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1 Preliminaries

1.1 Jan 21, 2020
[The standard reference is Silverman’s The arithmetic of elliptic curves. We’ll discuss the material in the

book and hopefully some advanced topics at the end.]
Fix a field K with characteristic not equal to 2 or 3. Choose an algebraic closure K of K. (Some nice

examples areK = R,C,Q,Qp,Fp.)

Definition 1.1.1 (Preliminary). An elliptic curveE overK is the (projective) curve defined by y2 = x3 +ax+b
with a, b ∈ K and ∆ := −16(4a3 + 27b2) 6= 0. 4

TheK-points of E are

E(K)
def
:= {(x, y) ∈ K2 : y2 = x3 + ax+ b} ∪ {O}

where O is the “point at infinity”.
ForK = R, a typical elliptic curve has R-points that look like

where, as usual in projective geometry, O is vertically “up at infinity”.
The condition ∆ 6= 0 ensures that our curve is nonsingular. Indeed, suppose E is singular at (x0, y0) ∈

K
2. This means that for f = y2 − (x3 + ax+ b), we have

f(x0, y0) = 0

fx(x0, y0) = 0

fy(x0, y0) = 0.

The third equation says 2y0 = 0, and the first two equations say f(x, 0) has a double root. This means
discf(x, 0) = 0; one can verify that discf(x, 0) = ∆/16.

Example 1.1.2. Let’s consider E/Q given by y2 = x3− 2. SomeQ-points areO, (3, 5), and (3,−5). There are
more, but they’re hard to find! But we can apply the following theorem:

Theorem 1.1.3 (Bachet, 1621). Fix a c ∈ Z \ {0} and let E/Q be the curve y2 = x3 + c. If (x, y) ∈ E(Q) with
y 6= 0, then (x4 − 8cx

4y2
,
x6 + 20cx3 − 8c2

8y2

)
∈ E(Q)

is a solution.

For the curve in our example,

(3, 5) 
(129

100
,
−383

1000

)
 
(2340922881

58675600
,

113259286337279

449455096080

)
 . . . .

We’d get an infinite sequence of distinct rational points this way. (But the number of digits grows exponen-
tially!)
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There is a geometric interpretation of this operation: we may consider the tangent line to E at (3, 5),
namely, y = 27

10x−
31
10 . The tangent line intersects the curve E at another point: we have(27

10
x− 31

10

)2

= x3 − 2,

or equivalently

0 = x3 − 729

100
x2 +

837

50
x− 1161

100
= (x− 3)2

(
x− 129

100

)
.

Here the factorization is not an accident: x = 3 is a double root of the cubic because the tangent line intersects
the elliptic curve “twice” at x = 3; the third root of the cubic is rational because its coefficients and two of
its roots are rational. We obtain

R =
(129

100
,

383

1000

)
and we negate the y-coordinate. 4

Fact 1.1.4. Consider y2 = x3 + c with c ∈ Z \ {0} and 6-th power free, i.e. if n6|c then n = ±1. If (x, y) ∈ E(Q)
with xy 6= 0 and c 6∈ {1,−432}, then Bachet’s formula gives infinitely many points in E(Q).

The assumption that c is 6-th power free is essentially without loss of generality, since

y2 = x3 + c 
( y
n3

)2

=
( x
n2

)3

+
c

n6
.

For c = −432, Bachet’s formula interchanges (12, 36) and (12,−36). For this elliptic curve, applying the
change of variables u = 36−y

6x and v = 36+y
6x transforms E into u3 + v3 = 1, for which Euler proved in 1760

that the only solutions in Q are (1, 0) and (0, 1). So it’s good that there are not infinitely many points to find
in this case.

Let’s return to a general E/K : y2 = x3 + ax + b. Our goal is to use geometry and give E(K) a group
law. Then E(K) will be an abelian group with identity O.

Take any points P,Q ∈ E(K). If P = Q, let L be the tangent line of E at P . If P 6= Q, let L be the unique
line through P andQ. The line L intersects E at three points P,Q,R. (AlthoughR ∈ E(K), it turns out that
since P,Q ∈ E(K) then R ∈ E(K).) Let L′ be the line through R and O. Then L′ intersects E at 3 points:
R,O, and the point which we define to be P ⊕R.

Fact 1.1.5. The setE(K) with⊕ is an abelian group with identityO. This is straightforward, except for associativity.

We’ll give a conceptual proof of associativity later. (Secretly, E(K) ∼= Pic0
K(E).) As we become more

comfortable, we’ll replace ⊕with + and O with 0.
Let’s take P1, P2 ∈ E(K). We can assume they are not O, so they have coordinates Pi = (xi, yi) ∈ K2.

Then:

• If x1 = x2 and y1 = −y2, then P1 ⊕ P2 = O.

• If x1 6= x2, then L is y = λx+ ν where

λ =
y2 − y1

x2 − x1
and ν = y1 − λx1 =

x2y1 − x1y2

x2 − x1
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• If x1 = x2 and y1 = y2, then L is y = λx+ ν with

λ =
3x2

1 + a

2y1
and ν =

−x3
1 + ax1 + 2b

2y1
.

In the final two cases, P3 = P1 ⊕ P2 = (x3, y3) is given by

x3 = λ2 − x1 − x2

y3 = −λx3 − ν.

Prof. Zywina will later post some code that may be useful for these.
Exercise 1: Let E/Q : y2 = x3 − 25x. The points O, (0, 0), (±5, 0), and (4,±6) are in E(Q). Find some

more.
Exercise 2: LetE/Q : y2 = x3−432x+8208. LetP = (24, 108) ∈ E(Q). Compute 5P = P+P+P+P+P .

Theorem 1.1.6 (Mordell). For an elliptic curve E/Q, the abelian group E(Q) is finitely generated.

This implies E(Q) ∼= A× Zr where A is finite and r ≥ 0.

Theorem 1.1.7 (Mazur, 1978). The group A is isomorphic to Z/nZ for 1 ≤ n ≤ 12 with n 6= 11, or Z/2Z× Z/nZ
with n = 2, 4, 6, 8.

The number r = r(E) is called the rank of E. It’s a deep invariant, and it’s unknown whether r(E) is
computable. The BSD conjecture makes an analytic formula for r. It’s also unknown whether or not r is
bounded. Elkies gave an example with rank at least 28.

Example 1.1.8. For E/Q : y2 = x3 + 875x, we have r = 0 and in fact E(Q) = {O, (0, 0)} ∼= Z/2Z. 4

Example 1.1.9. ForE/Q : y2 = x3+877x. The BSD conjecture (and other things, e.g. Selmer groups) predicts
that r = 1. In fact, E(Q) = 〈(0, 0), (x0, y0)〉 ∼= Z/2Z× Z with

x0 =
375494528127162193105504069942092792346201

6215987776871505425463220780697238044100
.

The y-coordinate is worse, but you can find it from x0. [Update:

y0 =
256256267988926809388776834045513089648669153204356603464786949

490078023219787588959802933995928925096061616470779979261000

seems to work.]
To find rational points on E as large as (x0, y0), one needs to make use of secret ingredients (as opposed

to brute force). In this case, the secret ingredient is Heegner points. 4

Let C be a smooth projective geometrically irreducible curve over Q. (These are mild assumptions; e.g.
one can blow up at finitely many singular points to get smoothness.) Let g denote the genus of C. Then:

• If g = 0, then C(Q) = ∅ or C ∼= P1
Q, which has lots of Q-points.

• (due to Faltings) If g ≥ 2 we know that C(Q) is finite. (This used to be the Mordell conjecture.)

• If g = 1, and C(Q) 6= ∅, we may choose P ∈ C(Q). Then there exists an embedding

C ↪→ P2
Q

whose image is an elliptic curveE : y2 = x2 +ax+b such that P 7→ O. (This leads to another definition
of elliptic curves, as we’ll see later.)

Thus elliptic curves occupy a Goldilocks zone in the study of smooth projective geometrically irreducible
curves over Q.
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1.2 Jan 23, 2020
[Again, a basic reference is Silverman’s Arithmetic of Elliptic Curves]
Today will be an algebraic geometry review or crash course.

Definition 1.2.1 (Definitions; K algebraically closed). Fix n ≥ 1 and let K be an algebraically closed field.
(We would like to eventually drop this, for number theoretic purposes.)

Affine n-space is An def
= Kn (so n-tuples of elements of K). Projective n-space is Pn = (Kn+1 \ {0})/ ∼

where a ∼ b if a = λb for some λ ∈ K×. The equivalence class of (x0, . . . , xn) is denoted [x0, . . . , xn].
For a set I of polynomials inK[x1, . . . , xn], the (affine) variety defined by I is

VI
def
= {P ∈ An|f(P ) = 0 for all f ∈ I} ⊆ An.

The set VI is unchanged if we replace I by the ideal it generates. For a set I ⊆ K[x0, . . . , xn] of homogeneous
polynomials, the (projective) variety defined by I is

VI
def
= {P ∈ Pn|f(P ) = 0 for all homogeneous f ∈ I}.

(Note that VI is well defined because f(λb) = λdf(b).) As before, the set VI is unchanged if we replace I by
the ideal it generates.

The sets An and Pn have the Zariski topology; the closed sets are the VI . Then VI gets a topology induced
from An or Pn.

We say V = VI is irreducible if whenever V = V1 ∪ V2 for closed V1, V2, then V = V1 or V = V2.
The dimension of an irreducible V is the largest d ≥ 0 such that

V = V0 ) V1 ) · · · ) Vd

with Vi irreducible.
Consider an affine variety V ⊆ An. We may define its ideal

I(V )
def
= {f ∈ K[x1, . . . , xn]|f(P ) = 0 for P ∈ V }

and its coordinate ring
K[V ]

def
= K[x1, . . . , xn]/I(V ).

These give distinct functions V → K (by evaluation).
Note that V is irreducible if and only if I(V ) is a prime ideal, if and only if K[V ] is an integral domain.

If V is irreducible, the function fieldK(V ) of V is the fraction field ofK[V ]. In this case, dimV = trdegK(V )
is the transcendence degree ofK(V ).

For P ∈ V , the local ring of V at P is

K[V ]P
def
=
{f
g

: f, g ∈ K[V ], g(P ) 6= 0
}

consisting of elements ofK(V ) which are defined (“are regular”) at P . We can also define

K[V ]P → K

f 7→ f(P )

with kernel mP . Then V is non-singular at P if and only if dimK mP /m
2
P = dimV .

If V is irreducible and has dimension 1 (e.g. elliptic curves) and P ∈ V is non-singular, then K[V ]P is a
discrete valuation ring (this means that the ideals ofK[V ]P arem0

P ,mP ,m
2
P , . . . and {0}). In particular, there

is ordP : K[V ]P → {0, 1, 2, . . . } ∪ {∞} such that for f ∈ K[V ]P \ {0}, the number ordP (f) is the smallest
e ≥ 0 such that f ∈ mep.

We may extend ordP to a map ordP : K(V )� Z ∪ {∞} by ordP (f/g) = ordP (f)− ordP (g). The idea is
for f ∈ K(V ) we may define a map

V 99K K

P 7−→ f(P )
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If ordP (f) ≥ 0, it is the order of the zero at P . If ordP (f) < 0, then −ordP (f) is the order of the pole at
P . 4

Definition 1.2.2 (Definitions;K perfect). Consider a perfect fieldK. (This contains characteristic zero, finite,
and algebraically closed fields.) This assumption simplifies the algebraic geometry greatly.

ForK = Q, we asserted last time (Example 1.1.8) that the only solutions of y2 − (x3 + 875x) = 0 in Q are
(x, y) = (0, 0). There’s no interesting geometry here, so something has to be done:

Fix an algebraic closureK ofK. Define GalK = GK/K to be the group of automorphisms ofK that fixes

K. Then GalK

�

K, and the fixed pointsKGalK
= K, sinceK is perfect.

For I ⊆ K[x1, . . . , xn], we may define

V = VI
def
= {P ∈ Kn|f(P ) = 0 for f ∈ I}.

Note that GalK

�

K
n and fixesKn. For σ ∈ GalK , f ∈ I , and P ∈ V , we have

0 = σ(f(P )) = σ(f)(σ(P )) = f(σP ),

so GalK

�

V . It follows that
V GalK = {P ∈ Kn|f(P ) = 0 for f ∈ I}.

Then GalK

�

K[x1, . . . , xn] withK[x1, . . . , xn]GalK = K[x1, . . . , xn]. Also, GalK

�

I(V ) with

I(V )GalK = {f ∈ K[x1, . . . , xn]|f(P ) = 0 for P ∈ V }.

We denote by I(V/K)
def
= I(V )GalK .

We may also define
K[V ]

def
= K[x1, . . . , xn]/I(V/K)︸ ︷︷ ︸

=K[V ]GalK

↪→ K[V ].

For a set V ⊆ K
n with a Galois action GalK

�

V , we may ask whether V is “defined over K” (i.e., if
it comes from a set I ⊆ K[x1, . . . , xn]). The answer (or definition) is that I(V ) is generated by I(V/K) =
I(V ) ∩K[x1, . . . , xn].

We may summarize these sets and their fixed points in the following table:

Set with Galois action Fixed points

K
n

Kn

V = {P ∈ Kn|f(P ) = 0 for f ∈ I} {P ∈ Kn|f(P ) = 0 for f ∈ I}
K[x1, . . . , xn] K[x1, . . . , xn]

I(V ) = {f ∈ K[x1, . . . , xn]|f(P ) = 0 for P ∈ V } I(V/K) = {f ∈ K[x1, . . . , xn]|f(P ) = 0 for P ∈ V }
K[V ] K[V ] = K[x1, . . . , xn]/I(V/K)

There is also a Galois action GalK

� Pn(K), with fixed points Pn(K)GalK = Pn(K). (ForK = Q, observe
that [

√
2,
√

8] ∈ P1(Q) is stable under the GalQ action. But in this case, [
√

2,
√

8] = [1, 2].)
For a projective variety V ⊆ Pn, I(V ) is the ideal of K[x0, . . . , xn] generated by homogeneous f ∈

K[x0, . . . , xn] such that f(P ) = 0 for all P ∈ V .
Then V is “defined overK” if I(V ) is generated by homogeneous f ∈ I(V ) ∩K[x0, . . . , xn].
For a point P = [x0, . . . , xn] ∈ Pn(K), we have xi 6= 0 for some i, so P = [x0/xi, . . . , 1, . . . , xn/xi]. Then

K(P )
def
= K(x0/xi, . . . , xn/xi) is the minimal field of definition of P . 4

Let’s consider a projective variety V ⊆ Pn. Again, V is irreducible if and only if I(V ) is prime. We can
cover Pn with An’s. Indeed, for 0 ≤ i ≤ n, we have a map

An ↪→ Pn

(a1, . . . , an) 7→ [a1, . . . , 1, . . . , an]

where the 1 appears in the i-th coordinate. The image of this map is open in Pn. For a fixed 0 ≤ i ≤ n, we
may restrict V to An ∩ V ⊆ An; this is an affine variety. Conversely, V ⊆ An gives rise to its projective closure
V ⊆ Pn, which is the closed set containing V . Then V ∩ An = V .
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Example 1.2.3 (Elliptic curves). For example, for i = n = 2 we have

A2 ↪→ P2

(x, y) 7→ [x, y, 1]

We may consider the variety V ⊆ A2 defined by y2 = x3 + ax + b for a, b ∈ K. Its projective closure V is
defined by Y 2Z = X3 + aXZ2 + bZ3. Take a point [x, y, z] ∈ V . If z 6= 0, then we may assume z = 1 and
y2 = x3 + ax + b. On the other hand, if z = 0 then x = 0, and [x, y, z] = [0, 1, 0], which was our point at
infinity O. 4

If V ⊆ P2 is irreducible, then K(V ) is the function field of V ∩ An. A better definition is that K(V )
consists of fg with f, g ∈ K[x0, . . . , xn] homogeneous of the same degree and g 6∈ I(V ); then f1

g1
= f2

g2
if and

only if f1g2 − f2g1 ∈ I(V ).

Definition 1.2.4 (Morphisms). Let K be algebraically closed and let V1 ⊆ Pm and V2 ⊆ Pn be irreducible
varieties. A rational map ϕ : V1 99K V2 is given by functions f0, . . . , fn ∈ K(V1) (not all zero) such that
ϕ(P ) = [f0(P ), . . . , fn(P )] is in V2 for all P ∈ V1 where all fi are defined.

The map ϕ is regular at P ∈ V if there is g ∈ K(V1) such that gfi are regular at P and (gfi)(P ) 6= 0 for
some i. In that case,

ϕ(P )
def
= [(gf0)(P ), . . . , (gfn)(P )].

The map ϕ is a morphism if it is regular at all P ∈ V . 4

Example 1.2.5. Suppose the characteristic ofK is not 2. Consider V ⊆ P2 defined by x2 + y2 = z2. We have

ϕ : P1 99K V

[x, y] 7−→
[ 2xy

x2 + y2
,
x2 − y2

x2 + y2
, 1
]
.

This map is regular if x2 + y2 6= 0. On the other hand, ϕ is also the map

[x, y] 7→
[
1,
x2 − y2

2xy
,
x2 + y2

2xy

]
This is regular if xy 6= 0. Since x2 + y2 = 0 and xy = 0 cannot simultaneously happen (unless [x, y] is the
illegal point “[0, 0]”), we have verified that ϕ is a morphism.

We may check that it has an inverse V → P1 given by [a, b, c] 7→ [ c+ba , 1]. 4

Next time we will talk specifically about curves.
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1.3 Jan 28, 2020
[There will be chill OH on Thursdays 1:00–2:30 PM in MLT 555.]
Fix a perfect field K and an algebraic closure K. We have defined An = K

n and Pn = (K
n+1 \ {0})/ ∼.

A set of polynomials S ⊆ K[x1, . . . , xn] orK[x0, . . . , xn] gives rise to an affine variety

V = {P ∈ An|f(P ) = 0 for all f ∈ S} ⊆ An

and a projective variety

V = {P ∈ Pn|f(P ) = 0 for all homogeneous f ∈ S} ⊆ Pn

respectively. We’ll say that V is defined overK if the ideal I(V ) is generated by I(V/K) = I(V ) ∩K[x].
Equivalent formulations of defined overK include:

• The absolute Galois group GalK = Gal(K/K), acting onK[x], acts on I(V ). There is a notion of Galois
descent of vector spaces which gives I(V )GalK ⊗K K

∼−→ I(V ).

• The absolute Galois group GalK , acting on An or Pn, acts on V .

We use notation AnK and PnK to remind ourselves that our affine and projective space is defined overK.
We’ll talk about curves today.

Notation. A variety V defined overK is nice if it’s smooth, projective, and (geometrically) irreducible.

Let’s consider a nice curve C overK (so C is 1-dimensional). For a point P ∈ C, recall that

K[C]P = {f ∈ K(C)|f is regular at P} ⊆ K(C)

is a discrete valuation ring with corresponding valuation ordP : K(C) � Z ∪ {∞}. (Warning: in general,
GalK does not necessarily act onK[C]P if P 6∈ C(K). Indeed, ordP (f) = ordσ(P )(σ(f)), so one should really
consider the conjugates of P .)

Definition 1.3.1. A uniformizer at P is a t ∈ K(C) such that ordP (t) = 1. (One can in fact take t ∈ K(C).) 4

Observation 1.3.2. Consider a rational map ϕ : C 99K V with V ⊆ Pn projective. Then ϕ is a morphism!
Indeed, consider ϕ = [f0, . . . , fn] with fi ∈ K(C). Then ϕ(P ) = [f0(P ), . . . , fn(P )], when defined, is

in V . Now take any point P ∈ C and let m = min0≤i≤n ordP (fi). Since ϕ = [t−mf0, . . . , t
−mfn], and

ordP (t−mfi) ≥ 0 for all iwith equality for at least one i. It follows that ϕ(P ) = [(t−mf0)(P ), . . . , (t−mfn)(P )]
is a well defined point in projective space. 4

Example 1.3.3. For f ∈ K(C), we haveC 99K P1
K given by P 7→ [f(P ), 1]. This gives amorphism f : C → P1

K

given by

f(P ) =

{
[f(P ), 1] if ordP (f) ≥ 0

[1, 0] otherwise.

In other words, we obtain a bijection

{morphisms C → P1
K defined overK} ←→ K(C) ∪ {∞},

where {∞} corresponds to the constant morphism [1, 0]. 4

Fact 1.3.4. If ϕ : C1 → C2 is a morphism of nice curves, then it is constant or surjective. If ϕ : C1 → C2 is a
non-constant morphism of nice curves overK, we get a homomorphism

ϕ∗ : K(C2)→ K(C1)

f 7→ f ◦ ϕ

of fields fixingK.
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Fact 1.3.5 (Facts).

• The field extension

K(C1)

ϕ∗(K(C2))

has finite degree; its degree is the degree of ϕ and is denoted degϕ. This extension factors

K(C1)

L

ϕ∗(K(C2))

where K(C1)/L is purely inseparable and L/ϕ∗K(C2) is separable. We denote the degrees of these extensions
by degi ϕ and degs ϕ respectively, and we say ϕ is separable if degs ϕ = degϕ. (Warning: if K has positive
characteristic, thenK(Ci) is not perfect.)

• Any homomorphism i : K(C2)→ K(C1) of fields that fixesK is of the form ϕ∗ for a unique ϕ : C1 → C2.

• Fix a finite index subfieldF ⊆ K(C1) containingK. There is a nice curveC2 overK (unique up to isomorphism)
and a morphism ϕ : C1 → C2 such that ϕ∗(K(C2)) = F . Thus we get an equivalence of categories between
curves and function fields (see Silverman for details).

Let ϕ : C1 → C2 be a nonconstant morphism of nice curves overK. For P ∈ C1,We define the ramification
index of ϕ at P to be

eϕ(P )
def
= ordP (ϕ∗t),

where t ∈ K(C2) is a uniformizer of ϕ(P ). We say ϕ is unramified in P if eϕ(P ) = 1.

Fact 1.3.6 (Facts).

• When ϕ is separable, we have eϕ(P ) = 1 for all but finitely many P ∈ C1.

• For Q ∈ C2, ∑
P∈ϕ−1(Q)

eϕ(P ) = degϕ.

• For all but finitely many Q ∈ C2, #ϕ−1(Q) = degs ϕ.

Divisors.
Let’s fix a nice curve C/K.

Definition 1.3.7 (Divisors). The divisor group of C, denoted Div(C), is the free abelian group on the set of
points of C.

An element is a divisor, i.e. a formal sum

D =
∑
P∈C

nPP

where nP ∈ Z and nP = 0 for all but finitely many P . When C is an elliptic curve, we may write

D =
∑
P∈C

nP (P )

9
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to distinguish divisors from the group law on the elliptic curves. The degree of D is

degD =
∑
P∈C

nP ,

and Div0(G)
def
= ker(Div(C)

deg−−→ Z).
The group of divisors of C overK is

DivK(C) = Div(C)GalK ,

where GalK

� Div(C) by σ(
∑
nPP ) =

∑
nPσ(P ). Note that DivK(C) is not generated by C(K). Indeed,

given P ∈ C, adding the orbits under the GalK action gives an element of DivK(C). (This produces a basis
of DivK(C).)

We also define

Div0
K(C) = Div0(C)GalK

= Div0(C) ∩DivK(C).

Take f ∈ K(C)×. Its divisor is div(f) =
∑
P∈C ordP (f)P . 4

Fact 1.3.8. We have deg(div(f)) = 0, and div(f) = 0 if and only if f ∈ K×. If f ∈ K(C), then div(f) ∈ DivK(C).

Example 1.3.9. SupposeK does not have characteristic 2. Take C ⊆ P2
K given by an affine model y2 = f(x)

with f(x) ∈ K[x] cubic, monic, and separable. This implies C is a nice curve.
Take x, y ∈ K(C). Let’s compute div(y). Note that C has a single point O = [0, 1, 0] which is “at∞”.
Take f(x) = (x− e1)(x− e2)(x− e3) with ei ∈ K distinct. Define Pi = (ei, 0) ∈ C.
We claim that ordPi

(y) = 1. Let’s consider i = 1. Note that the discrete valuation ring K[C]Pi
⊇ m

contains a unique maximal ideal m = 〈x− e1, y〉. Since

x− e1 =
y2

(x− e2)(x− e3)
,

where (x− e2)(x− e3) is a unit inK[C]P1 , it follows that m = 〈y〉. In other words, y is a uniformizer.

It follows that that div(y) = P1 + P2 + P3 − 3O. 4

Next time we’ll state Riemann-Roch and get to elliptic curves.
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1.4 Jan 30, 2020
[OH on 1:00–2:30PM in MLT 555 today is canceled. There will be an extra one next Tuesday. By the way,

a canvas page exists.]
Let C be a nice curve over a perfect field K. (Here, nice means smooth, projective, and geometrically

irreducible.) We defined the divisor group Div(C), which is the free abelian group on C (ie. on K-points).
Thus a divisor D is of the form

D =
∑
P∈C

nPP =
∑
P∈C

nP (P ).

The brackets (P ) are to distinguish divisors from the group law on an elliptic curve. Only finitely many nP
can be nonzero. We also defined

DivK(C) = Div(C)Gal(K/K).

We had a degree map deg : Div(C) → Z, which is a homomorphism of groups; it sends each point P 7→
deg(P ) = 1. We have Div0(C) = ker(deg) and Div0

K , which can be defined in either of the reasonable ways
one might define it. There is a homomorphism

div : K(C)× → Div0(C)

f 7→
∑
P∈C

ordP (f) · P.

