya’s pristinely latexed notes.
I'm sorry it’s late!]

Last time, we gave properties of duals and described the group E[m]. Today, we are going to show that
Hom(E, E') is a finitely generated group.

Before proceeding, let’s sketch a proof for K = C. We can view E(C) as a connected, smooth, compact
Riemann surface using the topology of C. As a real manifold, E(C) looks like a torus. Now define

AE = Hl(E(C),Z),

the first (singular) homology group. By some algebraic topology, Ar = Z2.
Consider ¢ € Hom(E, E'). This gives a morphism of Riemann surfaces ¢: E(C) — E’(C) and therefore
induces a map on homology ¢.: Ap — Ag/. Thus we have a group homomorphism

Hom(E, E') — Homyz(Ap, Ap:) = My(Z) = 74
P Pxe

It’s not too hard to show that this homomorphism is injective. Note that since Z is a PID, Hom(E, E') is a
free abelian group of rank < 4.

Unfortunately, this argument does not work in general because the algebraic topology definitions don’t
work. It’s not clear what H; should be, for example.

Aside 2.12.1. Suppose we had Ap = Z? for any E/K with suitable functoriality (for example, (¢ o ), =
©+ 0 14). Then we have a ring homomorphism

End(E) — Endz(Ag) = Ms(Z)
O Q.

This gives us a homomorphism of Q-algebras End(E) ® Q — M>(Q). In characteristic p, End(£) ® Q might
be a division algebra of dimension 4 over Q; the map is an isomorphism or Q-algebras, but M>(Q) is not a
division algebra. This is a contradiction. A

From algebraic topology, we know Ag = H;(E(C),Z) = m(E(C))® (m is actually abelian here, but we
won’t know that until later). Take m > 1,80 Ag/mAg = (Z/mZ)?, which implies that there exists an unram-
ified cover Y — E(C) whose Galois group (group of deck transformations) is isomorphic to Ag/mAg (up
to unique isomorphism of Y'). This is a maximal unramified cover with Galois group abelian and exponent
m.

We have a map [m]: E — E which is unramified and has degree deg[m] = m?. Note that E[m] acts on E
by translation, so this satisfies the UMP above and we conclude that

H,(E(C),Z/mZ) =2 Ag/mAg = E[m].

The advantage here is that £[m] has an algebrogeometric definition while H, involves simplices and loops
and is difficult to study.

Let us go back to a general (perfect) field K. Let E, E' be elliptic curves over K and take m > 1. Then
consider the map

Hom(E, E') — Hom(E[m], E'[m])
p = <P|E[m]~

Unfortunately we have an issue: Hom(E[m], E'[m]) is finite and so this map need not be injective. In order
to fix this, the idea is to take m larger and larger. By doing that, we hope to recover injectivity.

Fix a prime ¢ and consider ¢" with n > 1. The map [¢]: E[¢" '] — E[¢"] is a surjective group homomor-
phism.
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Definition 2.12.2. The /¢-adic Tate module of E is
T,(E) = @E[@”] ={(Py, P2,...): P, € E[{"],[{] P,y1 = P, foralln > 1}.

A
Assume { # char K. Then E[¢"] = (Z/{"Z) x (Z/¢"Z), so T;(E) is a free Z,~-module of rank 2, where
Ly = @Z/Z”Z ={(a1,a9,...): an € Z/L"ZL,l - apt1 = an (mod £") forall n > 1}.

Now observe:

e Z, is an integral domain of characteristic 0.

e Z, is a discrete valuation ring, and the nonzero ideals are ¢"Z, for n > 0.

Definition 2.12.3. We define Q; %' Frac(Z,) to be the quotient field of Z,. A

The valuation vy: Q* — Z is defined by v,(¢"{) = n, where a,b € Z and ¢ { a,b. Likewise, the (-adic
absolute value is givenby | - [;: Q = R,

al (=@ if g #£ 0
a =
¢ 0 ifa=0

Alternatively, Qy is the completion of Q with respect to | - ;. We can extend |- |, to Q, by continuity and then
recover Z, as
Ly = {CL € Qy: ‘a|g < 1}
Going back, we can view Ty(E) as an algebraic version of Hy(E,Z;). If { = char K, then Ty(E) is a free
Ze-module of rank 0 or 1. Take any ¢ € Hom(E, E’). The restriction map ¢: E[¢"] — E’[¢"] induces a ho-
momorphism of Z;-modules ¢, : Ty(E) — T;(E’). This map is given by (P1, P, ...) = (o(P1), o(P2),...).
Define
Hom(E, E') — Homy, (T,(E), T,(E"))
© = P

this is a group homomorphism. Note that this group homomorphism is injective, since ¢, = 0 implies
@(E[¢"]) = 0 for all n > 1 and hence ¢ = 0. However, we don’t know whether the groups are finitely
generated, so we have to tensor up to get information:

Theorem 2.12.4. For ¢ # char K, the homomorphism
Hom(E, E') ® Zy — Homg, (Ty(E), T;(E'"))
of Z¢-modules is injective.
Corollary 2.12.5. Hom(E, E’) is a finitely generated abelian group of rank at most 4.

Proof. We showed in Observation 2.8.7 that Hom(E, E') is torsion free and Z, is a PID, so it suffices to show
that Hom(FE, E') ® Z; is free over Z; of rank at most 4. Theorem 2.12.4 shows that Hom(E, E’) ® Z, is
isomorphic to a submodule of

Homy, (TE(E>7 TE(E/)) = M, (Ze) = Z?.
Thus, PIDness of Z, implies that Hom(E, E') ® Z; is a free Z;-module of rank at most 4. O

Next time, we'll prove Theorem 2.12.4. o
Note that 7;(F) has a natural action of Galx = Gal(K/K). Since Galx C E[("] implies Galx CT;(E) by
o(P1,Pa,...)=(cP1,0P,,...),if p € Homg(E, E'), then ¢, will be compatible with the Gal x-actions:

Homg (E, E') — Homg, Gay, | (T¢(E), Ty(E")).¢ = pr
(Silverman uses the notation Homg (7 (E), T;(£')) for the group Homy, Ga1, 1 (T¢(E), Te(E")).)

Theorem 2.12.6. The map Homg (E, E') ® Zy — Homg (ToE, Ty E’) is an isomorphism when K is finite (Tate,
1966) or when K is a number field (Faltings, 1983).
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Let E/K be an elliptic curve and choose a prime ¢ # char K. We have surjective group homomorphisms

s e Y g Y gz 9, g

The (-adic Tate module is T, E def I&nn E[¢"); it is a free Z,-module of rank 2. (Recall that Z, = @n 7))

Note that

e 7y is a discrete valuation ring of characteristic zero.

e Every element is of the form ag + a1£ + a2f? + ... for unique a,, € {0,1,...,¢—1}.
For each ¢ € Hom(E, E’), we have a Z,-module homomorphism

or: TyE — T,E'
and thus a homomorphism of Z,-modules
Hom(E, E') ® Zy — Homg, (T, E, T, E') )
® = P

Today we’ll prove
Theorem 2.13.1 (cf. Theorem 2.12.4). The map () is injective.

We used this last time to show that Hom(FE, E’) is a free abelian group of rank at most 4.
Proof of Theorem 2.13.1. Let M be a finitely generated subgroup of Hom(E, E’). Define

MY = {p € Hom(E, E'): [m]p € M for some n > 1}.

Claim 2.13.2. The group MY is finitely generated.

Proof. To see this, note that M ® R is a finite dimensional vector space over R; we can extend deg: M — Z
to a continuous function M ® R — R. This is because

degp = 2(p, ¢),

where (¢, 1)) = ¢ 0 1) + 1) o ¢ is the bilinear pairing from Corollary 2.11.5. Using the fact that (-, -) is bilinear,
we may extend to a bilinear pairing on M ® R.
Note that M4 C M ® R, and for ¢ € M9V \ {0} we have degp > 1. Thus

U={peMR: degp <1}

is open and U N M4V = {0}. We find that M is a discrete subgroup of M © R?. It follows that M9 is
finitely generated. (This is because the image of M in (M ®R)/M is discrete, and the quotient is compact;
now M9V is finite index in M) O

Let’s continue proving Theorem 2.13.1. We have ¢ € M ® Z, with M C Hom(E, E’) finitely generated.
By Claim 2.13.2, we may assume that M4V = M.
Now let 91, ..., 1, be a basis of M as a Z-module; this is also a basis of M ® Z, over Z,. Pick ¢, say with

T
o= anhi (o €Zy)
i=1

so that )
0=gpr=> ai(t)
i=1

37



Choose n > 1 and take a; € Z with a;; = a; (mod ¢") for all 1 <4 < r and define
’lﬂ = Z (Li’l/}i e M.
i=1

Because
T

Yo =1 — o=y (@i — ) (i),

i=1
where a; — o; € £"Z,. Thus we have obtained ) € M C Hom(E, E’) such that ¢)(E[¢"]) = 0. It follows that
ker[¢"] C ker and [¢"] is separable (since ¢ # char K). It follows that

=[{"oX forsome A € Hom(E, E').

In group theory notation we have ¢ = ¢ - \. They key observation is that since M = M and ¢ € M, we
have A € M as well. It follows that ¢"|a; for all ¢, and

A=Y T,
=1
and

a; =0 (mod¢") foralll <i<r,

i.e. o; € {"Zy. Since n is arbitrary, it follows that a; = 0 for every 1 < ¢ <. O

Definition 2.13.3. Denote by
ViE € T,E ©7, Q
is a Q¢ vector space of dimension 2. A

Note that we have actions Galx C' E[("], T, E, V, E respecting the group structure. In particular, we obtain
a representation
pe: Galg — Autg, (Vi E) = GL2(Qy).

Theorem 2.13.4. Suppose K is a number field or a finite field and fix a prime { # char K. Then E and E' are
K-isogenous if and only if pg ¢ and pg: 4 are isomorphic.

Proof. The easier direction is the forwards one. Suppose there is a K-isogeny ¢: £ — E’. We obtain a
homomorphism of Q, vector spaces p;: V,E — V,E' respecting the Galk actions. The map ¢, has inverse
@(@)g, SO (¢ is an isomorphism V,E = V, E'.

The harder direction is the backwards one. We have

Homg (E, E') ® Q, — Homg, [Gal | (Ve E, Vi E')

and Faltings/Tate tells us it’s surjective. Modulo this detail, the assumption Homg, (G, | (Ve E, ViE') # 0
implies Homg (E, E’) # 0. O

Recall that our goal was to describe the ring End(E). We know:
e End(FE) has no zerodivisors
e End(FE) has characteristic 0. We can view Z C End(FE).

Thus given any ¢ € End(F), we may consider the integral domain Z[¢] of characteristic zero. We can
consider its fraction field Q(y). Note that ¢ € Q(¢p), beacuse ¢ o ¢ = deg ¢ € Z[p]. We may define

Pp(z) = (z — 9)(x — ) € Qp)a].

Note that P, () = 0. We claim that P, (z) € Z[z] is monic of degree 2. This would implies that [Q(y) : Q] <
2. To see this, note that

Py(x) =2 — (p+ @)z +¢ @
Then p- ¢ =degp € Z,and p + $ = (1,¢) = deg(1l + ¢) — deg1 — deg p € Z.
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Proposition 2.13.5. We have discP, < 0, i.e. (¢ + ¢)? < 4deg ¢.
Proof. Take m € Z and n > 1. Then

—

deg(m — np) = (m — n@)(m — ng) = (m — np)(m —ng) =m* + (¢ + Gymn + n’op = n*Py(m/n).

Because 0 < deg(m — nyp), we obtain

Py(a) >0 foralla e Q,
hence for all o € R. It follows that discP, < 0.
Corollary 2.13.6. Either Q(y) is Q or it is an imaginary quadratic extension of Q.
Theorem 2.13.7 (Hasse, cf. Theorem 2.11.7). For an elliptic curve E /R, over a finite field,

1EFy)| - (q+1)] < 2va.
Proof. Let ¢ € End(FE) be the ¢-th power Frobenius. We saw in Lemma 2.11.6 that

|E(Fq)| = [ker(1 = ¢)| = deg(1 - ¢)

and in particular
[E(Fy)| = deg(1 —¢) = Po(1) = 1 = (¢ + @) + degp
SO

IE(Fy)| — (g +1)| = ¢+ ¢| < 2/degp =2/,

with the inequality from Proposition 2.13.5.
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Last time, for ¢ € End(E) we defined P, (z) = (v — ¢)(z — ¢) € Q(¢)[x] and observed that
Py(z) = 2 — (¢ + @)a + deg ¢ € Z[a]

with P,(¢) = 0. We showed that as a quadratic polynomial, discP, < 0.
Note that the ring L = End(F) ® Q is a division algebra.

Proposition 2.14.1. If End(E) is commutative, then L is either Q or an imaginary quadratic extension of Q.
Note that in characteristic 0, we’ve shown that End(E) is commutative in Corollary 2.10.5.

