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1 Conditional Expectation

1.1 Jan 21, 2020

[Our professor is Lionel Levine. His office MLT 438. Our TA is Hannah Cairns; we’ll meet her next week.
For the time being, Prof. Levine’s office hours are on Mondays, 2:00-3:00; Hannah’s are on Wednesdays,
3:00-5:00. Office hours start next week. Send Prof. Levine an email if you want to meet him this week.]

We will mostly follow Durrett’s Probability: theory and examples (5th edition), as well as Williams’s Proba-
bility with martingales. Topics, roughly, are:

Martingales, discrete time

e Brownian motion, continuous time. These are some kind of universal object that contains a lot of
things in it, for example:

Martingales in continuous time (and how they’re embedded in Brownian motion)
e Ergodic theory, stationary sequences

There will be problem sets, roughly one a week (due Thursdays, starting Jan 30), as well as presentations
towards the end of the semester. These will consist of 3-5 students presenting 1 topic.

Conditional expectation. (See Durrett 4.1, or Williams Ch. 9)
Let’s consider a probability space (€2, 7y, P) and a random variable X : (22, 7y) — (R, B), where B denotes
the Borel sets. Suppose that

E|X| < / | X|dP < oo.
Q

Definition 1.1.1 (Conditional expectation). Given a o-field 7 C Fy, (a version of) the conditional expectation
E(X|F) is any random variable Y satisfying:

(i) Y € mF (“Y is F-measurable”, ie. Y ~'(B) € F for every B € B)

/XdIP’:/YdIP’. A
A A

Remark 1.1.2. Note that Y is integrable, and in particular that E|Y| < E|X]. A

(if) Forany A € F,

Proof. Let A={Y >0} = {w € Q: Y(w) > 0}. Note that A =Y ~1(0,00) € F. Also, |Y| =Y 14+ (-Y)1 4.
Taking expectations, E|Y| = E(Y'14) + E((—Y)14¢). Now property (ii) of Definition 1.1.1 says

B(YLa) - |

A

Similarly, E((—Y)1 4c) < E(|X|14-). Adding these together, we obtain E|Y| < E|X]|. O

Yd]P’:/XdIP’:E(XILA).
A

Remark 1.1.3. The random variable Y, if it exists, is unique up to measure zero, that is, if Y and Y’ both
satisfy (i) and (ii), then Y = Y” a.s.. (In other words, P(Y =Y’) = 1.) A

Proof. Fixe > 0. Let A, = {Y — Y’ > ¢}. Then
/ (Y =Y')dP > eP(A.).
Aa

On the other hand,

/(Y—Y’)d}P’:/ de—/ Y’dIP:/ Xd]P—/ X dP =0.
A AL A. A A
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It follows that P(A.) = 0 for all ¢ > 0. To finish, we observe that

{Y>v}=J{yr>Y+e}=JA- = | 4>

e>0 e>0 n>1
is a countable union of measure zero sets, and P(Y > Y’) = 0. Likewise, P(Y’ > Y) = 0 as well. O
We'll use some nontrivial measure theory to prove that Y exists.

Definition 1.1.4 (Absolute continuity). Let u, v be o-finite measures on (2, 7). We say v is absolutely contin-
uous with respect to p if
wA)=0 = v(A)=0

for all A € F. We denote this by v < p. A
(Notice that this notion is asymmetric.)
Example 1.1.5. Consider:

1. Let X ~ N(0,1) and let v = vx be the distribution of X. Denote by
v(A) =P(X € A) = / e 2 dN(x),
A

where ) is the Lebesgue measure on R. Then v < ), since if A(4) = 0 then v(A) is an integral over a
measure zero set. More generally, any random variable with a density gives rise to a distribution that
is absolutely continuous with respect to A.

2. LetY ~ Be(3),s0P(Y = 0) =P(Y = 1) = 3. Then vy £ ), since vy ({0}) = 1 whereas A({0}) = 0.
More generally, any random variable with an atom gives rise to a distribution that is not absolutely
continuous with respect to A.

3. There are random variables with no atoms whose distribution is not absolutely continuous with respect
to A\ [cf. [HW 1, Ex 4]]. Indeed, let
Bn
w=> o
n>1

where the 3, ~ 2Be(3) are independent. Indeed, W is supported on the Cantor set. (Its distribution
function is the Cantor-Lebesgue function.)

A
Here’s the measure theory that will help us prove the existence of conditional expectations:

Theorem 1.1.6 (Radon-Nikodym). If v < p, then there exists f € mF with f > 0 such that

()= [ fan

forall A € F. Sometimes this is denoted f = g—z, and f is called the Radon-Nikodym derivative.

(Note that f is unique up to measure zero.)
We won’t prove this right now. (Williams manages to avoid using Theorem 1.1.6, and then uses martin-
gales to prove Theorem 1.1.6. We won't follow this route, though.)

Theorem 1.1.7. The conditional expectation Y = E(X|F) exists.
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Proof. Let us assume first that X > 0. Let 4 = P as a measure on (€2, F) (not o (!)), and for every A € F, let

v(A) = /A X dP.

Both v, ;v are measures on (£, F) and v < p. (We used nonnegativity of X to conclude that v is an hon-
est measure.) The Radon-Nikodym Theorem (Theorem 1.1.6) asserts the existence of ¥ € mJF such that
J, X dP= [,Y dPforall Ae F. This Y is (a version of) the conditional expectation E(X|F).

For general X, write X = X — X~ for nonnegative X and X . We have conditional expectations
Y1 =E(XTt|F)and Y2 =E(X|F)and Y = Y] — Vs serves as a E(X|F). O

Note in general that Y # X, because X might not be F-measurable. (Only when X is F-measurable is
Y = X possible.)

Remark 1.1.8. Let’s discuss the intuitive meaning of E(X|F). This is a random variable, not just a real num-
ber. Then, E(X|F)(w) is the best guess of the value of X (w), given all information in F. Last semester we
briefly discussed o-fields F as information, namely, as answers to yes-no questions of the form “is w € A?”,
where A € F (see [6710, Definition 2.4.6] or [6710 HW 2, Ex 2(iv)]).

Let’s consider extreme cases. We said before that if X € mF then E(X|F) = X as..

On the other hand, suppose X and F are independent. This means that o(X) and F are independent,
soP({X € B}NA) =P(X € B)P(A) forall A € F and B € B; equivalently, that X and Y are independent
random variables for all Y € mF.

If X and F are independent, E(X|F) is the constant random variable EX (a.s., of course). To see this,
observe that for any A € F,

/XdIP’:E(X]lA):(EX)(E]IA):(EX)IP(A):/(EX) dP. A
A A
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1.2 Jan 23,2020

Today we’ll connect conditional expectation to the elementary definition we learnt a long time ago.
Specifically, we’ll discuss the random variable E(X|Z), where X and Z take finitely many values, denoted
X1,...,Xmand Z, ..., Z, respectively.

Traditionally, for an event B with P(B) > 0 we have the quantity

P(ANB
P(AIB) = (MB))
Specifically, in our setting

P({X = T and Z = Z]})
P(Z = zj)

P{X = 2i}{Z = 2}) =

Thus we may define

E(X{Z = 2}) = ZwiP({X = zi}{Z = %})
Let us denote the sum above by Y;. We now define the random variable
E(X|Z)(w) o Y; wheneverw € {Z = z,}
Claim 1.2.1. The equality of random variables
E(X|Z) =E(X|o(Z)) as.
holds.

(The left side is as defined earlier, whereas the right side is in the sense of Definition 1.1.1. Recall also
thato(Z) ={{Z € B}: BC{Z,,...,Z,}} = {disjoint unions of {Z = z,}}.)

Proof of Claim 1.2.1. Note that Y = E(X|Z) is constant on each event {Z = z;}, hence
Y UY)={Z =2} = YemF.

This verifies property (i) of Definition 1.1.1. To verify property (ii), it suffices to check for A = {Z = z;} that
/ Y dP = / X dP.
A A
Since we observed Y is constant on A = {Z = z;} we have
/AYdIP — Y;P(Z = z;)

= inp({x =zil{Z = % HP(Z = z)

= inIE”({X =ux;and Z = z;})

= ixiP(X]lA =)

=E(X1,) = /AXdIP.

O

Remark 1.2.2. Recall (see e.g. [6710 HW 2, Ex 4]) thatif Y € m(c(Z)) then Y = f(Z) for some measurable
function f: R — R. In particular, E(X|Z) is a measurable function of Z. It's the best guess for X (w), given
the value of Z(w). A



Proposition 1.2.3. Some properties of E(X|F):
1. E(aX + bY|F) = aE(X|F) + bE(Y|F) as..
2. If X <Y then E(X|F) <E(Y|F) as..
3. If X, > 0and X, 1 X with EX < oo then E(X,|F) 1 E(X|F).
4. Jensen: If p: R — R is convex, E| X | < oo, and E|p(X)| < oo, then

p(E(X]F)) < E(p(X)|F)  as.

5. [HW 1, Ex 1] If Fy C Fs, then
E[E(X|F)|F2] = E(X|F1) = E[E(X|R)|F] as.,
so “the smaller sigma field wins”.
6. If X e mF,E|Y| < o0, E|XY| < o0, then

E(XY|F) = XE(Y|F) as.. 1)

(Part 6 above is often a key step in many proofs. These properties can be found in the back cover of
Williams (!).)

Proof of part 6 of Proposition 1.2.3. It’s easy to check condition (i), namely, that XE(Y|F) € mF.
To check condition (ii), we apply the usual four-step machine:
If X =15 for B € F, then for all A € F we have

/]lBE(YU-‘)d]P’:/ E(Y|]~‘)dIP>:/ Yd]P’:/ 1Y dP.
A ANB ANB A

Now if X = Zle 1p, is simple, use linearity of Equation (1).
Now if X, Y > 0 and we have a sequence of simple functions X,, T X, then by part 3 of Proposition 1.2.3
we obtain

/XIE(Y|J—') = lim [ X,E(Y|F) d]P’:lim/ X, dP = /XYdIP,
A MCT n—oo [ 4 A MCT J 4

where we applied monotone convergence theorem twice.
Finally, we may write X = X* — X~ and Y = Yt — Y~ as a difference of nonnegative functions and
apply linearity. O

As promised, let’s describe E(X | F) as orthogonal projection in L?(2, Fy, P) = {Y € mFy: EY? < 0o}
If F C Fo, then L?(Q2, F,P) is a closed subspace of the Hilbert space L*(Q, Fo, P).

Claim 1.2.4. If X € L*(Fy), then E(X|F) is the point in L?(F) closest to X.

For a [rare!] picture:
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Proof. If Z € L*(F) then
ZE(X|F) = E(ZX|F).

(Note of course that E|ZX| < EZ? + EX? < oo, so we may apply item 6 in Proposition 1.2.3.) Thus
E[ZE(X|F)] =E[E(XZ)|F] =E(XZ)

and hence
]E(Z(X - E(X\}'))) =0
E

Since L? is endowed with the inner product (X,Y) = E(XY), we have shown that Z is orthogonal to

X — E(X|F). In particular, for Y € L?(F) we have
E(X —Y)? =E(X — E(X|F))? +EZ? 2)

is minimized when Z = 0. Thus Y = E(X|F). O



2 Martingales

2.2 Jan 23,2020
Definition 2.2.1. A filtration is a sequence of o-fields (F,)n>o with Fo CF1 C F C ... A

Definition 2.2.2. A martingale (sometimes abbreviated MG) relative to a filtration (F,,), >0 is a sequence of
random variables (X,,),,>¢ satisfying for all n > 0 the conditions:

1. E|X,| < o
2. X, emF,
3. E(Xp+1]|Fn) = X, as.. A

Although we require equality in part 3 of the definition, replacing it with < gives the notion of a super-
martingale, whereas replacing it with > gives the notion of a submartingale.