The map restricts toK(C)×
div−−→ Div0

K(C). Let’s get to Riemann-Roch now.

Definition 1.4.1. A divisor D =
∑
nPP is effective if nP ≥ 0 for all P ∈ C. We write D ≥ 0.

We sayD ≥ D′ ifD−D′ ≥ 0, or equivalently if nP ≥ n′P for every P , where nP is the coefficient of P in
D and n′P is the coefficient of P in D′.

For D ∈ DivK(C), define

L(D) = {f ∈ K(C)× : div(f) +D ≥ 0} ∪ {0}. 4

Note thatL(D) is a vector space overK. (It’s closedunder addition since ordP (f+g) ≥ min{ordP (f), ordP (g)}.)
If D =

∑
P∈C nPP , then

f ∈ L(D) ⇐⇒ ordP (f) + nP ≥ 0 for all P ∈ C.

Thus asking for f ∈ L(D) is asking for f to have high order zeros whenever nP < 0, and asking for f to have
not-too-high order poles whenever nP > 0. Even though K(C)× is an infinite dimensional vector space, it
turns out that L(D) is finite dimensional for each D.

Theorem 1.4.2 (Riemann-Roch). Let C be a nice curve over a perfect field K. There is an integer g ≥ 0, called
genus of C, such that if D ∈ DivK(C) with degD > 2g − 2, then

dimK L(D) = degD − g + 1.

(There’s a fancier version for all degrees that involves a correction term which is interesting in its own
right. We’ll be applying this theorem for elliptic curves, which has genus 1.)

The result follows from the caseK = K, since one can verify that

LK(D)
def
= {f ∈ K(C)× : div(f) +D ≥ 0} ∪ {0}

is acted on by GalK ; by Galois descent of vector spaces we obtain

LK(D)GalK ⊗K K
∼−→ LK(D)

and one can check LK(D)GalK = L(D).

Definition 1.4.3. An elliptic curve over K is a nice curve E over K of genus 1 with a distinguished point
O ∈ E(K). 4

11



(Warning: there are genus 1 curves C/K with C(K) = ∅.)
Let’s apply Riemann-Roch (Theorem 1.4.2) to E/K and D = n · O for n ≥ 1. Then

dimK L(D) = n− 1 + 1 = n.

Note, of course, that L(O) consists of functions which are regular everywhere except with at worst a simple
pole at O. Since L(O) is one-dimensional, andK ⊆ L(O), it follows that L(O) = K.

Since L(2 · O) is 2-dimensional and contains L(O) = K, we obtain

L(2 · O) = K ⊕Kx

for some x ∈ K(C)× with ordO x = −2. (We know its order is exactly 2 because if it was 1 it would’ve shown
up in L(O).) Observe also that

L(3 · O) = K ⊕Kx⊕Ky

for some y ∈ K(C)× with ordO y = −3. It now follows that

L(4 · O) = K ⊕Kx⊕Ky ⊕Kx2,

since x2 has ordO x2 = −4. Similarly,

L(5 · O) = K ⊕Kx⊕Ky ⊕Kx2 ⊕Kxy

and
L(6 · O) = K ⊕Kx⊕Ky ⊕Kx2 ⊕Kxy ⊕Kv,

where v = x3 (since ordO x3 = −6), or v = y2 (since ordO y2 = −6). In particular, if we pick v = x3, then
y2 ∈ L(6 · O) gives a linear dependence

y2 + a1xy + a3y = cx3 + a2x
2 + a4x+ a6

with ai ∈ K and c ∈ K×. We can replace x by cx and y by c2y to obtain

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (♥)

This is the Weierstrass model (cf. Definition 1.1.1)

Remark 1.4.4. Where is a5? We should think of the equation as a degree 6 homogenous, where deg x = 2
and deg y = 3, and deg ai = i. 4

Lemma 1.4.5. We haveK(E) = K(x, y).

Proof. By definition (Fact 1.3.5), we have [K(E) : K(x)] = deg(x : E → P1
K). Our claim is that this degree is

equal to 2. This is because given a point in P1
K then there are two preimages. More rigorously, deg(x : E →

P1
K = ordO( 1

x ) = 2, because the only pole of x is at O. Similarly, [K(E) : K(y)] = 3. Then [K(E) : K(x, y)]
is a number dividing both 2 and 3, hence is equal to 1.

Let C ⊆ P2
K be the curve defined by (♥). We have a morphism

ϕ : E → C ⊆ P2
K

P 7→ [x(P ), y(P ), 1] if P 6= O

O 7→
[(x
y

)
(O), 1,

(1

y

)
(O)

]
= [0, 1, 0],

since ordO(xy ) = 1 and ordO( 1
y ) = 3.

Note that degϕ = [K(E) : K(x, y)] = 1. If we can proveC is nice, thenϕ is automatically an isomorphism
(since it is on function fields); the hard part is showing C is smooth.

Assume C ⊆ P2
K given by (♥) is not smooth.

Exercise 3: Show that C is smooth at [0, 1, 0].
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Suppose C is singular at some P ∈ C \ {[0, 1, 0]}. Without loss of generality, we my assume P = (0, 0)
after a linear change of coordinates of x and y. Set

f
def
= y2 + a1xy + a3y − (x3 + a2x

2 + a4x+ a6) = 0.

and observe that
∂f

∂x
= a1y − 3x2 − 2a2x− a4 and ∂f

∂y
= 2y + a1x+ a3.

So if C is singular then C is given by the equation C : y2 + a1xy = x3 + a2x.
This gives a rational map

ψ : C 99K P1
K

(x, y) 7−→ [x, y].

(Note that C is singular so this rational map doesn’t necessarily become a morphism.)
The map ψ has degree 1. The morphism is birational, with inverse given by

P1 99K C

[1, t] 7−→ (t2 + a1 − a2, t
3 + a1t

2 − a2t)

(This is automatically a morphism, since P1 is a nice curve!) We obtain the composition

E C P1
K

ϕ ψ

giving a morphism ψ ◦ ϕ : E → P1
K with degree 1. Thus E ∼−→ P1

K since they are nice It follows that the
genus of E is equal to the genus of P1

K . But the latter is zero, so that’s a contradiction.
This means that ϕ : E

∼−→ C ⊆ P2
K .

Last remark: the model (♥) is not unique. Any two suchmodels forE (that mapO 7→ [0, 1, 0]) are related
by

x = u2x′ + r

y = u3y′ + su2x′ + t

for r, s, t ∈ K and u ∈ K×.
In conclusion, an elliptic curve is a genus 1 curve with a distinguished point (Definition 1.4.3). Riemann-

Roch (Theorem 1.4.2) gives Equation (♥). Any two such equations are related by a change of variables as
above.
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1.5 Feb 4, 2020
[There will be usual OH on Thursdays, from 1–2:30pm. Today, there will be OH 2:30–4pm.]
Recall that an elliptic curve over K is a nice curve E over K of genus 1 with a distinguished point O ∈

E(K). (Recall that nice means smooth, projective, and geometrically irreducible.)
Using Riemann-Roch (Theorem 1.4.2) we showed that there is an embedding

ϕ : E ↪→ P2
K

so that the image is cut out by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x+ a4x+ a6, (♥)

and ϕ(O) = [0, 1, 0]. We’ve been calling this equation (♥). (The idea is to choose x ∈ L(2O) \ L(O), so
ordO x = −2, and y ∈ L(3O) \ L(2), so ordO y = −3.)

Other such embeddings are related by a change of basis, specifically by

x = u2x′ + r

y = u3y′ + su2x′ + t

with u ∈ K× and r, s, t ∈ K.
One would need to show that any smooth model given by (♥) is an elliptic curve. (The hard part is

showing curves defined by (♥) has genus 1. We’ll do that later, once we understand the genus better.)
Suppose charK 6= 2. By completing the square in y, wemay assume a1 = a3 = 0. If further charK 6= 2, 3,

we may also take a2 = 0, since we may “complete the cube” (replace x 7→ x − a2/3). We arrive at the short
Weierstrass equation

y2 = x3 + ax+ b

with a, b ∈ K and ∆
def
= −16(4a3 + 27b2) 6= 0.

With the short form, the model is unique up to change of basis:

x = u2x′,

y = u3y′

with u ∈ K×. In this basis, (y′)2 = (x′)3 + ax′ + b turns into

y2 = x3 + au4x+ bu6, (u ∈ K×)

We may define

j(E)
def
=

1728(4a)3

∆
∈ K,

called the j-invariant of E. Note that j(E) does not depend on the model.

Proposition 1.5.1. For elliptic curves E and E′ overK, E and E′ are isomorphic if and only if j(E) = j(E′).

The backwards direction can fail forK non-algebraically closed. For example, y2 = x3+1 and y2 = x3+2
are isomorphic over Q but not over Q. This is because we need 1 = u6 · 2, and u ∈ Q but u 6∈ Q. (We say
elliptic curves are isomorphic if there is an isomorphism of curves that matches distinguished points.)

Proof of Proposition 1.5.1. Let’s prove the backwards direction. If j = 0, then y2 = x3 + b is isomorphic to
y2 = x3 + 1, because there is u ∈ K× such that u6b = 1.

If j 6= 0, then a 6= 0 and a change of coordinates allows us to assume a = 1 (i.e., we may find u ∈ K×

such that u4a = 1). Our Weierstrass equation becomes

y2 = x3 + x+ b.

This form is unique up to a sign in b (since u4 = 1 implies u6 = ±1). But

j(E) =
1728(4 · 1)3

−16(4 · 12 + 27b2)

determines b up to a sign as well.
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Given j ∈ K with charK 6= 2, 3, there is an elliptic curve E/K with j(E) = j. Indeed, for j = 0 we have
y2 = x3 + 1, and for j = 1728 we have y2 = x3 + x. For j 6= 0, 1728, the curve

y2 = x3 +
27

4

j

j − 1728
x− 27

4

j

j − 1728
(1)

suffices. (This curve has ∆ = 26312j2/(j − 1728)3 6= 0.)
The automorphisms of the elliptic curve in Equation (1) areZ/2Z, generated by (x, y) 7→ (x,−y), whereas

the automorphisms of y2 = x3 + 1 are Z/6Z, generated by (x, y) 7→ (ζ3x,−y) and the automorphisms of
y2 = x3 + x are Z/4Z, generated by (x, y) 7→ (−x, iy). (These are, of course, automorphisms overK.)

We also have a definition of j(E) when charK is arbitrary. See the book for details.
Now let’s assume charK 6= 2 (so possibly charK = 3), and suppose

E : y2 = f(x) ∈ K[x]

with f monic, cubic, and separable, so that E is an elliptic curve. Assume that f splits overK. Then a linear
change in xwill give a Legendre form

Eλ : y2 = x(x− 1)(x− λ)

with λ ∈ K \ {0, 1}. Then

j(Eλ) =
28(λ2 − λ+ 1)3

λ2(λ− 1)2
.

For j ∈ K \ {0, 1728}, then there are exactly six λ ∈ K such that j(Eλ) = j.

Let’s think about divisors. Take a nice curve C over a perfect field K. We defined the group of divisors
Div(C) ofC, aswell as the subgroupDiv0(C) ⊆ Div(C) consisting of degree zero divisors, and the subgroup
div(K(C)×) ⊆ Div0(C) consisting of “divisors coming from functions”, i.e.

div(f) =
∑
P∈C

ordP (f) · (P ).

(We claimed without proof that div(K(C)×) ⊆ Div0(C).)
From these groups we can define the Picard group, or divisor class group

Pic(C)
def
= Div(C)/div(K(C)×) and Pic0(C)

def
= Div0(C)/div(K(C)×).

Alternatively, the degree map Div(C)
deg−−→ Z descends to a map on Pic(C), and Pic0(C) is the kernel. As

usual we may define
PicK(C)

def
= Pic(C)GalK .

Note that in general, Pic(C)GalK is not equal to DivK(C)/div(K(C)×) (it turns out equality will hold for
elliptic curves).

We have
Pic0

K(C) = Pic0(C)GalK = PicK(C) ∩ Pic0(C).

Then:

• A divisor D ∈ Div(C) gives rise to an equivalence class [D] ∈ Pic(C).

• Given two divisors D,D′ ∈ Div(C) we say D and D′ are linearly equivalent if [D] = [D′], and we write
D ∼ D′. (This means D = D′ + div(f).)

Example 1.5.2. Consider P1 = A1 ∪ {[1, 0]} = K ∪ {∞}. Then Div0(P1) is generated byD = (a)− (∞) with
a ∈ K. Note that D is principal, i.e. D = div(f) for some f ∈ K(P1)×, namely, if t is a coordinate for P1,
div(t− a) = (a)− (∞). It follows that Pic0(P1) = 0. 4

Lemma 1.5.3. Let E be an elliptic curve overK. For any divisor D ∈ Div0(E), there is a unique point P ∈ E such
that D ∼ (P )− (O).
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Proof. Existence follows from Riemann-Roch (Theorem 1.4.2). Namely, Riemann-Roch says

dimK L(D + (O)) = deg(D + (O)) + 1− g = 1.

where L(D + (O)) = {f ∈ K(E)× : D + (O) + div(f) ≥ 0} ∪ {0}.
In particular we may take f ∈ L(D+ (O)) \ {0}. By definition,D+ (O) + div(f) ≥ 0 has degree 1. Thus

this divisor is just a point, i.e.D+(O)+div(f) = (P ) for some P ∈ E. It follows thatD = (P )−(O)−div(f),
and D ∼ (P )− (O).

Let’s prove uniqueness of P . Suppose (P ) − (O) ∼ (P ′) − (O) for P, P ′ ∈ E. Then (P ) − (P ′) ∼ 0, so
div(f) = (P ) − (P ′) for some f ∈ K(E)×. It follows that f + (P ′) ≥ 0, and f ∈ L((P ′)), which is a vector
space of dimension 1 by Riemann-Roch. Since the constants are contained in L((P ′)), it follows that f is
constant. So div(f) = 0 implies (P ) = (P ′).

Lemma 1.5.3 gives a bijection

ϕ : E
∼−→ Pic0(E)

P 7→ [(P )− (O)].

Thus we may give E a group law by stealing it from Pic0(E). (One can verify that this group law agrees
with the geometric definition from the first lecture. We’ll do this next time.)

Note that the identity element of the group E is necessarily O, since ϕ(O) = [(O)− (O)] = 0.

Remark 1.5.4. The bijection ϕ gives a way to check if a divisor on E is principal, i.e. is div(f) for some
f ∈ K(E)×. If

D =
∑
P∈E

nP (P ) ∈ Div(E),

then D is principal if and only if
∑
P∈E nP = 0 and

∑
P∈E nP · P = O, where the second sum is the group

law in E. 4
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1.6 Feb 6, 2020
Let E be an elliptic curve overK, with distinguished point O ∈ E(K). We have a bijection

ϕ : E
∼−→ Pic0(E) = Div0(E)/div(K(E)×)

P 7→ [(P )− (O)]

We give E the (abelian!) group law from Pic0(E) using ϕ.
Observe that ϕ is compatible with the GalK-action: for σ ∈ GalK , we have

σ(ϕ(P )) = σ([(P )− (O)]) = [(σ(P ))− (σ(O))] = [(σ(P ))− (O)] = ϕ(σ(P )),

where in particular we used that O ∈ E(K) is fixed by σ. Thus ϕ descends to an isomorphism ϕ : E(K)
∼−→

Pic0
K(E). Note also that ϕ(O) = [(O) − (O)] = 0, so O is the identity of E. Let’s show that this group law

on E is compatible with the geometric group law we saw in the first lecture.
Let’s assume E ⊆ P2

K is defined by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (♥)

with ai ∈ K and O = [0, 1, 0].
Take any P,Q ∈ E. Let’s describe P +Q; assume P and Q are not O. Let L be the line through P and Q

(or the tangent line if P = Q). Then L intersects E at three points P,Q,R ∈ E (with multiplicity). We may
write

L : ax+ by = 1

with a, b ∈ K not both zero. Then ax+ by − 1 ∈ K(E) gives rise to a divisor

div(ax+ by − 1) = (P ) + (Q) + (R)− 3 · (O)

= (P )− (O) + (Q)− (O) + (R)− (O)

so in Pic0(E) we obtain
0 = ϕ(P ) + ϕ(Q) + ϕ(R).

In particular, in E we have
P +Q+R = O,

or in other words P + Q = −R. So giving a geometric description of P + Q reduces to giving a geometric
description of −R from R.

Assume R 6= O. Consider the line through R and O. This intersects E at three points, and we saw that
they add to O. Thus the third point is −R = P +Q.

We have operations − : E → E and +: E × E → E, as well as a distinguished point O ∈ E(K).

Claim 1.6.1. The operations − and + are morphisms of varieties.
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Proof. We have a rational map

− : E 99K E

(x, y) 7→ (x,−y − a1x− a3)

that extends to a morphism O 7→ O.
To make the notion of E ×E precise in Silverman conventions (i.e., giving an embedding into projective

space), we observe that the Segre embedding sends

Pm × Pn ↪→ P(m+1)(n+1)−1

([x0, . . . , xm], [y0, . . . , yn]) 7→ [x0y0, . . . , xiyj , . . . , xmyn].

Then E × E lives in P2 × P2 ↪→ P8.
Now +: E × E → E is a rational map: on the open subset

U
def
= {(P,Q) ∈ E × E : P 6= O, Q 6= O, P 6= ±Q}

we have a morphism
+: U → E;

explicit equations for this morphism are given in Silverman, Ch 3. (Warning: The rational map + does not
automatically extend to a morphism, because E × E is not a curve!)

To extend + to a morphism, one could play with the explicit equations andmake it defined onE×E \U .
Alternatively, we may translate U around by the group structure:

Take anyQ ∈ E. The translation byQmap τQ : E → E is given byP 7→ P+Q. Note that τQ is amorphism,
because it’s a morphism on E \ {O,−Q}: now τQ extends to a morphism on all of E because it’s a curve. In
fact, τQ is an isomorphism, since it has inverse given by τ−Q.

Given two points P and Q, τP × τQ is an automorphism of E × E. Then we may consider

V
def
= (τP × τQ)(U) ⊆ E × E.

The claim is that the V ’s cover E ×E as P,Q ∈ E vary. We are done because to define + on each V we may
use the commutative diagram

V E

U E

τ−P×τ−Q

+

τP+Q

so +: V → E, and gluing these morphisms together we get that E × E +−→ E is a morphism.

We say that E is a group variety.

Aside 1.6.2. We focus on Weierstrass models since they are simple and every E/K has such a model. One
should keep in mind how much we are using these models. There are higher dimensional generalizations
of elliptic curves called abelian varieties, and proofs that don’t use the model often generalize to abelian
varieties. 4

Example 1.6.3 (Edward’s curve). Suppose charK 6= 2. Fix a d ∈ K× that’s not a square. Then

E/K : x2 + y2 = 1 + dx2y2,

with O = (0, 1), is a smooth affine model for E. The projective model is singular, and you need to blow up.
The blowup is an elliptic curve overK.

Then E(K) = {(x, y) ∈ K× : x2 + y2 = 1 + dx2y2}. (The points at infinity are defined overK(
√
d).)

For (x1, y1), (x2, y2) ∈ E(K), we have

(x1, y1) + (x2, y2) =
( x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)
.
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Nice properties of Edward’s curve is that the group law is given by just one equation and that there is
symmetry. Computing the group law is also more efficient. There are applications to cryptography. Un-
fortunately, not all elliptic curves are of this form; for example, the point (1, 0) ∈ E(K) has order 4 – the
existence of such a point is a pretty special condition to impose on an elliptic curve. 4

Definition 1.6.4. A homomorphism ϕ : E → E′ of elliptic curves is a morphism of curves where ϕ(O) = O.
4

Proposition 1.6.5. The map ϕ is a homomorphism of groups.

Some more background will be useful: Consider a morphism ϕ : C → C ′ of nice curves over K. This
induces a morphism

ϕ∗ : Div(C)→ Div(C ′)∑
P∈C

nP (P ) 7→
∑
P∈C

nP (ϕ(P ))

that preserves degrees, i.e. degϕ∗D = degD for each D. Thus this induces an isomorphism

ϕ∗ : Pic0(C)→ Pic0(C ′).

This is because ϕ∗ sends principal divisors to principal divisors, i.e. ϕ∗(divf) = div(ϕ∗f), where ϕ∗f is
defined as follows: Note that ϕ defines an inclusion

ϕ∗ : K(C ′) ↪→ K(C)

given by g 7→ g ◦ ϕ, and now ϕ∗f = NK(C)/K(C′)(f).

Proof of Proposition 1.6.5. Consider the diagram

E Pic0(E)

E′ Pic0(E′)

∼

ϕ

P 7→[P−O]

ψ

∼
P 7→[P−O]

It commutes because
ψ([P −O]) = [ϕ(P )−O] = [ϕ(P )− ϕ(O)],

so ψ = ϕ∗, of which the latter is a group homomorphism.
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2 The Geometry of Elliptic Curves

2.7 Feb 11, 2020
Let E/K be an elliptic curve over a perfect fieldK, with distinguished pointO ∈ E(K). (We have made

a choice ofK.)
Then E is an abelian group with an isomorphism

E
∼−→ Pic0(E)

P 7−→ [(P )− (O)]∑
P∈E

npP ←− [
[ ∑
P∈E

np(P )
]

where the sum
∑
nPP uses the group law in E.

We said a homomorphism ϕ : E → E′ of elliptic curves is a morphism of curves such that ϕ(O) = O.
We saw that such a ϕ is a group homomorphism (Proposition 1.6.5).

Definition 2.7.1. We say ϕ is defined over K if it’s defined over K as a morphism (or if it’s stable under
GalK). 4

Example 2.7.2. Form ∈ Z, we have a homomorphism [m] : E → E where

[m](P ) = P + · · ·+ P︸ ︷︷ ︸
m times

(ifm ≥ 0)

and
[m](P ) = −P − · · · − P︸ ︷︷ ︸

−m times

(ifm < 0). 4

Non-Example 2.7.3. FixQ ∈ E \ {O}. Then τQ : E → E given by P 7→ P +Q is not a homomorphism, since
τQ(O) 6= O.

However, take any O′ ∈ E(K), and let E′ be the elliptic curve E with distinguished point O′. Then the
translation τO′ : E → E′ with respect to E is an isomorphism of elliptic curves. 4

More generally, for any morphism ψ : E → E′ of curves,

τ−ψ(O) ◦ ψ : E → E′

is a homomorphism of elliptic curves!

Definition 2.7.4. We say a homomorphism ϕ : E → E′ is an isogeny if it is nonconstant, i.e. ϕ 6= 0. 4

Warning: what we call a homomorphism, Silverman calls an isogeny. (The only difference is whether
we call the zero map an isogeny or not.)

Let ϕ : E → E′ be an isogeny, and define kerϕ ⊆ E; it’s stable under GalK if ϕ is defined over K. Take
any Q ∈ E′, and choose P ∈ ϕ−1(Q) (the fiber is nonempty since ϕ is nonconstant, hence surjective). It
follows that ϕ−1(Q) = {P +R : R ∈ kerϕ}, since on the level of groups ϕ induces an isomorphism

E/ kerϕ
∼−→ E′.

So all the fibers have the same size:

#ϕ−1(Q) = # kerϕ for all Q ∈ E′.

One can show that # kerϕ = degs ϕ is the separable degree of ϕ (cf. Fact 1.3.5).
Suppose now that ϕ is separable. For any Q ∈ E′,∑

P∈ϕ−1(Q)

eϕ(P ) = degϕ = # kerϕ = #ϕ−1(Q),
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where eϕ(P ) is the ramification index of ϕ at P . Since each eϕ(P ) is a positive integer, we conclude that
eϕ(P ) = 1 for all P ∈ E, i.e., ϕ is unramified.

The Frobenius isogeny. Let us assume p = charK > 0 and take q = pr for some r ≥ 1. We have an
automorphism of fields

K → K

x 7→ xq,

(here surjectivity is the assumption thatK is perfect).
Let’s consider a general nice curve C ⊆ PnK . Let C(q) ⊆ PnK be the nice curve overK with homogeneous

ideal
I(C(q)) = {f (q) : f ∈ I(C)},

where f (q) is the polynomial obtained by raising the coefficients of f to the q-th power. Then the q-th power
Frobenius morphism of C is a map

ϕq : C → C(q)

[x0, . . . , xn] 7→ [xq0, . . . , x
q
n].

Indeed, if P = [x0, . . . , xn] ∈ C and f ∈ I(C) is homogeneous, then f(P ) = 0 and taking q-th powers

0 = f(P )q = f (q)([xq0, . . . , x
q
n]︸ ︷︷ ︸

=ϕq(P )

)

implies ϕq(P ) ∈ C(q).

Fact 2.7.5 (Silverman Ch II, §2). The morphism ϕq is purely inseparable of degree q. Furthermore, ϕ∗q(K(C(q))) =
{fq : f ∈ K(C)}.

Fact 2.7.6. Let ψ : C → C ′ be a nonconstant morphism of nice curves overK with charK > 0. Then ψ factors as

ψ : C C(q) C ′
ϕq λ

where ϕq is the q-th Frobenius morphism, with q = degi ψ, and λ is separable.