Proof. Note that L is a field and is a finite extension of Q. Also dimg L = rankzEnd(E) < 4. The L = Q(y)
for some ¢ € End(FE) by the primitive element theorem. But then it satisfies the degree 2 polynomial relation
P

() = 0. Then either L = Q or L/Q is degree 2 and imaginary. O
The ring End(E) is an order in L, i.e. a subring that is a finitely generated Z-module that spans L over Q.
Example 2.14.2.

e Let L be a number field, i.e. a finite dimensional field extension of Q. Let O, be the integral closure
of Z in L, called the ring of integers of L. That Oy, is an order in L, in fact the maximal order in L (so
every orders R of L are precisely the subrings of maximal index in Op), is an important theorem from
a basic course in algebraic number theory. [See for example Lemma 2.38 in Mehrle’s 6370 notes.]

e If L =Q, then O =7Z.
e If L = Q(V/d) with d € Z\ {1} squarefree, then the maximal order of L is

NG ifd#1 (mod 4)
O = Z[Lﬁ} ifd=1 (mod 4)

The orders of L are R = Z+ f - O, where f > 1is an integer. Moreover, (O, : R| = f. [See for example
Example 2.48 in Mehrle’s 6370 notes.] We'll show later that all such orders arise as End(E) for some
E. A

Example 2.14.3. Let E/Q : y? = 2% + 1. We have an endomorphism
p:ESF
(z,y) = (Cz,y)
for ¢ € Q a third root of unity. We have a ring homomorphism
Z[(] + End(E)
¢ e
In fact, Z[¢] = End(E). This is because Z[(] is the ring of integers of Q(¢) = Q(v/-3). A

Fact 2.14.4 (Random fact). Let K be a quadratic imaginary field. There is an elliptic curve E /Q with endomorphism
ring End(E) = Ok if and only if O is a PID. [Related: Stark-Heegner Theorem]

For ¢ € End(F) and a prime ¢ # char K, we defined ¢, € Endyz, (T¢F). This gives an injective ring
homomorphism

End(F) ® Zy — Endg, (TyE) = My(Zy) (%)
P = P
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Theorem 2.14.5. For ¢ € End(E) and ¢ # char K, then
det(xl — ;) = P,y(x).
In particular, the coefficients of det(xI — y) are in Z and independent of L.

Proof. Let f(z) = deg(zI — ¢¢) € Q¢lz]. Cayley-Hamilton says that f(¢¢) = 0, so it has the same factors as
the minimal polynomial of ¢,. Note that P,(¢,) = 0, by the ring homomorphism (x). We have two cases:

e If f(x) is the minimal polynomial, then f = P,.

e If the minimal polynomial is degree 1, then ¢, € Z, - I is a scalar matrix. By the injectivity in (x), the
subgroup (p,1) C End(F) is free of rank 1, so ¢ € Z. It’s easy to check that P,(z) = (z — ¢)(z — @) =
(z =) O

Now suppose End(E) is non-commutative with £/K and p = char K > 0. Recall that for ¢ # p, we have

L®Q,=End(E) ®Q; — My(Qy),

where L = End(F) ® Q.
Let’s describe L. (See Silverman for a more elementary approach.) Let F’ be the center of L. Then F is a
field. We have

Fact 2.14.6. If L is a division algebra of finite dimension over its center F', then L@ F = My(F) for a unique d > 1.
In particular, dimp L = d°.
In our case,
dimg L = [F : Q]dimp L = [F : Q]d*.

On the other hand, dimg L < 4, and d > 1 since L is non-commutative by assumption. It follows that /' = Q
and dimg L = 4. In particular, for £ # p we get isomorphisms

L®Q = Ma(Qy). @

In particular, rankzEnd(E) = 4.
Let v be a place of Q (i.e. v = oo or v = £ a prime). Define

R if v =00
Q”{@@ ifo=1¢

We say L is split at v if
L ®qQ, & My(Q,).
Fact 2.14.7 (A little class field theory). Let L be a division algebra with center Q and dimg L = 4. Define the set

7Y v:va place of Q such that L is not split}.

Then the set .7 is finite, nonempty, and has even cardinality, and .7 determines L up to isomorphism.

In our setting, . C {oo,p}, by Equation (2). Then . = {cc, p} because it’s nonempty and has even
cardinality. It follows that L is uniquely determined, in particular L depends only on p. (It turns out that at
0o, we have L ®g R = H, the real quaternion ring.)

It follows that L has Q-basis 1, 4, j, and ij, where i2 = —1, j2 = —p, and ij = —ji. (One can check that
this ring works, and uniqueness of L gives the desired claim.)

When p = char K > 0, the ring End(E) could be commutative or not. Can we distinguish the cases?

Recall that either E[p"] = Z/p"Z for all n > 1 (we say “E is ordinary”), or E[p"] = {0} for all n > 1 (we
say “E is supersingular”). Next time we’ll discuss:

Theorem 2.14.8.
(i) End(E) is commutative if and only if E is ordinary

(ii) If E is supersingular, then j(E) € Fy2. In particular, there are only finitely many supersingular elliptic curves
up to isomorphism over K.
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Let E/K be an elliptic curve. The ring L = End(FE) x Q is a division algebra with order End(E). We've
seen (Proposition 2.14.1) that if End(E) is commutative, then L is Q or an imaginary quadratic field. If
End(E) is non-commutative, then p = char K > 0 and L has Q-basis 1, i, j,ij where i = —1, j2 = —p, and
ij = —ji.

Recall that FE is ordinary if and only if E[p"| = Z/p"Z for all n > 1 and is supersingular if and only if
E[p"] = {0} for all n > 1. Last time we stated

Theorem 2.15.1 (cf. Theorem 2.14.8).
(i) End(E) is commutative if and only if E is ordinary
(ii) If E is supersingular, then j(E) € 2.
Proof. First assume that E is ordinary. Then T, E = Z,. As before we have a ring homomorphism
End(E) — Endz, (T,E) = 7Z,
P = Pp.

If ¢, then ¢(E[p"]) = 0 for all n > 1, so ¢ = 0. It follows that End(F) is isomorphic to a subring of Z, and
hence commutative.

Now assume F is supersingular. In this case, the multiplication-by-p map [p]: E — E is purely insepa-
rable. Since K is perfect,

pl=Aow
where ¢: E — E(@ is the ¢g-th power Frobenius and A\: E(? — E is separable. Then

q = deg ¢ = deg;[p] = deg[p] = p*
deg A = deg,[p] =1,

s0 ) is an isomorphism. It follows that over K
E~EY hence j(E)=jEY)=jE):".

It follows that j(E) € F, = F,.
It’s left to explain why End(E) is noncommutative.

Claim 2.15.2. If E'/K is isogenous to E, then it is also supersingular and L = End(E’) ® Q.
Proof of Claim 2.15.2. Let ¢: E' — E be an isogeny. Then

End(E) ® Q = End(E") ® Q
Yo oo,

where ¢! = ;- ¢. If E is ordinary, then
P(E'p") C B
gives a nontrivial p-group for large n. This is impossible, since E[p"] = 0. O

Let’s continue proving Theorem 2.15.1.
Suppose, for the sake of contradiction, that End(E) is commutative. From algebraic number theory, we
have

Fact 2.15.3 (Chebotarev density; see Sec 6.5 in Mehrle’s 6370 notes). There are infinitely many primes £ such that
€0y, is a prime ideal in Oy,.
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(It's easy if L = Q, and if L = Q(+/d), this is the same as saying that there are infinitely many ¢ such that
d is not a square mod ¢.)
Take ¢ # pso that Oy, is a prime ideal and ¢ { [0y, : End(E’)] when E’ is isogenous to E. (There are only
finitely many £’ up to isomorphism, since j(E’) € F,2.)
Since ¢ # p, we have
A CACA3C---CFE

with A; & Z /(7. We have quotients E; = E/A; (with homomorphisms E — FE; with kernel A4;).

Claim 2.15.4. Among E1, ExEs, . . ., there are only finitely curves up to isomorphism. (This follows from Claim 2.15.2
and part (ii) of the theorem.)

So there are m,n > 1 so that E,,, = E,,,. By Claim 2.15.2, we may assume without loss of generality
that E = E,,, & E,,4,. So there is an isogeny ¢: E — E with kernel Z/¢"Z. Note that ker ¢ C E[("], so

[("] =Xop forsome A € End(E).

In End(E), we have ¢ = Ap. Recall that /Oy, is a prime ideal; since ¢ is prime in End(E), we have ¢|X or £|¢.
But the latter doesn’t happen since otherwise the cyclic group ker ¢ contains the non-cyclic group E[(] as a
subgroup.
So
en—l —_ /\/ o

for some X € End(E). Repeat the argument: we obtain 1 = A" o ¢ with \ € End(E). So ¢ is an isomor-

phism; this contradicts the fact that ¢ has kernel Z /(" Z. O
We can describe the supersingular elliptic curves over F,:
e If p = 2, there is only one up to isomorphism: y* +y = z°.

e For p > 3, define the polynomial

Then

Fact 2.15.5 (Silverman V, §4). Take E/F, : y?> = z(z—1)(z—\) with A € F,\{0, 1}. Then E is supersingular
if and only if H,(\) = 0.

Moreover, H, is separable, so the number of supersingular elliptic curves over F,, up to isomorphism

is approximately 2='. (This is because deg H,, = 25+ and usually E arises from 6 \’s.)

In fact, we have a “mass formula”, which says

|Aut(E)] 24

E/Fp,
s.s., up to iso

Aside 2.15.6. Some final remarks on End(E):

e If char K = p > 0, then B
End(E) =7Z < j(E) ¢F).

e If F is supersingular, then End(E) is a maximal order in End(E) ® Q. A
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3 Elliptic Curves over Fields of Interest

3.15 Mar 12, 2020 (Finite fields)

Let E/FF,. We are interested in the points E(F,).
Let ¢ be the g-th power Frobenius endomorphism of £, and define

P,

(1) = (2 = @)z — @) =2 — (¢ + @)z + degp € Z[a].

Define a = ¢ + ¢, which we call the trace of Frobenius; it’s the trace of the action of ¢, on T, E.

We showed that
(B(F,)| = deg(1— 9) = Po(1) = 1—a+q.

We had seen (Theorem 2.13.7) that |a| < 2,/4.

Aside 3.15.1. Suppose ¢ is odd and E/F, : y*> = f(z) with f(z) € F,[z] cubic and separable. We have a

homomorphism
x: Fy = {£1}

with kernel (F)?. We can extend x(0) = 0.

Then
E(Fy)l =1+ (x(f(x)+1

z€F,

because the first 1 is the point at infinity, and x(f(x)) + 1is #{y € F, with y?> = f(z)}. So

[E(F)|=q+1+ > x(f(x)

z€lF,
N——

—a

so Hasse really says

’Z ‘<2\[

z€lFy

We’re summing up ¢ integers which are usually equally equal to £1, but the absolute value of the sum is

small. So there’s lots of cancellation!

For comparison, consider random variables (specifically, fair coin flips) €1, .. .,

CORNERT

asn — oo. So Hasse is telling us x: F* — {£1} acts “randomly”.
These character sums show up a lot in number theory.

Consider a nice variety V over F,. The zeta function of V' is

2(v,7) = exp (Y2 V(E)|- ) € QLT

n=1

en € {£1}. Then

Fact 3.15.2 (One of the three Weil conjectures). Actually, Z(V,T) € Q(T). (So Z(V,T') can be captured in a finite

amount of information.)

This is due to Weil for curves; Dwork (1960) first proved this with p-adic functional analysis and later

Grothendieck proved this with étale cohomology.

Theorem 3.15.3. For an elliptic curve E/F,

1 —aTl +qT?

BN T
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Thus if you know |E(F,)|, you can find a, and then compute any |E(F,»)|.
Proof. Let ¢™ be the ¢"-th power Frobenius of E. Then

[B(Fy)| = deg(1 —¢") = (1 - ") (I~ g") = 1 - ¢" — ¢" + "

So
oo oo Tn oo . n o0 . n oo . n
DNBER) =) =D "= "+ "
n=1 n=1 n=1 n=1 n=1
= —log(1 —T) +1log(l — ¢T) +log(l — ¢T') — log(1 — ¢T)

(1
(LT — 47
A-D)(1—qD) /)’
and exponentiating both sides gives

(1—¢T)(1—¢T)
(1-17)(1 —qT)

1—aT + qT?
(1-T)(1-qT)

Z(BE,T) =
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3.16 April 7, 2020 (Finite fields)

Today we'll continue talking about elliptic curves over finite fields. Let E be an elliptic curve over a finite
field F,,. The group E(F,) is finite with cardinality

#E[F,) =q+1—-ag.
The integer ap is the trace of Frobenius of E. Recall that

|aE| S 2\/6

(This is Hasse’s bound, see Theorem 2.13.7.) Fix a prime ¢ # p. We have a free Z,-module of rank 2 defined
by

T,E = miE[ﬁ ]
and a vector space over Q; of dimension 2 defined by

Vi =T FE ®z, Q.

Note that Galr, and End(E) both act on V, E. Denote by ¢ € End(E) the ¢-th power Frobenius. We saw that
the characteristic polynomial of ¢ is given by 22 — agz + g, i.e.

tr(¢e|ViE) = ag
det(¢¢|VLE) = q.

Note that ¢, € Aut(V;E) = GL2(Qy) is semisimple (i.e. diagonalizable over Q).

Observe that representation Galg, CVy E is determined up to isomorphism by ag (given £ and ¢): this is
because Galr, is topologically generated by Frob, : & + 29, and Frob, acts on V, F as ¢, and ¢y is determined
up to conjugation by ar (and g).