Example 2.2.3. We may consider a simple random walk X,, = &+ - - 4§, for independent random variables
& with & = £1 with probability 1.
Then (X,,),>1 is a martingale relative to the filtration

fnzo—(gl,"'agn) :U(Xla"'aXn)-

This is sometimes called the natural filtration, since it’s the smallest filtration for which (X,,),>1 is a martin-
gale. (It is sometimes useful to consider filtrations other than the natural one.) [cf. [HW 1, Ex 6].] A

The first two conditions in Definition 2.2.2 are easy to check. To see the third one, observe that
E(Xn-i-l - Xn|]:n) = E(€n+l|]:n) = Efn—i-l =0
where the second last equality follows from independence of &, 1.

Example 2.2.4 (cf. [6710 HW6, Ex 2]). Let (¢,),>1 be independent with E,, = 1 foralln. Let X,, =& ... &,.
As before F,, = o(&1,...,&,) = o(Xq,...,X,) wil be the natural filtration. Then

Since X, is F,,-measurable, we obtain
E(Xn§n+1|]:n) = XnE(§n+1|]:n) = X, E&p1 = X A

Example 2.2.5. Fix X € L'(Q, F,P) and a filtration (F,,). Let X,, = E(X|F,). (There is an interpretation of
this setup in financial terms.)
We may check that
E(Xn+1Fn) = E(B(X|Fnt1)| Fn) = E(X|Fp) = X,



2.3 Jan 28,2020

[There will be office hours today from 3—4pm at 438 MLT!]
Let’s begin with another example of a martingale, which hopefully motivates the definition of sub- and
super-martingale.

Example 2.3.1 (Random walks in higher dimensions). Suppose X,, = &; +-- - +&,, where £ ~ Unif(B(0,1))
are i.i.d.. Here B(0, 1) is the unit ball in R%. Suppose also that f: R? — R is superharmonic, which means its
Laplacian is nonpositive, i.e.

d 42
det g O,

Al = 0x? — ®)

i=1
One can show that (f(X,,)),>1 is a supermartingale. (This is Durrett Exercise 5.2.2 in the 4th edition.) [See
[Durrett Exercise 5.4.3].]

We call f satisfying (3) superharmonic because if h is any harmonic function defined on the same do-
main D as f, and h = f on 9D, then f > h on D. (This follows from the minimum principle, which says
superharmonic functions attain their minimum on the boundary.) A

Lemma 2.3.2. If (X,,)>1 is a supermartingale with respect to (F,,)n>1, then for all n > m we have E(X,,|F,,) <
X, a.5..

Proof. Write n = m + k for k > 1. We have almost sure (in)equalities
]E(Xm+k|fm) = ]E(E(Xm+k|fm+k71)‘fm) < E(Xm+k71|fm)

since conditional expectation is monotone (Proposition 1.2.3, part 2). Then induction says E(X,,;x—1|F) <
X,, a.s.. O

Remark 2.3.3. Note that (X,,),,>1 is a supermartingale if and only if (—X,,),>1 is a submartingale. Further-
more, (X,,)n>1 is a martingale if and only if (X,,),>1 is both a supermartingale and submartingale. A

Doob transform.

Definition 2.3.4. The random variables (H,,),>1 are said to be predictable (with respect to a filtration (F,,)n>0)
if H, e mF,_1. A

Think of H,, as a betting strategy at time n, and think of X, as net winnings at time n if you always bet
$1. On round n, you win X,, — X,,_; if you bet $1, so in particular you win H,,(X,, — X,,_1) if you bet $H,,.
Hence, our net winnings at time n, using gambling system H, is:

Definition 2.3.5. The Doob transform of H and X is

n
def
(H-X), < Z Hp (X — Xme1).

m=1
AN

Theorem 2.3.6 (You can't beat an unfavorable game). If (X,,)n>0 is a supermartingale and (H,,)n>o is predictable
with 0 < H,, < C, i.e. nonnegative and bounded, then (H - X ), > is also a supermartingale.

Proof. We have
E((H : X)n+1 - (H : X)n’]:n> = E(H’I’L+1(XTL+1 - Xn)‘]:n) = Hn+1E(Xn+1 - Xn‘]:n) <0,
——
emFy
with the last inequality following from H,,; > 0 and E(X,,41|F,,) < E(X,|F,) by supermartingaleness. [

Stopping times.
Recall that a random variable T taking values in {0,1,2,...} U {oo} is a stopping time with respect to
F=(Fu)nsoif {T' =n} € F, forall 0 < n < oo (or if equivalently {T' < n} € F, forall 0 < n < o0).

10
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Example 2.3.7. If T'is a stopping time, the sequence H,, = L{p>n} = L{7<,_1}c € mF,_1ispredictable. A
Thus we obtain
Corollary 2.3.8. If (X,,)n>0 is a supermartingale and T is a stopping time, then (X1 an)n>0 is also a supermartingale.

(As usual, T' A n means min(7,n).) In particular, Lemma 2.3.2 says
E(X7nn) < EXrao = EXo.

We'd like to show that E(X7) < EX.

Suppose that T' < oo a.s, s0 X7an, — X7 a.s. as n — oo. Does it follow that E(Xra,) — E(X7)? Not in
general:

Example 2.3.9 (A common enemy to martingale proofs). Consider a simple random walk X,, = >""" | & for
iid. & with P(¢ = +1) = 1. Take T’ = inf{n: X,, = 1}.
We know T' < oo a.s. because simple random walks are recurrent, but also that ET" = oo. A

Martingale convergence theorem.
Let (X,,)n>0 be a supermartingale, and let

Unla,b] = #{upcrossings of [a, b] by time N}
= max{k: thereare 0 < s1 <t < 82 < tg < -+ < s < tx < N with X, < a,X;, >bfori e [k]}.

(Since supermartingales generally decrease, there shouldn’t be so many of these.)

LetY = H-X where Hy = l{x,<qyand H, = 1y, -1 x,_,<b} + L{m,_,=0,x,_,<a}- (The firstindicator
says one should keep betting if X, is below b, while the second indicator says one should start betting if X,
is below a.)

By definition,

Yy > (b - a)UN[a,b] - (XN — a)f,

where (X, —a)” = (X, — a)l{x, <a}- If (Xp)n>0 is a supermartingale, then so is (Y7,)n>0; hence EYy < 0.
Thus we arrive at the upcrossing inequality

(b — a)EUn]a,b] <E(X, —a)". 4)
Corollary 2.3.10. If (X,,)n>0 is a supermartingale bounded in L' (which means sup,, E|X,,| < o), then
P(Usola,b] = 00) = 0.
(Here, Uso[a, b] € limy_,o0 Un[a, ] € {0,1,2,... } U {+00}.)
Proof of Corollary 2.3.10. Apply monotone convergence theorem to obtain

(b — a)EUx]a,b] < |a|] + supE| X,,| < co. O

We can now state the martingale convergence theorem:

Theorem 2.3.11 (Doob’s Martingale Convergence Theorem). Let (X,,),,>0 be a supermartingale bounded in L*.
Then
P( lim X, existsin R) = 1.

n— oo

11



2.4 Jan 30,2020

We had stated the martingale convergence theorem yesterday:

Theorem 2.4.1 (Doob’s Martingale Convergence Theorem). Let (X,,),>0 be a supermartingale bounded in L*.
Then
P( lim X, exists in R) = 1.

n— oo

Proof. Let’s define the event

AY {w: X,,(w) does not converge in [—oo, co|}

= {w: liminf X,,(w) < limsup X,,(w)}
= U {liminf X, (w) < @ and limsup X,,(w) > b}.

a(,lb<el?@ call this A, p

Recall that the random variables
U, la, bl = #{upcrossings of [a, b] by time n}

are monotone increasing in n, hence converges to a limit U, [a, b] T Ux|a, b]. In Corollary 2.3.10 we showed
P(Uxla,b] = c0) = 0.
Since Ay p € {Usxola, b] = o0}, it follows that P(A, ) = 0 for all @ < b, and hence P(A) = 0.

It is left to rule out the cases that the limit is +co. Note that we may define X 4 Jim X n, Which exists
in [—00, 00]. Fatou’s lemma says

E|Xs| < liminf E|X,| < supE|X,| < co.
In particular, P(X, € R) = 1. O
We can squeeze out a little more:
Corollary 2.4.2. If (X,,)n>0 is a supermartingale with X,, > 0 for all n, then X,, - X a.s. and EX, < EX,.

Proof. Since (X,,),>0 is a supermartingale, we have EX,, < EX| for all n (e.g. by Lemma 2.3.2). Thus
sup E|X,,| < co. Then the martingale convergence theorem (Theorem 2.4.1) says X,, = X a.s.. Further-
more, Fatou says EX, < liminf EX,, <EXj. O

Example 2.4.3 (Enemy, cf. Example 2.3.9). LetY,, be a simple random walk and let 7" = inf{n: Y;, = 1}. Let
X, = Yoar. Both (Yy,),>0 and (X, )n>0 are martingales. However, they’re not bounded in L!.

It turns out that a limit X,, = X exists a.s. and in particular X, = 1 a.s.. Corollary 2.4.2 fails to hold
for (X,,)n>0, since 1 = EX, >EX, =0. A

Lemma 2.4.4. Let X = (X,,)n>0 be a martingale with | X, 41 — X,| < M < oo forall n. Let

o {lim X,, exists in R}

DY {limsup X,, = +o0 and liminf X,, = —o0}.
Then P(CU D) = 1.

(The condition |X,,+1 — X,,| < M < oo is sometimes called bounded increments. This does not imply X
is bounded in L'; a counterexample is the simple random walk. The simple random walk does not satisfy
martingale convergence, i.e. P(C) # 1, but it is recurrent and hence P(D) = 1.)

Proof. The proof is in [Durrett, Lem 4.3.1]. It’s a dense, short proof, and it’s a good exercise to decode it!
The idea is if liminf X,, > —oo then we may shift to get a nonnegative martingale, which converges
a.s.. 0

12
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Theorem 2.4.5 (Improved Borel-Cantelli Lemma 2). Let (F,,)n>0 be a filtration, and let Ay, As, ... be events

with A,, € F,,. Then
{A,io0.} = { > P(An|Fur) = oo} as..

n>1

Remark 2.4.6 (Borel-Cantelli 2). Let’s see how Theorem 2.4.5 implies the usual Borel-Cantelli 2 (cf. [6710,
Lemma 5.13.2]). If A,, are independent and > P(A4,) = oo, then P(4,|F,,—1) = P(4,). Hence P(A, i.0.) =
1. A

Proof of Theorem 2.4.5. Let

Xn = Z (]lAm - ]P)(Amu:m—l))-

m=1
We claim that this is a martingale with respect to (F,,),>1 that has bounded increments. The latter part is
easy to see; that X, is a martingale is a special case of a general recipe to construct martingales (Remark ??),
namely the case Y, = 14,,.
Since X, is a martingale we may apply Lemma 2.4.4, so P(C U D) = 1. If w € D then

I, w) =00 and Y P(Ap|Fno1)w) =

Conversely if w € C then

D la, (W) =00 <= Y P(Ap|Fm1)(w) = 0. O

Remark 2.4.7 (A general recipe to construct martingales). namely, given any sequence of random variables
Y, with E|Y,,| < oo, let

n

Xn = Z (Kn - E(Ym‘Fm—l)>~

m=1

Then X,, 11 — X,, = Y41 — E(Y,,41|F»). Conditioning both sides on F,,, the right hand side becomes zero.
It’s a common trick, given a stochastic process Y;, “in the wild”, to decompose it into a “martingale part” X,
and a “compensating term”, and analyze the two parts separately. A

Example 2.4.8 (Polya’s urn). Suppose we have a large urn with r red balls and g green balls. Start with
r = g = 1. At each time n, pick a ball uniformly at random and put it back along with an extra ball of the
same color:

i
A S
N
ul
N /u
o
\u
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This can be thought of as a model for reinforcement; once a red ball is picked, the whole model is skewed
towards redness. Let

def #{red balls at time n}
So if there are i green balls and j red balls at time n, then

X

j+1 . L
Xpi1 = {¢+j+1 with probability ; +

771 with probability —5

We can compute
Jj+1 J i Ji+j+1)

(X411 Fn) i+j4+1li+j i+j+1li+j (i+5)(i+j+1)

[The above is an equality on the set {X,, = %}, but it holds for every such set and hence holds on €2.]
Thus X,, is a nonnegative martingale and X,, — X, a.s. for some limit, by Corollary 2.4.2. What is the
distribution of X,,?