This fact was that the decomposition

K(C)

L

ψ∗K(C ′)

whereK(C)/L is purely inseparable and L/ψ∗K(C ′) is separable, and satisfies L = {fq : f ∈ K(C)}.
If E is an elliptic curve, and q = pr where p = charK > 0, then ϕq : E → E(q) is an isogeny. If E is given

by E : y2 = x3 + ax+ b, then E(q) is given by E(q) : y2 = x3 + aqx+ bq . Here, ϕq(x, y) = (xq, yq).
In this case, kerϕq = {0}. Then ϕq : E → E(q) is an isomorphism of groups. However, it is not an

isomorphism of elliptic curves, since degϕq = q > 1.
For an isogeny ϕ : E → E′, we get a factorization

ϕ : E E(q) E′
ϕq λ

where ϕq is Frobenius, and λ is a separable isogeny.
Form ∈ Z, define E[m] = ker[m] to be them-torsion subgroup of E.
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Example 2.7.7. Let’s compute E[2]. When charK 6= 2, then

E/K : y2 = f(x)

for some cubic and separable f . Since [−1](x, y) = (x,−y), the 2-torsion has a nice description:

E[2] = {P ∈ E : [−1]P = P} = {(x, 0) : x ∈ K a root of f} ∪ {0}.

Since E[2] is a group of order 4, killed by [2], we see E[2] ∼= Z/2Z× Z/2Z.
When charK = 2, then

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

and
[−1](x, y) = (x,−y − a1x− a3) = (x, y + a1x+ a3)

Then (x, y) ∈ E[2] if and only if [−1](x, y) = (x, y), if and only if a1x+ a3 = 0. Then:

• If a1 6= 0, there is a unique x and E[2] ∼= Z/2Z.

• If a1 = 0, then a3 6= 0 (otherwise our model is singular). Then E[2] = {0}, and in fact E[2n] = {0}. 4

The story here is that form 6= 0, the map [m] : E → E has degreem2. Then:

• Ifm is not divisible by charK, then [m] is separable.

• If m is divisible by p = charK, then [m] is not separable. Consider [p] : E → E, which has degree p2.
Then either [p] : E → E factors as

[p] : E E(p) E
ϕp λ

where ϕp is the p-th power Frobenius and λ is a separable isogeny of degree p, and E[p] ∼= Z/pZ, or
[p] : E → E factors as

[p] : E E(p2) E
ϕp2 λ

where λ : E(p2) ∼−→ E is degree 1. In this case, E[p] = {0}.

Proposition 2.7.8. Form ∈ Z \ {0}, [m] is an isogeny.

Proof. In the case charK 6= 2, suppose [m] = 0. We can assume m = p is a prime, since [m] ◦ [n] = [mn].
In particular, [p]P = 0 for all P ∈ E[2]. Since E[2] is nontrivial, p cannot be odd. It follows that p = 2. But
[2] 6= 0, since E[2] = ker[2] has order 4.

In the case charK = 2, the proof uses the same idea, but we first show that E[3] is finite and nontrivial.

Example 2.7.9. Consider
E/F2 : y2 + xy + y = x3 + 1.

In this case E[2] ∼= Z/2Z. Then

E E E
ϕ2 λ

for some degree 2 isogeny λ. One can explicitly compute

λ(x, y) =
(x2 + x+ 1

x+ 1
,
x2y + x+ 1

x2 + 1

)
.

4
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2.8 Feb 13, 2020
Consider a separable isogeny ϕ : E → E′. (Recall that this means the field extension K(E)/ϕ∗K(E′) is

separable; the degree of this extension is denoted degϕ.)
We saw that for any Q ∈ E′, the fiber has size #ϕ−1(Q) = degϕ. In particular, kerϕ is an abelian group

of order degϕ. Also, ϕ is unramified.
For Q ∈ kerϕ, we have a translation map τQ : E → E given by translation by Q; it an isomorphism of

curves, since
ϕ ◦ τQ = ϕ.

(In the language of algebraic topology, the map ϕ is a covering map, and τQ is a deck transformation.)
In other words, we have defined a map

kerϕ→ Aut(K(E)/ϕ∗K(E′))

Q 7→ τ∗Q

This is an injective homomorphism. (Injectivity follows from the fact that the induced map on function
fields determines the morphism.)

Since # kerϕ = degϕ and #Aut(K(E)/ϕ∗K(E′)) ≤ degϕ, it follows that the extension K(E)/ϕ∗K(E′)
is Galois, and the that map

kerϕ
∼−→ Gal(K(E)/ϕ∗K(E′))

Q 7→ τ∗Q

is an isomorphism; note that the Galois group is an abelian group.

Remark 2.8.1. If ϕ is defined overK, then GalK

�

kerϕ. 4

Now take a finite abelian subgroupA ⊆ E. Our goal is to construct a separable isogenyϕwith kerϕ = A.
(We will succeed, and we’ll see that ϕ is essentially unique.)

We have an injective homomorphism

A ↪→ Aut(K(E)/K)

Q 7→ τ∗Q

Galois theory says the field extension K(E)/K(E)A is Galois with Galois group A. The curve-to-function-
field correspondence (Fact 1.3.5) implies K(E)A = ϕ∗K(C) where C is a nice curve and ϕ : E → C is a
nonconstant morphism. (We want to show that the genus of C is 1.)

The morphism ϕ is unramified. For any Q ∈ C, choose P ∈ ϕ−1(Q). Then

ϕ−1(Q) = {P +R : R ∈ A}

has cardinality |A|. We apply a black box:

Theorem 2.8.2 (Hurwitz formula; SilvermanCh II, §5). Letϕ : C → C ′ be a nonconstant morphism of nice curves
of genus g and g′ respectively. Then

2g − 2 = (degϕ)(2g′ − 2) +
∑
P∈C

(eϕ(P )− 1)

if

a) charK = 0, or

b) charK = p > 0 and p - eϕ(P ) for all P ∈ C.

In general, we always have “≥”.
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In our setting, eϕ(P ) = 1 for all P ∈ E, so Theorem 2.8.2 says

2 · 1− 2 = degϕ · (2 · genus(C)− 2)

implies that the genus of C is 1. Let E′ = C with distinguished point ϕ(O). Then E′ is an elliptic curves,
and ϕ : E → E′ is an isogeny. It is separable and kerϕ = A.

Fix an elliptic curve E/K. We get{ separable isogenies ϕ : E → E′

up to an isomorphism of E′
}
←→

{
finite subgroups of E

}
ϕ 7−→ kerϕ

Remark 2.8.3. For E/K, if A ⊆ E is GalK-stable, then there is a separable isogeny ϕ : E → E′ over K with
kernel A. Since GalK

�

K(E)A ⊆ K(E), one can play the same game with (K(E)A)GalK = ϕ∗K(E′). 4

For A ⊆ E finite, the isogeny ϕwhose kernel is A is denoted by

ϕ : E → E/A.

This is the usual quotient as a group, and the content is that E/A has a curve structure.

Example 2.8.4. Let charK 6= 2. Let’s take E/K with a point of order 2. Up to a translation,

E/K : y2 = x(x2 + ax+ b)

for (a2 − 4b)b 6= 0; the point of order 2 is P = (0, 0) ∈ E(K). What is E/〈P 〉?
Let’s do some [high school] algebra. Note that

x(x2 + b) = y2 − ax2

x2(x2 + b)2 − 4bx4 = (y2 − ax2)2 − 4bx4

x2(x2 − b)2 = y4 − 2ax2y2 + (a2 − 4b)x4(y(x2 − b)
x2

)2

=
y6

x6
− 2a

y4

x4
+ (a2 − 4b)

y2

x2
(away from (0, 0))

so we have an elliptic curve
E′/K : Y 2 = X3 − 2aX + (a2 − 4b)X

with a morphism

ϕ : E → E′

(x, y) 7→
(y2

x2
,
y(x2 − b)

x2

)
.

The map ϕ is an isogeny. (The only thing one needs to check is the point at infinity is mapped to the point
at infinity.) In fact ϕ is separable, and kerϕ = {O, (0, 0)}. 4

Proposition 2.8.5. Let ϕ : E1 → E2 be a separable isogeny. Let ψ : E1 → E3 be an isogeny. Assume kerϕ ⊆ kerψ.
Then ψ = λ ◦ ϕ for a unique isgeony λ : E2 → E3.

Proof idea. Since kerϕ ⊆ kerψ, we have kerϕ ↪→ Aut(K(E1)/ψ∗K(E3)) given by Q 7→ τ∗Q. We get a tower of
extensions

K(E1)

K(E1)kerϕ = ϕ∗K(E2)

ψ∗(K(E3))
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The extension ϕ∗K(E2)/ψ∗(K(E3)) gives λ.

Example 2.8.6. Consider a separable isogeny ϕ : E → E′ of degree n. Then kerϕ is an abelian group of order
n, and

kerϕ ⊆ E[n] = ker[n].

This gives a factorization

[n] : E
ϕ−→ E′

ϕ̂−→ E

for a unique ϕ̂. The map ϕ̂ is called the dual isogeny of ϕ. It satisfies ϕ̂ ◦ ϕ = [n]. We’ll see later that ϕ̂
exists for all isogenies. We say E and E′ are isogenous if there is an isogeny; the dual isogeny will show that
isogenousness is an equivalence relation. 4

Let Hom(E,E′) be the group of homomorphisms E → E′ (It has + using the group law of E′, i.e. ϕ+ψ
is the map sending P to ϕ(P ) + ψ(P ).)

Let End(E) = Hom(E,E) be the ring of endomorphisms ofE, with + as above andmultiplication being
composition of functions.

We define HomK(E,E′) and EndK(E) in the same way, except everything needs to be defined overK.

Observation 2.8.7.

• Hom(E,E′) is torsion-free. Indeed, take ϕ ∈ Hom(E,E′) and m ≥ 1 and suppose m · ϕ = 0. That
means [m] ◦ ϕ = 0. Since [m] is an isogeny (Proposition 2.7.8), it follows that ϕ = 0.

• Similarly, Z→ End(E) given bym 7→ [m] is an injective homomorphism of rings.

• End(E) has no zerodivisors. 4

Fact 2.8.8.

• We’ll see later that the group Hom(E,E′) is finitely generated abelian group [hence, a free Z-module].

• In fact, rankZHom(E,E′) ≤ 4, and rankZHom(E,E′) ≤ 2 when charK = 1.

• When charK = 0, we “usually” have End(E) = Z [so End(E) consists of multiplication maps [m]].

• We will describe the possible rings End(E).
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2.9 Feb 18, 2020
We’re going to talk about differentials today. (This is covered in Silverman, [Ch II, §4].)
Let C be a nice curve overK.

Definition 2.9.1. The space of (meromorphic) differential forms on C, denoted by ΩC , is theK(C)-vector space
generated by symbols dx (for x ∈ K(C)) subject to the relations

• d(x+ y) = dx+ dy

• d(xy) = x dy + y dx

• d(a) = 0 for a ∈ K. 4

Let ϕ : C → C ′ be a nonconstant morphism. We have ϕ∗ : ΩC′ → ΩC : from the map

ϕ∗ : K(C ′)→ K(C)

f 7→ f ◦ ϕ,

we get the map

ϕ∗ : ΩC′ → ΩC∑
i

fi dxi 7→
∑
i

ϕ∗(fi) d(ϕ∗xi).

Fact 2.9.2. We have:

• dimK(C) ΩC = 1.

• ϕ is separable if and only if ϕ∗ : ΩC′ → ΩC is injective (equivalently, nonzero).

Now take any P ∈ C. Let t ∈ K(C) be a uniformizer at P (so ordP (t) = 1). We have dt 6= 0 (because
K(C)/K(t) is separable; see Silverman §1). For ω ∈ ΩC , we have ω = g dt for a unique g ∈ K(C). We use
the notation

ω

dt

def
= g.

Exercise 4: Take x ∈ K(C) with dx 6= 0 and take y = f(x) with f(x) ∈ K(x) (so f is a rational function).
Show that

dy

dx
= f ′(x),

where f ′(x) is the usual derivative. (The exercise shows that the relations in Definition 2.9.1 encode enough
calculus.)

Fact 2.9.3. We have

• For ω 6= 0, the number ordP (ω)
def
= ordP ( ωdt ) ∈ Z is independent of t.

• ordP (ω) = 0 for all but finitely many P ∈ C.

• For x, f ∈ K(C) with x(P ) = 0, then

ordP (fdx) = ordP (f) + ordP (x)− 1

if charK = 0 or charK - ordP (x).

Define, for ω 6= 0,
div(ω) =

∑
P∈C

ordP (ω) · (P ) ∈ Div(C).

This is called a canonical divisor. For f ∈ K(C)×, we have

div(fω) = div(ω) + div(f).
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Thus there is a unique equivalence class

[div(ω)] ∈ Pic(C),

called the canonical divisor class of C. In particular, deg(div(ω)) ∈ Z is well-defined.

Example 2.9.4. Let C = P1 and let t be the coordinate function, sending t([x, 1]) = x. Let’s compute div(dt).
Note that P1 = K ∪ {∞}. For α ∈ K, note that ordα(t − α) = 1, so serves as a uniformizer at α. Thus

ordα(dt) = ordα(d(t − α)) = ordα(1) = 0. At∞, note that ord∞( 1
t ) = 1, so this serves as a uniformizer at

∞. Then d( 1
t ) = − 1

t2 dt, and

ord∞(dt) = ord∞
(
− t2d

(1

t

))
= ord∞(t2) = −2,

so div(dt) = −2 · (∞) 4

Example 2.9.5. Let E ⊆ P2 : y2 = (x− e1)(x− e2)(x− e3) for distinct ei ∈ K, where charK 6= 2. As usual,
denote by O = [0, 1, 0]. Let ω def

= 1
y dx ∈ ΩE . Let’s compute div(ω).

Denote by P = (α, β) ∈ E and P ′ = (α,−β) ∈ E.
Observe that ordO x = −2, and div(x) + 2O ≥ 0 with no other poles. It follows that

div(x− α) = (P ) + (P ′)− 2 · (O).

Then

ordP (x− α) =

{
1 if α 6∈ {e1, e2, e3}
2 otherwise

Now

2div(y) = div(y2) = div((x− e1)(x− e2)(x− e3)) =

3∑
i=1

(2((ei, 0))− 2(O)),

and it follows that

div(y) =
( 3∑
i=1

((ei, 0))
)
− 3(O),

and
ordP (ω) = ordP

(1

y
d(x− α)

)
= ordP

(1

y

)
+ ordP (x− α)− 1.

We have two cases:

ordP (ω) =

{
0 + 1− 1 if α 6∈ {e1, e2, e3}
−1 + 2− 1 if α ∈ {e1, e2, e3}

,

so ordP (ω) = 0 always. Finally, let’s compute ordO ω. Since d( 1
x ) = − 1

x2 dx, we have

ordO(ω) = ordO
(1

y
dx
)

= ordO
(
− x2

y
d
( 1

x

))
= ordO

(x2

y

)
+ ordO

( 1

x

)
− 1 = 0.

In other words,
div
(dx
y

)
= 0,

and in particular it has degree zero. 4

Definition 2.9.6. We’ll say ω ∈ ΩC is holomorphic if ordP (ω) ≥ 0 for all P ∈ C, i.e., div(ω) ≥ 0. 4

27



Fix ω0 ∈ ΩC , with ω0 6= 0. DefineKC
def
= div(ω0). We have

{ω ∈ ΩC : ω holomorphic} ∼←− {f ∈ K(C)× : div(ω0) + div(f) ≥ 0} ∪ {0}
fω0 ←− [ f. (∗)

(Recall that we had defined for D ∈ Div(C),

L(D)
def
= {f ∈ K(C)× : D + div(f) ≥ 0} ∪ {0}.

So the right hand side in (∗) is L(KC).)
Theorem 2.9.7 (Riemann-Roch, full version). For D ∈ Div(C),

`(D)− `(KC −D) = degD − g + 1,

where g is the genus of C.
[This theorem is a big black box. .] Let’s consider the case D = 0 of Theorem 2.9.7. Then

`(0)︸︷︷︸
=1

−`(KC) = deg 0︸ ︷︷ ︸
=0

−g + 1.

In other words, `(KC) = g. Explicitly,

dimK{ω ∈ ΩC : ω holomorphic} = g.

This is a good definition of the (geometric) genus of C.
When D = KC , Theorem 2.9.7 says

`(KC)︸ ︷︷ ︸
=g

− `(0)︸︷︷︸
=1

= degKC − g + 1,

and this gives degKC = 2g − 2.
Example 2.9.8. For P1, we computed deg(div(dt)) = −2, so g = 0. 4
Example 2.9.9. ForE : y2 = f(x), where f is cubic and separable, and charK 6= 2, we computeddeg(div(dxy )) =
0, so g = 1. 4

Finally, when degD > 2g−2, we recover the old Riemann-Roch (Theorem 1.4.2), because `(KC−D) = 0,
as we now show. Indeed, suppose there exists f ∈ L(KC − D) \ {0}. Then KC − D + divf ≥ 0. Taking
degrees,

(2g − 2)− degD + 0 ≥ 0,

and degD ≤ 2g − 2. Since `(KC − D) = 0, the full version of Riemann-Roch (Theorem 2.9.7) says exactly
that

`(D) = degD − g + 1,

as the old Riemann-Roch (Theorem 1.4.2) asserts.
Example 2.9.10. Consider E ⊆ P2 defined by a smooth model Equation (♥)

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (♥)

for ai ∈ K. The claim is that E has genus 1, so that E is an elliptic curve with O = [0, 1, 0]. Indeed, let us
differentiate (♥) to obtain

2y dy + a1x dy + a1y dx+ a3 dy = 3x2 dx+ 2a2x dx+ a4 dx.

Collecting like terms,
(2x+ a1x+ a3) dy = (3x2 + 2a2x+ a4 − a1y) dx

Define
ω

def
=

dy

3x2 + 2a2x+ a4 − a1y
=

dx

2y + a1x+ a3
∈ ΩE .

We have div(ω) = 0, and 2g − 2 = deg(div(ω)) = 0 implies g = 1. We say ω is the invariant differential of E.
It is a basis overK of {ω ∈ ΩE : ω holomorphic}. 4

28



2.10 Feb 20, 2020
[I was out of town. This is essentially copied from Arthur Tanjaya’s pristinely latexed notes.]
Consider an elliptic curve E/K, E ⊆ P2 defined by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (♥)

for ai ∈ K. We defined the invariant differential of E as

ω =
dx

2y + a1x+ a3
=

dy

3x2 + 2a2 + a4 − a1y
∈ ΩE .

Recall that ΩE is a 1-dimensionalK(E)-vector space generated by dx, x ∈ K(E), with “usual” rules (linear-
ity, product rule, and constants should have derivative zero). The invariant differential ω is holomorphic,
i.e. ordP (ω) ≥ 0 for all P ∈ E. (We write div(ω) ≥ 0 for this.)

Also recall that dimK{ω0 ∈ ΩE : ω0 is holomorphic} = 1. So ω is unique up to a scalar factor. As always,
GalK acts on ΩE by σ(f dx) = σ(f) d(σ(x)).

Given Q ∈ E, we have defined τQ : E → E, which is translation by Q. The pullback was defined as
follows: given ϕ : C → C ′, and f, x ∈ K(C ′), we have ϕ∗(f dx) = ϕ∗(f) d(ϕ∗x) = f ◦ ϕd(x ◦ ϕ).

Proposition 2.10.1. For any Q ∈ E, we have τ∗Q(ω) = ω.

[Hence the name invariant.]

Proof. Note that τ∗Qω ∈ ΩE is also holomorphic (τQ is an isomorphism, and being an isomorphism guaran-
tees that the valuations will match upwhen you pull back). So τ∗Qω = aQω for some aQ ∈ K

×. (The constant
aQ is nonzero because you can go in reverse).

Now consider a : E → K
× ⊆ A1 given by Q 7→ aQ. This is a morphism. (If you don’t believe this,

keep doing computations until you do.) Since this is a morphism from an elliptic curve to A1, but it’s not
surjective (missing 0), it must be constant. [This is from a big black box of Chapter 2. You can think of it as
“bounded holomorphic function is constant” from complex analysis.]

So now consider Q = O; note that τ∗Oω = ω, so aQ = 1 for all Q ∈ E.

As an aside, the additive group Ga = K has invariant differential dx, since d(x + c) = dx, and the multi-
plicative group Gm = K

× has invariant differential dxx , because d(cx)
cx = dx

x .
Later we’ll see that [m]∗ω = mω, which implies [m] : E → E is separable if and only if charK - m.

Proposition 2.10.2. Take ϕ,ψ ∈ Hom(E′, E). Let ω be the invariant differential of E. Then

(ϕ+ ψ)∗ω = ϕ∗ω + ψ∗ω.

(Note that these are two different additions; the left hand side uses + in E and the right hand side uses
+ in ΩE′ .)

Proof. For an “elementary” proof see AEC III §5. [The proof is really about the surface E × E, but all of
Silverman’s algebraic geometry is about curves so he’s stuck.] Here is the framework:

Consider

µ : E × E → E

(P,Q) 7→ P +Q

and let p1, p2 : E × E → E be the respective projection maps. We want to show that

µ∗ω = p∗1ω + p∗2ω ∈ ΩE×E .

We will use crucially that ω is the invariant differential. The first step is to show that

µ∗ω = f1p
∗
1ω + f2p

∗
2ω (“ugly expression”)
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with f1, f2 ∈ K(E × E). (Moreover, {p∗1ω, p∗2ω} generate ΩE×E over K(E × E).) (Silverman takes the
formula for addition and differentiates it to show this.) Intuitively, this is because the two copies of E are
independent of each other.

After that, take any Q ∈ E. Consider

ιQ : E → E × E
P 7→ (P,Q),

and apply ι∗Q to “ugly expression” giving

ι∗Qµ
∗ω︸ ︷︷ ︸

(µ◦ιQ)∗ω

= ι∗Q(f1) ι∗Qp
∗
1ω︸ ︷︷ ︸

(p1◦ιQ)∗ω

+ι∗Q(f2) ι∗Qp
∗
2ω.︸ ︷︷ ︸

(p2◦ιQ)∗ω

Since µ ◦ ιQ = τQ and ω is the invariant differential, the left hand side of the above equation is just ω. On the
other hand, p1 ◦ ιQ is the identity map whereas p2 ◦ ιQ is the constant map sending everything to Q. So the
right hand side is equal to ι∗Q(f1)ω = (f1 ◦ ιQ)ω. In total, we’ve verified that

ω = (f1 ◦ ιQ)ω for all Q ∈ E.

Thus we obtain f1 = 1, and a similar argument shows that f2 = 1 as well.
Now we can prove the proposition. Define

g : E′
∆−→ E′ × E′ ϕ×ψ−−−→ E × E

P 7−→ (P, P )

Then we have

ϕ+ ψ = µ ◦ g : E′ → E

ϕ = p1 ◦ g : E′ → E

ψ = p2 ◦ g : E′ → E,

and so

(ϕ+ ψ)∗ω = g∗µ∗ω

= g∗(p∗1ω + p∗2ω)

= g∗p∗1ω + g∗p∗2ω

= ϕ∗ω + ψ∗ω

since ϕ,ψ ∈ Hom(E′, E).

We will study the ring End(E) = Hom(E,E) over the next few classes. The addition is pointwise and
the multiplication is composition of functions. Take ϕ ∈ End(E) and consider ϕ∗ω, which is equal to aϕω
for some aϕ ∈ K(E) (since ΩE is 1-dimensional overK(E)).

Claim 2.10.3. We have aϕ ∈ K, i.e. aϕ is constant.

Proof. Take Q ∈ E and consider τ∗Q(ϕ∗ω). The idea is to expand this two ways and show that they’re both
the same. On one hand,

τ∗Q(ϕ∗ω) = τ∗Q(aϕω)

= aϕ ◦ τQτ∗Qω
= aϕ ◦ τQω.
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On the other hand,

(ϕ ◦ τQ)∗ω = (τϕ(Q) ◦ ϕ)∗ω

= ϕ∗τ∗ϕ(Q)ω

= ϕ∗ω

= aϕω.

So aϕ ◦τQ = aϕ for allQ ∈ E, which implies that aϕ ∈ K (takeQ = −P in the equation aϕ(P +Q) = aϕ(P )).

Proposition 2.10.4. The map

(∗) : End(E)→ K

ϕ 7→ aϕ

is a homomorphism of rings.

Proof. The map (∗) respects addition by Proposition 2.10.2. The map (∗) also respects multiplication:

(ϕ ◦ ψ)∗ω = ψ∗ϕ∗ω

= ψ∗(aϕω)

= aϕψ
∗ω

= aϕaψω.

(Note that if aϕ was not constant then you have to compose with ψ and you get mixed terms; we can pull
the aϕ across because it’s constant.)

This map also respects the identities.

For ϕ 6= 0 ∈ End(E), ϕ is in the kernel of (∗) if and only if ϕ∗ω = 0, or equivalently if ϕ is inseparable.
In theory, this gives us a way to compute whether something is separable or not without having to compute
function fields.

Corollary 2.10.5. If charK = 0, then End(E) is commutative

Proof. Isogenies are always separable in characteristic 0, so End(E)→ K is an injective homomorphism.

Corollary 2.10.6. For any m ∈ Z, [m]∗ω = mω (because the map is a ring homomorphism). Also, [m] : E → E
(withm 6= 0) is separable if and only if charK - m.

Here’s an example where End(E) is non-commutative:

Example 2.10.7. Take p ≡ 3 (mod 4). Consider E/Fp defined by y2 = x3 − x. Choose i ∈ Fp such that
i2 = −1. We have two homomorphisms

ψ : E → E ϕ : E → E

(x, y) 7→ (xp, yp) (x, y) 7→ (−x, iy).