As an example of the power of this observation, we have:

Theorem 3.16.1. For E, E' over ¥y, E and E’ are isogenous over ¥ if and only if ag = aps (ot, equivalently, if and
only if #E(F,) = #E'(F,)).

Proof. The forwards direction follows from the fact that an isogeny f: E — E’ is an isogeny over I, induces
a homomorphism fo: ViE — V,E’ of Q, [Galpq]—modules which is an isomorphism because ker f is finite.
The isomorphism V; E = V; E’ implies

ap = tr(Froby|V,E) = tr(Frob,|V;E') = ap.

Let’s now prove the backwards direction. Suppose ag = ag, so V,E = V,E' are isomorphic representations
of Gahgq. In particular,
Hoer[Galﬂ.q](VgE, WE,) 7& 0.

Tate (Theorem 2.12.6) says
Homg, Gal,, ) (Ve E, Vo E') = Hompg, (B, E") ® Qy,

and this implies Homy, (E, E') # 0. O

Recall that
Eis supersingular if E[p"] = {0} foralln > 1
ordinary if Ep"| = Z/p"Zforalln > 1

We showed that F is ordinary if and only if EndF is commutative (Theorem 2.15.1).

Proposition 3.16.2. E is ordinary if and only if p t a .
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Proof. Let ¢: E — E be the ¢g-th power Frobenius. We have ¢ € EndFE, and ag = ¢ + ¢ € End(E), and
q=¢-p=¢- p. Also,

#Elq] = deg,lq] = deg, ¢ - ¢ = deg, &,
because deg, ¢ = 1. Since #F|q] is equal to 1 or ¢, deg, ¢ is also equal to 1 or ¢q. Note that

Eis ordinary <= ¢ is separable
<= [a.] is separable
< ptag.

(The second equivalence is due to the fact that for w the invariant differential,

¢'w = (ap — ¢)'w
=apw — Y w

= apw,
because ¢ is not separable. O

Which a g occur? Well, there is an injective map
{E/F, up to isogeny over F} — {a € Z: |ag| < 2,/q}

sending F to ag. The image can be described; it’s surjective if ¢ = p. The image contains all a such that p { a.

How does one compute az? One way is to count E(F,). Unfortunately, this is not always practical; for
example in cryptography g = 22°% is typical.

In 1985, Schoof developed an algorithm to compute ag that is polynomial time in log g (see [Silverman,
XI.3]).

Let’s sketch an algorithm. Assume p # 2,3 and pick E/F, : y? = 23 + ax + b for a,b € F,. The idea is to
compute ag (mod ¢) for many small primes .

If we know a. (mod ¢;) with 1 < i < r, the Chinese remainder theorem gives us a. (mod []¢;). Now if
IT;_ ¢ > 4,/q, the number az mod []/; determines ap, because the Hasse bound says |ag| < 2,/7.

This is very efficient: for ¢ < 2256 we have [Li<103¢ > 4\/4.

So the question is how to compute ag (mod ¢). Let’s assume ¢ { 2p. For (z,y) € E \ {0}, note that
(@,y") ~ lag)(a",y") + a)(z,y) = 0. ©
(This is because ¢? — app +q = 0.)
To compute ar (mod ¢), we need only show that Equation (3) holds for all P € E[¢] \ {0}.

Fact 3.16.3. There is a division polynomial ¢,(z) € F,[x] of degree (¢* — 1)/2 such that for any (z,y) € E \ {0},
we have
(x,y) € E[f] <= t(z) =0.

The polynomial 1, can be computed recursively (see [Silverman, Ex. 3.7]).
For example, 13(z) = 32* + 6az? + 12bx — a>.

Consider the ring
R =TFylz,y)/(¢e(@),y* — (2* + ax + D))
and note that Homg, (R, F,) <> E[(] \ {0}. (Actually, Spec R = E[(] \ {0}.)

Any elementin R is of the form f(z) +yg(z), where f(x), g(z) € F,(x) and deg f,degg < 2274 It follows
that dimp, R = ¢? — 1.

We can compute (xq2, yq2) and (z9,y?) in R, and we can compute [g](z,y) in R even when g is large,
because it depends only on ¢ (mod ¢). (We may use the group law of E; the denominators that arise will be
units in R.)

If (27°,y7") = [—q|(z,y) in R, then ap = 0 (mod ¢). Otherwise, ag % 0 (mod ¢) and [ag](z9,y?) =
(z7,y7) + [g](z, y). We can now find az (mod /) by just checking the ¢ — 1 possibilities.
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More on Zeta functions

We begin with some topology. Let f: M — M be a continuous map with M a compact real manifold.
Define the Lefschetz number

Ap =) (=) te(f|H (M, Q).
>0

The Lefschetz fixed point theorem says that if Ay # 0, then f has a fixed point. Moreover, if f has finitely
many fixed points, then Ay is the number of fixed points of f, counted with a suitable multiplicity.

Now consider a nice variety V/F, of dimension d, and let ¢: V' — V be the ¢-th power Frobenius. The
fixed points are V (IF,).

Fix £ { gq. Grothendieck and Artin showed that there are “étale cohomology groups” Hg,(V,Q,) which
are finite dimensional vector spaces over Qy, such that

2d
#V(Fy) =D (—1) tr(o" | HE(V, Qu))
1=0
and o
#V(Fgn) =D (1) tr((¢")" | HE(V, Qp)).
1=0
Exercise : Denote by
20, 1) = exp (32 #V(E) ) € QT
Then
¢ 201y — PUOPAT) . Poac (D)
" Py(T)Pa(T) ... Poy(T)
where

P/(T) = det(I — T - o*|HL(V,Qy)).

Deligne showed that the eigenvalues of ¢* & HE(V, Q) under any Q, — C all have absolute value ¢'/2.
With this result,
Exercise : Show P;(T) € Z[T).
Let’s consider the case of a nice curve C//F, of genus g. We have

HY(C,Qp) 2 Q ©* acts trivially
Hélt(ca Qf) ding = 2g
HE(C,Qu) = Q ©* acts by multiplication by ¢

It follows that
#C(Fq) =1- tr(gp*\Hélt(C, Q) + g,

where the middle term consists of 2g eigenvalues with absolute value ¢'/2. It follows that
[#C(Fy) — (¢ + 1) <294

Exercise : If C has genus 1, then C'(F,) # 0.
It turns out that H}(E, Q) is “dual” in some sense to V; E. (Specifically, V; E is a homological object.)

48



3.17 Apr9, 2020 (Complex numbers)

Fix an ellptic curve E over C. We already know a lot since C is algebraically closed. We also have topology
and analysis:

B B

which is a connected compact Riemann surface (i.e. a complex manifold of dimension 1). Since E has an
algebraic group law, E*" is a complex Lie group of dimension 1. (A complex Lie group is one where the
group operations are holomorphic.)

More generally, we have an equivalence of categories

{nice curves over C + morphisms} — {connected compact Riemann surfaces + holomorphic maps}
C—C™.

Theorems of this flavour are often called “GAGA” (after a paper of Serre). As an example of a GAGA-
type result, the morphisms C' — P{ that are not constant equal to oo can be identified with the field of
meromorphic functions on C*". For P € C'and f € C(C'), the number ord p(f) is also the order of vanishing
of f at P in the sense of complex analysis.

We also have an agreement on differentials, and in particular C' and C*" have the same genus.

Now consider a lattice A C C, which is a discrete subgroup of rank 2, as below:

o o
\ g L 4

Now C/A is a connected compact Riemann surface of genus 1. It’s also a Lie group, using addition from
C.
Consider lattices A, A’ of C. Glven a € C satisfying oA C A’, multiplication by a gives a holomorphic
map
C/A— C/N
z+A—az+ A

Conversely, we have

Lemma 3.17.1. Let f: C/A — C/A’ be holomorphic and f(0) = 0. Then f arises from « as above. In particular, f
is a homomorphism of groups.

Proof. We have covering maps C — C/A and C — C/A’, and since C is simply connected there exists a lift,
i.e. a unique map F: C — C such that F(0) = 0 and the diagram

c—f ¢

| l

c/A —L /N

commutes. Note that F' is holomorphic.

Thus for any w € A, we have F(z+w)—F(z) € A’,s0 F(z+w) — F(z) is constant. Thus F'(z+w) = F'(z)
forall w € Q. So F': C — C is holomorphic and bounded, which means F’(z) = a € C. It follows that
F(z) = az, since F(0) = 0. O
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Thus we see that
Hom(C/A,C/A") ={a e C: aA CA'}.

(The left side consists of homomorphisms of complex Lie groups, or equivalently of holomorphic maps
sending 0 to 0.)
In particular, C/A = C/A’ if and only if A’ = aA for some o € C*.

Theorem 3.17.2. For an elliptic curve E /C, there is a lattice A C C such that E* = C/A as complex Lie groups.

Proof ideas. e Lie theory: consider the Lie group G = E*" and let g be the Lie algebra of G. It’s the
tangent space of G at 0, with pairing. We have a holomorphic map exp: g =+ G = E* (for v € g, there
exists a unique homomorphism of Lie groups ~,: C — G such that 7,(0) = 0 and (dv,)o: C — gis
t — tv. Then exp(v) = v, (1).).

The map exp satisfies many nice properties: d(exp)o = idg, so exp is locally a homeomorphism near 0.
Also, exp is a homomorphism of groups, so A = ker(exp) C g = C is discrete. Finally, exp is surjective,
since the image is open and G is compact. It follows that exp gives an isomorphism g/A = E".

e Alternatively, let V' = {holomorphic differentials on £} = C. We get an injection
H(E™Z) =V~

’yr—>(wr—>/7w).

Let A be the image of H; under this injection. We get a map
E™ = V*/A
P
P (w+ / w4+ A)
0
that turns out to be an isomorphism of Lie groups.
O

Remark 3.17.3. For a nice curve C/C of genus g, let X — C*" be the universal cover (X is also a Riemann
surface). The universal cover X depends on g according to the following table:

g 0 1(>2
X PY(C) | C | H,
X=2-29g| >0 [|0|<0

where H is the complex upper half plane. A

Let’s now explicitly construct an elliptic curve given a lattice A. By Riemann-Roch, we showed that there
are z,y € C(A) such that div(z) + 2(0) > 0, ordgz = —2, div(y) + 3(0) > 0, and ordgy = —3. Also,
C(A) = C(z, y), with = and y satisfying a Weierstrass relation.

We will explicitly construct  and y. The Weierstrass p-function (relative to A) is

1 1 1
p(z) = p(z;A) = 2 + Z (m - W>
wEA
w#0
Claim 3.17.4. The function p(z) is holomorphic on C \ A.

Proof idea. We need to check absolute and uniform convergence on compact subsets of C \ A. The key is to
observe

1 1 10
— < if |w| > 2|2,
Goop wrl Spepll el > 20
noting that
1
E T converges for k > 3. O
o vl
w#0
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More generally, define

e 1
GQk(A) d:f ZWGC fOI'I{iZQ

weA
w#0

Exercise : Near 0, we have

1 o0
p(x) = + ;(Qk; + 1)Gapra(A) 2%

Lemma 3.17.5. We have p € C(A), i.e., p(z +w) = p(z) forw € A.

Proof. We may differentiate term by term, so

Note also that ¢ (z + w) = ©/(z) for all w € A. Then
Pz +w) = p(z) + Cu.
For z = —w/2, we have p(w/2) = p(—w/2) + C,,, but since p is even we see that C\,, = 0. O

We've found a function p € C(A) that is holomorphic on C/A except at 0, where ord, p = —2, as well as
a function g’ € C(A) that is holomorphic except at 0, where ordy ' = —3. It follows that C(A) = C(p, ¢').

The functions p and ¢’ should satisfy a Weierstrass equation, ie. a linear relation in 1, z, y, 22, zy, 3, y*.
Exercise : Show that

y? = ¢'(2)? = 4276 — 24G4272 — 80G + . ..
x )2 =270 +9Gz 2+ 15Gs + ...
r=p(2) =22 +3G422 + ...

and hence
y? = 42® — go(A)z — g3(A),

where g2(A) = 60G4 and g3(A) = 140Gg. (Theideais to check that y? — (42 —go(A)z—g3(A)) is holomorphic
on C/A and equals 0 at 0.)
Finally, we may define the map

p: C/A — E*
2+ A [p(2),0(2), 1]
0+A—=0=0

This is an isomorphism of complex Lie groups, and we obtain C/A = E".

Summing everything up, we have equivalences between the category of elliptic curves over C with mor-
phisms of varieties, the category of elliptic curves over C with homomorphisms of Lie groups, and the
category of Lattices A C C with morphisms consisting of Morp(A,A’) = {a € C: aA C A’}. On the ob-
ject level, the equivalence between the first two categories is given by C' — (", whereas the equivalence
between the latter two categories is given by C/A <+ A.

Fix animaginary quadratic field K’ C C, and let Rbe an order of K, so R C O is a subring of finite index.
Note that R C C is a lattice, and Morp(R, R) = {a € C: aR C R} = R. It follows that End(C/R) = R, and
hence there exists an elliptic curve E/C with End(E) = R. Try proving this algebraically!