We're going to prove that X, ~ Unif(0, 1). Indeed, let G,, = #{green balls at time n}. We may compute

directly that
I(n — m)!
PlGi=i+1fori=1,....,mandthen G111 = =G, =m+1 :M
(n+1)!

But this probability is independent of the red-green drawing order (e.g. the probability of drawing it green-
green-red-red is the same as red-green-red-green). It follows that

n)m!(n—m)! 1
m) (n+1)!  n+1

P(G,L=m+1):<

forallm =0,...,n. Then
Gn

n

5 <4 Unif(0, 1)

and
Gr

n+2

X, =1- 4 X ~ Unif(0, 1). A

Optional stopping/sampling.
Theorem 2.4.9 (Optional Stopping). Let (X,,),>0 be a submartingale. Let T be a stopping time which is bounded,
$00< T <n. ThenEXy < EXr < EX,.
Proof. We've seen that EX, < EX7, using the gambler strategy (Doob transform with Hy = ly<ry =

Lirsk—1} € mFp_1).
On the other hand, when we Doob transform with Hy = 1¢,~7 = 1(_1>7y € mFi—1, then

m

(H-X)m—(H-X)o=>_ Loy (X — Xp1) = X — Xram.
k=1

Since H - X is a submartingale (Theorem 2.3.6), we obtain
0<E(H-X), — (H-X)o) =E(X, — Xran) = EX,, — EXp.
O

Theorem 2.4.10 (Doob’s submartingale inequality). Let X,, be a submartingale, and let M,, = maxo<p<n X, .

Then
EX;F

P(M, > ) <

(cf. Markov, which says AP(X,, > \) <EX,, 1x, >} < EX,". Theorem 2.4.10 is a strengthening because
we are controlling the max of the X;I as opposed to just the X,,. Roughly, submartingaleness says the
maximum M, is not much larger than the current X;)

14



2.5 Feb 4, 2020

Using the 7-A theorem ([6710, Thm 1.2.11]) would've made [HW 1, Ex 2] easier. As a reminder, this states

that if A C F is a w-system contained in a o-field, and £ is a A\-system with A C £ C F, then o(A) C L. (So

for [HW 1, Ex 2], the claim is that £ %' {Ae F:E(X14) =E(Y14)} really is a A-system.)

We stated Doob’s submartingale inequality last time:

Theorem 2.5.1 (Doob’s submartingale inequality). Let X,, be a submartingale, and let M, = maxo<p<, X, .

Then Ex+
P(M, > )) < )\” )

Proof. Consider the stopping time T 2 min{k: X > Aork = n}. Let A def {M, > X} ={Xr > A}. So

Markov ([6710, Lem 3.8.4]) gives
AP(A) <E(X7la).

Furthermore, 7" is bounded, so optional stopping (Theorem 2.4.9) says EX,, > EX7y > EXj. Since
EXr =E(X7la+ Xrlae) =EX7ls +EX, 14,
the fact that EXp < EX,, implies
MP(A) <EX7la <EX, —EX,14 =EX,14 <EX. O

Corollary 2.5.2 (Kolmogorov maximal inequality, cf. [6710, Thm 7.25.5]). Let S,, = &1 + - - - + &, where &; are
independent and E¢; = 0, E€2 = 02 < oo for all i. Then

var(Sy)
P > < .
(lglggn ISk 2 y) < 2

Proof. The claim is that S? is a submartingale. Indeed,
E(Sp 1| Fn) = E(Sn1|Fn)? =55 as.,

by conditional Jensen (Proposition 1.2.3, part 4). Since S? is a submartingale, we may apply Doob’s sub-
martingale inequality (Theorem 2.5.1), and for A = 22 we obtain

P > ) =P 2> p2) < ZEn
(max |S 2 ) =P(max S >a%) < —5 22

O

In Corollary 2.3.8, we saw the following result: Let (X,,),>0 be a supermartingale, and let T’ be a stopping
time (both with respect to a filtration (F,,),>0). Then

EXtnan < EX for all n. 5)
We wondered when EX < EXj.
Theorem 2.5.3 (Doob’s optional stopping theorem). We have:
1. If T is bounded, so P(T > k) = 0 for some k € N, then EX1 < EX,.
2. If X is bounded, so | X,,| < k forall n, and P(T < o0) = 1, then EXp < EX,.
3. IfET < oo and X has bounded increments (| X,,11 — X,,| < k forall n € N), then EXp < EX,.
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Proof. For part 1, apply Equation (5) forn = k. ThenT An =T.
For part 2, observe that Xrx, — X7 a.s., so EX7pa, — EX7r by bounded convergence theorem. Then
Equation (5) does the trick.

For part 3, observe that
TAn

Xran — Xo = Z(Xk — Xk-1),
k=1

SO
TAn

| X7An — Xo| < Z | Xk — Xp—1| < KT.
k=1

It follows that
|XT/\n| S |X0‘ + kTa
—_———

S

so we may apply dominated convergence to obtain EX7x, — EXr. O

Let’s remind ourselves of the counterexample, showing that EXr < EX, does not necessarily hold in
general:

Example 2.5.4 (Enemy, cf. Example 2.3.9,2.4.3). LetY,, be a simple random walk and let T = inf{n: Y,, = 1}.
Let X,, = Y, ar. [Missed this part in lecture. But I think 1 = EX7 > EX( = 0, right?] A

Branching Process
Let (Z,)n>0 denote a population at generation n, with Z; = 1 and

Z’VL
Dyl = Zfi,nﬂ forn >0,
i=1

where (& )i n>1 are 1.i.d. N-valued random variables. In particular there are numbers py, > 0 with P(¢; ,, =
k) = pi. With this setup in place, a question one could ask is whether the population will die out almost
surely or whether it has a chance of living forever.

Lemma 2.5.5. Let F,, = 0(&im)i>1,1<m<n- Lhen % is a martingale with respect to (Fy,) >0, where p = EE; .

Proof. We certainly have Z,, € mF,,. Now fix k € Nand let A;, = {Z,, = k} € mF,,. Then

k

=1

k
B(ZuialFa) L, = BZir L 17) = B( Y G
=1

So we may sum over k to get

E(Zn+1lFn) = ) E(Zutrla | Fa) =Y kula, = pZy. (6)
k=0 k=0

The last equality comes from the fact that

Z, = i kla,,
k=0

which follows from the definition of Aj,.
Equation (6) guarantees that

which proves the lemma. O
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Since ;Zﬁ > 0 is a nonnegative martingale, f—:} — W for some finite limit by the martingale convergence

theorem (Corollary 2.4.2). Note that
(2)-+(3) -
ur I

sothatEZ, = p". If u < 1, thenP(Z,, > 1) <EZ, = p™ | 0. Let e = P({Z,, = 0 eventually}). Then

e= lim P(Z, =0)= lim (1-P(Z, > 1)) =1,

n— oo n—oo

soW =0a.s..
If 1 = 1, then Z, itself is a martingale. Then Z, — W as.., and P(Z,, = W eventually) = 1. If p; =1
then Z,, = 1 for all n, and W = 1. Otherwise, p; < 1 and hence py > 0. In this case

P(Z, = kforalln > N) < P(Zy41 = k|Zn = k) P(Zn42 = k| Zns1 = k) -+ = 0.

<1, since po >0 <1, since po >0
Again,e = land W =0 as..
If ;1 > 1, define the generating function
p(t) = Zpktk~
k>0

Next lecture, we’ll prove
Theorem 2.5.6. The number e is the unique fixed point of ¢ in [0, 1).

(In particular, e # 1.)
Note that the theorem doesn’t say anything about W, and in particular this theorem is consistent with
W =0, since Z,, might be subexponential. We will later investigate the behavior of .

17



2.6 Feb 6,2020

We discussed branching processes (Z,,),>0 with Zy = 1; we saw in Lemma 2.5.5 that (Z,,/u"),>0 is a
martingale, where yi = 3, - kpy, is the mean number of offspring per individual.

We showed last time that if 4 < 1and p; < 1 thene def P({Z, = 0 eventually}) = 1. Today, we consider
the case p > 1. We may consider the generating function

o(t) = Zpktk7
k>0

so that
O'(t) = kpt* ' >0fort >0 and ¢"(t) =Y k(k—1)pgt"> > 0fort > 0.
E>1 k>2

So the function ¢ is increasing and convex; furthermore

QO(]-) = Zpk = 17

k>0

()= kpr=p>1,
k>0

»(0) =po < 1.

Note that there is a unique f € [0,1) so that p(f) = f. Existence is the intermediate value theorem on ¢’ [In
particular, ¢'(0) < 1]; uniqueness is convexity.

Theorem 2.6.1 (cf. Theorem 2.5.6). The number e = P({Z,, = 0 eventually}) is equal to the fixed point f € [0, 1)
of .
Proof. Lete,, =P(Z,, =0). Thene,, T e. We have

emi1 =Y P(Zms1 =021 = k)P(Zy = k)

k>0 P

We claim that P(Z,, .1 = 0|Z; = k) = ek,. This is because each of the k individuals at Z; define independent
branching processes of length m, and for Z,,;1 = 0 we need each independent branching process to go

extinct. We obtain
Em+1 = Z efnpk = ‘P(em)'
k>0

It follows that
ole) = p(limey,) =limp(e,) =lime,+1 =e.

By uniqueness of f € [0,1), it follows that either e = f ore = 1.
We rule out e = 1 as follows. Observe thateyg = P(Zy = 0) = 0 < f. Thene; = p(ep) < o(f) = f,
because ¢ is increasing. In particular, by induction we have e,, < f for all m. It follows that e < f. O

We can understand the situtation better using martingales. In particular, recall (by Lemma 2.5.5) that
(Zy /1) n>0 is a nonnegative martingale, hence converges

Zn,
— =W as,
1

by Corollary 2.4.2. Inthe case n < 1, thene = 1and W = 0O a.s.. The question, which motivates the following
martingale theory, is:

Question 2.6.2. If ;1 > 1 is it possible that P(W > 0) > 0?

18



Orthogonality of martingale increments.
Let (X,,)n>0 be a martingale with respect to a filtration (F,),>0 with EX?2 < oo for all n.

Lemma 2.6.3. Forall k < nandY € mF;, with EY? < oo, we have
E((X, — X;)Y) =0.
Proof. We have E|(X,, — X})Y| < oo by Cauchy-Schwarz. Then
E((Xn — X3)Y) = E[E((X,, — X§)Y | Fk)],
by the tower rule (cf. [HW 1, Ex 1]). Since Y € mFy,
E[E((X, — Xz)Y|Fx)] = E[Y B(X,, — X4 Fx)] = 0. O

=0as.
Example 2.6.4. Let us take Y = X; — X for some i < j < k < n. Then Lemma 2.6.3 says
E((Xn — Xi)(Xs — X;)) = 0. )

In a random walk, the increments X,, — X,,_; are independent (by definition). A special case of Equation (7),
specifically the case k =n — 1 and i = j — 1, says

E((Xa — Xoo1)(X; — X;21)) =0,

so that the increments X,, — X,,_; of any martingale are uncorrelated.