We claim these two don’t commute. We find:

(ψ ◦ ϕ)(x, y) = (−xp, iyp)
(ϕ ◦ ψ)(x, y) = (−xp, ipyp) = (−xp,−iyp)

because p ≡ 3 (mod 4). Thus ϕ ◦ ψ 6= ψ ◦ ϕ.
Later we’ll see Z[ϕ,ψ] ⊆ End(E) is of finite index. Moreover, End(E) is an order in a quaternion algebra

over Q (i.e., it has basis over Q consisting of 1, i, j, ij with i2 = −1, j2 = −p, and ij = −ji). 4
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2.11 Feb 27, 2020
Let E/K be an elliptic curve and let ω ∈ ΩE be its invariant differential. (Thus, ω is holomorphic and

τ∗Qω = ωQ for Q ∈ E.) Form ∈ Z, we have [m]∗ω = mω. Thus, [m] is separable if and only ifm 6= 0 ∈ K, or
equivalently charK - m.

The short term goal is to describe the torsion groupE[m] and to show that the torsion groupHom(E,E′)
is finitely generated as a group.

Proposition 2.11.1. For any isogeny ϕ : E → E′, there is a unique isogeny ϕ̂ : E′ → E such that ϕ̂ ◦ ϕ = [degϕ].

We call ϕ̂ the dual of ϕ.

Proof. Uniqueness is the easy part: if

ψ ◦ ϕ = [degϕ] = ψ′ ◦ ϕ,

then (ψ − ψ′) ◦ ϕ = 0. Because ϕ is surjective, it follows that ψ = ψ′.
Existence is harder. We proved this already for ϕ separable (Example 2.8.6), where we used that kerϕ ⊆

E[degϕ] = ker[degϕ]. Note that if ϕ ◦ E → E′ and ψ : E′ → E′′ have duals, then so does ψ ◦ ϕ:

ψ̂ ◦ ϕ = ϕ̂ ◦ ψ̂.

This is because

(ψ ◦ ϕ) ◦ (ϕ̂ ◦ ψ̂) = ψ ◦ (ϕ ◦ ϕ̂)︸ ︷︷ ︸
=[degϕ]

◦ψ̂ = [degϕ] ◦ (ψ ◦ ψ̂)︸ ︷︷ ︸
=[degψ]

= [degϕ · degψ] = [deg(ψ ◦ ϕ)].

We saw that any isogeny is the composition of a separable isogeny and a Frobenius. Thus it suffices to show
that the p-th power Frobeniusϕ has a dual. Recall that degϕ = p and that [p] is not separable. Thus [p] = λ◦ϕ
for some isogeny λ. Then λ = ϕ̂.

We sayE andE′ are isogenous if there exists an isogeny between them. This forms an equivalence relation
on elliptic curves; it’s weaker than isomorphism. There’s also a notion of isogenous over K, defined in the
natural way.

If ϕ = 0 then we decree ϕ̂ = 0 and degϕ = 0.

Theorem 2.11.2 (Properties of duals). Let ϕ : E → E′ be a homomorphism.

a) Withm = degϕ, then ϕ̂ ◦ ϕ = [m] on E, and ϕ ◦ ϕ̂ = [m] on E′.

b) For another ψ = E′ → E′′, we have ψ̂ ◦ ϕ = ϕ̂ ◦ ψ̂.

c) For any ψ : E → E′, we have ϕ̂+ ψ = ϕ̂+ ψ̂.

d) Form ∈ Z, [̂m] = [m], and deg[m] = m2.

e) deg ϕ̂ = degϕ.

f) ˆ̂ϕ = ϕ.

Proof. Let’s assume all homomorphisms are nonzero.
To prove item a) we need to show ϕ ◦ ϕ̂ = [m] on E′. Then note that

(ϕ ◦ ϕ̂) ◦ ϕ = ϕ ◦ (ϕ̂ ◦ ϕ) = ϕ ◦ [m] = [m] ◦ ϕ.

Because ϕ is surjective, ϕ ◦ ϕ̂ = [m].
We’ve done item b).
Item c) is legitimately hard. See Silverman for a proof in characteristic 0. We’ll give an idea later.
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To prove item d), first observe [̂0] = [0] and [̂1] = [1], and induction says

̂[m+ 1] = ̂[m] + [1] = [̂m] + [̂1] = [m] + [1] = [m+ 1].

We now have [deg[m]] = [̂m] ◦ [m] = [m] ◦ [m] = [m2]. It follows that deg[m] = m2.
Item e) follows from the fact that ϕ̂◦ϕ = [degϕ], since wemay take degrees to get deg ϕ̂·degϕ = (degϕ)2,

so deg ϕ̂ = degϕ.
Item f) follows from a) and e).

Corollary 2.11.3. Fix an elliptic curve E/K and an integerm ≥ 1.

a) If charK - m, then E[m] ∼= Z/mZ× Z/mZ as a group.

b) If p = charK > 0, then either
E[pn] = {0} for all n ≥ 1

or
E[pn] ∼= Z/pnZ for all n ≥ 1.

Proof. For part a), we use that [m] is separable. Then

#E[m] = # ker[m] = deg[m] = m2.

We have good understanding of the subgroups E[d] ⊆ E[m] for d|n; where E[d] has order d2. Without loss
of generality, suppose m = pn. Then E[pn] ∼= Z/pa1Z × · · · × Z/parZ for 1 ≤ ai ≤ n since everything is
pn-torsion. We know also that a1 + · · ·+ ar = 2n, since #E[pn] = p2n. It follows that E[p] = Z/pZ× Z/pZ,
hence E[pn] = Z/pa1Z× Z/pa2Z for a1, a2 ≤ n and a1 + a2 = 2n. It follows that E[pn] ∼= Z/pnZ× Z/pnZ.

For part b), note that [p] is inseparable of degree p2. Then the separable degree

degs[p] = 1 or p.

If degs[p] = 1, then degs[p
n] = (degs[p])

n = 1, so E[pn] = {0}.
If degs[p] = p, then degs[p

n] = pn, and similar to a), we have E[pn] = Z/pnZ.

Aside 2.11.4. If E/C is an elliptic curve over C, the Riemann surface E(C) has homology

H1(E(C),Z/mZ) = Z/mZ× Z/mZ. 4

Let’s study deg : Hom(E,E′)→ Z.

Corollary 2.11.5. The map
deg : Hom(E,E′)→ Z

is a positive definite quadratic form. We have

• deg([m] ◦ ϕ) = m2 degϕ

• degϕ ≥ 0, and degϕ = 0 if and only if ϕ = 0.

• The map

〈·, ·〉 : Hom(E,E′)×Hom(E,E′)→ Z
(ψ,ϕ) 7→ deg(ϕ+ ψ)− degϕ− degψ

is bilinear.

Proof. For the last part, let us identify Z ⊆ End(E). Then

〈ϕ,ψ〉 = deg(ϕ+ ψ)− degϕ− degψ

= ϕ̂+ ψ ◦ (ϕ+ ψ)− ϕ̂ ◦ ϕ− ψ̂ ◦ ψ̂

= (ϕ̂+ ψ̂) ◦ (ϕ+ ψ)− ϕ̂ ◦ ϕ− ψ̂ ◦ ψ̂

= ϕ̂ ◦ ψ + ψ̂ ◦ ϕ.
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Let’s consider an elliptic curve E/Fq .

Lemma 2.11.6. We have |E(Fq)| = deg(1− ϕ), where ϕ : E → E is the q-th power Frobenius isogeny.

Proof. Note that E(q) = E, so

E(Fq) = {P ∈ E : ϕ(P ) = P} = ker(1− ϕ).

(This is because for a ∈ Fq , we have aq = a if and only if a ∈ Fq .)
We need to show 1− ϕ is separable. This is follows from the computation

(1− ϕ)∗ω = ω + (−ϕ)∗ω = ω 6= 0.

(Note that −ϕ is not separable, so (−ϕ)∗ω = 0.)
Because 1− ϕ is separable, we have

#E(Fq) = # ker(1− ϕ) = deg(1− ϕ).

We obtain
#E(Fq) = deg(1− ϕ) = deg 1 + degϕ+ 〈1,−ϕ〉 = q + 1− 〈1, ϕ〉.

Later, we’ll prove

Theorem 2.11.7 (Hasse). For E/Fq , we have

|#E(Fq)− (q + 1)| ≤ 2
√
q.
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2.12 Mar 3, 2020
[I was out of town. This is once again essentially copied from Arthur Tanjaya’s pristinely latexed notes.

I’m sorry it’s late!]
Last time, we gave properties of duals and described the group E[m]. Today, we are going to show that

Hom(E,E′) is a finitely generated group.
Before proceeding, let’s sketch a proof for K = C. We can view E(C) as a connected, smooth, compact

Riemann surface using the topology of C. As a real manifold, E(C) looks like a torus. Now define

ΛE := H1(E(C),Z),

the first (singular) homology group. By some algebraic topology, ΛE ∼= Z2.
Consider ϕ ∈ Hom(E,E′). This gives a morphism of Riemann surfaces ϕ : E(C)→ E′(C) and therefore

induces a map on homology ϕ∗ : ΛE → ΛE′ . Thus we have a group homomorphism

Hom(E,E′)→ HomZ(ΛE ,ΛE′) ∼= M2(Z) ∼= Z4

ϕ 7→ ϕ∗.

It’s not too hard to show that this homomorphism is injective. Note that since Z is a PID, Hom(E,E′) is a
free abelian group of rank ≤ 4.

Unfortunately, this argument does not work in general because the algebraic topology definitions don’t
work. It’s not clear what H1 should be, for example.

Aside 2.12.1. Suppose we had ΛE ∼= Z2 for any E/K with suitable functoriality (for example, (ϕ ◦ ψ)∗ =
ϕ∗ ◦ ψ∗). Then we have a ring homomorphism

End(E)→ EndZ(ΛE) ∼= M2(Z)

ϕ 7→ ϕ∗.

This gives us a homomorphism of Q-algebras End(E)⊗Q→M2(Q). In characteristic p, End(E)⊗Qmight
be a division algebra of dimension 4 over Q; the map is an isomorphism or Q-algebras, butM2(Q) is not a
division algebra. This is a contradiction. 4

From algebraic topology, we know ΛE = H1(E(C),Z) = π1(E(C))ab (π1 is actually abelian here, but we
won’t know that until later). Takem ≥ 1, so ΛE/mΛE ∼= (Z/mZ)2, which implies that there exists an unram-
ified cover Y → E(C) whose Galois group (group of deck transformations) is isomorphic to ΛE/mΛE (up
to unique isomorphism of Y ). This is a maximal unramified cover with Galois group abelian and exponent
m.

We have a map [m] : E → E which is unramified and has degree deg[m] = m2. Note that E[m] acts on E
by translation, so this satisfies the UMP above and we conclude that

H1(E(C),Z/mZ) ∼= ΛE/mΛE ∼= E[m].

The advantage here is that E[m] has an algebrogeometric definition while H1 involves simplices and loops
and is difficult to study.

Let us go back to a general (perfect) field K. Let E,E′ be elliptic curves over K and take m ≥ 1. Then
consider the map

Hom(E,E′)→ Hom(E[m], E′[m])

ϕ 7→ ϕ|E[m].

Unfortunately we have an issue: Hom(E[m], E′[m]) is finite and so this map need not be injective. In order
to fix this, the idea is to takem larger and larger. By doing that, we hope to recover injectivity.

Fix a prime ` and consider `n with n ≥ 1. The map [`] : E[`n+1]→ E[`n] is a surjective group homomor-
phism.
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Definition 2.12.2. The `-adic Tate module of E is

T`(E) = lim←−
n

E[`n] = {(P1, P2, . . . ) : Pn ∈ E[`n], [`]Pn+1 = Pn for all n ≥ 1}.

4
Assume ` 6= charK. Then E[`n] ∼= (Z/`nZ)× (Z/`nZ), so T`(E) is a free Z`-module of rank 2, where

Z` = lim←−
n

Z/`nZ = {(a1, a2, . . . ) : an ∈ Z/`nZ, ` · an+1 ≡ an (mod `n) for all n ≥ 1}.

Now observe:
• Z` is an integral domain of characteristic 0.

• Z` is a discrete valuation ring, and the nonzero ideals are `nZ` for n ≥ 0.

Definition 2.12.3. We define Q`
def
= Frac(Z`) to be the quotient field of Z`. 4

The valuation v` : Q× → Z is defined by v`(`n ab ) = n, where a, b ∈ Z and ` - a, b. Likewise, the `-adic
absolute value is given by | · |` : Q→ R,

|a|` =

{
`−v`(a) if a 6= 0

0 if a = 0

Alternatively,Q` is the completion ofQwith respect to | · |`. We can extend | · |` toQ` by continuity and then
recover Z` as

Z` = {a ∈ Q` : |a|` ≤ 1}.
Going back, we can view T`(E) as an algebraic version of H1(E,Z`). If ` = charK, then T`(E) is a free
Z`-module of rank 0 or 1. Take any ϕ ∈ Hom(E,E′). The restriction map ϕ : E[`n] → E′[`n] induces a ho-
momorphism of Z`-modules ϕ` : T`(E)→ T`(E

′). This map is given by (P1, P2, . . . ) 7→ (ϕ(P1), ϕ(P2), . . . ).
Define

Hom(E,E′)→ HomZ`
(T`(E), T`(E

′))

ϕ 7→ ϕ`;

this is a group homomorphism. Note that this group homomorphism is injective, since ϕ` = 0 implies
ϕ(E[`n]) = 0 for all n ≥ 1 and hence ϕ = 0. However, we don’t know whether the groups are finitely
generated, so we have to tensor up to get information:
Theorem 2.12.4. For ` 6= charK, the homomorphism

Hom(E,E′)⊗ Z` → HomZ`
(T`(E), T`(E

′))

of Z`-modules is injective.
Corollary 2.12.5. Hom(E,E′) is a finitely generated abelian group of rank at most 4.
Proof. We showed in Observation 2.8.7 that Hom(E,E′) is torsion free and Z` is a PID, so it suffices to show
that Hom(E,E′) ⊗ Z` is free over Z` of rank at most 4. Theorem 2.12.4 shows that Hom(E,E′) ⊗ Z` is
isomorphic to a submodule of

HomZ`
(T`(E), T`(E

′)) ∼= M2(Z`) ∼= Z4
` .

Thus, PIDness of Z` implies that Hom(E,E′)⊗ Z` is a free Z`-module of rank at most 4.

Next time, we’ll prove Theorem 2.12.4.
Note that T`(E) has a natural action of GalK = Gal(K/K). Since GalK

�

E[`n] implies GalK

�

T`(E) by
σ(P1, P2, . . . ) = (σP1, σP2, . . . ), if ϕ ∈ HomK(E,E′), then ϕ` will be compatible with the GalK-actions:

HomK(E,E′) ↪→ HomZ`[GalK ](T`(E), T`(E
′)).ϕ 7→ ϕ`

(Silverman uses the notation HomK(T`(E), T`(E
′)) for the group HomZ`[GalK ](T`(E), T`(E

′)).)
Theorem 2.12.6. The map HomK(E,E′) ⊗ Z` ↪→ HomK(T`E, T`E

′) is an isomorphism when K is finite (Tate,
1966) or whenK is a number field (Faltings, 1983).
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2.13 Mar 5, 2020
LetE/K be an elliptic curve and choose a prime ` 6= charK. We have surjective group homomorphisms

· · · → E[`n]
[`]−→ . . .

[`]−→ E[`3]
[`]−→ E[`]2

[`]−→ E[`].

The `-adic Tate module is T`E
def
= lim←−nE[`n]; it is a free Z`-module of rank 2. (Recall that Z` = lim←−n Z/`

nZ.)
Note that

• Z` is a discrete valuation ring of characteristic zero.

• Every element is of the form a0 + a1`+ a2`
2 + . . . for unique an ∈ {0, 1, . . . , `− 1}.

For each ϕ ∈ Hom(E,E′), we have a Z`-module homomorphism

ϕ` : T`E → T`E
′

and thus a homomorphism of Z`-modules

Hom(E,E′)⊗ Z` → HomZ`
(T`E, T`E

′) (♦)
ϕ 7→ ϕ`

Today we’ll prove

Theorem 2.13.1 (cf. Theorem 2.12.4). The map (♦) is injective.

We used this last time to show that Hom(E,E′) is a free abelian group of rank at most 4.

Proof of Theorem 2.13.1. LetM be a finitely generated subgroup of Hom(E,E′). Define

Mdiv = {ϕ ∈ Hom(E,E′) : [m]ϕ ∈M for some n ≥ 1}.

Claim 2.13.2. The groupMdiv is finitely generated.

Proof. To see this, note thatM ⊗ R is a finite dimensional vector space over R; we can extend deg : M → Z
to a continuous functionM ⊗ R→ R. This is because

degϕ = 2〈ϕ,ϕ〉,

where 〈ϕ,ψ〉 = ϕ̂ ◦ψ+ ψ̂ ◦ϕ is the bilinear pairing from Corollary 2.11.5. Using the fact that 〈·, ·〉 is bilinear,
we may extend to a bilinear pairing onM ⊗ R.

Note thatMdiv ⊆M ⊗ R, and for ϕ ∈Mdiv \ {0}we have degϕ ≥ 1. Thus

U = {ϕ ∈M ⊗ R : degϕ < 1}

is open and U ∩Mdiv = {0}. We find that Mdiv is a discrete subgroup of M ⊗ Rd. It follows that Mdiv is
finitely generated. (This is because the image ofMdiv in (M ⊗R)/M is discrete, and the quotient is compact;
nowMdiv is finite index inM .)

Let’s continue proving Theorem 2.13.1. We have ϕ ∈ M ⊗ Z` withM ⊆ Hom(E,E′) finitely generated.
By Claim 2.13.2, we may assume thatMdiv = M .

Now let ψ1, . . . , ψr be a basis ofM as a Z-module; this is also a basis ofM ⊗Z` over Z`. Pick ϕ, say with

ϕ =

r∑
i=1

αiψi (αi ∈ Z`)

so that

0 = ϕ` =

r∑
i=1

αi(ψi)`.
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Choose n ≥ 1 and take ai ∈ Z with αi ≡ ai (mod `n) for all 1 ≤ i ≤ r and define

ψ =

r∑
i=1

aiψi ∈M.

Because

ψ` = ψ` − ϕ` =

r∑
i=1

(ai − αi)(ψi)`,

where ai − αi ∈ `nZ`. Thus we have obtained ψ ∈M ⊆ Hom(E,E′) such that ψ(E[`n]) = 0. It follows that
ker[`n] ⊆ kerψ and [`n] is separable (since ` 6= charK). It follows that

ψ = [`n] ◦ λ for some λ ∈ Hom(E,E′).

In group theory notation we have ψ = `n · λ. They key observation is that sinceM = Mdiv and ψ ∈ M , we
have λ ∈M as well. It follows that `n|ai for all i, and

λ =

r∑
i=1

ai
`n
ψi,

and
αi ≡ 0 (mod `n) for all 1 ≤ i ≤ r,

i.e. αi ∈ `nZ`. Since n is arbitrary, it follows that αi = 0 for every 1 ≤ i ≤ r.

Definition 2.13.3. Denote by
V`E

def
= T`E ⊗Z`

Q`
is a Q` vector space of dimension 2. 4

Note that we have actions GalK
�

E[`n], T`E, V`E respecting the group structure. In particular, we obtain
a representation

ρE,` : GalK → AutQ`
(V`E) ∼= GL2(Q`).

Theorem 2.13.4. Suppose K is a number field or a finite field and fix a prime ` 6= charK. Then E and E′ are
K-isogenous if and only if ρE,` and ρE′,` are isomorphic.

Proof. The easier direction is the forwards one. Suppose there is a K-isogeny ϕ : E → E′. We obtain a
homomorphism of Q` vector spaces ϕ` : V`E → V`E

′ respecting the GalK actions. The map ϕ` has inverse
1

degϕ (ϕ̂)`, so ϕ` is an isomorphism V`E ∼= V`E
′.

The harder direction is the backwards one. We have

HomK(E,E′)⊗Qp ↪→ HomQ`[GalK ](V`E, V`E
′)

and Faltings/Tate tells us it’s surjective. Modulo this detail, the assumption HomQ`[GalK ](V`E, V`E
′) 6= 0

implies HomK(E,E′) 6= 0.

Recall that our goal was to describe the ring End(E). We know:

• End(E) has no zerodivisors

• End(E) has characteristic 0. We can view Z ⊆ End(E).

Thus given any ϕ ∈ End(E), we may consider the integral domain Z[ϕ] of characteristic zero. We can
consider its fraction field Q(ϕ). Note that ϕ̂ ∈ Q(ϕ), beacuse ϕ̂ ◦ ϕ = degϕ ∈ Z[ϕ]. We may define

Pϕ(x) = (x− ϕ)(x− ϕ̂) ∈ Q(ϕ)[x].

Note that Pϕ(ϕ) = 0. We claim that Pϕ(x) ∈ Z[x] is monic of degree 2. This would implies that [Q(ϕ) : Q] ≤
2. To see this, note that

Pϕ(x) = x2 − (ϕ+ ϕ̂)x+ ϕ · ϕ̂.
Then ϕ · ϕ̂ = degϕ ∈ Z, and ϕ+ ϕ̂ = 〈1, ϕ〉 = deg(1 + ϕ)− deg 1− degϕ ∈ Z.
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Proposition 2.13.5. We have discPϕ ≤ 0, i.e. (ϕ+ ϕ̂)2 ≤ 4 degϕ.

Proof. Takem ∈ Z and n ≥ 1. Then

deg(m− nϕ) = (m− nϕ) ̂(m− nϕ) = (m− nϕ)(m− nϕ̂) = m2 + (ϕ+ ϕ̂)mn+ n2ϕϕ̂ = n2Pϕ(m/n).

Because 0 ≤ deg(m− nϕ), we obtain

Pϕ(α) ≥ 0 for all α ∈ Q,

hence for all α ∈ R. It follows that discPϕ ≤ 0.

Corollary 2.13.6. Either Q(ϕ) is Q or it is an imaginary quadratic extension of Q.

Theorem 2.13.7 (Hasse, cf. Theorem 2.11.7). For an elliptic curve E/Fq over a finite field,∣∣|E(Fq)| − (q + 1)
∣∣ ≤ 2

√
q.

Proof. Let ϕ ∈ End(E) be the q-th power Frobenius. We saw in Lemma 2.11.6 that

|E(Fq)| = | ker(1− ϕ)| = deg(1− ϕ)

and in particular
|E(Fq)| = deg(1− ϕ) = Pϕ(1) = 1− (ϕ+ ϕ̂) + degϕ

so ∣∣|E(Fq)| − (q + 1)
∣∣ = |ϕ+ ϕ̂| ≤ 2

√
degϕ = 2

√
q,

with the inequality from Proposition 2.13.5.
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2.14 Mar 10, 2020
Last time, for ϕ ∈ End(E) we defined Pϕ(x) = (x− ϕ)(x− ϕ̂) ∈ Q(ϕ)[x] and observed that

Pϕ(x) = x2 − (ϕ+ ϕ̂)x+ degϕ ∈ Z[x]

with Pϕ(ϕ) = 0. We showed that as a quadratic polynomial, discPϕ ≤ 0.
Note that the ring L = End(E)⊗Q is a division algebra.

Proposition 2.14.1. If End(E) is commutative, then L is either Q or an imaginary quadratic extension of Q.

Note that in characteristic 0, we’ve shown that End(E) is commutative in Corollary 2.10.5.

Proof. Note that L is a field and is a finite extension of Q. Also dimQ L = rankZEnd(E) ≤ 4. The L = Q(ϕ)
for someϕ ∈ End(E) by the primitive element theorem. But then it satisfies the degree 2 polynomial relation
Pϕ(ϕ) = 0. Then either L = Q or L/Q is degree 2 and imaginary.

The ring End(E) is an order in L, i.e. a subring that is a finitely generated Z-module that spans L over Q.

Example 2.14.2.

• Let L be a number field, i.e. a finite dimensional field extension of Q. Let OL be the integral closure
of Z in L, called the ring of integers of L. That OL is an order in L, in fact the maximal order in L (so
every orders R of L are precisely the subrings of maximal index inOL), is an important theorem from
a basic course in algebraic number theory. [See for example Lemma 2.38 in Mehrle’s 6370 notes.]

• If L = Q, then OL = Z.

• If L = Q(
√
d) with d ∈ Z \ {1} squarefree, then the maximal order of L is

OL =

{
Z[
√
d] if d 6≡ 1 (mod 4)

Z
[

1+
√
d

2

]
if d ≡ 1 (mod 4)

The orders of L areR = Z+f ·OL where f ≥ 1 is an integer. Moreover, [OL : R] = f . [See for example
Example 2.48 in Mehrle’s 6370 notes.] We’ll show later that all such orders arise as End(E) for some
E. 4

Example 2.14.3. Let E/Q : y2 = x3 + 1. We have an endomorphism

ϕ : E
∼−→ E

(x, y) 7→ (ζx, y)

for ζ ∈ Q a third root of unity. We have a ring homomorphism

Z[ζ] 7→ End(E)

ζ 7→ ϕ.

In fact, Z[ζ]
∼−→ End(E). This is because Z[ζ] is the ring of integers of Q(ζ) = Q(

√
−3). 4

Fact 2.14.4 (Random fact). LetK be a quadratic imaginary field. There is an elliptic curveE/Q with endomorphism
ring End(E) ∼= OK if and only if OK is a PID. [Related: Stark-Heegner Theorem]

For ϕ ∈ End(E) and a prime ` 6= charK, we defined ϕ` ∈ EndZ`
(T`E). This gives an injective ring

homomorphism

End(E)⊗ Z` ↪→ EndZ`
(T`E) ∼= M2(Z`) (?)