(Recall that the endomorphism rings of E/C are either Z or such an order.)
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3.18 Apr 14, 2020 (Complex numbers)

Let E/C be an elliptic curve, and let E*" = E(C). We saw last time that there is a lattice A C C such that
E*™ = C/A as Lie groups. The lattice is unique upt o scaling by an o € C*.
Let A C C be a lattice. There is an elliptic curve E/C such that £** = C/A. Moreover,

E/C: y? =423 — g2(N)x — g3(A),

where 1 1
@A) =60 —  g(h)=140) .

wEA wEA
w#0 w#0

For E, E' elliptic curves over C, we have E*" = C/A and (E')*™ = C/A’ for some lattices A, A’. Then
Hom(E, E') 2 Hom(C/A,C/A) 2 {a e C: aA C A'}.

Altogether, we saw three equivalences of categories last time, between elliptic curves with morphisms of
varieties, elliptic curves with morphisms of Lie groups, and lattices with morphisms givenby {a € C: oA C
A}

Fix an imaginary quadratic field K/Q, so K C C. We have the ring of integers Ox C C; itis a lattice and
is the maximal order of K. Let’s classify E/C with End(F) = Ok.

Fix A C Cwith End(C/A) = Ok, i.e. oA C Aforall « € Ox. We say E has complex multiplication (CM)
by Ok. We can scale A so that A = Z + Z7. We have A C O, since a- 1 € A for all & € Ok. It follows that
A is an ideal of Of.

Conversely, any nonzero ideal I C O is a lattice in C and End(C/I) = Og. This motivates the following
definition:

Definition 3.18.1. Let CI(Ox ) be the set of equivalence classes of non-zero ideals of Ok, where I ~ I if
I, = al; for some o € K *. This is called the class group of Ok (although as of now, this is a set). A

We let Ell(Ok ) denote the set of elliptic curves E/C with End(E) = Og. Then
Theorem 3.18.2. We have a bijection

[I] — C/I.

Fact 3.18.3.
o We can Cl(Ok) into a group, by setting [I1] - [I2] := [I1L2).
o Furthermore, C1(Of) is a finite group; it’s size is computable. (See Corollary 4.20 in Mehrle’s 6370 notes)
Corollary 3.18.4. Ell(Ok) is finite with cardinality #Cl(Ok).
Take any [E] € Ell(Ok). For o € Aut(C), we have [E“] € Ell(Ok), as
E:y =2>+ar+b~ E°:9*> =23+ o(a)z + o(b).

Thus we see j(E?) = o(j(E)).
We can define the Hilbert class polynomial

Ho(z):= [[ (¢—j(E)) eCla].

[E]€EN(OK)

Because the coefficients are fixed by all of Aut(C), it follows that
Ho, (z) € Q[z].

In fact,
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Fact 3.18.5. We have Ho,, (x) € Z[z].

Thus we can compute it by numerically approximating Hp,. and then rounding.
Example 3.18.6. Let K = Q(v/—7),s0 O = Z[%ﬁ} We have #Cl(Of) = 1. It follows that
Ho,(z) =2 —j(C/Ok) =2+ 3% 5%

So up to isomorphism, there is only one E/C with End(E) = Ok; it has j-invariant j(E) = —33 - 53.

Example 3.18.7. Let K = Q(v/—5), so Ox = Z[v—5] = Z + Z+/—5. Then CI(Ok) = {[Ok],[Z -2+ Z(1 +

v/=5)]}. Then

Ho, (z) = (z — 1264538.909...) (z 4 538.909...)
= 2% — 1264000z — 68147200.

So E/C has endomorphism ring O if and only if j(E) € {63200 + 282880+/—5}.

A

Fact 3.18.8. Let K be imaginary quadratic. The field K := K (j(C/Of)) is an unramified extension of K that is

Galois with Galois group Cl(Of). It is the maximal unramified abelian extension of K.

Let’s give some examples of the Lefschetz principle, which loosely says we can reduce results to those

over C:

Proposition 3.18.9 (Special case of Corollary 2.11.3). Let E/K be an elliptic curve with char K = 0. Then

E[m] & (Z/mZ)? for all m > 1.

Proof. We know E[m] = ker[m] is finite. So without loss of generality, we may replace K with a finitely
generated field such that E is defined over K with E[m] C E(K). Thus, there is an embedding K — C, so

we can now assume K = C. But now E*" = C/A and the torsion points are just

B[m] = (C/A)lm] = (;A)/A = AJ/mA = (Z/mZ)?.
Proposition 3.18.10. Let ,v: E — E’ be homomorphisms of elliptic curves over K with char K = 0. Then

Py =T Y
Proof sketch. Without loss of generality, we can set K = C. Then E*" = C/A and (E’)*™ = C/A’. Then
0: C/A — C/N
is given by multiplication by a € C* with oA C A’. Then
degp = #kerp = #(a 'A)/A =[A: aAl.

It follows that [A" : aA] - A’ C aA, and

d
degyp- A CaA, ie APV CA.
«

O

Note that ¢*: C/A’ — C/A is multiplication by deg ¢/a. We can now choose bases for A and A’ with the
same orientation in C. Then ¢ gives rise to a map A — A’ given by multiplication by «. This map is given

by a matrix

A= [i Z] € Ma(2)

with respect to the chosen bases. We have det A = [A’ : aA] = deg ¢, and so ¢* is given by the matrix

O

—C a

Finally, adj(A + B) = adj(A) + adj(B) gives (¢ + ¢)* = ¢* + ¢*.
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We remark that the observation adj(adj(4)) = A and adj(AB) = adj(B)adj(A) gives other familiar
properties of dual morphisms.

Let’s talk briefly about modular curves. Recall that we had
{E/C up to isomorphism} « {lattice A C C up to scaling}.

We can give the right side a geometric structure in the following way. Given A, we can scale so that A = Z+Zt

with 7 € Hin the upper half plane. Note that 7 is not unique: take another basis of A given by {ar+0b, cT+d}
with

a b
L d} € GLy(Z).
It follows that
A=Z(ar +b) +Z(cT +d)

a7+b)
cr+d/’

:(CT+d)'(Z+Z'

One can check that %IZ € H for [Z Z] € SLy(Z). Thus we have an action of SL>(Z) on H sending 7 to

at+b
ct+d”

In particular, we have
{E/C up to isomorphism} <> SLy(Z)\H

A fundamental domain for the orbits of SLy(Z)\ H is given by

The portion of the boundary to the right of i € H is identified to the portion of the boundary to the left of
i € H, via the identification a+bi ~ —a+bi. For F = {z € H: |z| > 1,|Im(z)| < 1/2}, themap F' — SLo(Z)\H
is surjective and injective away from the boundary. The points 7 = €2™/6 = (5 and i are special: the elliptic
curves C/Z[(s] and C/Z[i] have j-invariant 0 and 1728. Given any E/C with Aut(E) % Z/27Z, we have maps

| ;

SL2(Z)\H i@z ©

The map j: H — C is holomorphic with j(A7) = j(7) for A € SLy(Z). In particular, for A = [(1) ﬂ we have
j(r+1) =j(r). We have

Fact 3.18.11. We have j(7) = J(e*™7), where

J@ = (142005 mt— ) T 1 — gy
W=(1+ mz_lml_qm)g( —q")

1
= T4+ 106884 + 21493760¢° + - - - € Z((q)).
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Observation 3.18.12 (in memory of Conway). McKay observed that 196884 = 196883 + 1. It turns out that
196883 is the smallest degree of a nontrivial representation of the Monster simple group. To learn more, you
can look up “Monstrous Moonshine”. A

Let N > 1. We define

*

FO(N):{AESLQ(Z):A%[O j (modN)}.

Then I'y (V) \H parametrizes elliptic curves over C with a cyclic subgroup C' C E of order N. The dictionary
is given by sending

PR ((C/(Z +Z7)), <% +(Z+ ZT>).

This is interesting because if £ and E’, then they are isogenous by an isogeny with cyclic kernel.

You can find models over Q for I'g(N)\H.
Next time we’ll talk about local fields and reducing equations modulo a maximal ideal.
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3.19 Apr 16,2020 (Local fields)

We first set some notation. Let R be a complete discrete valuation ring, i.e.R is a PID with a unique
nonzero maximal ideal that is equal to its completion with respect to m. We set m to be the maximal ideal
of R, and 7 a uniformizer of R, so m = Rw. We set k = R/m to be the residue field, and K to be the quotient
field of R. We call K a local field. (We are following Silverman, so we assume k and K are perfect.)

Associated to R is a valuation v: K* —» Zsuch thata = 7¥(®y withu € R*. We manually set v(0) = +oo.

The completion of R (with respect to m) is

R lim R/m"

and completeness of R amounts to saying that R — R is an isomorphism. We fix ¢ > 1 and define |- |,: K —
Rs¢ by |a], = ¢~ (@), This is an absolute value. The completeness of R is equivalent to the fact that every
Cauchy sequence in K, using | - |, is convergent.

Example 3.19.1. Let R = Z,; then K = Q,, m = pZ,, k = F,, and 7 = p. A
Example 3.19.2. Let R = C[z]; then K = C((x)), r =xand k = C. A

Example 3.19.3. Let K’/ K be a finite extension and let R’ be the integral closure of R in K’. Then R’ is also
a complete DVR and K is another local field. Then ¥’ = R’/w’ is a finite extension of k = R/m. A

For today, finite extensions K/Q,, are the key example to think about.
Let us fix an elliptic curve E/K and choose a model

y? + a2y + azy = 2° + ax + asw + ap
with a; € R, thus E C P%. The reduction of E is denoted E C PP? and is the projective curve defined by
y? + Grzy + sy = ©° + Ggx + Ggx + G

where @; is the iamge of a; in k = R/m.
Note that £ depends on the choice of a;:

Example 3.19.4. Let p # 2; note that y? = 2 + z and y? = 2® + p*x gives isomorphic curves over Q,. Their
reductions mod p are y> = z* + x and y* = 2 respectively; the first defines an elliptic curve £ C Py ,
whereas the second defines a singular curve E - ]P’Ile of genus 0.

The feeling is that y*> = 23 + z, with discriminant A = 64, should be a “better” model than y? = 2° + p'z,
with discriminant A = 64p!2. A

Let’s recall the discriminant A € R, A # 0 of an elliptic curve. The model with a; € R is a minimal
(Weierstrass) model if v(A) > 0 is minimal amongst all models for E/K. There’s an algorithm to compute
this A.

Suppose (z,y) and (z’,y’) are coordinates of two minimal models of E/K. We have

r =l +r %)
*
y=udy +ulsa’ +t

foru € K* andr,s,t € K. Then A = u!2A’, hence v(A) = 12v(u) + v(A’) and v(u) = 0 means that u € R*.

Exercise : Show furthermore that r, s,t € R.

It follows that the reduction E C P? of a minimal model is unique up to a coordinate change (*) with
uek*andr,s,tck.

Let E be the reduction of £ modulo m.

Aside 3.19.5. If char k # 2, 3, the equation y? = 23 + ax + b is minimal if and only if v(A) < 12 or v(a) < 4.
Tate’s algorithm computes minimal models in general, plus a whole lot more. A
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There’s no reason to believe that E should be an elliptic curve. Let E,,, be the nonsingular points of E.

Fact 3.19.6. One can check (via lots of casework) that E, is an abelian group under the “usual” geometric group law.

(Note that defining “P + P” in the geometric group law, we need to use the tangent line of £ at P.)

There is an action Galy, OE”S. B B N

We say E has good reduction if v(A) = 0, i.e. E/k is an elliptic curve, so E,, = E; otherwise E has bad
reduction. B

Suppose we have bad reduction; we may without loss of generality assume E is singular at P = (0, 0).

Then E,,, = E\{P}. The singularity at (0,0) € E imposes three conditions on the coefficients of the equation
defining F, and it turns out that

E: y2 +arry = z3 +@x27
or in other words

y? +aray — agz? —23 = 0.

homogeneous quadratic;
discriminant @72 +4az

Then:

e Wesay F has a cusp at (0,0) if a1? + 4a3 = 0. When char k # 2, up to a change in coordinates we have

the curve y? = 23

The nonsingular points are Ens = G, over k; itis a group scheme with G, (k) = (k, +). We say E has
additive reduction.

e We say E has a node at (0, 0) if @12 + 4az # 0. When chark # 0, up to a change in coordinates we have
the curve y2 = 23 4 Gz

[The curve is supposed to be connected /smooth with a single nodal singularity, and “any other sin-
gularities are due to the author” - Jake]

The nonsingular points are E,, = G,, over k; it is a group scheme with G,,, (k) = k", ). We say &/
has multiplicative reduction. Note that y* — az2? = (y — \/azz)(y + v/azx) factors. Thus, we say it has
split multiplicative reduction if az € (k*)?, and it has non-split mulitplicative reduction otherwise.

57



(Note that a connected linear algebraic group over an algebraically closed field is either G, or G,,; it’s not

hard to decide which one E,,; is isomorphic to.)
We have a reduction modulo m map

P*(K) — P (k)
[ag,...,an] = [a@0,...,Gn),

where @; is the image of a; in R/m, after scaling all coordinates so that all a; € R and at least one a; € R*.
This is well-defined. This gives a reduction map

E(K) — E(k)
P P.
Thus for example, the reduction map sends E(Q,) — E(F,).
Define Eq(K) = {P € E(K): P € E,s(k)}. We have
Fact 3.19.7. The map
Eo(K) — Ens(k)
P—P
is a group homomorphism, and Ey(K) is a subgroup of E(K).
(See [Silverman, VII §2]; it’s straightforward.)
Fact 3.19.8. The group E(K)/Ey(K) is finite, i.e. Eo(K) is finite index in E(K).