In general, independent increments implies martingaleness, which in turn implies uncorrelated incre-
ments. Although having uncorrelated increments is formally much weaker than being a martingale, it is
often simpler to verify martingaleness only to use it to say that increments are uncorrelated. A

Lemma 2.6.5 (cf. HW 3). For k < n, we have
E((X, — X&)?|Fe) = E(X2|Fe) — X7.

Martingales bounded in L2. (See Williams Ch. 12)
Let (M,,),>0 be a martingale adapted to a filtration (F,,),>0. Suppose

S TE(M, — M,_1)? < co. ®)

n>1
Theorem 2.6.6. Assume Equation (8) holds. Then:
1. sup,, EM? < oo,
2. M, converges a.s.,
3. M,, converges in L*.
Proof. For part 1, observe that

EM; =EM§ + > E(My — Mi_1)?,
k=1
since we may write M,, = My + (M; — My) + - - - + (M,, — M, _1), and the cross terms E((My, — My_1)M,)
vanish for j < k (Lemma 2.6.3). Then

EM, <EMZ + > E(My — My_1)* < oc.
k>1

Observe also that
sup E|M,,| < sup(EM2)'/? < oo
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by part 1, so the martingale convergence theorem (Theorem 2.4.1) applies and says
M, - M., as.
for some finite limit M.,. Then Fatou says
E(M,, — M.)? <liminf E(M,, — M, x)?
k—o00
n+k
= liminf E(M; — M;_,)?

k—oo |
Jj=n-+1

= Z E(Mj—Mj_1)2—>0 as n — oQ.
j>n+1

where the sum tends to zero because of Equation (8). O

Theorem 2.6.7 (Doob decomposition). Any submartingale (X,,)n>0 can be uniquely written as X,, = M,, + A,
where (M) >0 is a martingale and (A,,)n >0 is an increasing predictable sequence with Ay = 0.

Proof. If we had a decomposition, we would need
E(anfnq) = ]E(Mnu:nfl) +E(An|]:n71) =M1+ Ay =Xn1— Apn1+ Ay
This would recursively define A,,, namely, we would need
Ap — An—1 = E(Xp|Fom1) — Xna. )
Since Ay = 0, this defines (A,,),>1. Then we would need
M, =X, — A,,
and we would need to check that A, is predictable and that M, is a martingale.
Since A,, — A,,—1 € mF,_1, it follows that (A, ),>¢ is predictable. Furthermore since (X,),>0 is a sub-
martingale, A, — A,_1 > 0, so A, is increasing. Then (M,,),>¢ is a martingale, because
E(Mn|Fn-1) = E(Xp[Fn-1) — Ay DX, 41— Ay =M,
O

Let (M, )n>0 be a martingale with EM?2 < oo for all n, and suppose My = 0. Then (M2),,>¢ is a sub-
martingale with Doob decomposition

where
Ay —Apr = E(M’VQL“FH) - M?L—l = E(Mi - be—l‘}—n) = ]E((Mn - Mn—l)Q‘}-n)a

with the last equality from orthogonality of increments. Note that
EM? =EA,,
e.g. by writing M,, = Z;L:1 (M; — M,_4), squaring, and taking expectations. So
supEM?2 < 0o ifand onlyif EA, < oo,
where Ay, = lim,,_, o 4, is a R>¢ U {+00}-valued random variable.
Theorem 2.6.8. The random variable lim,, o, M, (w) exists for almost every w such that A, (w) < oo, i.e.
{w: Ao (w) < 00} C {w: lim M, (w) exists} U N
for some event N with P(N) = 0.

The A,,’s of a square of a martingale are sufficiently important that they have a name and special notation,
which varies from book to book. We'll use:

Definition 2.6.9. The A, ’s are called the quadratic variation of the martingale (M,,),>0. They are denoted

(M)n)nz0 2 (An)nso- A
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2.7 Feb 11, 2020

Last time, we considered a martingale (M, ) >0 adapted to (F,,)n>0, WithEM; < oo foralln. If 3, .| B(M},—

Mj—1)? < oo, then we showed sup, EM? < oo and M, converges a.s. and in L? (Theorem 2.6.6). If
M, = Xj + -+ + X,, where the X; are independent with EX; = 0 and EX? = ¢? < oo, then Theorem 2.6.6
says:

Corollary 2.7.1. The random variable > ;| X; converges almost surely.

Proof. Note that (M,,),>1 is a martingale with respect to (X1, ..., X,,—1). Then E(M}, — My _1)? = EX}? =
07,80 Y51 E(My — Mj,—1)? < oo by assumption. Thus M,, converges a.s., by Theorem 2.6.6. O

A strengthening of Corollary 2.7.1 is the Kolmogorov 3-series theorem ([6710, Thm 7.25.6]).

Example 2.7.2. Let’s consider a supercritical branching process (so i > 1), callit Z,, = Zf;;l in- As usual
Zy, denote the population of the nth generation, and the &; ,, are independent Z-valued random variables
with P(&;., = k) = pr.. We assume = Y kpy, > 1 and 0% = var(; ) < co.
Recall that E(Z,|F,_1) = uZ,_1 (Lemma 2.5.5) and we’ll show in [HW 3] that var(Z,,|F,,_1) = 02Z,_.
So we have a martingale M,, = Z=. Does Theorem 2.6.6 apply?
N
Well, we have

1 1 1
E((Mn - Mn—l)Z‘fn—l) = W]E((Zn - ,Uon—1)2|fn—1) = anr(znurn—l) = ﬁgzzn—l-

Taking expectations,

0.2

1
2 2
E(E((My, — My—1)?*|Fn-1)) = E(/ﬂntf Zn—1> = 10,

since 1 > 1, and Theorem 2.6.6 does apply, and M,, — My a.s. and in L?. (Although we knew the a.s.
convergence from martingale convergence (Theorem 2.3.11), we now have convergence in L? as well.) Since

1=EM, = EM, — EM..,

it follows that EM, = 1, and P(M,, = 0) < 1. This answers Question 2.6.2 (!), at least under the assumption
that 02 < oco. A

What 1fZE(Mk — Mk,1)2 = 00? Let

n

(M)n =Y E((My — My_1)*|Fr-1)
k=1

denote the quadratic variation of M. It is a predictable and increasing process, so (M),, T (M) increases
to a random variable taking values in [0, .

Theorem 2.7.3 (L? strong law). We have

{{M)q =0} £ {u\]\j’;n — 0}.

(The notation A £% B means P(A N B¢) = 0.)

Example 2.7.4. Suppose M,, = X; +-- -4 X, where X; are independent mean 0 variance 1 random variables.
In this case,

<M>n = ZE(X@ =n.
k=1

So Theorem 2.7.3 says = — 0 a.s.. We knew this as the strong law of large numbers (!). A
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The intuition for Theorem 2.7.3 is roughly that (M), is the best measure for “total elapsed time”, in the
sense that the most natural measurement occurs when variance is introduced at a constant rate, and that
(M), measures the variance at n. [cf. conditional expectation as orthogonal projection (Claim 1.2.4)...7]

Proof of Theorem 2.7.3. We can assume M, = 0. We use the Kronecker Lemma, which says that if b,, € (0, c0)
with b, 1 oo, and z,, € Rsuch that 37, -, § converges, then hmn_>OQ % =0.

We set up a Doob transform. The idea is to bet f((My))~! = Hjy on round k, where f > 1, increasing,
and
/ L dt < oo
o f)?
(think, for example, f(¢) = (1 + ¢)* for a > 1). Note that H}, is predictable, so
W, =3 (My — Mi_y)
k=1

is a martingale. Furthermore,
E((Wy — Wi—1)?|Fr—1) = HFE((My — My—1)*|Fi—1) = Hf (M) — (M)j1).
The martingale (W,,),,>0 has a quadratic variation (W),, 1 (W) and
(M) ® gt

(M) — (M)p_1 B ~
Whee =2 = Hatyn)? ) =) <

E>1 E>17 (M)k—1 0

Then W,, - W4, < oo by Theorem 2.6.6. We can apply Kronecker with z,, = (M), — (M),—1 and b,, =
F({M),) 1 co. Observe that

W, = E b— converges as n — 00,
k=1

so Kronecker says #+4+2= — 0. [Proof to be finished Thursday.] O

Theorem 2.7.5 (Lévy). Let (F,,)n>0 be a filtration and let By, B, ... be a sequence of events with B,, € F,, for all
n. Let

Zn:i]lBk’ ZnTZOO

count the number of events that occur by time n. Also let
= ka, where &, =P(By|Fr—1) = E(1p, | Fi-1)
k=1
be the “running forecast of Z,,”. Then:
1 Voo <00 =22 Z < 0
2. Yy =00 =2 Z,/Y, > 1
Theorem 2.7.5 contains both Borel Cantelli lemmas as corollaries:

e (Borel-Cantelli 1): If }~, ., P(Bj) < oo, then EY, < 00, 50 Yoo < 00 a.s., and part 1 of Theorem 2.7.5
says Z, < o0 a.s., so only finitely many B}, occur.

e (Borel-Cantelli 2): If By, are independent, then ¢, = P(By) a.s.. Let F, = 0(B1,...,Bg). If ) P(By) =
0o, then Yo, = oo a.s., and part 2 of Theorem 2.7.5 says Z, = oo a.s., so infinitely many B}, occur.
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Proof of Theorem 2.7.5. Since (Z,,)n>0 is a submartingale, it has a Doob decomposition (Theorem 2.6.7)
Zn =M, + Yy,
where Y, is as given in the theorem statement. Then
(Mo = (M)n—1 = E((Myn = My—1)*|Fn1) = E((1p, — &)1 Fn1) = var(Lp,[Fa-1) = &1 = &) < &n.
Summing the inequality over n, we obtain
(Mo S &+ + 60 = Y.

Since Y, < 00 == (M) oo < 00, we conclude that lim M, exists in R, and hence lim Z,, exists in R. In other
words, Z, < oco. This is part 1 of the theorem.
Now observe that
{Yoo = 00, (M) o < 00} 2% {lim M,, exists in R},

SO
Z, M, Y,
Sn_n,n 1.
v o v, v, 0t
On the other hand,
a.s, Mn
which implies A}f—: — 0 and hence )Z,—: — 1. In total, we’ve verified part 2 of Theorem 2.7.5. O
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Let’s discuss uniform integrability:

Definition 2.8.1. A set of random variables { X },c; is uniformly integrable (U.L) if

lim sup E(|X;|1¢x,>nmy) = 0. A

M—oo 1

This condition can be hard to check with bare hands, but we’ll see some sufficient conditions later. Uni-
form integrability has nice consequences:

Remark 2.8.2. Let { X, };c; be uniformly integrable. Then for sufficiently large M, the supremum is less than
1. It follows that

SuII)E|XZ| = Slu?(]E|Xi|l{|X1;|§M} +E|Xi|1{\Xi\>M}) <M+1< .
1€ 1€

The converse does not hold, i.e. sup E|X;| < oo does not imply uniform integrability. We may take the
standard example (€2, 7, P) = ([0, 1], B, \) where A is the Lebesgue measure. Set X,, = nljy 1). Then EX,, =
1 for all n. But also

E(|X,|1qx,>m3) =1 foralln > M,

50 (Xp)nen is not uniformly integrable. (The limit is equal to 1.) AN
Let’s discuss some sulfficient conditions for uniform integrability.

Lemma 2.8.3.
1. If | X;| <Y foralli € I, and EY < oo, then {X;};c is uniformly integrable.
2. If sup;c; E|X;|? < oo for some p > 1, then {X; }ier is uniformly integrable.

Proof. We verify part 1. Observe that

E(| X1 x,>my) S EY L x,>my) SEY1iysay) — 0.
We next verify part 2. Note that if x > M > 0 then x < M 1=pgP. So
E(1Xi|Lqx,>my) < EM'"PIXPLq x;15003) < M PsupE[X;P -0 as M — oo. O
——
finite
More nontrivial than Lemma 2.8.3 is
Theorem 2.8.4. Let X € LY(Q, Fy,P). Then {E(X|F)}rcx, is uniformly integrable.