ϕ 7→ ϕ`.
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Theorem 2.14.5. For ϕ ∈ End(E) and ` 6= charK, then

det(xI − ϕ`) = Pϕ(x).

In particular, the coefficients of det(xI − ϕ`) are in Z and independent of `.

Proof. Let f(x) = deg(xI − ϕ`) ∈ Q`[x]. Cayley-Hamilton says that f(ϕ`) = 0, so it has the same factors as
the minimal polynomial of ϕ`. Note that Pϕ(ϕ`) = 0, by the ring homomorphism (?). We have two cases:

• If f(x) is the minimal polynomial, then f = Pϕ.

• If the minimal polynomial is degree 1, then ϕ` ∈ Z` · I is a scalar matrix. By the injectivity in (?), the
subgroup 〈ϕ, 1〉 ⊆ End(E) is free of rank 1, so ϕ ∈ Z. It’s easy to check that Pϕ(x) = (x− ϕ)(x− ϕ̂) =
(x− ϕ)2.

Now suppose End(E) is non-commutative with E/K and p = charK > 0. Recall that for ` 6= p, we have

L⊗Q` = End(E)⊗Q` ↪→M2(Q`),

where L = End(E)⊗Q.
Let’s describe L. (See Silverman for a more elementary approach.) Let F be the center of L. Then F is a

field. We have

Fact 2.14.6. If L is a division algebra of finite dimension over its center F , then L⊗F F ∼= Md(F ) for a unique d ≥ 1.
In particular, dimF L = d2.

In our case,
dimQ L = [F : Q] dimF L = [F : Q]d2.

On the other hand, dimQ L ≤ 4, and d > 1 since L is non-commutative by assumption. It follows that F = Q
and dimQ L = 4. In particular, for ` 6= pwe get isomorphisms

L⊗Q`
∼−→M2(Q`). (2)

In particular, rankZEnd(E) = 4.
Let v be a place of Q (i.e. v =∞ or v = ` a prime). Define

Qv =

{
R if v =∞
Q` if v = `

We say L is split at v if
L⊗Q Qv ∼= M2(Qv).

Fact 2.14.7 (A little class field theory). Let L be a division algebra with center Q and dimQ L = 4. Define the set

S
def
= {v : v a place of Q such that L is not split}.

Then the set S is finite, nonempty, and has even cardinality, and S determines L up to isomorphism.

In our setting, S ⊆ {∞, p}, by Equation (2). Then S = {∞, p} because it’s nonempty and has even
cardinality. It follows that L is uniquely determined, in particular L depends only on p. (It turns out that at
∞, we have L⊗Q R ∼= H, the real quaternion ring.)

It follows that L has Q-basis 1, i, j, and ij, where i2 = −1, j2 = −p, and ij = −ji. (One can check that
this ring works, and uniqueness of L gives the desired claim.)

When p = charK > 0, the ring End(E) could be commutative or not. Can we distinguish the cases?
Recall that either E[pn] = Z/pnZ for all n ≥ 1 (we say “E is ordinary”), or E[pn] = {0} for all n ≥ 1 (we

say “E is supersingular”). Next time we’ll discuss:

Theorem 2.14.8.

(i) End(E) is commutative if and only if E is ordinary

(ii) If E is supersingular, then j(E) ∈ Fp2 . In particular, there are only finitely many supersingular elliptic curves
up to isomorphism overK.
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2.15 Mar 12, 2020
Let E/K be an elliptic curve. The ring L = End(E)×Q is a division algebra with order End(E). We’ve

seen (Proposition 2.14.1) that if End(E) is commutative, then L is Q or an imaginary quadratic field. If
End(E) is non-commutative, then p = charK > 0 and L has Q-basis 1, i, j, ij where i2 = −1, j2 = −p, and
ij = −ji.

Recall that E is ordinary if and only if E[pn] ∼= Z/pnZ for all n ≥ 1 and is supersingular if and only if
E[pn] = {0} for all n ≥ 1. Last time we stated

Theorem 2.15.1 (cf. Theorem 2.14.8).

(i) End(E) is commutative if and only if E is ordinary

(ii) If E is supersingular, then j(E) ∈ Fp2 .

Proof. First assume that E is ordinary. Then TpE ∼= Zp. As before we have a ring homomorphism

End(E)→ EndZp
(TpE) = Zp

ϕ 7→ ϕp.

If ϕp then ϕ(E[pn]) = 0 for all n ≥ 1, so ϕ = 0. It follows that End(E) is isomorphic to a subring of Zp and
hence commutative.

Now assume E is supersingular. In this case, the multiplication-by-pmap [p] : E → E is purely insepa-
rable. SinceK is perfect,

[p] = λ ◦ ϕ

where ϕ : E → E(q) is the q-th power Frobenius and λ : E(q) → E is separable. Then

q = degϕ = degi[p] = deg[p] = p2

deg λ = degs[p] = 1,

so λ is an isomorphism. It follows that overK

E ∼= E(q) hence j(E) = j(E(q)) = j(E)q.

It follows that j(E) ∈ Fq = Fp2 .
It’s left to explain why End(E) is noncommutative.

Claim 2.15.2. If E′/K is isogenous to E, then it is also supersingular and L ∼= End(E′)⊗Q.

Proof of Claim 2.15.2. Let ϕ : E′ → E be an isogeny. Then

End(E)⊗Q ∼−→ End(E′)⊗Q
ψ 7→ ϕ−1 ◦ ψ ◦ ϕ,

where ϕ−1 = 1
degϕ ϕ̂. If E

′ is ordinary, then

ϕ(E′[pn]) ⊆ E

gives a nontrivial p-group for large n. This is impossible, since E[pn] = 0.

Let’s continue proving Theorem 2.15.1.
Suppose, for the sake of contradiction, that End(E) is commutative. From algebraic number theory, we

have

Fact 2.15.3 (Chebotarev density; see Sec 6.5 in Mehrle’s 6370 notes). There are infinitely many primes ` such that
`OL is a prime ideal in OL.
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(It’s easy if L = Q, and if L = Q(
√
d), this is the same as saying that there are infinitely many ` such that

d is not a square mod `.)
Take ` 6= p so that `OL is a prime ideal and ` - [OL : End(E′)] when E′ is isogenous to E. (There are only

finitely many E′ up to isomorphism, since j(E′) ∈ Fp2 .)
Since ` 6= p, we have

A1 ⊆ A2 ⊆ A3 ⊆ · · · ⊆ E

with Ai ∼= Z/`iZ. We have quotients Ei = E/Ai (with homomorphisms E → Ei with kernel Ai).

Claim2.15.4. AmongE1, E2E3, . . . , there are only finitely curves up to isomorphism. (This follows fromClaim 2.15.2
and part (ii) of the theorem.)

So there are m,n ≥ 1 so that Em ∼= Em+n. By Claim 2.15.2, we may assume without loss of generality
that E ∼= Em ∼= Em+n. So there is an isogeny ϕ : E → E with kernel Z/`nZ. Note that kerϕ ⊆ E[`n], so

[`n] = λ ◦ ϕ for some λ ∈ End(E).

In End(E), we have `n = λϕ. Recall that `OL is a prime ideal; since ` is prime in End(E), we have `|λ or `|ϕ.
But the latter doesn’t happen since otherwise the cyclic group kerϕ contains the non-cyclic group E[`] as a
subgroup.

So
`n−1 = λ′ ◦ ϕ

for some λ′ ∈ End(E). Repeat the argument: we obtain 1 = λ′′ ◦ ϕ with λ′′ ∈ End(E). So ϕ is an isomor-
phism; this contradicts the fact that ϕ has kernel Z/`nZ.

We can describe the supersingular elliptic curves over Fp:

• If p = 2, there is only one up to isomorphism: y2 + y = x3.

• For p ≥ 3, define the polynomial

Hp(t) =

p−1
2∑
i=0

(p−1
2

i

)2

· ti ∈ Fp[t].

Then

Fact 2.15.5 (SilvermanV, §4). TakeE/Fp : y2 = x(x−1)(x−λ)with λ ∈ Fp\{0, 1}. ThenE is supersingular
if and only if Hp(λ) = 0.

Moreover, Hp is separable, so the number of supersingular elliptic curves over Fp up to isomorphism
is approximately p−1

12 . (This is because degHp = p−1
2 and usually E arises from 6 λ’s.)

In fact, we have a “mass formula”, which says∑
E/Fp,

s.s., up to iso

1

|Aut(E)|
=
p− 1

24
.

Aside 2.15.6. Some final remarks on End(E):

• If charK = p > 0, then
End(E) = Z ⇐⇒ j(E) 6∈ Fp.

• If E is supersingular, then End(E) is a maximal order in End(E)⊗Q. 4
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3 Elliptic Curves over Fields of Interest

3.15 Mar 12, 2020 (Finite fields)
Let E/Fq . We are interested in the points E(Fq).
Let ϕ be the q-th power Frobenius endomorphism of E, and define

Pϕ(x) = (x− ϕ)(x− ϕ̂) = x2 − (ϕ+ ϕ̂)x+ degϕ ∈ Z[x].

Define a = ϕ+ ϕ̂, which we call the trace of Frobenius; it’s the trace of the action of ϕ` on T`E.
We showed that

|E(Fq)| = deg(1− ϕ) = Pϕ(1) = 1− a+ q.

We had seen (Theorem 2.13.7) that |a| ≤ 2
√
q.

Aside 3.15.1. Suppose q is odd and E/Fq : y2 = f(x) with f(x) ∈ Fq[x] cubic and separable. We have a
homomorphism

χ : F×q → {±1}

with kernel (F×q )2. We can extend χ(0) = 0.
Then

|E(Fq)| = 1 +
∑
x∈Fq

(χ(f(x)) + 1),

because the first 1 is the point at infinity, and χ(f(x)) + 1 is #{y ∈ Fq with y2 = f(x)}. So

|E(Fq)| = q + 1 +
∑
x∈Fq

χ(f(x))

︸ ︷︷ ︸
−a

,

so Hasse really says ∣∣∣ ∑
x∈Fq

χ(f(x))
∣∣∣ ≤ 2

√
q.

We’re summing up q integers which are usually equally equal to ±1, but the absolute value of the sum is
small. So there’s lots of cancellation!

For comparison, consider random variables (specifically, fair coin flips) ε1, . . . , εn ∈ {±1}. Then

E
(∣∣∣ n∑

i=1

εi

∣∣∣) ∼√ 2

π
·
√
n

as n→∞. So Hasse is telling us χ : F×q → {±1} acts “randomly”.
These character sums show up a lot in number theory. 4

Consider a nice variety V over Fq . The zeta function of V is

Z(V, T ) = exp
( ∞∑
n=1

|V (Fqn)| · T
n

n

)
∈ QJT K.

Fact 3.15.2 (One of the threeWeil conjectures). Actually, Z(V, T ) ∈ Q(T ). (So Z(V, T ) can be captured in a finite
amount of information.)

This is due to Weil for curves; Dwork (1960) first proved this with p-adic functional analysis and later
Grothendieck proved this with étale cohomology.

Theorem 3.15.3. For an elliptic curve E/Fq ,

Z(E, T ) =
1− aT + qT 2

(1− T )(1− qT )
.
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Thus if you know |E(Fq)|, you can find a, and then compute any |E(Fqn)|.

Proof. Let ϕn be the qn-th power Frobenius of E. Then

|E(Fqn)| = deg(1− ϕn) = (1− ϕn) ̂(1− ϕn) = 1− ϕn − ϕ̂n + qn.

So
∞∑
n=1

|E(Fqn)| =
∞∑
n=1

Tn

n
−
∞∑
n=1

ϕn
Tn

n
−
∞∑
n=1

ϕ̂n
Tn

n
+

∞∑
n=1

qn
Tn

n

= − log(1− T ) + log(1− ϕT ) + log(1− ϕ̂T )− log(1− qT )

= log
( (1− ϕT )(1− ϕ̂T )

(1− T )(1− qT )

)
,

and exponentiating both sides gives

Z(E, T ) =
(1− ϕT )(1− ϕ̂T )

(1− T )(1− qT )

=
1− aT + qT 2

(1− T )(1− qT )
.
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3.16 April 7, 2020 (Finite fields)
Today we’ll continue talking about elliptic curves over finite fields. LetE be an elliptic curve over a finite

field Fq . The group E(Fq) is finite with cardinality

#E(Fq) = q + 1− aE .

The integer aE is the trace of Frobenius of E. Recall that

|aE | ≤ 2
√
q.

(This is Hasse’s bound, see Theorem 2.13.7.) Fix a prime ` 6= p. We have a free Z`-module of rank 2 defined
by

T`E := lim←−
n

E[`n]

and a vector space over Q` of dimension 2 defined by

V` := T`E ⊗Z`
Q`.

Note that GalFq and End(E) both act on V`E. Denote by ϕ ∈ End(E) the q-th power Frobenius. We saw that
the characteristic polynomial of ϕ is given by x2 − aEx+ q, i.e.

tr(ϕ`|V`E) = aE

det(ϕ`|V`E) = q.

Note that ϕ` ∈ Aut(V`E) ∼= GL2(Q`) is semisimple (i.e. diagonalizable over Q`).
Observe that representation GalFq

�
V`E is determined up to isomorphism by aE (given ` and q): this is

becauseGalFq
is topologically generated by Frobq : x 7→ xq , and Frobq acts on V`E asϕ`, andϕ` is determined

up to conjugation by aE (and q).
As an example of the power of this observation, we have:

Theorem 3.16.1. For E, E′ over Fq , E and E′ are isogenous over Fq if and only if aE = aE′ (or, equivalently, if and
only if #E(Fq) = #E′(Fq)).

Proof. The forwards direction follows from the fact that an isogeny f : E → E′ is an isogeny over Fq induces
a homomorphism f` : V`E → V`E

′ of Q`[GalFq ]-modules which is an isomorphism because ker f is finite.
The isomorphism V`E ∼= V`E

′ implies

aE = tr(Frobq|V`E) = tr(Frobq|V`E′) = aE′ .

Let’s now prove the backwards direction. Suppose aE = aE′ , so V`E ∼= V`E
′ are isomorphic representations

of GalFq . In particular,
HomQ`[GalFq ](V`E, V`E

′) 6= 0.

Tate (Theorem 2.12.6) says

HomQ`[GalFq ](V`E, V`E
′) = HomFq (E,E′)⊗Q`,

and this implies HomFq (E,E′) 6= 0.

Recall that

E is

{
supersingular if E[pn] = {0} for all n ≥ 1

ordinary if E[pn] ∼= Z/pnZ for all n ≥ 1

We showed that E is ordinary if and only if EndE is commutative (Theorem 2.15.1).

Proposition 3.16.2. E is ordinary if and only if p - aE .
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Proof. Let ϕ : E → E be the q-th power Frobenius. We have ϕ̂ ∈ EndE, and aE = ϕ + ϕ̂ ∈ End(E), and
q = ϕ · ϕ̂ = ϕ̂ · ϕ. Also,

#E[q] = degs[q] = degs ϕ · ϕ̂ = degs ϕ̂,

because degs ϕ = 1. Since #E[q] is equal to 1 or q, degs ϕ̂ is also equal to 1 or q. Note that

E is ordinary ⇐⇒ ϕ̂ is separable
⇐⇒ [ae] is separable
⇐⇒ p - aE .

(The second equivalence is due to the fact that for ω the invariant differential,

ϕ̂∗ω = (aE − ϕ)∗ω

= a∗Eω − ϕ∗ω
= a∗Eω,

because ϕ is not separable.

Which aE occur? Well, there is an injective map

{E/Fq up to isogeny over Fq} ↪→ {a ∈ Z : |aE | ≤ 2
√
q}

sendingE to aE . The image can be described; it’s surjective if q = p. The image contains all a such that p - a.
How does one compute aE? One way is to count E(Fq). Unfortunately, this is not always practical; for

example in cryptography q ∼= 2256 is typical.
In 1985, Schoof developed an algorithm to compute aE that is polynomial time in log q (see [Silverman,

XI.3]).
Let’s sketch an algorithm. Assume p 6= 2, 3 and pick E/Fq : y2 = x3 + ax+ b for a, b ∈ Fq . The idea is to

compute aE (mod `) for many small primes `.
If we know ae (mod `i) with 1 ≤ i ≤ r, the Chinese remainder theorem gives us ae (mod

∏
`i). Now if∏r

i=1 `i > 4
√
q, the number aE mod

∏
`i determines aE , because the Hasse bound says |aE | ≤ 2

√
q.

This is very efficient: for q ≤ 2256, we have
∏
`≤103 ` > 4

√
q.

So the question is how to compute aE (mod `). Let’s assume ` - 2p. For (x, y) ∈ E \ {0}, note that

(xq
2

, yq
2

)− [aE ](xq, yq) + [q](x, y) = 0. (3)

(This is because ϕ2 − aEϕ+ q = 0.)
To compute aE (mod `), we need only show that Equation (3) holds for all P ∈ E[`] \ {0}.

Fact 3.16.3. There is a division polynomial ψ`(x) ∈ Fq[x] of degree (`2 − 1)/2 such that for any (x, y) ∈ E \ {0},
we have

(x, y) ∈ E[`] ⇐⇒ ψ`(x) = 0.

The polynomial ψ` can be computed recursively (see [Silverman, Ex. 3.7]).
For example, ψ3(x) = 3x4 + 6ax2 + 12bx− a2.

Consider the ring
R = Fq[x, y]/〈ψ`(x), y2 − (x3 + ax+ b)〉

and note that HomFq (R,Fq)↔ E[`] \ {0}. (Actually, SpecR = E[`] \ {0}.)
Any element inR is of the form f(x)+yg(x), where f(x), g(x) ∈ Fq(x) and deg f, deg g < `2−1

2 . It follows
that dimF`

R = `2 − 1.
We can compute (xq

2

, yq
2

) and (xq, yq) in R, and we can compute [q](x, y) in R even when q is large,
because it depends only on q (mod `). (We may use the group law of E; the denominators that arise will be
units inR.)

If (xq
2

, yq
2

) = [−q](x, y) in R, then aE ≡ 0 (mod `). Otherwise, aE 6≡ 0 (mod `) and [aE ](xq, yq) =

(xq
2

, yq
2

) + [q](x, y). We can now find aE (mod `) by just checking the `− 1 possibilities.
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More on Zeta functions
We begin with some topology. Let f : M → M be a continuous map withM a compact real manifold.

Define the Lefschetz number
Λf :=

∑
i≥0

(−1)i tr(f∗|Hi(M,Q)).

The Lefschetz fixed point theorem says that if Λf 6= 0, then f has a fixed point. Moreover, if f has finitely
many fixed points, then Λf is the number of fixed points of f , counted with a suitable multiplicity.

Now consider a nice variety V/Fq of dimension d, and let ϕ : V → V be the q-th power Frobenius. The
fixed points are V (Fq).

Fix ` - q. Grothendieck and Artin showed that there are “étale cohomology groups” Hi
ét(V,Q`) which

are finite dimensional vector spaces over Q`, such that

#V (Fq) =

2d∑
i=0

(−1)i tr(ϕ∗|Hi
ét(V,Q`))

and

#V (Fqn) =
2d∑
i=0

(−1)i tr((ϕ∗)n|Hi
ét(V,Q`)).

Exercise : Denote by

Z(V, T ) := exp
( ∞∑
n=1

#V (Fqn)
Tn

n

)
∈ QJT K.

Then
Z(V, T ) =

P1(T )P3(T ) . . . P2d−1(T )

P0(T )P2(T ) . . . P2d(T )
,

where
Pi(T ) = det(I − T · ϕ∗|Hi

ét(V,Q`)).

Deligne showed that the eigenvalues of ϕ∗ � Hi
ét(V,Q`) under any Q` ↪→ C all have absolute value qi/2.

With this result,
Exercise : Show Pi(T ) ∈ Z[T ].
Let’s consider the case of a nice curve C/Fq of genus g. We have

H0
ét(C,Q`) ∼= Q` ϕ∗ acts trivially

H1
ét(C,Q`) dimQ`

= 2g

H2
ét(C,Q`) ∼= Q` ϕ∗ acts by multiplication by q

It follows that
#C(Fq) = 1− tr(ϕ∗|H1

ét(C,Q`)) + q,

where the middle term consists of 2g eigenvalues with absolute value q1/2. It follows that

|#C(Fq)− (q + 1)| ≤ 2g
√
q.

Exercise : If C has genus 1, then C(Fq) 6= ∅.
It turns out that H1

ét(E,Q`) is “dual” in some sense to V`E. (Specifically, V`E is a homological object.)
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3.17 Apr 9, 2020 (Complex numbers)
Fix an ellptic curveE overC. We already knowa lot sinceC is algebraically closed. We also have topology

and analysis:
Ean def

= E(C)

which is a connected compact Riemann surface (i.e. a complex manifold of dimension 1). Since E has an
algebraic group law, Ean is a complex Lie group of dimension 1. (A complex Lie group is one where the
group operations are holomorphic.)

More generally, we have an equivalence of categories

{nice curves over C + morphisms} → {connected compact Riemann surfaces + holomorphic maps}
C 7→ Can.

Theorems of this flavour are often called “GAGA” (after a paper of Serre). As an example of a GAGA-
type result, the morphisms C → P1

C that are not constant equal to ∞ can be identified with the field of
meromorphic functions onCan. For P ∈ C and f ∈ C(C), the number ordP (f) is also the order of vanishing
of f at P in the sense of complex analysis.

We also have an agreement on differentials, and in particular C and Can have the same genus.
Now consider a lattice Λ ⊆ C, which is a discrete subgroup of rank 2, as below:

Now C/Λ is a connected compact Riemann surface of genus 1. It’s also a Lie group, using addition from
C.

Consider lattices Λ,Λ′ of C. GIven α ∈ C satisfying αΛ ⊆ Λ′, multiplication by α gives a holomorphic
map

C/Λ→ C/Λ′

z + Λ 7→ αz + Λ′.

Conversely, we have

Lemma 3.17.1. Let f : C/Λ→ C/Λ′ be holomorphic and f(0) = 0. Then f arises from α as above. In particular, f
is a homomorphism of groups.

Proof. We have covering maps C� C/Λ and C� C/Λ′, and since C is simply connected there exists a lift,
i.e. a unique map F : C→ C such that F (0) = 0 and the diagram

C C

C/Λ C/Λ′

F

f

commutes. Note that F is holomorphic.
Thus for anyw ∈ Λ, we have F (z+w)−F (z) ∈ Λ′, so F (z+w)−F (z) is constant. Thus F ′(z+w) = F ′(z)

for all w ∈ Ω. So F ′ : C → C is holomorphic and bounded, which means F ′(z) = α ∈ C. It follows that
F (z) = αz, since F (0) = 0.
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Thus we see that
Hom(C/Λ,C/Λ′) = {α ∈ C : αΛ ⊆ Λ′}.

(The left side consists of homomorphisms of complex Lie groups, or equivalently of holomorphic maps
sending 0 to 0.)

In particular, C/Λ ∼= C/Λ′ if and only if Λ′ = αΛ for some α ∈ C×.

Theorem 3.17.2. For an elliptic curve E/C, there is a lattice Λ ⊆ C such that Ean ∼= C/Λ as complex Lie groups.

Proof ideas. • Lie theory: consider the Lie group G = Ean and let g be the Lie algebra of G. It’s the
tangent space of G at 0, with pairing. We have a holomorphic map exp: g→ G = Ean (for v ∈ g, there
exists a unique homomorphism of Lie groups γv : C → G such that γv(0) = 0 and (dγv)0 : C → g is
t 7→ tv. Then exp(v) = γv(1).).
The map exp satisfies many nice properties: d(exp)0 = idg, so exp is locally a homeomorphism near 0.
Also, exp is a homomorphism of groups, so Λ = ker(exp) ⊆ g ∼= C is discrete. Finally, exp is surjective,
since the image is open and G is compact. It follows that exp gives an isomorphism g/Λ

∼−→ Ean.

• Alternatively, let V = {holomorphic differentials on E} ∼= C. We get an injection

H1(Ean,Z) ↪→ V ∗

γ 7→ (ω 7→
∫
γ

ω).

Let Λ be the image of H1 under this injection. We get a map

Ean → V ∗/Λ

P 7→ (ω 7→
∫ P

0

ω + Λ)

that turns out to be an isomorphism of Lie groups.

Remark 3.17.3. For a nice curve C/C of genus g, let X → Can be the universal cover (X is also a Riemann
surface). The universal cover X depends on g according to the following table:

g 0 1 ≥ 2
X P1(C) C H,

χ = 2− 2g > 0 0 < 0

where H is the complex upper half plane. 4

Let’s now explicitly construct an elliptic curve given a lattice Λ. By Riemann-Roch, we showed that there
are x, y ∈ C(Λ) such that div(x) + 2(0) ≥ 0, ord0 x = −2, div(y) + 3(0) ≥ 0, and ord0 y = −3. Also,
C(Λ) = C(x, y), with x and y satisfying a Weierstrass relation.

We will explicitly construct x and y. The Weierstrass ℘-function (relative to Λ) is

℘(z) = ℘(z; Λ) =
1

z2
+
∑
w∈Λ
w 6=0

( 1

(z − w)2
− 1

w2

)
.

Claim 3.17.4. The function ℘(z) is holomorphic on C \ Λ.

Proof idea. We need to check absolute and uniform convergence on compact subsets of C \ Λ. The key is to
observe ∣∣∣ 1

(z − w)2
− 1

w2

∣∣∣ ≤ 10

|w|3
|z| if |w| > 2|z|,

noting that ∑
w∈Λ
w 6=0

1

|w|k
converges for k ≥ 3.
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More generally, define

G2k(Λ)
def
=
∑
w∈Λ
w 6=0

1

w2k
∈ C for k ≥ 2.