When K/Q, is a finite extension, there is a topological proof. The idea is to use the fact that R is compact,
hence Ey(K) is an open subgroup of the compact E(K). Thus the cosets are a disjoint open cover, and the
compactness of E(K) means that [E(K) : Eo(K)] is finite. In general, it follows from Tate’s algorithm and a
Néron model.

One can even say more:

e If E is split multiplicative, [E(K) : Eo(K)] = v(A)
e Otherwise, [F(K) : Ey(K)] < 4.
Fact 3.19.9. The reduction map
Eo(K) — Epq(k)
P—P
is surjective.

This follows from Hensel’s lemma.
We have a short exact sequence of groups

0 —— Ei(K) — Eo(K) 22% E,,(k) —— 0

,where E,(K) = {P € E(K): P = O}. Also E(K)/Ey(K) is finite. N
A key idea is that to study E(K), it might be easier to break it into pieces E(K)/Ey(K), E,s(k), and
E,(K). Later, we'll see

THEOREM 3.19.10. The torsion subgroup of E1(K) is a p-group when p = char k.

This uses formal groups in Chapter IV of Silverman.
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Corollary 3.19.11. Suppose K/Q, is finite. Consider E /K with good reduction. Then for m > 1 with p { m, the
map

E(K)[m] — E(k)
P—P
is an injective group homomorphism.

(The corollary follows because E has good reduction, we see that Ey(K) = E(K), hence the kernel is in
E1(K), which has no nontrivial m-torsion because p t m.)

Corollary 3.19.12. Let E/Q be an elliptic curve. Then E(Q)ors is finite.

Proof. Take p large enough so that E has good reduction over Q,,. Then

E(Q)tors g E(Qp)tors — E(Fp)

which is finite; its kernel is a p-group. It follows that E(Q)ors/{maximal p-subgroup} is a finite group. To
finish, choose a second prime p. O

Example 3.19.13. Let £/Q : y*> = 2343z +4; ithas discriminant A = —26.33.5. It has good reductionatp > 5.
One cna compute #E(F11) = 14 and #E(F17) = 20. It follows that #E(Q)rs|2. But (—1,0) € E(Q), so
EQ)tors = {0, (—1,0)}. Note that (0,2) € E(Q). So (0, 2) has infinite order, and hence E(Q) is infinite. A
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3.20 Apr 21,2020 (Local fields)

Let K be a local field, which for our purposes has a definition that is more general than the “usual” one:
it is a field with a discrete vlauation v: K — Z U {400} satisfying:

* v(zy) =v(z) +v(y)
e v(z +y) > min{v(z),v(y)}
e v(z) = +oc if and only if z = 0.

Also K is complete with respect to the absolute value
| . |UZ K — RZO> ‘Jilv = C_U(l‘)

for a fixed ¢ > 1. We assume v(z) # 0 for some 2 € K*, so that the topology from |- |, is non-trivial. Without
loss of generality, v will be surjective.

This gives rise to the valuation ring R = {x € K: v(xz) > 0}, which is a complete DVR (discrete valuation
ring). It has a maximal ideal m and hence a residue field R/m.

We further assume that K and k are perfect, because we're following Silverman. The key example is a
finite extension K /Q,. When K = Q,, we have R = Z, and k = IF),.

Now consider an elliptic curve E/K. Fix a minimal model for E given by

y* + a1y + asy = 2° + aox® + asz + ag, (*)

i.e. a; € R with v(A) minimal. The (!) reduction modulo m of E is the the curve E C P2 defined by (x).

Let E,,, be the nonsingular points of E; it is an algebraic group under the “usual” geometric group law.
When E has good reduction (i.e. v(A) = 0), E,, = Eisan elliptic curve over k. When E has bad reduction,
the group Ens(k) is isomorphic to (k, +) or (EX, x), in which case we say it is additive or multiplicative
respectively.

We also have a reduction modulo m map

E(K) — E(k), P—P

We get subgroups of E(K)
Eo(K) € {P € B(K): P € E,.(k)}
Ey(K) Y {PeE(K): P=0)
They have important properties:
e E(K)/Ey(K) is finite

e We have an exact sequence

0 —— Ey(K) —— Eo(K) 228 B, (k) —— 0

e Any nonidentity element of E; (K) of finite order has order a power of p where p = char k£ > 0. (This
will be explained later with formal groups.)

Now let K’ be a finite extension of K and let R’ be the integral closure of R in K’; it is a complete discrete
valuation ring with maximal ideal m’, hence K" is a local field. It follows that:

e mR' = (wm')°R’ for a unique e > 1, which we call the ramification index. The valuation v': K’ —
Z J {400} is linked to the valuation v: K — Z U {+oo} in the following way: For € K, we have
v'(z) = ev(z).
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e The injection k — k' = R’/m’ is a finite extension, so this gives a number f = [k’ : k] called the residue
degree

e We have [K' : K] = ef. (This uses that k and K are separable.)

For related topics, you might be interested in the theory of Dedekind domains.
We say K'/K is unramified if e = 1, and totally ramified if e = [K' : K].

Fact 3.20.1. There is a unique field L such that K'/L is totally ramified of degree e, and L/ K is unramified of degree
f. (Prove this using Hensel’s lemma!)

Let’s study Galk. Assume K'/K is Galois. Note that Gal(K'/K) acts on R’ and m’, hence on %'. It fixes
R and m, and hence k. Thus we get a map Gal(K'/K) — Gal(k'/k).

Fact 3.20.2. The map Gal(K'/K) — Gal(k'/k) is surjective. (Prove this using Hensel’s lemma!)

We obtain an exact sequence
1 —— Gal(K'/L) — Gal(K'/K) —— Gal(k'/k) —— 1
We increase K’ to obtain
1 — Gal(K/K*") —— Gal(K/K) — Gal(k/k) —— 1

where K" is the maximal unramified extension of K. The (possibly infinite) extension K*"/K is a local
field.

We denote by I def Gal(K /K"“"), which we call the inertia subgroup of Gal.

Now suppose there is a Galx action on a set ¥. We say the action is unramified if I acts trivially. In this
case, we get actions of Gal(K""/K)CX and Gal, CX.

Theorem 3.20.3. Suppose E /K has good reduction. Then:
(a) For any m > 1 not divisible by char k, the action Galy C E[m] is unramified.
(b) For a prime { # char k, the action Galx CTyE is unramified.

Proof. Part (a) clearly implies part (b), so let’s prove (a). Fix a finite K’/ K such that E[m] C E(K’). Then we
have a homomorphism

Elm] = E(K')m] =% E(K)[m] C Elm),
where FE is an elliptic curve because E has good reduction. Note that both E[m] and E[m] both have order
m?, and the kernel is contained in the kernel of E;(K’)[m] (since E; is the kernel of the reduction map). But

Ey(K')[m)] is trivial, because the nontrivial torsion in E; (K’) has order a power of char &’ { m (this will be
explained later with formal groups). Thus we have an isomorphism

E[m] = E[m;
the actions of Galx C E[m] and Galy C E[m] are compatible with Gal — Galy. O

Theorem 3.20.4 (Criterion of Néron-Ogg-Shafarevich). Let E/K be a elliptic curve and fix ¢ # chark. The
action of Galg CTyE is unramified if and only if E has good reduction.

(In the bad reduction case, one can actually check whether it’s additive or multiplicative.)

Proof. The backwards direction is Theorem 3.20.3.

For the forwards direction, we suppose that Galx C Ty F is unramified. Equivalently, Ix = Gal(K /K“™)
acts trivially on T, E, and so E[¢"] C E(K"") for all n > 1. We use the fact that £ has good reduction over
K if and only if it has good reduction over K*" (see [Silverman, VII 5.4]). Because [E(K"") : Eo(K"")] is
finite, we have E[{] C Eo(K""), so we get an exact sequence
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1 —— By (K") —— Eo(K"") —— Ep (k) —— 1

where E; (K"") has no nontrivial /-torsion (since £ # char k). Thus E,,.(k) contains a subgroup isomorphic

to E[(] = (Z/(Z)2. If E has bad reduction, then E,, (k) is isomorphic to k or %, which have no nontrivial
¢-torsion or an {-torsion subgroup of order /, respectively. This is a contradiction. Therefore, E has good
reduction! O

Aside 3.20.5. Let V be a nice variety over a local field K with valuation ring R. We say that V' has good
reduction if there is a smooth proper scheme V — Spec R whose generic fiber is V.

For V an elliptic curve, this agrees with our earlier definition. (To show this, use Néron-Ogg-Shafarevich
(Theorem 3.20.4).)

We say that E/K has potentially good reduction if there is a finite extension K’/K such that E has good
reduction over K'.

Theorem 3.20.6. The following are equivalent for E/K:
(a) E/K has potentially good reduction

(b) E has good or additive reduction

(c) For ¢ # chark, Ik acts on Ty E through a finite group
(d) j(F) e R.
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3.21 Apr 23,2020 (Local fields)

We'll talk about formal groups today. The motivation for studying formal groups is as follows. Let E be
an elliptic curve over a local field K and fix a Weierstrass model with a; € R, where R is the valuation ring
of K with maximal ideal m. We defined

Ef(K)={PcE(K): P=0 (modm)} < B(K).

The claim is that E1 (K )ty is either trivial or a p-group, where p = char R/m. To do this, we need to under-
stand E “near” O.

Let E be an elliptic curve over a general (perfect) field K. Let’s study E “near” O. There are many ways
to interpret this, for example:

e We could study the Lie algebra, but this turns out to be a 1-dimensional K-vector space with trivial
pairing. Thus we lose too much information.

e We could study the local ring K[E]p C K(E), ie. thering of f € K(E) with ordp(f) > 0. This ring
has too much information, since from K[E]o we can recover K (E) and hence E /K up to isomorphism
as a curve; we can also recover O € E(K) from K[E]eo.

We could also consider the completion:

K[Elo ® lim K[Elo/m",

n

where m is the maximal ideal of the local ring K[E]». The completion turns out to be a complete discrete
valuation ring.
Consider a model for E/K:

y2 +ai1xy + azy = z° + a2x + a4x + ag

with a; € K. Because y is nonzero near the identity, we may divide by y* to obtain

1 zl 1\2 x\3 r\21 x 1\2 1\3
Leazton(l)'= () sl S a () ) t
Y vy Y Y Yy’ y y\y Y
def 1 def 4 .
Setw = -3 and z = -5 Then Equation (4) becomes
w = 2>+ aj 2w + a22%w + azw? + agzw? + agw?. (5)
call this f(z, w)
Note that O is now (z,w) = (0,0) in this model.
We have ordp z = —2 and ordp y = —3,s0 ordp w = 3 and ordp z = —2 + 3 = 1. It follows that z is a

uniformizer of K/[E\}@
Exercise : We have K[E]p = K[z].

Thus w € K[E]p = K|[z] means that w = w(z) can be expressed in terms of z, sort of like an “implicit
function theorem”.
Indeed, to compute w(z), we observe that w = O(z2?), i.e. w € z2K[z]. Now recall (Equation (5)) that
z = f(z,w). Thus:
w= f(z,w) = 2>+ O0(z*)
w = f(z,w) = 2>+ arz* + O(z°)
w= f(z,w) = 2> + a1z + (a? + ag)2® + O(25)
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(We obtained better information at each step by considering f(z,w) = f(z,2% + O(z%)) and f(z,w) =
f(z,2% + a12* + O(2%)) respectively.)
We may repeat this to obtain

w=w(z) =221+ A121 + Ap2® +...)
with 4,, € Z[a, ..., ae] a degree n polynomial in the a;, where deg a; = i. For example,
Ay = aq, Ay = a2 + as, ad + 2a1a + as,
Ay = a‘lL + 3a§a2 + 3aq1as + a% + aq
Remark 3.21.1. In particular, w = f(z, w) has a unique solution w € K|[z]. A

We have Laurent series
—z 1 1

x(z) = o) =5 @ —ap—azz- (a4 + ara3)z® + -+ € Z[ay, ..., a6)((2)) € K((2)),
and . .
W) == = g € 2l al(() C K())
Observe that

[z, =1, w(2)] = [2(2),y(2), 1] € E(K((2))),

where w(z) is an explicit series in Z[az, . . . , ag][2]. We call this a “formal solution”.

Now suppose K is a local field with valuation ring R O m. Assume a; € R. As above w(z) € R[z]. The
key observation is that we can plug in values zy € m into w(z), so w(zo) € R. (This is because w(zo) = 2§ (1 +
Ai20 4+ asz3 +...), where A; € R; thus A;z" — 0in K, and in the world of local rings one can prove that a
series converges if and only if its summands converge to 0.)

We have an evaluation map

m — E(K)
zo > 20, —1,w(20)],

i.e. we have exhibited many points of E(K). In fact, [z0, —1, w(z0)] = [0,—1,0] = O (mod m), so our evalu-
ation map lands inside F; (K).

Proposition 3.21.2. We have a bijection
20 — [20, —1,w(20)].