By {E(X|F)} we mean the family which contains every version of every E(X|F); here, F runs over all
sub-o-fields of Fy.
To prove Theorem 2.8.4 we use

Lemma 2.8.5. IfE|X| < oo then for all ¢ > 0 there exists § > O such that E|X |14 < € forall A € FowithP(A) <.

[There was a comment about the lemma was saying that the measure v(A) def E(]X|14) is absolutely

continuous with respect to 1 (A) f P(A).]

Proof. Otherwise, there exist events Ay, Az, ... withP(A4,)) <2 " and E|X |14, > ¢ forall n.
By Borel-Cantelli 1, P({ 4, i.0.}) = 0,s0|X|14, — 0Oa.s.. Dominated convergencesaysE|X |14, — 0. O
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Proof of Theorem 2.8.4. Fix e > 0 and choose § from Lemma 2.8.5, i.e. choose § so that
P(A)<§ = E|X|1a<e forall Ac F.
Now choose M so that -E|X| < 6. If Y is any version of E(X|F) then Jensen’s inequality says
Y <E(IX||F) as.

So
MP(Y| > M) < E|Y| < E|X],

and P(]Y| > M) < 4. Define A = {|Y| > M} € F. We have
V|14 < E(X||F) = E(|X|14|F).

Taking expectations of both sides,
E([Y[14) <E(IX|14) <e.

This verifies uniform integrability. O
Uniform integrability and L' convergence.
Theorem 2.8.6. Let X,, — X in probability. The following are equivalent:
1. { X, }n>o is uniformly integrable
2. X, = X inL' (ie, E|X,, — X| = 0)
3. E|X,|— E|X]|.
Proof. Let’s prove that item 1 implies item 2. Let
om: R — [—M, M]

-M ifx<-M
om(z)=qx ifz e [-M, M|

M ife >M
with graph that looks like
M L
-M M
ML
Note that for all Y, we have
lom (V) = Y| = ([Y] = M)* <|Y[Ly > umy- (10)

Then

[ X0 — X[ < X0 — omr (X)) + [oar (Xn) — omr(X) + Elpm (X) — X]|
(%) E(| Xl 1gx,>03) + Eloam (Xn) — oa(X)| + E(X[L1x > 03)-
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The first summand satisfies E(| X, |1{|x, |>a}) < € by uniform integrability of X,.
The third summand satisfies E(| X |1 x|>a) < € by Fatou: since |X,,, | — |X| a.s., Fatou says E|.X| <

sup,, E|X,,| < oo and its truncations E(] X |1 x|>s}) can be made as small as desired.

Finally, the second summand satisfies E|on (X)) — om(X)| < € because X, 5 X implies @ (X5,) 5

o (X), and bounded convergence theorem says E|on (X,,) — o (X)| — 0.

This completes the proof of item 1 implying item 2.

Let’s show that item 2 implies item 3. Observe that E|.X,, — X| — 0 and E|X| < E|X,, — X|+E|X,,| < cc.
Then Jensen says

Finally, let’s show item 3 implies item 1. Let 5, : [0, 00) — [0, M] be given by the graph

M-1T

M-1 M
and defined piecewise linearly by the formula
T fe<M-1
vy@)=¢(M—-—z)(M—-1) fM-1<z<M
0 ifo > M
Bounded convergence says
Eva (| Xn]) = Eva (| X])  asn — oo. (11)
Since X € L!, dominated convergence says
Eya (| X|) = E|X| asM — oo (12)

Then, for n > ny sufficiently large,

(11) (12)
]E(|Xn|]]-{\Xn|>M}) < E|Xn| —E¢M(|Xn|) < E‘X| — E¢M(|X|) +e < 2 for M > M.

(Here, the assumption E|X,,| — E|X| is also used to conclude E|X,,| — E¢p (|1 X, ]) < E|X| —Eyu (| X]) +¢.)
Take M larger if needed so that
E|X| - Evp (| X]) + € < 2

also holds for n = 1,...,ng — 1. It follows that (X,,)»>0 is uniformly integrable. O
L' convergence theorems for martingales.

Lemma 2.8.7. If (X,,),>0 is a martingale adapted to a filtration (F,,)n>0 and X,, — X in L', then X,, = E(X|F,)
foralln > 0.

Proof. For m > n we have E(X,,,|F,,) = X,,, so for A € F,, we have
E(Xpm|Fn)la = X, 14.

This gives

E(X,14) =E(X,,14) —» E(X1,4). (13)
Note that because X,, — X in L?,

[E(X,,14) —E(X14)| <E|X,,14—X14| <E|X,,—X|—=0
50 X;1la — X14in L' for all A € F. With this in mind, Equation (13) implies
E(X[14) = E(X,14)

for all A € F,,. It follows that X,, = E(X|F,) a.s., by definition of conditional expectation. O
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2.9 Feb 18, 2020

[OH will be moved to Tuesday, 3—4 at 438 MLT this week.]
Last time we showed

Lemma 2.9.1 (cf. Lemma 2.8.7). If (X,,)n>0 is a martingale adapted to a filtration (F,)n>0 and X, — X in L',
then X,, = E(X|F,) foralln > 0.

Using this, let’s prove
Theorem 2.9.2. Let (X,,)n>0 be a martingale adapted to (F,,)n>0. The following are equivalent:
1. {X,} is uniformly integrable
2. X, converges a.s. and in L
3. X, converges in L'
4. Thereis X with E|X| < oo such that X,, = E(X|F,) a.s.

Proof. We first show item 1 implies item 2. In Remark 2.8.2 we showed that uniform integrability implies
sup,, E|X,,| < co. This implies X,, — X a.s. by martingale convergence theorem. Then by Theorem 2.8.6,
X, = Xin L',
That item 2 implies item 3 is trivial.
That item 3 implies item 4 is Lemma 2.9.1.
That item 4 implies item 1 follows because {E(X|F): F C Fy} is uniformly integrable (Theorem 2.8.4).
O

Theorem 2.9.3. Let (F,,)n>0 be a filtration, and let
Foo = 0( U .7:”).
n>0
Let E|X| < co. Then E(X|F,) — E(X|Fs) a.s. and in L.
Corollary 2.9.4 (Lévy 0-1 law). If A € Fo, then E(14|F,,) — 14 a.s. and in L.

This is just a special case of Theorem 2.9.3, when X = 14 for A € F,. Although this looks innocent, it
implies the Kolmogorov 0-1 law:

Corollary 2.9.5 (Kolmogorov 0-1 law, cf. [6710, Thm 7.25.4]). Let Y1, Y5, ... be independent random variables

and let

AeTY M oV, Yiir, Visas...).

n>1
Then P(A) € {0,1}.

Proof. Let’s show that the Kolmogorov 0-1 law follows from the Lévy 0-1 law. Let 7, = o(Y1,...,Y,);
observe that F,, L 0(Y,,4+1,Yp4+2...) 2 7. Since A is independent of F,,, we obtain

E(L4lF,) = E14 = P(A).

The Lévy 0-1 law says P(A) = 14 a.s., where P(A) is interpreted as the constant function. So P(4) = 1 or
P(A) = 0. u

Proof of Theorem 2.9.3. Let X,, = E(X|F,). Note that (X,,),>0 is a uniformly integrable martingale. Thus
Theorem 2.9.2 says X,, — Xoo a.s. and in L'. It remains to show that X, = E(X|F) a.s..
Lemma 2.8.7 says X,, = E(Xo|F,,) for all n < oo. In particular, for all A € F,, we have

EX14=EX.14.

Note that U,,>0F,, is a m-system containing {2 and generating Fo.. So E(X|Fs) = E(Xo|Foo) a.s., by [HW
1, Ex2]. Then E(X | Foo) = Xoo a.s. because X € mFoo. O
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Backwards martingales.
Let (F,,)n<o be a filtration, so
o CF 2 C Fpon © Fo.

Definition 2.9.6. We say (X,,)<o is a backwards martingale if
1. E|X,| < co for all n,
2. X,, € mF, foralln,
3. E(Xp41]|Fn) = X, as, foralln < —1.

Theorem 2.9.7. For any backwards martingale (X,,)n<o, the limit

X_ o lim X,

n——0o0
exists a.s. and the convergence is in L*.

Proof. Fix a < b € R and let U,, be the number of upcrossings of [a,b] by X_, X_,,11,...,Xo. (Recall that
an upcrossing is (s, t) with s < ¢, X < a, and X; > b.)
Note that U,, T Ux, so EU,, T EUs. The upcrossing inequality says

E(XO — CL)Jr

EU,, <
Un < b—a

< oo for all n,

and in particular EU satisfies the same inequality. Thus Uy is a.s. finite, and by the same proof as the
martingale convergence theorem (Theorem 2.3.11) we obtain

P( lim X, existsinR) = 1.

n——oo

This gives the a.s. convergence.

Let’s show the L' convergence. For all n < 0 we have E(X,|F,,) = X,,, by the martingale property. In
particular the (X,,), >0 is uniformly integrable. In light of the a.s. convergence of X, the L' convergence of
the X, follows (e.g. by Theorem 2.8.6). O

Theorem 2.9.8 (Lévy’s downward theorem). Let (X,,),>0 be a backwards martingale. Let X_ o = lim,,_,_ o X,
and let F_ o = Np<oFn. Then
X_oo =E(Xo|F_s0) as..

Proof. Note that X_., € mo((Xy)k<n)) C Fy, for all n < 0. This implies that X_, € mF_o.. If A € F_;
then since X,, = E(X|F,) a.s. and A € F,, we have

EX, 14 = EXola.

On the other hand EX,,14 — EX_, 14 since X,, - X_ in L' (same yoga as in Lemma 2.8.7), and we
obtain
EX_ool4=EXyl4.

Hence X_ o, = E(Xo|F-x) a.s. O
Corollary 2.9.9. IfE|Y| < coand F,, | F_s asn | —oo, then E(Y|F,,) = E(Y|F_x).

Here, the notation F,, | F_., means that

Fo2F_12F 2>... and ﬂ]-"n:}"_oo_
n<0
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Proof. Let X,, = E(Y|F,). This is a backwards martingale, so X,, = X_., a.s.and in L' for some limit X .
It follows that
Xooo = B(Xo|F_o0) = E(E(Y|F0) | Fone) = E(Y|F_o) as.,

because the smaller o-algebra wins. O

Backwards martingales allow us to prove the sharp strong law of large numbers. We’ve seen various
weaker forms of this, such as when fourth moments are bounded [6710, Thm 5.13.4] and when second
moments are bounded (Theorem 2.7.3). But now we can prove:

Theorem 2.9.10. Let &1,&s, ... beiid. withE|¢;| < co. Let S,, = &1 + -+ + &,. Then
S,

= S K& as.
n
Proof. For n > 0, define

of Sn e
x_, def Sn def )

and F_,, = 0(Sn,Snt1,---)-

We want to show this is a backwards martingale, so we need to understand the random variable E(X_,, | F_,,_1).
Observe that
]E(gju:fnfl) = E(fk‘ffnfl) a.s.,

for all j, k < n. This is by symmetry: note that &; 4 ¢, and for N > n + 1 the random variable Sy depends
on ¢; and &, only via &; + &. Then

1 n+1
EGn+1lFon-1) = 27 > EE1Fa)
j=1

1 n+1
- E(n—f— 1 ;gj ]:_n_l)

—E ( Sn1 fnl)

n+1
= , as.

Sn+1
n+1

Let’s come back to trying to understand E(X_,|F_,,_1). Note that

EB(X_p|Fon_1) = ]E(S”"‘l_gn‘*‘l
n

Sppr 1
./—"—n_l) = T+1 B ﬁE(é.”"Fﬂ]:—n—l) = — —

We've verified that (X, ), <o is a backwards martingale. It follows that lim % exists a.s. and in L' (Theo-

rem 2.9.7). But

5,
lim =% = E(X_1|F-00) = E(&1] F-cc).