Exercise : Near 0, we have

℘(z) =
1

z2
+

∞∑
k=1

(2k + 1)G2k+2(Λ)z2k.

Lemma 3.17.5. We have ℘ ∈ C(Λ), i.e., ℘(z + w) = ℘(z) for w ∈ Λ.

Proof. We may differentiate term by term, so

℘′(z) =
∑
w∈Λ

−2

(z − w)3
.

Note also that ℘′(z + w) = ℘′(z) for all w ∈ Λ. Then

℘(z + w) = ℘(z) + Cw.

For z = −w/2, we have ℘(w/2) = ℘(−w/2) + Cw, but since ℘ is even we see that Cw = 0.

We’ve found a function ℘ ∈ C(Λ) that is holomorphic on C/Λ except at 0, where ord0 ℘ = −2, as well as
a function ℘′ ∈ C(Λ) that is holomorphic except at 0, where ord0 ℘

′ = −3. It follows that C(Λ) = C(℘, ℘′).
The functions ℘ and ℘′ should satisfy a Weierstrass equation, ie. a linear relation in 1, x, y, x2, xy, x3, y2.

Exercise : Show that

y2 = ℘′(z)2 = 4z−6 − 24G4z
−2 − 80G6 + . . .

x3 = ℘(z)3 = z−6 + 9G4z
−2 + 15G6 + . . .

x = ℘(z) = z−2 + 3G4z
2 + . . .

and hence
y2 = 4x3 − g2(Λ)x− g3(Λ),

where g2(Λ) = 60G4 and g3(Λ) = 140G6. (The idea is to check that y2−(4x3−g2(Λ)x−g3(Λ)) is holomorphic
on C/Λ and equals 0 at 0.)

Finally, we may define the map

ϕ : C/Λ→ Ean

z + Λ 7→ [℘(z), ℘′(z), 1]

0 + Λ 7→ 0 = O

This is an isomorphism of complex Lie groups, and we obtain C/Λ ∼= Ean.
Summing everything up, we have equivalences between the category of elliptic curves over Cwith mor-

phisms of varieties, the category of elliptic curves over C with homomorphisms of Lie groups, and the
category of Lattices Λ ⊆ C with morphisms consisting of Morp(Λ,Λ′) = {α ∈ C : αΛ ⊆ Λ′}. On the ob-
ject level, the equivalence between the first two categories is given by C 7→ Can, whereas the equivalence
between the latter two categories is given by C/Λ← [ Λ.

Fix an imaginary quadratic fieldK ⊆ C, and letR be an order ofK, soR ⊆ OK is a subring of finite index.
Note that R ⊆ C is a lattice, and Morp(R,R) = {α ∈ C : αR ⊆ R} = R. It follows that End(C/R) ∼= R, and
hence there exists an elliptic curve E/C with End(E) ∼= R. Try proving this algebraically!

(Recall that the endomorphism rings of E/C are either Z or such an order.)
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3.18 Apr 14, 2020 (Complex numbers)
Let E/C be an elliptic curve, and let Ean = E(C). We saw last time that there is a lattice Λ ⊆ C such that

Ean ∼= C/Λ as Lie groups. The lattice is unique upt o scaling by an α ∈ C×.
Let Λ ⊆ C be a lattice. There is an elliptic curve E/C such that Ean ∼= C/Λ. Moreover,

E/C : y2 = 4x3 − g2(Λ)x− g3(Λ),

where
g2(Λ) = 60

∑
w∈Λ
w 6=0

1

w4
, g3(Λ) = 140

∑
w∈Λ
w 6=0

1

w6
.

For E,E′ elliptic curves over C, we have Ean ∼= C/Λ and (E′)an ∼= C/Λ′ for some lattices Λ,Λ′. Then

Hom(E,E′) ∼= Hom(C/Λ,C/Λ′) ∼= {α ∈ C : αΛ ⊆ Λ′}.

Altogether, we saw three equivalences of categories last time, between elliptic curves with morphisms of
varieties, elliptic curves withmorphisms of Lie groups, and lattices withmorphisms given by {α ∈ C : αΛ ⊆
Λ′}.

Fix an imaginary quadratic fieldK/Q, soK ⊆ C. We have the ring of integersOK ⊆ C; it is a lattice and
is the maximal order ofK. Let’s classify E/C with End(E) ∼= OK .

Fix Λ ⊆ C with End(C/Λ) = OK , i.e. αΛ ⊆ Λ for all α ∈ OK . We say E has complex multiplication (CM)
by OK . We can scale Λ so that Λ = Z + Zτ . We have Λ ⊆ OK , since α · 1 ∈ Λ for all α ∈ OK . It follows that
Λ is an ideal of OK .

Conversely, any nonzero ideal I ⊆ OK is a lattice inC and End(C/I) = OK . This motivates the following
definition:

Definition 3.18.1. Let Cl(OK) be the set of equivalence classes of non-zero ideals of OK , where I1 ∼ I2 if
I2 = αI1 for some α ∈ K×. This is called the class group of OK (although as of now, this is a set). 4

We let Ell(OK) denote the set of elliptic curves E/C with End(E) ∼= OK . Then

Theorem 3.18.2. We have a bijection

Cl(OK)↔ Ell(OK)

[I] 7→ C/I.

Fact 3.18.3.

• We can Cl(OK) into a group, by setting [I1] · [I2] := [I1I2].

• Furthermore, Cl(OK) is a finite group; it’s size is computable. (See Corollary 4.20 in Mehrle’s 6370 notes)

Corollary 3.18.4. Ell(OK) is finite with cardinality #Cl(OK).

Take any [E] ∈ Ell(OK). For σ ∈ Aut(C), we have [Eσ] ∈ Ell(OK), as

E : y2 = x3 + ax+ b Eσ : y2 = x3 + σ(a)x+ σ(b).

Thus we see j(Eσ) = σ(j(E)).
We can define the Hilbert class polynomial

HOK
(x) :=

∏
[E]∈Ell(OK)

(x− j(E)) ∈ C[x].

Because the coefficients are fixed by all of Aut(C), it follows that

HOK
(x) ∈ Q[x].

In fact,
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Fact 3.18.5. We have HOK
(x) ∈ Z[x].

Thus we can compute it by numerically approximating HOK
and then rounding.

Example 3.18.6. LetK = Q(
√
−7), so OK = Z[ 1+

√
−7

2 ]. We have #Cl(OK) = 1. It follows that

HOK
(x) = x− j(C/OK) = x+ 33 · 53.

So up to isomorphism, there is only one E/C with End(E) ∼= OK ; it has j-invariant j(E) = −33 · 53. 4

Example 3.18.7. Let K = Q(
√
−5), so OK = Z[

√
−5] = Z + Z

√
−5. Then Cl(OK) = {[OK ], [Z · 2 + Z(1 +√

−5)]}. Then

HOK
(x) = (x− 1264538.909...)(x+ 538.909...)

= x2 − 1264000x− 68147200.

So E/C has endomorphism ring OK if and only if j(E) ∈ {63200± 282880
√
−5}. 4

Fact 3.18.8. Let K be imaginary quadratic. The field K(1) := K(j(C/OK)) is an unramified extension of K that is
Galois with Galois group Cl(OK). It is the maximal unramified abelian extension ofK.

Let’s give some examples of the Lefschetz principle, which loosely says we can reduce results to those
over C:

Proposition 3.18.9 (Special case of Corollary 2.11.3). Let E/K be an elliptic curve with charK = 0. Then
E[m] ∼= (Z/mZ)2 for allm ≥ 1.

Proof. We know E[m] = ker[m] is finite. So without loss of generality, we may replace K with a finitely
generated field such that E is defined over K with E[m] ⊆ E(K). Thus, there is an embedding K ↪→ C, so
we can now assumeK = C. But now Ean ∼= C/Λ and the torsion points are just

E[m] ∼= (C/Λ)[m] = ( 1
mΛ)/Λ ∼= Λ/mΛ ∼= (Z/mZ)2.

Proposition 3.18.10. Let ϕ,ψ : E → E′ be homomorphisms of elliptic curves overK with charK = 0. Then

ϕ+ ψ)∗ = ϕ∗ + ψ∗.

Proof sketch. Without loss of generality, we can setK = C. Then Ean = C/Λ and (E′)an ∼= C/Λ′. Then

ϕ : C/Λ→ C/Λ′

is given by multiplication by α ∈ C× with αΛ ⊆ Λ′. Then

degϕ = # kerϕ = #(α−1Λ′)/Λ = [Λ′ : αΛ].

It follows that [Λ′ : αΛ] · Λ′ ⊆ αΛ, and

degϕ · Λ′ ⊆ αΛ, i.e. degϕ

α
· λ′ ⊆ Λ.

Note that ϕ∗ : C/Λ′ → C/Λ is multiplication by degϕ/α. We can now choose bases for Λ and Λ′ with the
same orientation in C. Then ϕ gives rise to a map Λ → Λ′ given by multiplication by α. This map is given
by a matrix

A =

[
a b
c d

]
∈M2(Z)

with respect to the chosen bases. We have detA = [Λ′ : αΛ] = degϕ, and so ϕ∗ is given by the matrix

adj(A) =

[
d −b
−c a

]
Finally, adj(A+B) = adj(A) + adj(B) gives (ϕ+ ψ)∗ = ϕ∗ + ψ∗.
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We remark that the observation adj(adj(A)) = A and adj(AB) = adj(B)adj(A) gives other familiar
properties of dual morphisms.

Let’s talk briefly about modular curves. Recall that we had

{E/C up to isomorphism} ↔ {lattice Λ ⊆ C up to scaling}.

Wecan give the right side a geometric structure in the followingway. GivenΛ, we can scale so thatΛ = Z+Zτ
with τ ∈ H in the upper half plane. Note that τ is not unique: take another basis of Λ given by {aτ+b, cτ+d}
with [

a b
c d

]
∈ GL2(Z).

It follows that

Λ = Z(aτ + b) + Z(cτ + d)

= (cτ + d) ·
(
Z + Z · aτ + b

cτ + d

)
.

One can check that aτ+b
cτ+d ∈ H for

[
a b
c d

]
∈ SL2(Z). Thus we have an action of SL2(Z) on H sending τ to

aτ+b
cτ+d . In particular, we have

{E/C up to isomorphism} ↔ SL2(Z)\H

A fundamental domain for the orbits of SL2(Z)\H is given by

The portion of the boundary to the right of i ∈ H is identified to the portion of the boundary to the left of
i ∈ H, via the identification a+bi ∼ −a+bi. ForF = {z ∈ H : |z| ≥ 1, |Im(z)| ≤ 1/2}, themapF → SL2(Z)\H
is surjective and injective away from the boundary. The points τ = e2πi/6 = ζ6 and i are special: the elliptic
curves C/Z[ζ6] and C/Z[i] have j-invariant 0 and 1728. Given any E/Cwith Aut(E) 6∼= Z/2Z, we have maps

H

SL2(Z)\H C

j

τ 7→j(C/(Z+Zτ))

The map j : H� C is holomorphic with j(Aτ) = j(τ) forA ∈ SL2(Z). In particular, forA =

[
1 1
0 1

]
we have

j(τ + 1) = j(τ). We have

Fact 3.18.11. We have j(τ) = J(e2πiτ ), where

J(q) =
1

q

(
1 + 240

∞∑
m=1

m3 qm

1− qm
) ∞∏
n=1

(1− qn)24

=
1

q
+ 744 + 196884q + 21493760q2 + · · · ∈ Z((q)).
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Observation 3.18.12 (in memory of Conway). McKay observed that 196884 = 196883 + 1. It turns out that
196883 is the smallest degree of a nontrivial representation of theMonster simple group. To learn more, you
can look up “Monstrous Moonshine”. 4

Let N ≥ 1. We define

Γ0(N) =
{
A ∈ SL2(Z) : A ∼=

[
∗ ∗
0 ∗

]
(mod N)

}
.

Then Γ0(N)\H parametrizes elliptic curves overCwith a cyclic subgroupC ⊆ E of orderN . The dictionary
is given by sending

τ 7→
(
C/(Z + Zτ)),

〈 1

N
+ (Z + Zτ

〉)
.

This is interesting because if E and E′, then they are isogenous by an isogeny with cyclic kernel.
You can find models over Q for Γ0(N)\H.
Next time we’ll talk about local fields and reducing equations modulo a maximal ideal.
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3.19 Apr 16, 2020 (Local fields)
We first set some notation. Let R be a complete discrete valuation ring, i.e.R is a PID with a unique

nonzero maximal ideal that is equal to its completion with respect to m. We set m to be the maximal ideal
of R, and π a uniformizer of R, so m = Rπ. We set k = R/m to be the residue field, andK to be the quotient
field of R. We callK a local field. (We are following Silverman, so we assume k andK are perfect.)

Associated toR is a valuation v : K× � Z such that a = πv(a)uwith u ∈ R×. Wemanually set v(0) = +∞.
The completion of R (with respect to m) is

R̂
def
= lim←−

n

R/mn,

and completeness ofR amounts to saying thatR→ R̂ is an isomorphism. We fix c > 1 and define | · |v : K →
R≥0 by |a|v = c−v(a). This is an absolute value. The completeness of R is equivalent to the fact that every
Cauchy sequence inK, using | · |v is convergent.

Example 3.19.1. Let R = Zp; thenK = Qp, m = pZp, k = Fp, and π = p. 4

Example 3.19.2. Let R = CJxK; thenK = C((x)), π = x and k = C. 4

Example 3.19.3. LetK ′/K be a finite extension and let R′ be the integral closure of R inK ′. Then R′ is also
a complete DVR andK ′ is another local field. Then k′ = R′/m′ is a finite extension of k = R/m. 4

For today, finite extensionsK/Qp are the key example to think about.
Let us fix an elliptic curve E/K and choose a model

y2 + a1xy + a3y = x3 + a2x+ a4x+ a6

with ai ∈ R, thus E ⊆ P2
K . The reduction of E is denoted Ẽ ⊆ P2

k and is the projective curve defined by

y2 + a1xy + a3y = x3 + a2x+ a4x+ a6

where ai is the iamge of ai in k = R/m.
Note that Ẽ depends on the choice of ai:

Example 3.19.4. Let p 6= 2; note that y2 = x3 + x and y2 = x3 + p4x gives isomorphic curves over Qp. Their
reductions mod p are y2 = x3 + x and y2 = x3 respectively; the first defines an elliptic curve Ẽ ⊆ P1

Fp
,

whereas the second defines a singular curve Ẽ ⊆ P1
Fp

of genus 0.
The feeling is that y2 = x3 +x, with discriminant ∆ = 64, should be a “better” model than y2 = x3 +p4x,

with discriminant ∆ = 64p12. 4

Let’s recall the discriminant ∆ ∈ R, ∆ 6= 0 of an elliptic curve. The model with ai ∈ R is a minimal
(Weierstrass) model if v(∆) ≥ 0 is minimal amongst all models for E/K. There’s an algorithm to compute
this ∆.

Suppose (x, y) and (x′, y′) are coordinates of two minimal models of E/K. We have

x = u2x′ + r

y = u3y′ + u2sx′ + t
(∗)

for u ∈ K× and r, s, t ∈ K. Then ∆ = u12∆′, hence v(∆) = 12v(u) + v(∆′) and v(u) = 0 means that u ∈ R×.
Exercise : Show furthermore that r, s, t ∈ R.
It follows that the reduction Ẽ ⊆ P2

k of a minimal model is unique up to a coordinate change (∗) with
u ∈ k× and r, s, t ∈ k.

Let Ẽ be the reduction of E modulo m.

Aside 3.19.5. If char k 6= 2, 3, the equation y2 = x3 + ax+ b is minimal if and only if v(∆) < 12 or v(a) < 4.
Tate’s algorithm computes minimal models in general, plus a whole lot more. 4
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There’s no reason to believe that Ẽ should be an elliptic curve. Let Ẽns be the nonsingular points of E.

Fact 3.19.6. One can check (via lots of casework) that Ẽns is an abelian group under the “usual” geometric group law.
(Note that defining “P + P ′′ in the geometric group law, we need to use the tangent line of E at P .)
There is an action Galk

�

Ẽns.
We say E has good reduction if v(∆) = 0, i.e. Ẽ/k is an elliptic curve, so Ẽns = Ẽ; otherwise E has bad

reduction.
Suppose we have bad reduction; we may without loss of generality assume Ẽ is singular at P = (0, 0).

Then Ẽns = E\{P}. The singularity at (0, 0) ∈ Ẽ imposes three conditions on the coefficients of the equation
defining Ẽ, and it turns out that

Ẽ : y2 + a1xy = x3 + a2x
2,

or in other words
y2 + a1xy − a2x

2︸ ︷︷ ︸
homogeneous quadratic;
discriminant a12+4a2

−x3 = 0.

Then:

• We say E has a cusp at (0, 0) if a1
2 + 4a2 = 0. When char k 6= 2, up to a change in coordinates we have

the curve y2 = x3:

x

y

The nonsingular points are Ẽns ∼= Ga over k; it is a group scheme with Ga(k) = (k,+). We say E has
additive reduction.

• We say E has a node at (0, 0) if a1
2 + 4a2 6= 0. When char k 6= 0, up to a change in coordinates we have

the curve y2 = x3 + a2x
2:

x

y

[The curve is supposed to be connected/smooth with a single nodal singularity, and “any other sin-
gularities are due to the author” - Jake]

The nonsingular points are Ẽns ∼= Gm over k; it is a group scheme with Gm(k) = (k
×
,×). We say E

has multiplicative reduction. Note that y2 − a2x
2 = (y −

√
a2x)(y +

√
a2x) factors. Thus, we say it has

split multiplicative reduction if a2 ∈ (k×)2, and it has non-split mulitplicative reduction otherwise.
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(Note that a connected linear algebraic group over an algebraically closed field is either Ga or Gm; it’s not
hard to decide which one Ẽns is isomorphic to.)

We have a reduction modulo m map

Pn(K)→ Pn(k)

[a0, . . . , an] 7→ [a0, . . . , an],

where ai is the image of ai in R/m, after scaling all coordinates so that all ai ∈ R and at least one ai ∈ R×.
This is well-defined. This gives a reduction map

E(K)→ Ẽ(k)

P 7→ P .

Thus for example, the reduction map sends E(Qp)→ Ẽ(Fp).
Define E0(K) = {P ∈ E(K) : P ∈ Ẽns(k)}. We have

Fact 3.19.7. The map

E0(K)→ Ẽns(k)

P 7→ P

is a group homomorphism, and E0(K) is a subgroup of E(K).

(See [Silverman, VII §2]; it’s straightforward.)

Fact 3.19.8. The group E(K)/E0(K) is finite, i.e. E0(K) is finite index in E(K).

WhenK/Qp is a finite extension, there is a topological proof. The idea is to use the fact thatR is compact,
hence E0(K) is an open subgroup of the compact E(K). Thus the cosets are a disjoint open cover, and the
compactness of E(K) means that [E(K) : E0(K)] is finite. In general, it follows from Tate’s algorithm and a
Néron model.

One can even say more:

• If E is split multiplicative, [E(K) : E0(K)] = v(∆)

• Otherwise, [E(K) : E0(K)] ≤ 4.

Fact 3.19.9. The reduction map

E0(K)→ Ẽns(k)

P 7→ P

is surjective.

This follows from Hensel’s lemma.
We have a short exact sequence of groups

0 E1(K) E0(K) Ẽns(k) 0P 7→0

, where E1(K) = {P ∈ E(K) : P = O}. Also E(K)/E0(K) is finite.
A key idea is that to study E(K), it might be easier to break it into pieces E(K)/E0(K), Ẽns(k), and

E1(K). Later, we’ll see

THEOREM 3.19.10. The torsion subgroup of E1(K) is a p-group when p = char k.

This uses formal groups in Chapter IV of Silverman.
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Corollary 3.19.11. Suppose K/Qp is finite. Consider E/K with good reduction. Then for m ≥ 1 with p - m, the
map

E(K)[m] 7→ Ẽ(k)

P 7→ P

is an injective group homomorphism.

(The corollary follows because E has good reduction, we see that E0(K) = E(K), hence the kernel is in
E1(K), which has no nontrivialm-torsion because p - m.)

Corollary 3.19.12. Let E/Q be an elliptic curve. Then E(Q)tors is finite.

Proof. Take p large enough so that E has good reduction over Qp. Then

E(Q)tors ⊆ E(Qp)tors → Ẽ(Fp)

which is finite; its kernel is a p-group. It follows that E(Q)tors/{maximal p-subgroup} is a finite group. To
finish, choose a second prime p.

Example 3.19.13. LetE/Q : y2 = x3+3x+4; it has discriminant∆ = −26·33·5. It has good reduction at p > 5.
One cna compute #Ẽ(F11) = 14 and #Ẽ(F17) = 20. It follows that #E(Q)tors|2. But (−1, 0) ∈ E(Q), so
E(Q)tors = {O, (−1, 0)}. Note that (0, 2) ∈ E(Q). So (0, 2) has infinite order, and hence E(Q) is infinite. 4
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3.20 Apr 21, 2020 (Local fields)
LetK be a local field, which for our purposes has a definition that is more general than the “usual” one:

it is a field with a discrete vlauation v : K → Z ∪ {+∞} satisfying:

• v(xy) = v(x) + v(y)

• v(x+ y) ≥ min{v(x), v(y)}

• v(x) = +∞ if and only if x = 0.

AlsoK is complete with respect to the absolute value

| · |v : K → R≥0, |x|v = c−v(x)

for a fixed c > 1. We assume v(x) 6= 0 for some x ∈ K×, so that the topology from |· |v is non-trivial. Without
loss of generality, v will be surjective.

This gives rise to the valuation ring R = {x ∈ K : v(x) ≥ 0}, which is a complete DVR (discrete valuation
ring). It has a maximal ideal m and hence a residue field R/m.

We further assume that K and k are perfect, because we’re following Silverman. The key example is a
finite extensionK/Qp. WhenK = Qp, we have R = Zp and k = Fp.

Now consider an elliptic curve E/K. Fix a minimal model for E given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (∗)

i.e. ai ∈ R with v(∆) minimal. The (!) reduction modulo m of E is the the curve Ẽ ⊆ P2
k defined by (∗).

Let Ẽns be the nonsingular points of E; it is an algebraic group under the “usual” geometric group law.
When E has good reduction (i.e. v(∆) = 0), Ẽns = Ẽ is an elliptic curve over k. When E has bad reduction,
the group Ẽns(k) is isomorphic to (k,+) or (k

×
,×), in which case we say it is additive or multiplicative

respectively.
We also have a reduction modulo m map

E(K)→ Ẽ(k), P 7→ P

We get subgroups of E(K)

E0(K)
def
= {P ∈ E(K) : P ∈ Ẽns(k)}

E1(K)
def
= {P ∈ E(K) : P = 0}.

They have important properties:

• E(K)/E0(K) is finite

• We have an exact sequence

0 E1(K) E0(K) Ẽns(k) 0P 7→P

• Any nonidentity element of E1(K) of finite order has order a power of p where p = char k > 0. (This
will be explained later with formal groups.)

Now letK ′ be a finite extension ofK and letR′ be the integral closure ofR inK ′; it is a complete discrete
valuation ring with maximal ideal m′, henceK ′ is a local field. It follows that:

• mR′ = (m′)eR′ for a unique e ≥ 1, which we call the ramification index. The valuation v′ : K ′ �
Z ∪ {+∞} is linked to the valuation v : K � Z ∪ {+∞} in the following way: For x ∈ K, we have
v′(x) = ev(x).
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• The injection k ↪→ k′ = R′/m′ is a finite extension, so this gives a number f = [k′ : k] called the residue
degree

• We have [K ′ : K] = ef . (This uses that k andK are separable.)

For related topics, you might be interested in the theory of Dedekind domains.
We sayK ′/K is unramified if e = 1, and totally ramified if e = [K ′ : K].

Fact 3.20.1. There is a unique field L such thatK ′/L is totally ramified of degree e, and L/K is unramified of degree
f . (Prove this using Hensel’s lemma!)

Let’s study GalK . Assume K ′/K is Galois. Note that Gal(K ′/K) acts on R′ and m′, hence on k′. It fixes
R and m, and hence k. Thus we get a map Gal(K ′/K)→ Gal(k′/k).

Fact 3.20.2. The map Gal(K ′/K)→ Gal(k′/k) is surjective. (Prove this using Hensel’s lemma!)

We obtain an exact sequence

1 Gal(K ′/L) Gal(K ′/K) Gal(k′/k) 1

We increaseK ′ to obtain

1 Gal(K/Kun) Gal(K/K) Gal(k/k) 1

where Kun is the maximal unramified extension of K. The (possibly infinite) extension Kun/K is a local
field.

We denote by IK
def
= Gal(K/Kun), which we call the inertia subgroup of GalK .

Now suppose there is a GalK action on a set Σ. We say the action is unramified if IK acts trivially. In this
case, we get actions of Gal(Kun/K)

�
Σ and Galk

�

Σ.

Theorem 3.20.3. Suppose E/K has good reduction. Then:

(a) For anym ≥ 1 not divisible by char k, the action GalK

�

E[m] is unramified.

(b) For a prime ` 6= char k, the action GalK

�

T`E is unramified.