Proof. Tt's easy to see that the map is well-defined and injective. Let’s verify surjectivity: take any P € E;(K);
without loss of generality P = O. Write P = [z,y,1] = [-z/y,—1,—1/y]. Since P = O (mod m), we see
that zp := —x/y € mand wy := —1/y € m. We need to check that w(zg) = wy. But we have

wo = f(20,wo)
= f (20, f(20,w0))
= f(20, f(20, f(20,w0)))

As before, we find that wy = w(zg). O

Note that the bijection of sets in Proposition 3.21.2 is not a homomorphism of groups. Thus we can use
the bijection to give m a new group law (steal it from F; (K)).

Claim 3.21.3. There is a unique power series F(x,y) € R[x,y] such that a & b := F(a, b) defines the above group
law on m.
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We will now construct an F(x,y) € K[z,y] for a general K; in the local case it will satisfy the above
claim.
We work with the field K ((z1, z2)) in two independent variables. We have

[_21’ 1,’w(2’1)] + [_ZQ’ 1, _w(z2)] € E(K((Zla 22)))7 (6)

where addition above uses the group law in E. The claim is that there exists F'(z,y) € K[x,y] such that
Equation (6) is equal to [—F (21, 22), 1, —w(F (21, 22))].

Indeed, in the (z, w)-coordinates there the points [—z1, 1, w(z1)] and [—z2, 1, —w(z2)] are connected by a
line L of slope

w(z) —w(e) o~y B -
A=—""——2 =N A,=——— €Zla,...,a6)[z, 2]
oL e At iz
So write L : Az + v with v = w(z1) — A(21) € Z[aq, ..., a6][#1, 22]- Plug in w = Az 4 v into equation to get a

cubic in z with three roots, two of which are z; and z3. Thus the third root is

as + azA? — agy — 2a4\v
1 —+ G,Q)\ —+ CLG}\2 —+ a3)\3

23 = —21 — 22 + EZ[al,...,CLGH[ZhZQ]].

After some more steps, it follows that the point in Equation (6) has z-coordinate F'(z, z2), where
Flz,y)=x+y—a1xy—ay (x2y + xyz) + (—2a3:v3y + (a1as — 3a3)x2y2 - 2a3xy3) + - €Z]ay,. .., a6][x,y]-
This gives a “formal group” E over any ring R 2 Z[ay, . . . , ag).

Definition 3.21.4. Let R be a ring. A (one-parameter commutative) formal group ¥ over R is a power series
F(z,y) € R[z,y] such that:

(@) F(z,y) =z + y + terms of degree > 2

(b) F(x,F(y,z)) = F(F(x,y),7)

(© Flz,y) = Fy, )

(d) There exists a unique i(T) € R[T] such that F(T,i(T)) = 0
(€) We have F(z,0) = and F(0,y) = y.

(It turns out that part (d) and (e) follow from part (a) and (b).)
We say F'(x,y) is the formal group law of . A

Is a formal group a group? No, because there is no underlying set.
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3.22 Apr 28, 2020 (Local fields)

We'll finish up formal groups today; see [Silverman, Ch IV] for more. (There is a lot more out there than
what’s in Silverman, as well!)
Let R be a commutative ring. A formal group .# over R is a power series F'(x,y) € R[z, y] satisfying:

(@) F(z,y) = +y + (terms of degree > 2)

(b) F(x, F(y.2)) = F(F(x,y),2)

(© F(z,y) = F(y,z)

(d) There is a unique ¢(T") € R[T"] such that F'(T,i(T")) = 0.
(e) F(z,0) =zand F(0,y) = y.

Exercise : Show that (a), (b), and (c) imply (d) and (e).
We say that F' is the formal group law of .7

Example 3.22.1. The formal additive group is denoted G, over R and is defined by

F(z,y)=z+y and i(T)=-T.

Example 3.22.2. Te formal multiplicative group is denoted G, over R and is defined by

Fla,y=x+y+azy=1+2)1+y)—1 and i(T) = m—l—ZT”.

(The 1’s appear above because we want 0 to be the “identity”; one can readily check that F(x,0) = = and
F(0,y) =y A

Example 3.22.3. Let £/ K be an elliptic curve with explicit model in = and y. Last time we constructed an
F(z,y) € Z]ay,...,as][z,y] satisfying the following. By setting z = —x/y, there is a unique w(z) € K[z]
such that [z, —1,w(2)] € E(K((z))). For z1, z; independent variables, the addition law on F is such that

[21, =1L, w(z1)] + [22, =1, w(22)] = [F(21, 22), =1, w(F (21, 22))] € E(K((21,22)))

Using that E is a group law, one can show that F' is a formal group law. This gives a formal group E over
Z[al, ey CL@].

Now suppose that R is a complete discrete valuation ring with quotient field K, and let m C R be its
maximal ideal and k = R/m. Let (%, F) be a formal group over R.

We can give m a new (abelian) group law by setting a ® b = F'(a, b): note that F'(a, b) converges to an
element in m for all a, b € m. The group axioms for m follow from properties of F'. The set m” is a subgroup
of m.

We fix the notation . (m") to denote the set m" with group law from F.

Example 3.22.4. The group Gq(m) is just m with the usual +. A

Example 3.22.5. Consider G, (m). Observe that there is a group isomorphism

@;(m)ﬁl—&—ngX
r— 1+

(This is because F(z,y) = (1 + z)(1 +y) — 1.) A
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Example 3.22.6. Consider E(m) Last time we showed (Proposition 3.21.2, Claim 3.21.3) that there is a group
isomorphism

E(m) = By (K) = {P € E(K) suchthat P=0 (mod m)}.
A
Theorem 3.22.7. Take any non-zero P € .% (m) of finite order. Then the order of P is a power of p = chark > 0.
This gives the long-promised Theorem 3.19.10
Corollary 3.22.8. The torsion subgroup of E1(K) is a p-group when p = char k.

Proof of Theorem 3.22.7. Without loss of generality, suppose P € F(m) has prime order /. We need to show
that ¢ = char k.

There is a minimal r > 1 such that P € m” = .% (m"). We have /P = 0 € m" ! = . (m"*1). Now observe
that

Fm")/Fm ™ S m"/m T =2k

a—a

is an isomorphism; this is because F'(z,y) = = + y + higher order terms. Thus (k, +) has a point of order ¢,
and it follows that ¢ = char k. O

Notice that in the proof of Theorem 3.22.7 we saw that although % (m) may be a complicated group, it
comes with a filtration .# (m) D % (m?) O ... whose quotients are just (k, +).

In fact, we can prove a stronger version of Theorem 3.22.7. Assume that char K = 0 and p = chark > 0,
e.g. a finite extension K/Q,. We have a valuation v: K — Z U {4o0}.

THEOREM 3.22.9. Let .F be a formal group over R. For any integer r > ;(_pi , we have an isomorphism of groups
F(m") ~ (R, +).
In particular, & (m") is torsion-free.

Example 3.22.10. Take p > 2. Observe that there is a short exact sequence

1 —— 1492, zx UL Ppx 1

Since 1 + pZ, = G, (pZ,), Theorem 3.22.9 for m = pZ, and r = 1 > ;(fi = -2 implies G (pZy) ~ Zp. Tt
follows that
23 = 7)(p - 1)Z x 7,

For p = 2, the theorem doesn’t apply, and furthermore the result is false since

7L 2727 % L.

Example 3.22.11. Consider E/Q, with good reduction, and p # 2. We have an exact sequence

modp =

0 — E1(Q)) — E(Q,) — EF,) — 0

~

Since by Theorem 3.22.9 we have that E,(Q,) ~ E(pZ) = Z, is torsion free, we see that the homomorphism

modp —~

E(Qp)tors — E(Fp)

is actually injective! A
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To prove Theorem 3.22.9, we need to relate % and G, To do this, we define the formal logarithm of %
which shall be

log (T / dt € K[T7],

where: F € R[]z, y] is the formal law of %, F» = F(x y) s0 Fy(x,y) = 1+terms of degree > 1. It follows
that F»(¢,0) € 1 + tR[t] is invertible, with Fy(¢, 0) € 1+ tR[t]. Writing

)
-1 _ 14+ Zantn—l’
n=2

we see that

T o)
/ Fo(t, 00 dt =T+ %"T”.
n=2

0

Note that log & (T') = Zn 1 2T" withay € Rand a; = 1.

Example 3.22.12. Let.¥ = Gpm. Then F(z,y) =2 +y+ 2y so Fa(z,y) = 1 + z. It follows that

T
1
log=—(T) = / ——dt =log(1+T),
Gm 0 ].+t

where the log on the right side is the usual logarithm. A

Lemma 3.22.13. We have
log & (F(x,y)) = logg x + log & y.

In other words, log & is a homomorphism from # to Ga.

Proof. Define
h(z,y) = logz F(z,y) —logz x —logz y.
We need to show h = 0. Since h(0,0) = 0, we need only show that 2% = 0 and 2 = 0; and by symmetry
x Y

we'll just show gh = 0.
Observe that
d log & (T) = L
dat 087 Fo(t,0)°
So by the chain rule, we need to show

oh 1 1 -
Ak (2, y) —0— ——— =
dy  Fa(F(x,y),0) 2(z:9)

Well, observe that by associativity we have

%F(F(%y),z) = %F(va(y7z))7

which by chain rule says

Fo(F(z,y),2) = Falz, F(y,2)) Fa(y, 2) =2 Fa(F(z,y),0) = Fa(z, F(y,0)) - Fa(y,0).

It follows that
1 1

B (9.0 Y = Hyo)y

which is exactly what we wanted to show. O

68



v

Exercise : For x € m" (with r > 1), then %n € m” and v(
and is in m” for all z € m". (Again, this uses that log & (z) =
For any > 1, we have a group homomorphism

oy 22" fora, € Rand a; = 1.)

%) — +4o00. It follows that log » x converges
F(m") = Gu(m")
x> log z(x).

This is not always an isomorphism, as we saw with
G (222) — Gu(2Z2)

in Example 3.22.10, where the left side has torsion and the right side does not.
Exercise : There is a unique exp 4 (T') € K[T] such thatlogs exp & (T) = T = exp 4 log z(T'). Moreover,
— b
expg(T) = —TT" with b, € Rand b; = 1.
n!
n=1
Take z € m". Does exp & (z) converge, and if so, is it in m"? The answer turns out to be yes if r > v(p)/(p—1),
so we would obtain an isomorphism

F(m") 252, G, (m").
The idea is to estimate v(n!) < (n — 1)% [see e.g. Legendre], and then for © € m” we have

n

v(x—‘) =nv(z) —vn!) >nr—(n—1) v(p) ot (n—1) (r— v(p) )

n! p—1 p—1
—————
>0

Example 3.22.14. Take E/Q given by y* + y = 2% — 2% — 10z — 20. We have A = —115. Take p{ 2 - 11 and

observe that
(mod p) =

E(Q)tors g E(Qp)tors —_— E(]Fp)

Note that #E(F3) = 5. Moreover, 5|#E(F,) for all p { 2 - 11. It follows that E(Q)oys is either trivial or cyclic
of order 5. But (5,5) € E(Q) has order 5, so

E(Q)tors = {(5,5)) = {0, (5, £5), (16,£60)}.

Next time, we'll take E/Q and consider the structure of E(Q). A
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3.23 Apr 30,2020 (Number fields)
Let K be a number field, i.e. a finite field extension of Q. Over the next few classes, we will prove
Theorem 3.23.1 (Mordell-Weil). For an elliptic curve E /K, the abelian group E(K) is finitely generated.

This implies that E(K) = A x Z" for some r > 0, where A = E(K)ors. The integer r is called the rank of
E.

Note that F (K )iors is computable, since passing to the completions gives bounds on the size of the torsion
and then we can brute force check the remaining possibilities. Even more, we have:

Theorem 3.23.2 (Mazur, 1977). Let E/Q be an elliptic curve. Then E(Q)ors is isomorphism to one of the following:
o Z/NZ with1 < N <12,N # 11, or
o 7/27 x Z/NZ with1 < N < 4.

Moreover, all of these groups occur.

(This theorem is quite hard; the proof involves constructing some modular curves and understanding
their points.)

The rank of an elliptic curve is more mysterious; for example, an open question is whether or not the
rank of E/Q can be arbitrarily large. The expected answer changes over time, and at the moment there’s no
consensus. The record is due to Elkies, who found an elliptic curve E/Q with r > 28.

The strategy of a proof is as follows. There are two ingredients:

e Show that F(K)/mFE(K) is finite for some/all m > 2. (This is called “weak Mordell-Weil”)
e There is a height function h: E(K) — R satisfying:
— For any ¢ > 0, the set {P € E(K): h(P) < c} is finite
- Fix Q € E(K). There is C4 (depending on E and @) such that A(P + Q) < 2h(P) + C; for all
P € E(K).
— For m > 2 there is a constant C'; depending on m and E such that
h(mP) > m2h(P) — Co
forall P € E(K).