Note that lim 2= € mT, so by the Kolmogorov 0-1 law (Corollary 2.9.5) we have

P(limsn = 1:> €{0,1} forallz € R,
n

and lim % is an a.s. constant. Since E(£;|F_) is an a.s. constant, this constant must be E(¢;). In total, we’ve
verified

lim % = E(&).
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2.10 Feb 20, 2020

[I was out of town. I am grateful for Jake Wasserstein’s and Sara Venkatraman’s notes, from which I
copied.]
We begin with

Theorem 2.10.1 (Doob’s L? inequality). If M,, > 0 is a submartingale with EM? < oo for all n, then
E(max(My, My, ..., M,)?) < 4EM?,

and E(sup M?2) < 4sup EM2.

Proof. See Durrett 4.4, or Williams Ch. 14. O

Let X,, > 0 be independent random variables with EX,, = 1. Then M,, = X; ... X,, is a martingale. Note
that by the martingale convergence theorem (Theorem 2.3.11), lim M,, exists a.s. in R.

Example 2.10.2. If X,, ~ Unif(0, 2), then lim M,, = 0 a.s. (cf. [6710 HW®6, Ex 2]). VAN
When is lim M,, not equal to zero a.s.?

Theorem 2.10.3 (Kakutani). Let X,, > 0 be independent random variables with EX,, = 1 for all n. Then M,, =
X1 ...X, is a martingale. Let a,, = Ev/X,, < VEX,, = 1. (The inequality holds by Jensen.) Then:

1. If 1,51 @n > O then M,, — M, in L', and hence EM, = EM,, = 1,50 P(My, > 0) > 0.
2. IanZl Ay = O, then P<Moo = O) =1.

Proof. Let

Nn:[[1 ;' .

(2
We claim that [V, is a martingale. Indeed, we compute
1/2

X
E(Npy1]|Fn) = IE(”“Nn
Ap41

so (N,,)n>1 is a martingale. Since N,, > 0 there is an a.s. limit V,, - N.
Let’s now show the first item. Note that

M, =a?...a2N? < N2,
SO 5
EX,...EX, ¢ 1 1
EN2= " =[] 5 < — ) < oo,
" a?...a2 Z_]-:[laf <11;[ ai) >

because we assumed [[, -, a, > 0. Because M, is dominated by sup M,,, and

E(sup M,,) < E(sup N,,)? < 4supEN? < =7 <00,
Hn21 an
it follows that M,, is uniformly integrable and M,, — M, in L'.
To show item 2, we compute
My = lim M,, = lim(a?...a?)N? = lim(a? ...a?) - lim N2 = 0. O
fi
a.s. finite
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Two stopping times.

Definition 2.10.4. If (F,,),,>0 is a filtration and L is a stopping time, then o-algebra 7, consists of the sets
A such that AN {L = ¢} € Fy for all £ € N. Note that Y, € mFr. A

Theorem 2.10.5. Let (Y},),>0 be a uniformly integrable submartingale adapted to (F,,)n>o0. Let L < M be stopping
times, and assume M is finite a.s.. Then
YL < E(YM|]:L) a.s..

Proof. Let A € Fr andlet N = L1 4 + M1 4. < M. One can check that N is a stopping time.
Let X,, = Yaran. Lemma 2.10.6 will show that X, is uniformly integrable. By uniform integrability, we
know that X,, - X a.s. and EX,, — EX,, = EY),, because X, = Yas. Now,

EYny =EYnanm = EXy <EXo =EYy

with the last inequality from the forthcoming Theorem 2.10.7. Since N = M on A°and Yy = Yn14+Yn14e,
we have
E(Yr14) =E(Yn14) <E(Ypla) =EEYy|FL)la).

Let A, = {Yr — E(Ym|FL) > €} € Fr. By the above inequality,
eP(A:) <E(Yr — E(Yn|FL)) <0,
soP(A:) = 0. O

Lemma 2.10.6. If (X,,),>0 is a uniformly integrable submartingale and N is a stopping time, then (Xnan)n>0 i
uniformly integrable.

(The lemma holds even if P(IV = oo0) > 0; we use the convention that co A n = n for all n € N.)

Proof. Note that(0 < N An < n, and (X,!),>0 is also a uniformly integrable submartingale (because z — x*
is convex). We already know that

EX7

JF
NAn < EXn ’

sosupEX} . < supEX,] < oo, since (X,,),>0 is uniformly integrable. The martingale convergence theo-
rem says Xy, — Xn a.s. and E| X | < co. We obtain

E(IXNan| 11Xy nni>k}) = EQXN [ Lx x>k v<ny) + E(Xn|Lfx, 5k 85n)) <€+6,
because E| X | < oo and (X,,),>0 is uniformly integrable. O

Theorem 2.10.7. If (X,,),>0 is a uniformly integrable submartingle, with X,, — X a.s., and N is a stopping time,
then EXg < EXy < EX.

Proof. We have, for every n,
EXo <EXnan <EX,.

But X,, = X a.s.and in L' by uniform integrability, and Xnan, — X a.s. and in Lt by uniform integra-
bility guaranteed by Lemma 2.10.6. We obtain

EXy) <EXy <EX. O

De Finetti’s Theorem
LetQ = SNand F = SN, let X1, X5, ... be random variables taking values in (S, S) such that X,, (w) = wy,.
[Here, w = (w1, ws,...) € SN]

Definition 2.10.8. The random variables (X,,),,>1 is exchangeable if for all n € Nand all permutations 7 € &,,,

d
(X1, Xn) = Xy - 0 X)) A

For example, if X1, X», ... areii.d. then they are exchangeable.
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Example 2.10.9. Mint a coin that comes up heads with probability U ~ Unif(0, 1), then flip it:
P(X,=1U)=U and P(X,=0U)=1-U foralln.
Assume flips are independent conditioned on U, so that

P(Xy =by,..., Xp =bn|U) = P(X) = by |U) ... P(X,, = bp|U) = U™(1 = U)"™,

where m = b; + - - - + by,. These X, are exchangeable but not independent. A
Definition 2.10.10. The event A C Q = SV is exchangeable if TA = Aforalln € Nand all 7 € G,,. A

Define

& ' {exchangeable events A}.
Note that
& 2 T = ﬂ O’(Xn+1,Xn+2,...).
n>0

As an example,
Example 2.10.11. We have {X,, > 0foralln} € M, but{X,, > 0foralln} ¢ T. A

Theorem 2.10.12 (Hewitt-Savage 0-1 law). If (X,,)n>0 arei.id., then P(A) € {0,1} forall A € £.

Example 2.10.13. Consider the coin example from Example 2.10.9. We have U € mé&. The strong law of

large numbers says
X1 +---+ X,

n

Theorem 2.10.14 (De Finetti). If (X,)n>0 is exchangeable then conditioned on &, the random variables (X, )n>1
are i.id..

— U as.. A
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3 Brownian Motion

3.11 Feb 27,2020

Sources include Durrett Ch. 7, as well as Morters-Peres Brownian Motion and Baudoin Diffusion processes
and stochastic calculus.

Definition 3.11.1. A continuous time stochastic process is a collection of random variables (X¢);c[0,-) indexed
by t € [0, 00), all defined on the same probability space (2, F < PP).

Definition 3.11.2. The continuous time stochastic process (X;);>o has independent increments if for all ty <
t; <--- <ty therandom variables X , X;, — X3,,..., X, — X3, , are independent. A

Definition 3.11.3. The random variables (B;);>¢ is a Brownian motion if
1. It has independent increments,
2. Bsyt — Bs ~ N(0,t) for all s,t > 0,
3. t — B is almost surely continuous.
If By = 0, then we additionally say that (B;);>¢ is a standard Brownian motion. A
Thus there are two views of B(¢,w): [0,00) x £ — R. One view is through the map
t— (w— B(t,w)),
i.e. for each ¢t we have a random variable w — B(t,w). Another view is through the map
w (t = B(t,w)),

i.e. for each w € Q we have a continuous function [0, c0) — R. (Think of these functions as a squiggly graph;
for each w € © we have a bunch of squiggly graphs.)
In other words, the second viewpoint is to think of B as a function

f: Q2 — CJ0,00) = {continuous functions [0, c0) — R}.
With this viewpoint it is natural to endow C[0, co) with a o-algebra. The natural one to endow it with is
o{A,,:t€]0,0),y € R}, where A,,={fe€C[0,00): f(t) >y} (14)

Let’s pause to consider existence of brownian motions. The condition Bs;; — B, ~ N (0, t) is crucial, and
it turns out that in general, if we replace N (0, t) with other random variables they might not exist.

Lévy’s construction of Brownian motion.

The idea is to first construct standard Brownian motions B(d) for d a dyadic rational,

k
=< —:0< k<2™5.
o= {Eosizn)

We know By = 0 and B; ~ N(0, 1). We begin by linearly interpolating By and By, and then we perturb B
at 3 (in some way to be made precise later), as below:

T

BlNN(O,l) Bl

D=t
—_
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Then we perturb B at 1 and 3, as below:

T

By ~N(0,1) - 2

=]
N | =
N [JVE .
__1

To perturb it, we use a lemma (which was [6710, HW 9, Ex 1])
Lemma 3.11.4. If (X,Y) ~ N(0,02%I5) then (X +Y, X —Y) ~ N(0,20%15).

Roughly, the lemma follows from rotational invariance of the normal distribution.
Givend € D, \ D,,_1, if we've already constructed B(d') for each d’ € D,,_1, we set

B(d+2™")+B(d—-27") Zq
B(d) = 2 + 9(n+1)/27

where (Z4)qcu,, p, areiid. N(0,1) random variables. Then note that if

y_ Bld+2 )—;—B(d—? )NN(O’2-Z )

and
Ve g0 )
then Lemma 3.11.4 says
X+Y=Bd+2")-B(d) andX -Y =B(d)—-B(d-2"")

are independent N (0,2 - 34+ ) random variables.
We need to show that the limit is continuous (item 3 in Definition 3.11.3). Let

2-(+tD/27, te D, \ D,y

F,(t)=<0 te D,_1
linear otherwise
and define
B(t) =Y Fu(t).
n>0
Note that

B(d) = z”: Fr(d)
k=0

is a finite sum for each d € D,,.
Claim 3.11.5. The series defining B(t) is a.s. uniformly convergent.
Because the uniform limit of continuous functions is continuous, we’ll get P(¢ — B(¢) is continuous) = 1.

Proof of Claim 3.11.5. We have
P(|Za] > cv/n) < e (oV"/2
SO

ST P(IZa] > evn) < (2" + 1)e 2 < A"
deDy,
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for some A < 1. On the other hand
P(max |Zu] > ev/n) < 3 Pl Zd > ev/) <",
deD,
so summing over n we obtain
ZP(;I&%}j |Zn] > ev/n) < Z)\ < 0.
n>0 n>0
Borel-Cantelli now says
> i.0.) = 0.
P(élel%}: |Z,| > cv/nio.) =0
Thus with probability 1, there exists N < oo so that foralln > N the estimate || F, || < ¢y/n27"/2holds. [

So far we've defined Brownian motion on [0,1]. To extend from [0, 1] to [0, 00), we let By, Bs,... be
independent copies of B(t).c[o,1]- For t € [0,00), write t = n +u forn € Nand u € [0, 1). Set

n

B(t) = ZBz‘(l) + Bpy1(u).

i=1

After extending from the dyadics to all of R by continuity, it’s not so bad to verify that B(s + ¢) — B(s) ~
N(0,t). This completes the construction of a Brownian motion.