Proof. Part (a) clearly implies part (b), so let’s prove (a). Fix a finiteK ′/K such that E[m] ⊆ E(K ′). Then we
have a homomorphism

E[m] = E(K ′)[m]
reduction−−−−−→ Ẽ(k′)[m] ⊆ Ẽ[m],

where Ẽ is an elliptic curve because E has good reduction. Note that both E[m] and Ẽ[m] both have order
m2, and the kernel is contained in the kernel of E1(K ′)[m] (since E1 is the kernel of the reduction map). But
E1(K ′)[m] is trivial, because the nontrivial torsion in E1(K ′) has order a power of char k′ - m (this will be
explained later with formal groups). Thus we have an isomorphism

E[m]
∼−→ Ẽ[m];

the actions of GalK

�

E[m] and Galk

�

Ẽ[m] are compatible with GalK → Galk.

Theorem 3.20.4 (Criterion of Néron-Ogg-Shafarevich). Let E/K be a elliptic curve and fix ` 6= char k. The
action of GalK

�

T`E is unramified if and only if E has good reduction.

(In the bad reduction case, one can actually check whether it’s additive or multiplicative.)

Proof. The backwards direction is Theorem 3.20.3.
For the forwards direction, we suppose that GalK

�

T`E is unramified. Equivalently, IK = Gal(K/Kun)
acts trivially on T`E, and so E[`n] ⊆ E(Kun) for all n ≥ 1. We use the fact that E has good reduction over
K if and only if it has good reduction over Kun (see [Silverman, VII 5.4]). Because [E(Kun) : E0(Kun)] is
finite, we have E[`] ⊆ E0(Kun), so we get an exact sequence
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1 E1(Kun) E0(Kun) Ẽns(k) 1

where E1(Kun) has no nontrivial `-torsion (since ` 6= char k). Thus Ẽns(k) contains a subgroup isomorphic
to E[`] ∼= (Z/`Z)2. If E has bad reduction, then Ẽns(k) is isomorphic to k or k×, which have no nontrivial
`-torsion or an `-torsion subgroup of order `, respectively. This is a contradiction. Therefore, E has good
reduction!

Aside 3.20.5. Let V be a nice variety over a local field K with valuation ring R. We say that V has good
reduction if there is a smooth proper scheme V → SpecR whose generic fiber is V .

For V an elliptic curve, this agrees with our earlier definition. (To show this, use Néron-Ogg-Shafarevich
(Theorem 3.20.4).) 4

We say that E/K has potentially good reduction if there is a finite extension K ′/K such that E has good
reduction overK ′.

Theorem 3.20.6. The following are equivalent for E/K:

(a) E/K has potentially good reduction

(b) E has good or additive reduction

(c) For ` 6= char k, IK acts on T`E through a finite group

(d) j(E) ∈ R.
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3.21 Apr 23, 2020 (Local fields)
We’ll talk about formal groups today. The motivation for studying formal groups is as follows. Let E be

an elliptic curve over a local fieldK and fix a Weierstrass model with ai ∈ R, where R is the valuation ring
ofK with maximal ideal m. We defined

E1(K) = {P ∈ E(K) : P ≡ O (mod m)} ≤ E(K).

The claim is that E1(K)tors is either trivial or a p-group, where p = charR/m. To do this, we need to under-
stand E “near” O.

Let E be an elliptic curve over a general (perfect) fieldK. Let’s study E “near” O. There are many ways
to interpret this, for example:

• We could study the Lie algebra, but this turns out to be a 1-dimensional K-vector space with trivial
pairing. Thus we lose too much information.

• We could study the local ring K[E]O ⊆ K(E), i.e. the ring of f ∈ K(E) with ordO(f) ≥ 0. This ring
has toomuch information, since fromK[E]O we can recoverK(E) and henceE/K up to isomorphism
as a curve; we can also recover O ∈ E(K) fromK[E]O.

We could also consider the completion:

K̂[E]O
def
= lim←−

n

K[E]O/m
n,

where m is the maximal ideal of the local ring K[E]O. The completion turns out to be a complete discrete
valuation ring.

Consider a model for E/K:

y2 + a1xy + a3y = x3 + a2x+ a4x+ a6

with ai ∈ K. Because y is nonzero near the identity, we may divide by y3 to obtain

1

y
+ a1

x

y

1

y
+ a3

(1

y

)2

=
(x
y

)3

+ a2

(x
y

)2 1

y
+ a4

x

y

(1

y

)2

+ a6

(1

y

)3

. (4)

Set w def
= − 1

y and z def
= −xy . Then Equation (4) becomes

w = z3 + a1zw + a2z
2w + a3w

2 + a4zw
2 + a6w

3︸ ︷︷ ︸
call this f(z, w)

. (5)

Note that O is now (z, w) = (0, 0) in this model.
We have ordO x = −2 and ordO y = −3, so ordO w = 3 and ordO z = −2 + 3 = 1. It follows that z is a

uniformizer of K̂[E]O.
Exercise : We have K̂[E]O = KJzK.
Thus w ∈ K̂[E]O = KJzK means that w = w(z) can be expressed in terms of z, sort of like an “implicit

function theorem”.
Indeed, to compute w(z), we observe that w = O(z3), i.e. w ∈ z3KJzK. Now recall (Equation (5)) that

z = f(z, w). Thus:

w = f(z, w) = z3 +O(z4)

w = f(z, w) = z3 + a1z
4 +O(z5)

w = f(z, w) = z3 + a1x
4 + (a2

1 + a2)z5 +O(z6)

...

63



(We obtained better information at each step by considering f(z, w) = f(z, z3 + O(z4)) and f(z, w) =
f(z, z3 + a1z

4 +O(z5)) respectively.)
We may repeat this to obtain

w = w(z) = z3(1 +A1z1 +A2z
2 + . . . )

with An ∈ Z[a1, . . . , a6] a degree n polynomial in the ai, where deg ai = i. For example,

A1 = a1, A2 = a2
1 + a2, a3

1 + 2a1a2 + a3,

A4 = a4
1 + 3a2

1a2 + 3a1a3 + a4
2 + a4

Remark 3.21.1. In particular, w = f(z, w) has a unique solution w ∈ KJzK. 4

We have Laurent series

x(z) =
−z
w(z)

=
1

z2
− a1

1

z
− a2 − a3z − (a4 + a1a3)z3 + · · · ∈ Z[a1, . . . , a6]((z)) ⊆ K((z)),

and
y(z) = − 1

w(z)
=
−1

z3
+
a1

z
+ · · · ∈ Z[a1, . . . , a6]((z)) ⊆ K((z)).

Observe that
[z,−1, w(z)] = [x(z), y(z), 1] ∈ E(K((z))),

where w(z) is an explicit series in Z[a1, . . . , a6]JzK. We call this a “formal solution”.
Now suppose K is a local field with valuation ring R ⊇ m. Assume ai ∈ R. As above w(z) ∈ RJzK. The

key observation is that we can plug in values z0 ∈ m intow(z), sow(z0) ∈ R. (This is becausew(z0) = z3
0(1+

A1z0 + a2z
2
0 + . . . ), where Ai ∈ R; thus Aizi → 0 in K, and in the world of local rings one can prove that a

series converges if and only if its summands converge to 0.)
We have an evaluation map

m→ E(K)

z0 7→ [z0,−1, w(z0)],

i.e. we have exhibited many points of E(K). In fact, [z0,−1, w(z0)] ≡ [0,−1, 0] = O (mod m), so our evalu-
ation map lands inside E1(K).

Proposition 3.21.2. We have a bijection

m
∼−→ E1(K)

z0 7→ [z0,−1, w(z0)].

Proof. It’s easy to see that themap iswell-defined and injective. Let’s verify surjectivity: take anyP ∈ E1(K);
without loss of generality P = O. Write P = [x, y, 1] = [−x/y,−1,−1/y]. Since P ≡ O (mod m), we see
that z0 := −x/y ∈ m and w0 := −1/y ∈ m. We need to check that w(z0) = w0. But we have

w0 = f(z0, w0)

= f(z0, f(z0, w0))

= f(z0, f(z0, f(z0, w0)))

= . . . .

As before, we find that w0 = w(z0).

Note that the bijection of sets in Proposition 3.21.2 is not a homomorphism of groups. Thus we can use
the bijection to give m a new group law (steal it from E1(K)).

Claim 3.21.3. There is a unique power series F (x, y) ∈ RJx, yK such that a ⊕ b := F (a, b) defines the above group
law on m.
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We will now construct an F (x, y) ∈ KJx, yK for a general K; in the local case it will satisfy the above
claim.

We work with the fieldK((z1, z2)) in two independent variables. We have

[−z1, 1, w(z1)] + [−z2, 1,−w(z2)] ∈ E(K((z1, z2))), (6)

where addition above uses the group law in E. The claim is that there exists F (x, y) ∈ KJx, yK such that
Equation (6) is equal to [−F (z1, z2), 1,−w(F (z1, z2))].

Indeed, in the (z, w)-coordinates there the points [−z1, 1, w(z1)] and [−z2, 1,−w(z2)] are connected by a
line L of slope

λ =
w(z2)− w(z1)

z2 − z1
=

∞∑
n=0

An
zn+3

2 − zn+3
1

z2 − z1
∈ Z[a1, . . . , a6]Jz1, z2K.

So write L : λz + v with v = w(z1)− λ(z1) ∈ Z[a1, . . . , a6]Jz1, z2K. Plug in w = λz + v into equation to get a
cubic in z with three roots, two of which are z1 and z2. Thus the third root is

z3 = −z1 − z2 +
a3λ+ a3λ

2 − a2y − 2a4λv

1 + a2λ+ a6λ2 + a3λ3
∈ Z[a1, . . . , a6]Jz1, z2K.

After some more steps, it follows that the point in Equation (6) has z-coordinate F (z1, z2), where

F (x, y) = x+ y− a1xy− a1(x2y+ xy2) + (−2a3x
3y+ (a1a2− 3a3)x2y2− 2a3xy

3) + · · · ∈ Z[a1, . . . , a6]Jx, yK.

This gives a “formal group” Ê over any ring R ⊇ Z[a1, . . . , a6].

Definition 3.21.4. Let R be a ring. A (one-parameter commutative) formal group F over R is a power series
F (x, y) ∈ RJx, yK such that:

(a) F (x, y) = x+ y + terms of degree ≥ 2

(b) F (x, F (y, z)) = F (F (x, y), z)

(c) F (x, y) = F (y, x)

(d) There exists a unique i(T ) ∈ RJT K such that F (T, i(T )) = 0

(e) We have F (x, 0) = x and F (0, y) = y.

(It turns out that part (d) and (e) follow from part (a) and (b).)
We say F (x, y) is the formal group law of F . 4

Is a formal group a group? No, because there is no underlying set.

65



3.22 Apr 28, 2020 (Local fields)
We’ll finish up formal groups today; see [Silverman, Ch IV] for more. (There is a lot more out there than

what’s in Silverman, as well!)
Let R be a commutative ring. A formal group F over R is a power series F (x, y) ∈ RJx, yK satisfying:

(a) F (x, y) = x+ y + (terms of degree ≥ 2)

(b) F (x, F (y, z)) = F (F (x, y), z)

(c) F (x, y) = F (y, x)

(d) There is a unique i(T ) ∈ RJT K such that F (T, i(T )) = 0.

(e) F (x, 0) = x and F (0, y) = y.

Exercise : Show that (a), (b), and (c) imply (d) and (e).
We say that F is the formal group law of F .

Example 3.22.1. The formal additive group is denoted Ĝa over R and is defined by

F (x, y) = x+ y and i(T ) = −T.

4

Example 3.22.2. Te formal multiplicative group is denoted Ĝm over R and is defined by

F (x, y) = x+ y + xy = (1 + x)(1 + y)− 1 and i(T ) =
1

1 + T
− 1 =

∞∑
n=1

Tn.

(The 1’s appear above because we want 0 to be the “identity”; one can readily check that F (x, 0) = x and
F (0, y) = y.) 4

Example 3.22.3. Let E/K be an elliptic curve with explicit model in x and y. Last time we constructed an
F (x, y) ∈ Z[a1, . . . , a6]Jx, yK satisfying the following. By setting z = −x/y, there is a unique w(z) ∈ KJzK
such that [z,−1, w(z)] ∈ E(K((z))). For z1, z2 independent variables, the addition law on E is such that

[z1,−1, w(z1)] + [z2,−1, w(z2)] = [F (z1, z2),−1, w(F (z1, z2))] ∈ E(K((z1, z2)))

Using that E is a group law, one can show that F is a formal group law. This gives a formal group Ê over
Z[a1, . . . , a6]. 4

Now suppose that R is a complete discrete valuation ring with quotient field K, and let m ⊆ R be its
maximal ideal and k = R/m. Let (F , F ) be a formal group over R.

We can give m a new (abelian) group law by setting a ⊕ b = F (a, b): note that F (a, b) converges to an
element in m for all a, b ∈ m. The group axioms for m follow from properties of F . The set mr is a subgroup
of m.

We fix the notation F (mr) to denote the set mr with group law from F .

Example 3.22.4. The group Ĝa(m) is just mwith the usual +. 4

Example 3.22.5. Consider Ĝm(m). Observe that there is a group isomorphism

Ĝm(m)
∼−→ 1 + m ⊆ R×

x 7→ 1 + x.

(This is because F (x, y) = (1 + x)(1 + y)− 1.) 4
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Example 3.22.6. Consider Ê(m). Last timewe showed (Proposition 3.21.2, Claim 3.21.3) that there is a group
isomorphism

Ê(m)
∼−→ E1(K) = {P ∈ E(K) such that P ≡ 0 (mod m)}.

4

Theorem 3.22.7. Take any non-zero P ∈ F (m) of finite order. Then the order of P is a power of p = char k > 0.

This gives the long-promised Theorem 3.19.10

Corollary 3.22.8. The torsion subgroup of E1(K) is a p-group when p = char k.

Proof of Theorem 3.22.7. Without loss of generality, suppose P ∈ F(m) has prime order `. We need to show
that ` = char k.

There is a minimal r ≥ 1 such that P ∈ mr = F (mr). We have `P = 0 ∈ mr+1 = F (mr+1). Now observe
that

F (mr)/F (mr+1)
∼−→ mr/mr+1 ∼= k

a 7→ a

is an isomorphism; this is because F (x, y) = x+ y + higher order terms. Thus (k,+) has a point of order `,
and it follows that ` = char k.

Notice that in the proof of Theorem 3.22.7 we saw that although F (m) may be a complicated group, it
comes with a filtration F (m) ⊃ F (m2) ⊃ . . . whose quotients are just (k,+).

In fact, we can prove a stronger version of Theorem 3.22.7. Assume that charK = 0 and p = char k > 0,
e.g. a finite extensionK/Qp. We have a valuation v : K � Z ∪ {+∞}.

THEOREM 3.22.9. Let F be a formal group over R. For any integer r > v(p)
p−1 , we have an isomorphism of groups

F (mr) ' (R,+).

In particular, F (mr) is torsion-free.

Example 3.22.10. Take p > 2. Observe that there is a short exact sequence

1 1 + pZp Z×p F×p 1
(mod p)

Since 1 + pZp = Ĝm(pZp), Theorem 3.22.9 for m = pZp and r = 1 > v(p)
p−1 = 1

p−1 implies Ĝm(pZp) ' Zp. It
follows that

Z×p ∼= Z/(p− 1)Z× Zp.

For p = 2, the theorem doesn’t apply, and furthermore the result is false since

Z×2 ∼= Z/2Z× Z2.

4

Example 3.22.11. Consider E/Qp with good reduction, and p 6= 2. We have an exact sequence

0 E1(Qp) E(Qp) Ẽ(Fp) 0
mod p

Since by Theorem 3.22.9 we have that E1(Qp) ' Ê(pZ) ∼= Zp is torsion free, we see that the homomorphism

E(Qp)tors
mod p
↪−−−→ Ẽ(Fp)

is actually injective! 4
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To prove Theorem 3.22.9, we need to relate F and Ĝa. To do this, we define the formal logarithm of F ,
which shall be

logF (T ) =

∫ T

0

1

F2(t, 0)
dt ∈ KJT K,

where: F ∈ RJx, yK is the formal law of F , F2 = ∂
∂yF (x, y), so F2(x, y) = 1+ terms of degree ≥ 1. It follows

that F2(t, 0) ∈ 1 + tRJtK is invertible, with F2(t, 0)−1 ∈ 1 + tRJtK. Writing

F2(t, 0)−1 = 1 +

∞∑
n=2

ant
n−1,

we see that ∫ T

0

F2(t, 0)−1 dt = T +

∞∑
n=2

an
n
Tn.

Note that logF (T ) =
∑∞
n=1

an
n T

n with aN ∈ R and a1 = 1.

Example 3.22.12. Let F = Ĝm. Then F (x, y) = x+ y + xy so F2(x, y) = 1 + x. It follows that

logĜm
(T ) =

∫ T

0

1

1 + t
dt = log(1 + T ),

where the log on the right side is the usual logarithm. 4

Lemma 3.22.13. We have
logF (F (x, y)) = logF x+ logF y.

In other words, logF is a homomorphism from F to Ĝa.

Proof. Define
h(x, y) = logF F (x, y)− logF x− logF y.

We need to show h = 0. Since h(0, 0) = 0, we need only show that ∂h∂x = 0 and ∂h
∂y = 0; and by symmetry

we’ll just show ∂h
∂y = 0.

Observe that
d

dt
logF (T ) =

1

F2(t, 0)
.

So by the chain rule, we need to show

∂h

∂y
=

1

F2(F (x, y), 0)
F2(x, y)− 0− 1

F2(y, 0)

?
= 0.

Well, observe that by associativity we have

∂

∂z
F (F (x, y), z) =

∂

∂z
F (x, F (y, z)),

which by chain rule says

F2(F (x, y), z) = F2(x, F (y, z))F2(y, z)
z=0
=⇒ F2(F (x, y), 0) = F2(x, F (y, 0)) · F2(y, 0).

It follows that
1

F2(F (x, y), 0)
F2(x, y) =

1

F2(y, 0)
,

which is exactly what we wanted to show.
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Exercise : For x ∈ mr (with r ≥ 1), then xn

n ∈ mr and v(x
n

n ) → +∞. It follows that logF x converges
and is in mr for all x ∈ mr. (Again, this uses that logF (x) =

∑∞
n=1

an
n x

n for an ∈ R and a1 = 1.)
For any r ≥ 1, we have a group homomorphism

F (mr)→ Ĝa(mr)

x 7→ logF (x).

This is not always an isomorphism, as we saw with

Ĝm(2Z2)→ Ĝa(2Z2)

in Example 3.22.10, where the left side has torsion and the right side does not.
Exercise : There is a unique expF (T ) ∈ KJT K such that logF expF (T ) = T = expF logF (T ). Moreover,

expF (T ) =

∞∑
n=1

bn
n!
Tn with bn ∈ R and b1 = 1.

Take x ∈ mr. Does expF (x) converge, and if so, is it inmr? The answer turns out to be yes if r > v(p)/(p−1),
so we would obtain an isomorphism

F (mr)
logF−−−→ Ĝa(mr).

The idea is to estimate v(n!) ≤ (n− 1) v(p)
p−1 [see e.g. Legendre], and then for x ∈ mr we have

v
(xn
n!

)
= nv(x)− v(n!) ≥ nr − (n− 1)

v(p)

p− 1
= r + (n− 1)

(
r − v(p)

p− 1

)
︸ ︷︷ ︸

>0

.

Example 3.22.14. Take E/Q given by y2 + y = x3 − x2 − 10x − 20. We have ∆ = −115. Take p - 2 · 11 and
observe that

E(Q)tors ⊆ E(Qp)tors
(mod p)−−−−−−→ Ẽ(Fp).

Note that #E(F3) = 5. Moreover, 5|#E(Fp) for all p - 2 · 11. It follows that E(Q)tors is either trivial or cyclic
of order 5. But (5, 5) ∈ E(Q) has order 5, so

E(Q)tors = 〈(5, 5)〉 = {O, (5,±5), (16,±60)}.

Next time, we’ll take E/Q and consider the structure of E(Q). 4
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3.23 Apr 30, 2020 (Number fields)
LetK be a number field, i.e. a finite field extension of Q. Over the next few classes, we will prove

Theorem 3.23.1 (Mordell-Weil). For an elliptic curve E/K, the abelian group E(K) is finitely generated.

This implies that E(K) ∼= A× Zr for some r ≥ 0, where A = E(K)tors. The integer r is called the rank of
E.

Note thatE(K)tors is computable, since passing to the completions gives bounds on the size of the torsion
and then we can brute force check the remaining possibilities. Even more, we have:

Theorem 3.23.2 (Mazur, 1977). Let E/Q be an elliptic curve. Then E(Q)tors is isomorphism to one of the following:

• Z/NZ with 1 ≤ N ≤ 12, N 6= 11, or

• Z/2Z× Z/NZ with 1 ≤ N ≤ 4.

Moreover, all of these groups occur.

(This theorem is quite hard; the proof involves constructing some modular curves and understanding
their points.)

The rank of an elliptic curve is more mysterious; for example, an open question is whether or not the
rank of E/Q can be arbitrarily large. The expected answer changes over time, and at the moment there’s no
consensus. The record is due to Elkies, who found an elliptic curve E/Qwith r ≥ 28.

The strategy of a proof is as follows. There are two ingredients:

• Show that E(K)/mE(K) is finite for some/allm ≥ 2. (This is called “weak Mordell-Weil”)

• There is a height function h : E(K)→ R≥0 satisfying:

– For any c > 0, the set {P ∈ E(K) : h(P ) ≤ c} is finite
– Fix Q ∈ E(K). There is C1 (depending on E and Q) such that h(P + Q) ≤ 2h(P ) + C1 for all
P ∈ E(K).

– Form ≥ 2 there is a constant C2 depending onm and E such that

h(mP ) ≥ m2h(P )− C2

for all P ∈ E(K).

Using these ingredients, let’s prove Mordell-Weil (Theorem 3.23.1).
By the weak Mordell-Weil, there exists a finite set S ⊆ E(K) that represents all cosets in the finite set

E(K)/mE(K). Take any point P0 ∈ E(K). Then:

• There is Q0 ∈ S such that P0 = Q0 +mP1, for P1 ∈ E(K),

• There is Q1 ∈ S such that P1 = Q1 +mP2, for P2 ∈ E(K),

• There is Q2 ∈ S such that P2 = Q2 +mP3, for P3 ∈ E(K),

and so on.
Since S is finite, there is C1 > 0 such that h(P −Q) ≤ 2h(P ) +C1 for all P ∈ E(K) and Q ∈ S. Then we

see that h(mPn+1) = h(Pn −Qn). Furthermore, the properties of the height function say

m2h(Pn+1)− C2 ≤ h(mPn+1) = h(Pn −Qn) ≤ 2h(Pn) + C1,

so in particular (sincem ≥ 2)

h(Pn+1) ≤ 1

2
h(Pn) + C.

By induction, it follows that h(Pn) ≤ 1
2nh(P0) + 2C. Then we observe that E(K) is generated by the set

A := S ∪ {P ∈ E(K) : h(P ) ≤ 2C + 1}.

(Note that Pn ∈ A for n large enough, and since Pn = Qn + mPn+1 note also that P0 is in the subgroup
generated by A; furthermore, A does not depend on the initial choice of P0.)
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Remark 3.23.3. Our hwill be explicit and the sets {P ∈ E(K) : h(P ) ≤ C} are computable. The proof shows
if we find a set of generators for E(K)/mE(K), then we can compute a set of generators of E(K). 4

Unfortunately, we don’t know how to find generators of E(K)/mE(K) in general.
Let’s fixm ≥ 2. Our goal is to show that E(K)/mE(K) is finite. Note that we have an exact sequence of

groups

0 E[m] E E 0P 7→mP

with compatible GalK = Gal(K/K) actions. Taking GalK invariants, we get an exact sequence

0 E(K)[m] E(K) E(K)P 7→mP

We remark that multiplication bym need not be surjective.
Take a point P ∈ E(K). There is Q ∈ E(K) = E such that P = mQ. Now take any σ ∈ GalK and note

that
P = σ(P ) = σ(mQ) = mσ(Q),

som(σ(Q)−Q) = P − P = O. We obtain an element

ξσ
def
= σ(Q)−Q ∈ E[m].

In other words, we get maps

ξ : GalK → E[m]

σ 7→ ξσ

Let’s discuss properties of these maps.

• For σ, τ ∈ GalK , we have

ξστ = στ(Q)−Q = σ(Q)−Q+ σ(τ(Q)−Q),

so ξστ = ξσ + σξτ .

• There exists a finite Galois extension L/K such that ξ factors through

GalK E[m]

Gal(L/K)

ξ

σ 7→σ|L ∃

(We can take L so that Q ∈ E(L) and E[m] ⊆ E(L).)

• What if we chose anotherQ′ ∈ E(K) such thatmQ′ = P ? Well,m(Q′−Q) = P −P = 0. SoQ′ = Q+a
for some a ∈ E[m]. It follows that

ξ′σ
def
= σ(Q′)−Q′ = σ(Q+ a)− (Q+ a) = ξσ + (σ(a)− a). (7)

LetK be a (perfect) field; the case whereK is a number field or local field suffices for us.
Let A be an abelian group with a GalK action that respects the group law and for each a ∈ A there exists

a finite Galois extension L/K such that Gal(K/L) fixes a. (We say that A is a (discrete) GalK-module.)
A map ξ : GalK → A is a (continuous) 1-cocycle if:

• ξστ = ξσ + σξτ for all σ, τ ∈ GalK , and

• ξ factors through Gal(L/K) for some finite Galois extension L/K.
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For example, a P ∈ E(K) gives rise to a 1-cocycle ξ : GalK → E[m].
A 1-coboundary is a ξ : GalK → A of the form σ 7→ σ(a)− a for some a ∈ A.
The first cohomology group of the GalK-module A is

H1(K,A) = H1(GalK , A) =
{1-cocycles GalK → A}

{1-coboundaries GalK → A}
.