Using these ingredients, let’s prove Mordell-Weil (Theorem 3.23.1).
By the weak Mordell-Weil, there exists a finite set S C E(K) that represents all cosets in the finite set
E(K)/mE(K). Take any point Py € E(K). Then:

e There is Qg € S such that Py = Qo + mPy, for P, € E(K),
e Thereis Q1 € S such that P, = Q1 + mBP,, for P, € E(K),
e There is Q2 € S such that P, = Q2 + mP3, for P3 € E(K),

and so on.
Since S is finite, there is C; > 0 such that h(P — Q) < 2h(P)+ C forall P € E(K) and @ € S. Then we
see that h(mP,,+1) = h(P, — Q). Furthermore, the properties of the height function say

m?h(Ppy1) — Cy < h(mPyi1) = (P, — Q) < 2h(P,) + Cy,
so in particular (since m > 2)
W(Paia) < gh(P) +C.
By induction, it follows that h(P,) < 5-h(Py) + 2C. Then we observe that E(K) is generated by the set

A= SU{P e E(K): h(P) < 2C +1}.

(Note that P, € A for n large enough, and since P, = Q,, + mP,+1 note also that P is in the subgroup
generated by A; furthermore, A does not depend on the initial choice of Fy.)
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Remark 3.23.3. Our h will be explicit and the sets { P € E(K): h(P) < C} are computable. The proof shows
if we find a set of generators for E(K)/mE(K), then we can compute a set of generators of E(K). A

Unfortunately, we don’t know how to find generators of E(K)/mE(K) in general.
Let’s fix m > 2. Our goal is to show that E(K)/mE(K) is finite. Note that we have an exact sequence of
groups

0 E[m) E P2l g 0
with compatible Galx = Gal(K/K) actions. Taking Galy invariants, we get an exact sequence
0 — E(K)[m] — E(K) "=} B(K)

We remark that multiplication by m need not be surjective.
Take a point P € E(K). Thereis Q € E(K) = E such that P = m(Q). Now take any ¢ € Galx and note
that
P =0(P)=0(mQ) =mao(Q),

so m(c(Q) — Q) = P — P = O. We obtain an element

def

& = 0(Q) —Q € Elml.

In other words, we get maps

f: Galg — l;[ﬂl]

o= &

Let’s discuss properties of these maps.

e For 0,7 € Galg, we have
§or =07(Q) —Q =0(Q) —Q+0(7(Q) — Q),

SO go‘r = 5(7 + 0'57-

e There exists a finite Galois extension L/K such that £ factors through

Galg < E[m)

T
ab—)(f\x) -7 3

Gal(L/K)

(We can take L so that @ € E(L) and E[m] C E(L).)

e What if we chose another Q' € E(K) such thatm@Q’ = P? Well, m(Q'—Q)=P—-P =0.S0Q' = Q+a
for some a € E[m]. It follows that

; def

§&=0@Q)-Q =0Q+a) = (Q+a) =&+ (o(a) —a). @)

Let K be a (perfect) field; the case where K is a number field or local field suffices for us.

Let A be an abelian group with a Galx action that respects the group law and for each a € A there exists
a finite Galois extension L/K such that Gal(K /L) fixes a. (We say that A is a (discrete) Gal -module.)

A map : Galg — Ais a (continuous) 1-cocycle if:

o (o =&, + o0&, forall o, € Galg, and

e ¢ factors through Gal(L/K) for some finite Galois extension L/K.
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For example, a P € E(K) gives rise to a 1-cocycle £: Galxy — E[m)].
A 1-coboundary is a §: Galg — A of the form o — o(a) — a for some a € A.
The first cohomology group of the Galx-module A is

1 i _ {l-cocycles Galx — A}
H(K, 4) = H (Galx, 4) = {1-coboundaries Galy — A}

For example, given P € E(K), we get some 1-cocycles £ which depend on a choice of Q); the cocycle £ gives
rise to a well defined cohomology class [¢] € H'(K, E[m]) (see Equation (7)).
Group cohomology has many desirable properties:

¢ (Functoriality) given a homomorphism ¢: A — B of Gal x-modules, we obtain a homomorphism
0: HY(K,A) — H' (K, B)
sending [£] — [p o ¢].

o If we have an exact sequence

0 Ay Y.C 0

of Galx-modules then we obtain an exact sequence

0 —— AGale 2, pGalx Y, oGl 0, (K, A) —* H'(K,B) —— H'(K,C)

The map 4 is called the connecting homomorphism: for ¢ € C%%, choose b € B so that ¢(b) = ¢; then
for any o € Galg, we have ¢ = o(c) = (o (b)), so ¥(a(b) — b) = 0; it follows that o (b) — b = (&) for
a unique &, € A. This gives a 1-cocycle £: Galg — A, and 6(c) = [¢].

Remark 3.23.4. This is a special case of group cohomology for profinite groups. (As with other cohomology
theories, there are higher cohomology groups, and so on.) A

For E/K, the exact sequence

0 E[m] E P2l g 0

gives rise to the exact sequence

0 — B(K)[m] — B(K) ™™ B(K) —— H'(K,E[m]) — H'(K,E) ™2™ H'(K,E)
and hence an exact sequence
0 —— E(K)/mE(K) —— HY(K,E[m]) —— HY(K,E)[m] —— 0

The hope is to show that H' (K, E[m]) is finite, because then we’d automatically conclude that E(K)/mE(K)
is finite. The problem is that it’s infinite. So next time, we’ll construct a finite group Sel™ (E/K) C H' (K, E[m])
that contains the image of E(K)/mE(K).

This smaller group is obtained by considering local conditions, i.e. looking at K, will force strong con-
ditions on the cocycles that can occur, and cut out the group Sel™ (E/K).
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3.24 May 5, 2020 (Number fields)

Last time we considered E/K with K a number field. For m > 2, we found an exact sequence of groups
0 —— E(K)/mE(K) —— HY(K,E[m]) —— HY(K,E)[m] —— 0

We want to show E(K)/mE(K) is finite; the idea is to construct a finite group H'(K, E[m]) containing the
image.

Definition 3.24.1. A place of K is an equivalence class of absolute values on K that do not induce the discrete
topology. A

(An absolute value is a map | - |: K — R satisfying |z| > 0, with |z| = 0 if and only if z = 0, as well as
lzy| = |z||ly| and |z + y| < |z| + |y|. Absolute values are equivalent if they induce the same topology on K.)

Let v be a place. We denote by K, the completion of K with respect to the absolute value.

There are two kinds of places, namely:

o Archimedean: those coming from an embedding o: K — C given by ||, e |o(z)], i.e. stealing it from

C,

e Non-Archimedean: those coming from a nonzero prime ideal p C Og. The localization Ok at p is a dis-

crete valuation ring, hence comes with a valuation ordp : K — ZU{oo} with |z|,, e (#0x /N (p))~ordr(@),
Non-Archimedean absolute values come with a strong triangle inequality, which says |z +y|, < max{|z|,,|y|,}.

For K = Q, the completions are Q, and Q,, = R. [This is Ostrowski.]
So let v be a place with an absolute value | - |, and let K, be the completion with respect to | - |,. Choose

K, and an embedding K — K,. We have a map

Galg, = Gal(K,/K,) — Gal(K/K) = Galg

o= ol

Thus we can view Galg, C Galg that is well defined up to conjugacy. We have an inertia subgroup I, C
Gal K,-
For any place v, we have a commuting diagram

0 —— E(K)/mE(K) —— HYK,E[m|]) —— HY(K,E)[m] —— 0

| l |

0 — E(K,)/mE(K,) — HYK,,E[m]) —— HY(K,,E)[m] —— 0

where the horizontal rows are the exact sequences discussed last time. The first vertical map comes from the

standard inclusion K — K, and the third vertical map is given by restricting a 1-cocycle {: Galxy — E(K)

to Galg, — E(K) C E(K,).
We can combine these commuting diagrams to

0 — E(K)/mBE(K) —— HY(K, E[m]) —— H(K, E)[m] —— 0

l | |

0 — [, E(K,)/mE(K,) — T[], H'(K,, E[m]) —— [[, H*(K,, E)[m] —— 0
where the product runs over all places.
We have a map

HY(K, E[m]) - [[ H' (K., E)[m]

given by composing H' (K, E[m]) — H' (K, E)[m] — [], H (K, E)[m).
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Definition 3.24.2. The m-Selmer group of E(K) is
Sel™(E/K) = ker(H' (K, E[m]) — [ [ H' (K., E)). A

Observe that E(K)/mE(K) sits inside m-Selmer group. The claim is Sel” (E/K) is finite; this would
imply the weak Mordell-Weil theorem.
Definition 3.24.3. The Tate-Shafarevich group of E/K is
(E/K) < ker(H'(K, E) — [[ H (K., E)). A

Exercise : There is a short exact sequence
0 — E(K)/mE(K) — Sel™(E/K) —— II(E/K)[m] —— 0
The following conjecture is very important (and very hard):

Conjecture 3.24.4. The Tate-Shafarevich group III(E /K) is finite.

This would imply, for p large enough, that Sel”(E/K) = E(K)/pE(K).
Let S be the (finite!) set of places v of K such that v is Archimedean, or v|m, or E has bad reduction at v.

Lemma 3.24.5. Letv € S. Consider a 1-cocycle &: Gal, — E[m]suchthat [] = 0in H*(K,, E). Then (I,) = 0.

Proof. There is Q € E(K,) such that £, = 0@ — Q for all o € Galg, (This is the definition of [¢] = 0 €
H'(K,, E)). Take o € I,,, and consider the reduction map

E(K,) — E(k,),

where k, is the residue field of K, and E is the reduction of E at v (which is necessarily good).

The left side E(K,) has a Galg, action and the right side E(k,) has a Galy,, action and these actions are
compatible with the reduction map.

Note that 0@ and @ have the same reduction since o € I,. Thus, {; = 0@ — Q and O have the same
reduction. But &, € E[m] and we have an isomorphism E[m] = E[m] given by reduction (this uses that v
is good and v { m). It follows that £, = O. O

Theorem 3.24.6. The m-Selmer group Sel™ (E/K) is finite.

Proof. For any [¢] € Sel™(E/K ), we have £: Galx — E[m] and £(I,) = 0 for all v € S by Lemma 3.24.5. Let
K':= K(E[|m]) and observe that E[m] C E(K'). We have a homomorphism of groups
¢ = Galg: — E[m]

because &, = ¢ + o (€L) = £ + €. Let L be the subfield of K fixed by ker(¢); note that L/ K’ is a Galois
extension with a homomorphism Gal(L/K) < E[m].

For any v ¢ S, the action I, C E[m)] is trivial, because E has good reduction at v and v { m. It follows that
I, C Galg:. Thus, ¢'(I,) = £(I,) = 0, and hence I, C Galy, for allv ¢ S. Thus L/K is unramified at v € S
and [L: K] =[L: K'][K": K] <m?K': K]. Now, we apply
Theorem 3.24.7 (Hermite-Minkowski; Proposition 4.27 in Mehrle’s 6370 notes). Given n > 1 and a finite set
of places S of K, there are only finitely many L]/ K of degree n that are unramified at v & S.

In our case, there are only finitely many L /K, so there are only finitely many ¢': Galx: — E[m)], so there
are only finitely many ¢: Galx — E[m]. Therefore, Sel” (E/K) is finite. O

Let us end by remarking that in the short exact sequence
0 —— E(K)/mE(K) — Sel™(E/K) —— HI(E/K)[m] —— 0

the middle group Sel™ (E/K) is computable. On the other hand, there is no known algorithm to compute
either of the other two groups.
Next time, we'll give a geometric description of IIT(E/K’) and talk about heights.

74


http://pi.math.cornell.edu/~dmehrle/notes/cornell/18sp/6370notes.pdf

3.25 May 7, 2020 (Number fields)

Last time, we studied elliptic curves E over number fields K. For m > 2, we have an exact sequence
0 —— E(K)/mE(K) — Sel™ (K, E[m]) —— II(E/K)[m] —— 0

Here, III(E/K) is the Tate-Shafarevich group defined by III(E/K) = ker(H* (K, E) — [[, H'(K,, E)). Let’s
give a geometric description.

Definition 3.25.1. A principal homogeneous space or torsor for E/K is a nice curve C/K with a morphism
p: C x B — C defined over K that gives a simply transitive action of £ on C, i.e.

o y(z,0)=zxforallz € C
o u(p(z,P),Q)=p(z,P+Q)forx e Cand P,Q € E
e Forall z,y € C there is a unique P € FE such that u(z + P) = y.
A

Remark 3.25.2. Let C be a torsor for £/K. Then C and E are isomorphic over K, hence C is nice and has
genus 1. (The isomorphism E = C'is givenby P — x + P.) A

We say two torsors C; and C» of E are equivalent if there exists an isomorphism ¢: C; = C, satisfying
o(x + P) = p(z) + P.

Now fix a point zy € C, and let ¢: E = 0 given by P — x9 + P. For 0 € Galg we get another
isomorphism

olp): E=C
P— J(:Co) + P.
We have
&i=p too(p): ESE
P+ (o(xg) — xz0) + P.

Note that o(zg) — z¢ is the unique point ) € E such that zo + Q = o (o).
Exercise : The map §: Galg — F'is a 1-cocycle.

Fact 3.25.3. The map

{torsors of E/K up to equivalence} — H'(K, EF)
C g

is a bijection.

(The Weil-Chitelat group for E is the left hand side with an explicit group operation; these were studied
before group cohomology.)

Lemma 3.25.4. Let C be a torsor of E. Then C corresponds to 0 € H' (K, E) in the bijection above if and only if
C(K) #0.