Definition 3.11.6. A stochastic process (X;);>¢ is called a Gaussian if for every ¢ty < --- < t,, the random
vector (X, ..., X, ) is Gaussian. A

(We say the random vector X = (X3, ..., X,,) is a multivariate distribution, so X ~ N(y, X).)
Definition 3.11.7. We say a Gaussian is centered if its mean is zero. A
Brownian motion (B;);> is a centered Gaussian process: the joint distribution of By, ..., By, is
10 0 0 O
o 110 0 0
111 0 O

B,

“0

Btl - Bt

B,
. 0
B, - :
111 1 1 Bt, = Bt

and the vector (By,, By, — By, - .., B, — B, _,) consists of independent normals.

Definition 3.11.8. We say (X;):>0 fdd (Y2)t>0 if X and Y have the same finite-dimensional distributions, i.e.
foralltg < --- < t,, we have

d
(Xtgy-- s Xt,,) = Yigy -, Y2,).
A

To specify the finite dimensional distributions of a centered Gaussian process (X;):>¢ it suffices to specify
E(X,X;) for s <t.

Remark 3.11.9. Iff X,Y are a.s. continuous random paths Q@ — C[0,00) and X Yy then X 2 Y, ie.
P(Xe€A)=P(Y € A)forall A € F/ = 0(As,) (see Equation (14)). A

Proof. This is because X Ay implies (X¢)+cq 4 (Y:)teq, which in turn implies X 1y by continuity. [
Note also that if (By);>0 is a Brownian motion and s < ¢, then
E(B;B;) = E(By(Bs + (B, — By))) = EBZ + E(B;(B; — By)) = s +0, (15)

since B, ~ N(0, s) and B, is independent of B, — B,. This leads to another equivalent definition of Brownian
motion, which we’ll explore next time.
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3.12 Mar 3, 2020

[I was out of town for this lecture. I'm grateful for Will Gao’s notes, from which I copied. I'm sorry it’s
late!]
[For [HW 4, Ex 1(e)]: change “2” to “3”, i.e. prove P(X,, > v/3nlogni.o.) = 0.]

Claim 3.12.1. Let (By);>0 be a standard Brownian motion. Let X (t) = L1 B(a?t) for fixed a > 0. Then (X (t));>0 is
a standard Brownian motion.

In this sense, Brownian motion is a random fractal (when space/time are rescaled correctly).

Proof. Note that

X(t)—X(s) = 1B(a2t) — 1B(aQs) ~ 1N(O,a2(s —t)) ~ N(0,t —s).
a a a
Also, X has independent increments (since B does) and continuous sample path (since B does). Finally,
X(0)=1B(0) =0. O

Time inversion of Brownian motion
We also have
Claim 3.12.2. Let (B(t))¢>0 be a standard Brownian motion. Let

1
o= {7070

Then (Y (t))i>0 is a standard Brownian motion.

Proof. Let’s check that Y (¢) is a Gaussian process with the same covariance as B(t). Note that

(Y(to),...,Y(tn)) = (toB(1/to), ... taB(1/tn))

has a multivariate normal distribution. Its covariance can be computed as follows: For ¢, h > 0 we have

L >tB< )) —t = E(B(t + h)B(t)),

E(Y (t + h)Y (1)) = E((t + h)B(t =

by Equation (15). Hence, (Y (t)):>0 (B (B(t))t>0. It remains to check that ¢ — Y'(¢) is a.s. continuous. For

()
t > 0, this follows since ¢ — B(t) is a.s. continuous.
Finally, because (B(t)):cq 4 (Y'(t))teq, we have
lim Y (¢) = lim B(t) = B(0) = 0.
Jim (t) Jim (t)=B(0)=0
t10 t10

)
(t

Thus Y (t) is a standard Brownian motion, as claimed. O

Notice we have proven that
lim %B(s) — limtB(1/t) = lim ¥ (t) = .
Here’s another proof of this fact. Let n = |s]. Then
B(s) = (B(1) — B(0)) + (B(2) = B(1)) 4+ -+ (B(n) = B(n— 1)) + (B(s) = B(n)) = Z1 + -+ + Zn +2Z',
iid. N(0,1)
where Z' is some independent N (0, s — n). The strong law of large numbers says

Z1+ -+ Z,
n

—0 as.,

so the claim follows by observing that Z’/n — 0.
Note that we may have instead divided by /s; here B(s)/\/s ~ N(0,1) forall s, so B(s)/+/s # 0. In fact:
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Lemma 3.12.3. We have

lims Bls) + a.s
1m su = +00 .S,
s—>oop \/g

B
lim inf (5) = —00 a.s..
§——00 \[

Proof. Let X,, = B(n) — B(n — 1) ~ N(0, 1), so the X,, are independent. Note also that B(n)/v/n ~ N(0,1).
Then,

B(n) .
P(ﬁ > Cl.O.) EH{B(”)>CIO}

1
mN>1Un>N{M>C}

_Ellmsupll{3<n)> }

n—oo

> llglﬁsolipE]].{B\;i) e}

= lirrlnﬁsolipIP’(Bi(fZ) > c)

> 0.
We may now apply Theorem 2.10.12. The event

A= {B\(FZ) >c i.o.}
is exchangeable under finite permutations of X, X»,.... Then
P(A) € {0,1}, hence P(4)=1. O

A sharp result is given by the law of the iterated logarithm [cf. [HW 4, Ex 1]]:

B
lim sup (5)

s—oo V/2sloglog s

Nondifferentiability of Brownian motion

=1.

Definition 3.12.4. We define the upper-right derivative and lower-right derivative of a function f by

D (1) 4 Supf(tJrh)—f(t)

h10 h
det . . fE+R) = f(t)
D.f(t) = hri?fonf N
respectively. A

Theorem 3.12.5. Fixt > 0. Then,
P(D*B(t) = +o00) =P(D.B(t) = —o00) = 1.
Hence P({w: = — B(z) is differentiable at x = t}) = 0.

Proof. Let X(s) = B(t+ s) — B(t). Then (X (s))s>0 is a standard Brownian motion. (This is not difficult to

see.)
Now note that (D*B)(t) = (D*X)(0), so we may assume ¢ = 0.
Consider the standard Brownian motion

R
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(Claim 3.12.2 asserts Y is indeed a standard Brownian motion.)
Then

(D*X)(0) = limsup X(h) = X(0) = lim sup X(1/n) = limsupY,, = co.

hl0 h n— o0 /TL n— 00

A similar argument holds for D,. O

Remark 3.12.6. Actually, ¢ — B(t) is a.s. Holder continuous for ¢ < 1/2 and a.s. not Holder continuous for
c>1/2. A

Theorem 3.12.7 (Paley-Wiener-Zygmund). We have
P(D*B(t) — D.B(t) = +oc forall t € [0,1]) = 1.

In particular
P({w: t — B(¢) is differentiable for some ¢ =ty € [0,1]}) = 0.

This is an uncountable union over ¢, € [0, 1], so it’s a strengthening of Theorem 3.12.5.

Example 3.12.8. Let Z; = {s > t: B(t) = B(s)} and
Ay = {t € Z;} = {there are s, | t with B(s,) = B(t) for all n}.

On Thursday we’ll show that
P(A;) =1 but 1P>< N At> =0.

t€(0,1]

For now let
L=sup{t<1: B(t) =1}

and note that
P(L<1)>P(B(1)#1)=1.

But Zp, ~ (L,1) # 0. If L < 1, then A, does not occur. [i'm very lost, sorry] JAN
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3.13 Mar 5, 2020

Let’s talk today about the Markov property of Brownian motion. (Durrett spends some time on Markov
chains, but we skipped that for now.)
Suppose (B(t)):>0 is a Brownian motion. Then for all s > 0, we may consider the process

(B(t +5) — B(s))e>0,
which is a standard Brownian motion that is independent of (B(u))o<u<s-

Definition 3.13.1. A (continuous time) filtration on (2, F, P) is a family of o-algebras (F(t))¢>o with F(t) C F
and F(s) C F(t) for s < t.
A (continuous time) stochastic process (X (t));>¢ is adapted to (F(t))i>0 if X (¢t) € mF(t) forallt > 0. A

Example 3.13.2. A standard brownian motion (B(t)):>0 is adapted to (F°(t));>0, where
Ft)=0(B(s): 0< s <t).
But we could take a slightly larger filtration: specifically, (B(t)):>o is also adapted to (F*(¢));>0, where
Fre) = F).
s>t

(Here, T can be thought of as looking infinitesimally into the future; it turns out that 7+ (¢) 2 F9(¢).)
Let’s think about how much bigger F* is. A

Theorem 3.13.3. Let X (t) = B(t + s) — B(s). Then (X (t))s>o is independent of F* (s).
(The Markov property is the same statement but with 7°(s), so this is a strengthening.)

Proof. We're going to use continuity of B. Let s, = s + 1. Then

X(t) = lim (B(sp +t) — B(sn)) as.

n— o0

which exists since ¢ — B(t) is a.s. continuous. Since X is continuous, it is enough to check that the finite
dimensional distributions of X are independent of F*(s). But now

(X(t1), ..., X(tm)) = lim (B(sp +t1) — B(sn),.-.,B(sn +tm) — B(sn)) - O

n—oo

independent of F+(s)
Anytime one proves an “independence from yourself” result, one gets a 0-1 law.

Corollary 3.13.4 (Blumenthal’s 0-1law). Let (B(t)):>0 be a Brownian motion with B(0) = x. Then P(A) € {0,1}
for A € Fr(0).

Example 3.13.5. We have
A = {w: t— B(t) is differentiable at t = 0} € F1(0).
Last time we showed P(A) = 0. A

Proof of Corollary 3.13.4. Take s = 0 in Theorem 3.13.3. Then (B(t) — B(0)):>0 is independent of F*(0). It
follows that (B(t)):>0 is independent of 7 (0).

Any event A € F+(0) satisfies A € o(B(t))i>0. It follows that A is independent of itself, and hence
P(A)?2 =P(AN A) =P(A). O
Corollary 3.13.6. For any tail event

AeT = ﬂa(B(s): s>1)
>0

we have P(A) € {0,1}.
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Proof. The inversion

Y = {gB(l/t) tif:tO> 0

is a standard Brownian motion (Claim 3.12.2). Also,
Ts = .7‘-;5 (0) |

Zero set of Brownian motion
Let B be a standard Brownian motion and let

< inf{t > 0: B(t) > 0}

o < inf{t > 0: B(t) = 0}.
One might expect o = 7, since otherwise B(t) would obtain a local max at ¢ = ¢. In fact, more is true:
Theorem 3.13.7. We have P(oc = 0) =P(r =0) = 1.

Proof. Observe that
{r=0}= ﬂ {B(e) > 0forsome0 < e < 1/n}.

n>1

In particular, {7 = 0} € F*(0). Now fix ¢t > 0 and observe that
1
P(r <t) >P(B(t) > 0) = 2

since B(t) ~ N(0,t). We conclude

| =

= =1 <t)>
P(r=0) ltlg)l]P)(T <t)>

~ N

Since {r = 0} € F*(0), Blumenthal’s 0-1 law (Corollary 3.13.4
P(r=0)=1
Now let

says P(7 = 0) € {0,1}. We conclude
/ def .
7= inf{t > 0: B(t) < 0}

and observe that P(7' = 0), either by repeating the proof or by using the scale invariance
1
(3B0) LB
a >0

for a = —1 (cf. Claim 3.12.1).
The intermediate theorem says ¢ < max(7,7’) and the maximum is zero almost surely. It follows that
P(c =0) =1. O

Example 3.13.8. Fix t and let
Zy ={s>t: B(t) = B(s)},
so that Z; is the zero set of the process
X(s) = (B(t +5) = B(t))s>o0-

Let _
At = {t S Z t}-
We claimed last time that

P(A)) =1 but 1}»( N At> =0.

te[0,1]

(So for any fixed time, A; almost surely happens, but there’s almost surely a time when it fails.)
The claim that P(A;) = 1 since P(0 = 0) = 1 for the standard brownian motion X (s). Now let

L =sup{t < 1: B(t) =0}.
Then note that P(L = 1) = P(B(1) = 0) = 0, since B(1) ~ N(0,1). On the other hand, P(A4;) = 0. A
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Right continuous filtrations

Definition 3.13.9. The filtration (F(¢))¢>o is right-continuous if

F(t)=)F(t+e)
el0
forall¢t > 0. A

For example, the filtrations (in the notation of Example 3.13.2) F? is not right continuous but 7+ is.