For example, given P ∈ E(K), we get some 1-cocycles ξ which depend on a choice of Q; the cocycle ξ gives
rise to a well defined cohomology class [ξ] ∈ H1(K,E[m]) (see Equation (7)).

Group cohomology has many desirable properties:

• (Functoriality) given a homomorphism ϕ : A→ B of GalK-modules, we obtain a homomorphism

ϕ : H1(K,A)→ H1(K,B)

sending [ξ] 7→ [ϕ ◦ ξ].

• If we have an exact sequence

0 A B C 0
ϕ ψ

of GalK-modules then we obtain an exact sequence

0 AGalK BGalK CGalK H1(K,A) H1(K,B) H1(K,C)
ϕ ψ δ ϕ ψ

The map δ is called the connecting homomorphism: for c ∈ CGalK , choose b ∈ B so that ψ(b) = c; then
for any σ ∈ GalK , we have c = σ(c) = ψ(σ(b)), so ψ(σ(b)− b) = 0; it follows that σ(b)− b = ϕ(ξσ) for
a unique ξσ ∈ A. This gives a 1-cocycle ξ : GalK → A, and δ(c) = [ξ].

Remark 3.23.4. This is a special case of group cohomology for profinite groups. (As with other cohomology
theories, there are higher cohomology groups, and so on.) 4

For E/K, the exact sequence

0 E[m] E E 0P 7→mP

gives rise to the exact sequence

0 E(K)[m] E(K) E(K) H1(K,E[m]) H1(K,E) H1(K,E)P 7→mP δ P 7→mP

and hence an exact sequence

0 E(K)/mE(K) H1(K,E[m]) H1(K,E)[m] 0

The hope is to show thatH1(K,E[m]) is finite, because thenwe’d automatically conclude thatE(K)/mE(K)
is finite. The problem is that it’s infinite. So next time,we’ll construct a finite group Selm(E/K) ⊆ H1(K,E[m])
that contains the image of E(K)/mE(K).

This smaller group is obtained by considering local conditions, i.e. looking at Kv will force strong con-
ditions on the cocycles that can occur, and cut out the group Selm(E/K).
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3.24 May 5, 2020 (Number fields)
Last time we considered E/K withK a number field. Form ≥ 2, we found an exact sequence of groups

0 E(K)/mE(K) H1(K,E[m]) H1(K,E)[m] 0

We want to show E(K)/mE(K) is finite; the idea is to construct a finite group H1(K,E[m]) containing the
image.

Definition 3.24.1. A place ofK is an equivalence class of absolute values onK that do not induce the discrete
topology. 4

(An absolute value is a map | · | : K → R satisfying |x| ≥ 0, with |x| = 0 if and only if x = 0, as well as
|xy| = |x||y| and |x+ y| ≤ |x|+ |y|. Absolute values are equivalent if they induce the same topology onK.)

Let v be a place. We denote byKv the completion ofK with respect to the absolute value.
There are two kinds of places, namely:

• Archimedean: those coming from an embedding σ : K ↪→ C given by |x|v
def
= |σ(x)|, i.e. stealing it from

C,

• Non-Archimedean: those coming from a nonzero prime ideal p ⊆ OK . The localizationOK at p is a dis-
crete valuation ring, hence comeswith a valuation ordP : K � Z∪{∞}with |x|p

def
= (#OK/N(p))−ordP (x).

Non-Archimedean absolute values comewith a strong triangle inequality, which says |x+y|p ≤ max{|x|p, |y|p}.

ForK = Q, the completions are Qp and Q∞ = R. [This is Ostrowski.]
So let v be a place with an absolute value | · |v and letKv be the completion with respect to | · |v . Choose

Kv and an embeddingK ↪→ Kv . We have a map

GalKv = Gal(Kv/Kv) ↪→ Gal(K/K) = GalK
σ 7→ σ|K .

Thus we can view GalKv ⊆ GalK that is well defined up to conjugacy. We have an inertia subgroup Iv ⊆
GalKv .

For any place v, we have a commuting diagram

0 E(K)/mE(K) H1(K,E[m]) H1(K,E)[m] 0

0 E(Kv)/mE(Kv) H1(Kv, E[m]) H1(Kv, E)[m] 0

where the horizontal rows are the exact sequences discussed last time. The first vertical map comes from the
standard inclusion K ↪→ Kv and the third vertical map is given by restricting a 1-cocycle ξ : GalK → E(K)
to GalKv → E(K) ⊆ E(Kv).

We can combine these commuting diagrams to

0 E(K)/mE(K) H1(K,E[m]) H1(K,E)[m] 0

0
∏
v E(Kv)/mE(Kv)

∏
vH

1(Kv, E[m])
∏
vH

1(Kv, E)[m] 0

where the product runs over all places.
We have a map

H1(K,E[m])→
∏
v

H1(Kv, E)[m]

given by composing H1(K,E[m])→ H1(K,E)[m]→
∏
vH

1(Kv, E)[m].
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Definition 3.24.2. Them-Selmer group of E(K) is

Selm(E/K) = ker(H1(K,E[m])→
∏
v

H1(Kv, E)). 4

Observe that E(K)/mE(K) sits inside m-Selmer group. The claim is Selm(E/K) is finite; this would
imply the weak Mordell-Weil theorem.

Definition 3.24.3. The Tate-Shafarevich group of E/K is

X(E/K)
def
= ker(H1(K,E)→

∏
v

H1(Kv, E)). 4

Exercise : There is a short exact sequence

0 E(K)/mE(K) Selm(E/K) X(E/K)[m] 0

The following conjecture is very important (and very hard):

Conjecture 3.24.4. The Tate-Shafarevich group X(E/K) is finite.

This would imply, for p large enough, that Selp(E/K) ∼= E(K)/pE(K).
Let S be the (finite!) set of places v ofK such that v is Archimedean, or v|m, or E has bad reduction at v.

Lemma 3.24.5. Let v 6∈ S. Consider a 1-cocycle ξ : GalKv
→ E[m] such that [ξ] = 0 inH1(Kv, E). Then ξ(Iv) = 0.

Proof. There is Q ∈ E(Kv) such that ξσ = σQ − Q for all σ ∈ GalKv
(This is the definition of [ξ] = 0 ∈

H1(Kv, E)). Take σ ∈ Iv , and consider the reduction map

E(Kv)→ Ẽ(kv),

where kv is the residue field ofKv , and Ẽ is the reduction of E at v (which is necessarily good).
The left side E(Kv) has a GalKv action and the right side Ẽ(kv) has a Galkv action and these actions are

compatible with the reduction map.
Note that σQ and Q have the same reduction since σ ∈ Iv . Thus, ξσ = σQ − Q and O have the same

reduction. But ξσ ∈ E[m] and we have an isomorphism E[m]
∼−→ Ẽ[m] given by reduction (this uses that v

is good and v - m). It follows that ξσ = O.

Theorem 3.24.6. Them-Selmer group Selm(E/K) is finite.

Proof. For any [ξ] ∈ Selm(E/K), we have ξ : GalK → E[m] and ξ(Iv) = 0 for all v 6∈ S by Lemma 3.24.5. Let
K ′ := K(E[m]) and observe that E[m] ⊆ E(K ′). We have a homomorphism of groups

ξ′ := GalK′ → E[m]

because ξ′στ = ξ′σ + σ(ξ′τ ) = ξ′σ + ξ′τ . Let L be the subfield of K fixed by ker(ξ); note that L/K ′ is a Galois
extension with a homomorphism Gal(L/K) ↪→ E[m].

For any v 6∈ S, the action Iv

�

E[m] is trivial, because E has good reduction at v and v - m. It follows that
Iv ⊆ GalK′ . Thus, ξ′(Iv) = ξ(Iv) = 0, and hence Iv ⊆ GalL for all v 6∈ S. Thus L/K is unramified at v ∈ S
and [L : K] = [L : K ′][K ′ : K] ≤ m2[K ′ : K]. Now, we apply

Theorem 3.24.7 (Hermite-Minkowski; Proposition 4.27 in Mehrle’s 6370 notes). Given n ≥ 1 and a finite set
of places S ofK, there are only finitely many L/K of degree n that are unramified at v 6∈ S.

In our case, there are only finitely many L/K, so there are only finitely many ξ′ : GalK′ → E[m], so there
are only finitely many ξ : GalK → E[m]. Therefore, Selm(E/K) is finite.

Let us end by remarking that in the short exact sequence

0 E(K)/mE(K) Selm(E/K) X(E/K)[m] 0

the middle group Selm(E/K) is computable. On the other hand, there is no known algorithm to compute
either of the other two groups.

Next time, we’ll give a geometric description of X(E/K) and talk about heights.
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3.25 May 7, 2020 (Number fields)
Last time, we studied elliptic curves E over number fieldsK. Form ≥ 2, we have an exact sequence

0 E(K)/mE(K) Selm(K,E[m]) X(E/K)[m] 0

Here, X(E/K) is the Tate-Shafarevich group defined by X(E/K) = ker(H1(K,E) →
∏
vH

1(Kv, E)). Let’s
give a geometric description.

Definition 3.25.1. A principal homogeneous space or torsor for E/K is a nice curve C/K with a morphism
µ : C × E → C defined overK that gives a simply transitive action of E on C, i.e.

• µ(x, 0) = x for all x ∈ C

• µ(µ(x, P ), Q) = µ(x, P +Q) for x ∈ C and P,Q ∈ E

• For all x, y ∈ C there is a unique P ∈ E such that µ(x+ P ) = y.

4

Remark 3.25.2. Let C be a torsor for E/K. Then C and E are isomorphic over K, hence C is nice and has
genus 1. (The isomorphism E

∼−→ C is given by P 7→ x+ P .) 4

We say two torsors C1 and C2 of E are equivalent if there exists an isomorphism ϕ : C1
∼−→ C2 satisfying

ϕ(x+ P ) = ϕ(x) + P .
Now fix a point x0 ∈ C, and let ϕ : E

∼−→ C given by P 7→ x0 + P . For σ ∈ GalK we get another
isomorphism

σ(ϕ) : E
∼−→ C

P 7→ σ(x0) + P.

We have

ξσ := ϕ−1 ◦ σ(ϕ) : E
∼−→ E

P 7→ (σ(x0)− x0) + P.

Note that σ(x0)− x0 is the unique point Q ∈ E such that x0 +Q = σ(x0).
Exercise : The map ξ : GalK → E is a 1-cocycle.

Fact 3.25.3. The map

{torsors of E/K up to equivalence} → H1(K,E)

C 7→ [ξ]

is a bijection.

(The Weil-Châtelat group for E is the left hand side with an explicit group operation; these were studied
before group cohomology.)

Lemma 3.25.4. Let C be a torsor of E. Then C corresponds to 0 ∈ H1(K,E) in the bijection above if and only if
C(K) 6= ∅.

Proof. The forward direction proceeds as follows. The identity corresponds toE×E → E given by (P,Q) 7→
P +Q. If C is equivalent to E, then C ∼= E overK, and C(K) 6= ∅.

To prove the backwards direction, we fix x ∈ C(K). Then we get an isomorphism

ϕ : E
∼−→ C

P 7→ x+ P

is a morphism defined overK, and this is an equivalence.
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Issue in computations with H1(K,E).
LetC/K be a nice curve of genus 1. There is no known algorithm to determine ifC(K) 6= ∅ or not. (There

are conjectured ways to do this.) In particular, it’s difficult to prove that C(K) has no points. (One way to
do this is as follows: if v is a place ofK and C(Kv) 6= ∅, then C(K) = ∅.)

In light of the bijection from torsors to H1, we see that

X(E/K) = ker(H1(K,E)→
∏
v

H1(Kv, E))

corresponds to torsors C of E/K, up to equivalence, such that C(Kv) 6= ∅ for all places v ofK. ThusX can
be thought of those torsors for which there are local points but not global points.

Aside 3.25.5. Given C one can check if C(Kv) 6= ∅ for all v. For most v, reduction gives a smooth model
with points that will lift to C(Kv), by Hensel’s lemma. 4

Let [ξ] ∈ H1(K,E[m]). This gives rise to an element in H1(K,E) and hence a torsor C. Then [ξ] ∈
Selm(E/K) if and only if C(Kv) 6= ∅ for all v, and [ξ] ∈ imgE(K)/mE(K) if and only if C(K) 6= ∅.

Let’s give an overview of 2-descent via an explicit example:

Example 3.25.6 (Explicit 2-descent, i.e. m=2). Let E/Q be an elliptic curve with E[2] ⊆ E(Q). Thus

E/Q : y2 = (x− e1)(x− e2)(x− e3)

for ei ∈ K. We have E[2] = {O, (e1, 0)︸ ︷︷ ︸
=P1

, (e2, 0)︸ ︷︷ ︸
=P2

, (e3, 0)}, so E[2] = 〈P1〉 ⊕ 〈P2〉. We have

H1(Q, E[2]) ' H1(Q, 〈P1〉)×H1(Q, 〈P2〉)
' Q×/(Q×)2 ×Q×/(Q×)2.

The cocyles in H1(Q, E[2]) are homomorphisms since E[2] ⊆ E(Q).
We have

E(Q)/2E(Q) ↪→ H1(Q, E[2]) ' Q×/(Q×)2 ×Q×/(Q×)2

(x, y) 7−−−−−−−−−−−−−−→ (x− e1, x− e2)

(If x = e1 or x = e2, there’s a different description.)
Now let S = {−1, 2} ∪ {p : E has bad reduction at p}; this is a finite set. We have

E(Q)/2E(Q) ↪→ 〈S〉 × 〈S〉 ⊆ Q×/(Q×)2 ×Q×/(Q×)2.

For (a · (Q×)2, b · (Q×)2), the corresponding torsor of E/Q is

Ca,b/Q :


x− e1 = az2

1

x− e2 = bz2
2

x− e3 = abz2
3

whose projective closure defines a nice genus 1 curve in P4
Q.

For example, if y2 = x3−x = (x+1)(x−0)(x−1), we have e1 = −1 and e2 = 0. Furthermore, S = {−1, 2}
and 〈S〉 = {±1,±2} ⊆ Q×/(Q×)2. We get

E(Q)/2E(Q) ↪→ 〈S〉 × 〈S〉;

where 〈S〉×〈S〉has 16 elements. Furthermore,E[2] ⊆ E(Q)/2E(Q) embeds into {(1, 1), (2,−1), (2, 1), (1,−1)},
which has order 4.

Now we look at Ca,b/Q as defined above with a, b ∈ {±1,±2}. One can check:
Exercise : Show E(Q)/2E(Q) has order 4 by checking when Ca,b(R) 6= ∅ and Ca,b(Q2) 6= ∅.
Since E(Q)tors = E[2], we see that the rank is zero. 4
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Let’s talk a little about heights. Take a point P ∈ Pn(Q), say with P = [x0, . . . , xn]. Since Z is a UFD, we
can assume xi ∈ Z and gcd(x0, . . . , xn) = 1. (This uses Z× = {±1}.) We define the height

H(P )
def
= max{|x0, . . . , |xn|}.

For a number fieldK, this doesn’t work, becauseOK need not be a UFD, andO×K can be infinite. So we give
an alternate description:

Take any place v ofK. Choose an absolute value | · |v : K → R: if the absolute value is non-archimedean
and v corresponds to the prime ideal p ⊆ OK , we set

|x|v := (#OK/p)−ordp(x),

and if the absolute value is archimedean and v corresponds to an embedding σ : K ↪→ C, we set

|x|v = |σ(x)| ifKv = R
= |σ(x)|2 ifKv = C.

(This is technically not an absolute value, but that’s fine.)
We choose these absolute values because we have the product formula, which says for any x ∈ K×,∏

v

|x|v = 1.

Exercise : Check this forK = Q. (If you know number theory, you can prove the general case by using the
K = Q case and NK/Q(x).)

In this generality, the height function

HK([x0, . . . , xn]) =
∏
v

max{|x0|v, . . . , |xn|v},

which is well defined! (The formula above assigns to [λx0, . . . , λxn] the number∏
v

max{|x0|v, . . . , |xn|v}︸ ︷︷ ︸
=x

·
∏
v

|λ|v}︸ ︷︷ ︸
=1

,

where we have used the product formula.)

Fact 3.25.7. Let L be a finite extension ofK. Then

HL(P )
1

[L:Q] = HK(P )
1

[K:Q] .

This gives rise to a notion of absolute height H : Pn(Q) → R≥1 given by H(P ) = HK(P )
1

[K:Q] , where
P ∈ Pn(K).

Theorem 3.25.8. For any C > 0 and d > 0, the set

{P ∈ Pn(Q) : H(P ) ≤ C and [Q(P ) : Q] ≤ d}

is finite. In particular, {P ∈ Pn(K) : H(P ) ≤ C} is finite.

The (absolute logarithmic) height is h = log ◦H : Pn(Q)→ R≥0.
Let E/K be an elliptic curve and fix a nonconstant f ∈ K(E) that is even, so f(−P ) = f(P ). (For

example, take the x-coordinate of a model y2 = x3 + ax+ b.)
The height of E relative to f : E → P1

K is given by

hf : E(K)→ R≥0

P 7→ h(f(P )).

The map hf satisfies the following properties:
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• The set {P ∈ E(K) : hf (P ) ≤ C} is finite for all C.

• There is C1 > 0 such that

|hf (P +Q)− hf (P −Q)− 2hf (P )− 2hf (Q)| ≤ C1

for all P,Q ∈ E(K). (This means hf acts kind of like a quadratic form.)

• Fix Q ∈ E(K). There exists C2 > 0 such that

hf (P +Q) ≤ 2hf (P ) + C2.

• Form ≥ 2, there is C3 > 0 such that

|hf (mP )−m2hf (P )| ≤ C.

The second property uses crucially that f is even; the third and fourth properties are easy consequences of
the second.

There is a related notion of the Néron-Tate height ĥ : E(K)→ R≥0 given by

ĥ(P ) =
1

deg f
lim
m→∞

1

m2
hf (mP ).

A miraculous fact is that the limit exists and is independent of f . Furthermore, we have the properties

• ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q)

• ĥ(mP ) = m2ĥ(P )

• ĥ(P ) = 0 if and only if P is torsion.

We obtain a bilinear pairing 〈·, ·〉 : E(K)× E(K)→ R given by

〈P,Q〉 = ĥ(P +Q)− ĥ(P )− ĥ(Q)

which gives an inner product on
E(K)/E(K)tors,

which is a free abelian group in the lattice R ⊗ E(K). We may take the covolume of this lattice (i.e. the
volume of the fundamental domain), which is called the elliptic regulator, denoted RE/K .

Next time, we’ll have a computer showcase, and see the full version of the Birch and Swinnerton-Dyer
conjecture.
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3.26 May 12, 2020 (Q)
Let E be an elliptic curve over Q. We know that the group E(Q) is finitely generated! The torsion part

E(Q)tors is computable, and the rank r of E(Q) is mysterious.
Let p be a prime for which E has good reduction (i.e. good reduction over Qp). We have a finite group

E(Fp), and a number ap(E) defined by

#E(Fp) = p− ap(E) + 1.

Then Hasse proved |ap(E)| ≤ 2
√
p (Theorem 2.13.7).

In the early 1960’s, Swinnerton-Dyer used a computer to calculate some values of∏
p≤x
p good

|E(Fp)|
p

.

His initial conjecture, with Birch, was that∏
p≤x
p good

|E(Fp)|
p

∼ C(log x)r,

so we would be able to compute ranks of elliptic curves by just looking Fp-points.
Note that

|E(Fp)|
p

= 1− ap(E) · p−1 + p · (p−1)2,

which can be obtained by evaluating the familiar polynomial 1− ap(E)x+ px2 at x = 1
p .

The L-function of E
Given an elliptic curve E, we may define the L-function associated to E as a product

L(E, s)
def
=

∏
p prime

1

Pp(p−s)

where Pp(x) ∈ Z[x] is defined in the following way: Take ` 6= p, and observe that GalQp

�

V`(E). We
have a subgroup Ip ⊆ GalQp , and hence an action Gal(Fp/Fp) = GalQp/Ip

�

V`(E)Ip . In particular, there is
Frobp ∈ Gal(Fp/Fp); then

Pp(x)
def
= det(I − x · Frobp|V`(E)Ip).

Explicitly:

• If E has good reduction at p, then Pp = 1− ap(E)x+ px2

• If E has split multiplicative reduction at p, then Pp(x) = 1− x

• If E has nonsplit multiplicative reduction at p, then Pp(x) = 1 + x

• If E has additive reduction at p, then Pp(x) = 1.

Exercise : Use the Hasse bound to show L(E, s) is holomorphic for s ∈ C with Re(s) > 3/2.

Theorem 3.26.1 (Modularity). [Due to Wiles,Taylor, Breuil, Conrad, Diamond] The function L(E, s) extends to a
holomorphic function on C. In particular, the quantity ords=1L(E, s) is defined.

Conjecture 3.26.2 (Birch & Sinnerton-Dyer).

i) We have
ords=1L(E, s) = r,

where r is the rank of E.
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ii) We have

lim
s→1

L(E, s)

(s− 1)r
=
|X| · Ω ·R ·

∏
p cp

|E(Q)tors|2
,

where:

• X = X(E/Q) is the Tate-Shafarevich group (conjecturally finite),
• Ω is the real period, obtained from a minimal model y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6 via the
formula

Ω = #(connected components of E(R))×
∫
E(R)0

dx

2y + a1x+ a3
∈ R,

• R is 2r times the elliptic regulator from last class, and
• cp is the Tamagawa number, given by cp = [E(Qp) : E0(Qp)]

Note how BSD relates many constants together into an equation; it bears striking resemblance to the class
number formula from algebraic number theory (Theorem 7.13 in Mehrle’s 6370 notes), with X playing the
role of the class number.

Thus the conjecture says that the numbers ap(E) know the value of r and give a way to compute it.
You can actually compute L(E, 1): we have

L(E, s) =

∞∑
n=1

an
ns

(an ∈ Z),

so

L(E, 1) = (1 + ε)

∞∑
n=1

an
n
e−2πn/

√
N ,

where N is the conductor (some positive integer) and ε ∈ {±1} is the root number. (Both N and ε are
computable.)

If ε = −1, then L(E, 1) = 0. Then BSD predicts that E(Q) is infinite.

Example 3.26.3. Let E/Q be given by y2 + y = x3−x2. We have ∆ = 11 and r = 0. Furthermore, E(Q)tors =
{O, (0, 0), (0,−1), (1, 0), (1,−1)} ∼= Z/5Z. It turns out that R = 1, Ω = 6.34604...,

∏
p cp = 1, and L(E, 1) =

0.25384.... Thus
|X| BSD

=
L(E, 1) · |E(Q)tors|2

Ω ·R ·
∏
p cp

≈ 1.

Thus we expect X = 0. 4

Theorem 3.26.4 (Kolyvagin, 1989). If ords=1L(E, s) ≤ 1, then BSD holds andX is finite.

Theorem 3.26.5 (Gross-Zagier, 1986). Suppose ords=1L(E, s) = 1. They give a way to construct a point in E(Q)
of infinite order. See Heegner points.

Example 3.26.6. Question. Are there any right angle triangles with rational side lengths and area 101?
In other words (after projectivizing), we are searching for rational solutions to the set of equations{

a2 + b2 = c2

1
2ab = 101d2

which defines a curve C ⊆ P3
Q that is nice of genus 1. Observe that

C(Q) ⊇ {[0, 1,±1, 0], [1, 0,±1, 0]}.

Now let E/Q be the elliptic curve given by C with O = [0, 1, 1, 0]. It turns out that E is isomorphic to the
curve given by E′/Q : y2 = x3 − 1012x. It turns out that E′(Q)tors = E[2].
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Thus, there is such a triangle if and only if the rank of E′(Q) is nonzero. (In this case, ε = −1 so BSD
predicts that the rank is at least 1.)

We saw [live(!!!)] that the Mordell-Weil group E(Q) of E is Z⊕ (Z/2Z)2; the “simplest” (lowest height)
point of infinite rank is

[a, b, c] =
[267980280100

44538033219
,

44538033219

1326635050
,

2015242462949760001961

59085715923689725950

]
. 4

More generally, the congruent number problem says the following. Fix n ≥ 1 a squarefree integer. There
is a right angle triangle with rational sides and area n if and only if E has rank at least 1, where

E/Q : y2 = x3 − n2x.

This implies L(E, 1) = 0 by Theorem 3.26.4; the converse is BSD. Theorems of Tunnell, Shimura, and Wald-
spurger say that L(E, 1) = 0 if and only if the n-th term of a certain q-expansion vanishes:

Theorem 3.26.7 (Tunnell, 1983). Suppose n is an odd squarefree integer. If n is the area of a right angle triangle with
rational side lengths, then

#{(x, y, z) ∈ Z3 : n = 2x2 + y2 + 32z2} =
1

2
#{(x, y, z) ∈ Z3 : n = 2x2 + y2 + 8z2}.

The converse is true conditional on BSD.

(The point is that the condition #{(x, y, z) ∈ Z3 : n = 2x2 + y2 + 32z2} = 1
2#{(x, y, z) ∈ Z3 : n = 2x2 +

y2 + 8z2} is checkable.)
While the two concepts linked by Tunnell’s theorem are very elementary, the math used to link them

together is very modern.
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