Proof. The forward direction proceeds as follows. The identity corresponds to £ x E — E given by (P, Q) —
P+ Q. If C'is equivalent to E, then C' = F over K, and C(K) # (.
To prove the backwards direction, we fix € C(K). Then we get an isomorphism

0:ESC
P—ax+P

is a morphism defined over K, and this is an equivalence. O
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Issue in computations with H!(K, E).

Let C'/ K be a nice curve of genus 1. There is no known algorithm to determine if C(K) # 0 or not. (There
are conjectured ways to do this.) In particular, it’s difficult to prove that C'(K') has no points. (One way to
do this is as follows: if v is a place of K and C(K,) # 0, then C'(K) = 0.)

In light of the bijection from torsors to H', we see that

II(E/K) = ker(H'(K, E) — [ [ H' (K., E))

corresponds to torsors C of E/K, up to equivalence, such that C'(K,) # 0 for all places v of K. Thus III can
be thought of those torsors for which there are local points but not global points.

Aside 3.25.5. Given C' one can check if C'(K,) # () for all v. For most v, reduction gives a smooth model
with points that will lift to C(K,), by Hensel’s lemma. A

Let [¢] € HY(K, E[m]). This gives rise to an element in H!(K, E) and hence a torsor C. Then [¢] €
Sel™(E/K) if and only if C(K,) # 0 for all v, and [¢] € imgF(K)/mE(K) if and only if C(K) # 0.
Let’s give an overview of 2-descent via an explicit example:

Example 3.25.6 (Explicit 2-descent, i.e. m=2). Let E/Q be an elliptic curve with E[2] C E(Q). Thus
E/Q:y* = (z —e1)(z —e)(z — e3)
for e; € K. We have E[2] = {O, (e1,0), (e2,0), (e3,0)}, so E[2] = (P1) @ (P,). We have
=P, =P,
HY(Q, E[2]) ~ H'(Q, (P1)) x H'(Q, (P2))
~ Q*/(Q¥)* x Q*/(Q*)*.

The cocyles in H'(Q, E[2]) are homomorphisms since E[2] C E(Q).
We have

E(Q)/2E(Q) — H'(Q,E[2]) ~ Q*/(Q*)* x Q*/(Q*)*

(z,y) (r—e1,z—e2)

(If x = e1 or & = ey, there’s a different description.)
Now let S = {—1,2} U {p: E has bad reduction at p}; this is a finite set. We have

E(Q)/2E(Q) = (S) x (S) € Q*/(Q*)* x Q*/(Q*)*.
For (a - (Q*)?,b- (Q*)?), the corresponding torsor of E/Q is
T —e = az?

Cap/Q:Q x—ey=bz3
T — e3 = abz?

whose projective closure defines a nice genus 1 curve in P,
For example, if y?> = 23—z = (z+1)(2—0)(z—1), we have e; = —1 and es = 0. Furthermore, S = {—1,2}
and (S) = {£1,£2} C Q*/(Q*)?. We get

E(Q)/2E(Q) < (S) x (S5);

where (S) x (S) has 16 elements. Furthermore, E[2] C E(Q)/2E(Q) embedsinto {(1,1),(2,-1),(2,1),(1,-1)},
which has order 4.

Now we look at C,, ,/Q as defined above with a,b € {£1, £2}. One can check:

Exercise : Show E(Q)/2E(Q) has order 4 by checking when C, ,(R) # 0 and C, ,(Q2) # 0.

Since E(Q)wrs = F[2], we see that the rank is zero. A
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Let’s talk a little about heights. Take a point P € P"(Q), say with P = [z, ..., x,]. Since Z is a UFD, we
can assume z; € Z and ged(zo, - .., x,) = 1. (This uses Z* = {£1}.) We define the height

def
H(P) = max{|zo,...,|Tn|}.

For a number field K, this doesn’t work, because Ok need not be a UFD, and O} can be infinite. So we give
an alternate description:

Take any place v of K. Choose an absolute value |- |,: K — R: if the absolute value is non-archimedean
and v corresponds to the prime ideal p C Ok, we set

[l := (#Ox fp) ",
and if the absolute value is archimedean and v corresponds to an embedding o: K — C, we set
|z|, = |o(2)] if K, =R
= |o(z)|? if K, = C.

(This is technically not an absolute value, but that’s fine.)
We choose these absolute values because we have the product formula, which says for any € K*,

Izl =1.

Exercise : Check this for K = Q. (If you know number theory, you can prove the general case by using the
K = Q case and Ng/q(z).)
In this generality, the height function

Hg([zo, ... x)) = [ [ max{|zolo, .., [2alo},

which is well defined! (The formula above assigns to [Axzo, .. . , Az,] the number
T max{iwolu. - - [wale} - T 1AL},
v ~ v ~

where we have used the product formula.)

Fact 3.25.7. Let L be a finite extension of K. Then

1 1

HL(P) Z:Q] = HK(P) Kl

This gives rise to a notion of absolute height H: P"(Q) — R>; given by H(P) = HK(P)ﬁ, where
P e P"(K).

Theorem 3.25.8. For any C' > 0 and d > 0, the set

{PeP*(Q): H(P) < Cand [Q(P): Q] < d}
is finite. In particular, {P € P"(K): H(P) < C} is finite.

The (absolute logarithmic) height is i = log o : P"*(Q) — Rx.

Let E/K be an elliptic curve and fix a nonconstant f € K(F) that is even, so f(—P) = f(P). (For
example, take the z-coordinate of a model y? = 23 + ax + b.)

The height of E relative to f: E — P is given by

hf: E(F) — RZO
P — h(f(P)).

The map h satisfies the following properties:
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The set {P € E(K): hy(P) < C} is finite for all C.

There is C; > 0 such that

(P + Q) = hy(P = Q) = 2hs(P) = 2h;(Q)] < C,

for all P, € E(K). (This means hy acts kind of like a quadratic form.)

Fix Q € E(K). There exists Co > 0 such that

hf(P+ Q) < 2hf(P) + Cs.

For m > 2, there is C'5 > 0 such that

|hp(mP) — m?h;(P)| < C.

The second property uses crucially that f is even; the third and fourth properties are easy consequences of
the second. R o
There is a related notion of the Néron-Tate height h: E(K) — R>( given by
N 1 1

h(P) - deg f m}gnoo m?2

hf(mP).

A miraculous fact is that the limit exists and is independent of f. Furthermore, we have the properties
o W(P+Q)+h(P—Q)=2h(P)+2h(Q)
o h(mP) =m2h(P)
e h(P) = 0if and only if P is torsion.

We obtain a bilinear pairing (-,-): E(K) x E(K) — R given by

(P,Q) = h(P +Q) = h(P) = h(Q)
which gives an inner product on
E(K)/E(K)tors,

which is a free abelian group in the lattice R ® E(K). We may take the covolume of this lattice (i.e. the
volume of the fundamental domain), which is called the elliptic regulator, denoted Rk

Next time, we’ll have a computer showcase, and see the full version of the Birch and Swinnerton-Dyer
conjecture.
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3.26 May 12,2020 (Q)

Let E be an elliptic curve over Q. We know that the group F(Q) is finitely generated! The torsion part
E(Q)tors is computable, and the rank r of E(Q) is mysterious.

Let p be a prime for which E has good reduction (i.e. good reduction over Q,). We have a finite group
E(F,), and a number a,(E) defined by

#E(Fp) =p—ap(E) + 1.

Then Hasse proved |a,(E)| < 2,/p (Theorem 2.13.7).
In the early 1960’s, Swinnerton-Dyer used a computer to calculate some values of

[E(E,)]
I ==

p<z
p good

His initial conjecture, with Birch, was that

E(F .
H ‘ ( 17)| NC(IOgl’)T,
p<z
p good

so we would be able to compute ranks of elliptic curves by just looking F,,-points.

Note that E(E,)|
Tp =1—ay(E) p ' +p-(p7 ')

which can be obtained by evaluating the familiar polynomial 1 — a,(E)z + pz? atz = %.
The L-function of £
Given an elliptic curve E, we may define the L-function associated to F as a product

w11 e

p prime

where P,(r) € Z[z] is defined in the following way: Take ¢ # p, and observe that Galg, C'V,(E). We
have a subgroup I, C Galg,, and hence an action Gal(F,/F,) = Galg, /I, CV,(E)'». In particular, there is
Frob, € Gal(F,/F,); then

Py(x) ' det(I — 2 - Frob,|Vy(E)™).
Explicitly:

If E has good reduction at p, then P, = 1 — a,,(E)z + pa?

e If F has split multiplicative reduction at p, then P,(z) =1 -«

e If F has nonsplit multiplicative reduction at p, then P,(z) = 1+«

e If F has additive reduction at p, then P,(z) = 1.

Exercise : Use the Hasse bound to show L(E, s) is holomorphic for s € C with Re(s) > 3/2.

Theorem 3.26.1 (Modularity). [Due to Wiles, Taylor, Breuil, Conrad, Diamond] The function L(E, s) extends to a
holomorphic function on C. In particular, the quantity ords—1 L(E, s) is defined.

Conjecture 3.26.2 (Birch & Sinnerton-Dyer).

i) We have
ords—1 L(E,s) =,

where r is the rank of E.
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ii) We have

oy LE-8) _ |- Q- R-T[, cp
s—1 (s — 1)T |E(Q)tors|2 7
where:

o IIT = III(E/Q) is the Tate-Shafarevich group (conjecturally finite),

o ) is the real period, obtained from a minimal model y? + a1xy + azy = x> + asx? + ayx + ag via the
formula

d
2 = #(connected components of E(R)) x / T ¢ R,
B®)o 2y + a1z +as

o Ris 2" times the elliptic requlator from last class, and

o ¢, is the Tamagawa number, given by ¢, = [E(Qy) : Eo(Qp)]

Note how BSD relates many constants together into an equation; it bears striking resemblance to the class
number formula from algebraic number theory (Theorem 7.13 in Mehrle’s 6370 notes), with III playing the
role of the class number.

Thus the conjecture says that the numbers a,(E) know the value of r and give a way to compute it.

You can actually compute L(E,1): we have

LEs) =" (a,€2),
nS
n=1
SO o
a
LE,1)=(1 In g=2mn/VN
( ) ) ( +E); TLe s

where N is the conductor (some positive integer) and ¢ € {£1} is the root number. (Both N and ¢ are
computable.)
If e = —1, then L(E,1) = 0. Then BSD predicts that E(Q) is infinite.

Example 3.26.3. Let E/Q be given by y? +y = 2 — 2%, We have A = 11 and r = 0. Furthermore, E(Q)ors =
{0,(0,0),(0,-1),(1,0), (1, -1)} = Z/5Z. It turns out that R = 1, Q2 = 6.34604..., [ [, ¢, = 1, and L(E, 1) =

0.25384.... Thus )
|H_I| BiD L(E7 1) . |E(Q)tors| ~1
Q-R-I[, e

Thus we expect III = 0. A

Theorem 3.26.4 (Kolyvagin, 1989). If ords—1 L(E,s) < 1, then BSD holds and 111 is finite.

Theorem 3.26.5 (Gross-Zagier, 1986). Suppose ords—1L(E, s) = 1. They give a way to construct a point in E(Q)
of infinite order. See Heegner points.

Example 3.26.6. Question. Are there any right angle triangles with rational side lengths and area 101?
In other words (after projectivizing), we are searching for rational solutions to the set of equations

a?+b? = c?
1ab = 101d?

which defines a curve C' C P}, that is nice of genus 1. Observe that
c(Q) 2{Jo,1,+1,0],[1,0,£1,0]}.

Now let E/Q be the elliptic curve given by C' with O = [0, 1, 1,0]. It turns out that E is isomorphic to the
curve given by E’/Q : y? = 23 — 1012z. It turns out that E'(Q)ors = F[2].
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Thus, there is such a triangle if and only if the rank of E’(Q) is nonzero. (In this case, ¢ = —1 so BSD
predicts that the rank is at least 1.)

We saw [live(!!!)] that the Mordell-Weil group E(Q) of E is Z & (Z/27)?; the “simplest” (lowest height)
point of infinite rank is

267980280100 44538033219 2015242462949760001961

[a,b,c] = [ , , . A
44538033219 © 1326635050 = 59085715923689725950

More generally, the congruent number problem says the following. Fix n > 1 a squarefree integer. There
is a right angle triangle with rational sides and area n if and only if £ has rank at least 1, where

E/Q:y* =2® —n’x.

This implies L(E, 1) = 0 by Theorem 3.26.4; the converse is BSD. Theorems of Tunnell, Shimura, and Wald-
spurger say that L(E, 1) = 0 if and only if the n-th term of a certain g-expansion vanishes:

Theorem 3.26.7 (Tunnell, 1983). Suppose n is an odd squarefree integer. If n is the area of a right angle triangle with
rational side lengths, then

1
#{(2,y,2) € Z%: n = 22% +y* +322%} = 5#{(3:,;%2) €Z%:n =22 +y* +82°}.

The converse is true conditional on BSD.

(The point is that the condition #{(z,y,2) € Z3: n = 22 + y* 4 322} = 1 #{(z,y,2) € Z3: n = 22 +
y? + 822} is checkable.)

While the two concepts linked by Tunnell’s theorem are very elementary, the math used to link them
together is very modern.
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