Lemma 3.13.10. If (F(t))i>o is right-continuous and T is a random time such that {T < t} € F(t) for all t, then T
is a stopping time for (F(t))¢>o, i.e. {T <t} € F(t) and {T =t} € F(t) for all ¢.

Proof. It's enough to prove {T' < t} € F(t),since {T =t} = {T <t} \{T < t}.

Observe that . .
{T'<t}= ﬂ {T<t+}€ ﬂ}"(t+> = F(t)
n>1 s n
with the last equality from right-continuity. O

Strong Markov Property of Brownian motion
Theorem 3.13.11. Let B be a standard Brownian motion and let T be an F*-stopping time with P(T < o) = 1.
Define
X(t) ¥ B(T +t) - B(T).
Then (X (t))¢>o is a standard Brownian motion that is independent of F*(T).

Recall that 71 (7)) is the o-algebra consisting of those sets A with AN {T =t} € F*(¢t) forall ¢.
Theorem 3.13.11 is usually false when 7' is not a stopping time:

Example 3.13.12.
1. Let T = sup{t < 1: B(t) = 0}.
2. LetT = argmax{B(t): t € [0,1]}.
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3.14 Mar 10, 2020

Last time we defined the o-algebras

Fou) = a(B(s): 0 < s < u)

Fre) =) F(u).

u>t

We asserted that
A = {t > B(t) is differentiable at 0} € F1(0) \ F°(0).

We may see this in HW 5.
We also discussed the Strong Markov Property of Brownian motion: if 7' is a stopping time (so {T' <t} €
FT(t) for all t), then we define F*(T) = {A: AN{T <t} € F*(¢t)}. Then

Theorem 3.14.1 (cf. Theorem 3.13.11). If P(T' < oo) = 1, then (B(T + t) — B(t)):>o0 is a standard Brownian
motion independent of F+(T).

Proof. We proved this for a fixed time T" = t,. To prove it in general, let T;,, = (k4 1)27", where k € Nand

k27" < T < (k+1)27".
Note that 7}, is a stopping time, because

(T, <ty = J{Tn <t k2" <T < (k+1)27"}
keN

We have T;, | T. Define the standard brownian motion
By(t) = B(t+ k27") — B(k2™");
note that this is independent of F*(k27") (this is the ordinary Markov property). Let’s define
B.(t) = B(t+1T,) — B(T,).
Let £ € F1(T,,). We want to show
P({B. € A}NE) =P({B. € A}DP(E).
On the other hand,

P({B. € Ayn&) =Y P({Br € AANEN{T, =k2™"})
N———

k>0

eFt(k2—n)
= "P(Br € APEN{T, =k27"})
k>0
=Y " P(By € AP(EN{T, =k27"})
k>0

= P(By € A)P(E).

(In the second equality we used that Bj, i By.)
We've shown that for each n, (B(t + T,,) — B(T},,)):>0 is a standard Brownian motion independent of
FH(T,) 2 FT(T). Then
B(t+1T) ~ B(T) = lim (B(t +T,) ~ B(T,))
is independent of 1 (T'). Furthermore, B is a Brownian motion because it is a pointwise limit of Brownian
motions. 0
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The Reflection Principle
Theorem 3.14.2. If (B(t)):>o0 is a standard Brownian motion and T is a stopping time, then
B*(t) = B(t)lp<ry + (2B(T) = B()) Lir>1
is also a standard Brownian motion.

A good example is the stopping time given by T' = {inf t: B(t) > y}. Then the graph of B*(t) is obtained
from that of B(t) reflected along the horizontal axis B = y starting at time 1"

Proof of Theorem 3.14.2. By the strong Markov property, (g1(t)):> ( (t+T) — B(T))i>0 is a standard
Brownian motion independent of 7+ (T'). But so is (g2(¢)):>0 def ( B(t+T)+ B(T))t>o-
For f,g € Q = C[0,00) with g(0) = 0and T": Q — [0, 00), define Glue(f, g): [0,00) — Q by

£t LST=T(f)

Glue(f,g)(t) = {f(T> + g(t -T) t>T

Now B = Glue(B, g1) and B* = Glue(B, g2), and B 4 B O
Corollary 3.14.3. Let T, = min{¢t: B(t) = y}. Then P(T,, < t) = 2P(B(t) > y).

Proof. We have .
{Ty <t} ={B(t) =2y} U{M(t) > y, B(t) <y},
where
M(t) = Jnax, B(s).
Then
{T, <t} ={B({) 2y} U{B*(t) >y} = P(T, <) =P(B(t) 2 y) + P(B"(t) > y) = 2P(B(t) > y),

where the last equality is the reflection principle (Theorem 3.14.2). O

Theorem 3.14.4 (Lévy’s Theorem). Let Y (t) = M(t) — B(t). Then (Y (t))i>0 4 (IB()])e>0-

Proof idea. We want to show that Y and | B| have the same finite dimensional distributions, and use the fact
that both Y and | B| are both a.s. continuous.
Note that

P(IB(t)| = y) = PUB(t) = y} U{B(t) < —y}) = 2P(B(t) > y) = P(T), < t) = P(M(t) > y),

with the penultimate equality from Corollary 3.14.3. This shows that M (t) 4 |B(t)|. From here we'd try to

show Y & |B|. O

Note that Brownian motion is a continuous time martingale, since for s < ¢ we have
E(B(6)|F(s)) = E(B(s) + (B(t) — B(s))|F " (s))
= B(s) + E(B(t) = B(s)|F " (s))
= B(s) +E(B(t) — B(s))
N——
~N(0,t—s)
= B(s).

Let’s develop optional stopping for continuous time martingales.
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Theorem 3.14.5. Let (X (t));>0 be a martingale adapted to (F(t))i>o, and let S < T be F-stopping times with
P(T < o0) = 1. Assume also that
P(t — X (t) is continuous) = 1

and furthermore that there exists Y with E|Y| < coand | X (t AT)| <Y a.s.. Then
E(X(T)|F(5)) = X(5).

We could prove this by adapting the proof of the discrete time case to the continuous time case; alterna-
tively, we can take discrete approximations and take a limit. We’ll adapt the second method here:

Proof of Theorem 3.14.5. Fix k € Nand let X,, = X(T A n2~%). Then (X1n)n>o0 is a discrete time martingale
adapted to
(F'(n))nen where F'(n) = F(n27").

Let S’ = [2¥S] + 1 and let 7" = [2*T'| + 1. These are discrete stopping times, and the discrete optional
stopping (Theorem 2.4.9) implies the desired claim. Details to follow on Thursday. O
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3.15 Mar 12, 2020

[Classes are online now.]
Let (B(t)):>0 be a standard Brownian motion. Fix two numbers —a,b € R and consider the stopping
time T' = inf{¢t > 0: B(t) € {—a,b}}.

Theorem 3.15.1.

1. P(B(T) =b) = 43, and

2. ET = ab.

Proof. As in the proof for the discrete case, we're going to use optional stopping (but the continuous version
in Theorem 3.14.5). For part 1, we'll consider the continuous-time martingale B(t); for part 2, we’ll consider
the continuous-time martingale B(t)?> — t. The technical part of the proof will be to verify that we can use
optional stopping. For now, let’s apply it and see what happens:

For part 1, optional stopping (Theorem 3.14.5) says EB(7T") = 0. On the other hand, for p = P(B(T') = b)

EB(T) = pb+ (1 - p)(—a),

and solving this gives p = _%5.

For part 2, optional stopping (Theorem 3.14.5) says E(B(T)* — T') = EM(T) = EM(0) = 0. This gives
ET = BB(T)? = ¥p+ (~a)*(1 - p),

where as before p = P(B(T) = b) = ;5. Solving this gives ET' = ab.
So why can we use optional stopping? The answer is Lemma 3.15.3 below. O

Wald’s Lemma for Brownian Motion
Let (B(t)):>0 be a standard brownian motion and let T" be a stopping time. Then B(¢) ~ N(0,t) implies
EB(t) = 0. When is EB(T") = 0? This is not always true, for example:

Example 3.15.2 (Enemy, cf. Examples 2.3.9,2.4.3,2.54). LetT = Ty = inf{t > 0: B(t) = 1}. Then P(T7 =
00) = 0; this follows, for example, from Lemma 3.12.3, or from using scale invariance. Note that EB(T7) =1
since B(T1) = 1 a.s.. (This is a familiar counterexample to us, from the discrete time case!) A

Similar to the discrete time case, we have
Lemma 3.15.3 (Wald’s Lemma for Brownian motion). If ET' < oo then EB(T) = 0.
Proof. We first show that ET' < oo implies the condition

there exists Y € L! such that B(tAT)<Y forallt > 0. (16)

[Apr 8: Should this say |B(t A T)| < Y?] and later that condition (16) implies EB(T") = 0. Sometimes, even
when ET" = oo we can still verify the more technical condition (16), so it's good to remember this.
Let
M, = max |B(t) — B(k)|

te(k,k+1]
and let
Y=M+- -+ Mm
= Z Lipsp—1y M.
k=1
Then

B(EAT)| < |B(1) — BO)| + |BE) —~ BQ)|+ -+ |BAT) — Bt AT))
SMO+M1+"'+M(T} =Y.
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To complete the proof of condition (16) we should check that EY" < co. To see this, note that

EY = E(1 M,
MCT’; (Lr>p—1yMy),

where 1{7~,_1} € mFT(k+ 1) and My € o(B(t) — B(k)):>k. So these random variables are independent,
and
EY =Y P(T > k— 1)EM; < (EMo)E(T + 1)
k

because EMj, = EMy, and > P(T >k — 1) <E(T + 1).

We showed last time ([Theorem 3.14.4, I think?]) that EM, = E[B(1)| = 2 < co.

That condition (16) implies EB(T") = 0 follows from optional stopping, which says EB(T") = EB(0) = 0.

O

46



3.16 Apr?7,2020

[Zoom links are on Canvas! For the next several classes, we’ll be following Morters-Peres.]

Recall the setup for Wald’s Lemma:

Let (B;):>0 be a standard Brownian motion. Then EB, = 0 for all ¢ € Rx, since B, ~ N(0,t). What
about EBr where T' is a stopping time?

We saw in Example 3.15.2 that ' = inf{¢: B, > 1} satisfies P(T' < o0) = 1 and By = 1 a.s.. Thus
EBr =14 0.

Lemma 3.16.1 (Wald’s Lemma 1, cf. Lemma 3.15.3).
1. IfET < oo then EBr = 0.
2. If Biar <Y € L' forall t > 0, then EBr = 0.
Corollary 3.16.2. If S < T are stopping times with ET < oo, then E(B(T) — B(S)|F*(S)) = 0a.s..

Proof. By the strong Markov property (Theorem 3.13.11), B(t) def (B(t) — B(S))¢>s is a standard Brownian

motion independent of (). Apply Wald’s Lemma 1 (Lemma 3.16.1) to B. O
Corollary 3.16.3. If S < T are stopping times with ET < oo, then EB(T')?> = EB(S)? + E(B(T) — B(S))?
Proof. Square both sides of the equality B(T') = B(S) + (B(T) — B(S)) to obtain

Thus, we need to check that
E[E(B(S)(B(T) — B(9)))|F*(S)] = E(B(S)(B(T) — B(S))) = 0.
Because B(9) is F1(S)-measurable, we have

E(B(S)(B(T) — B(S))|F"(5)) = B(S)E(B(T) — B(S)|F*(S)) = 0.

=0, by Corollary 3.16.2

It follows that
E[E(B(S)(B(T) — B(S)))|F*(5)] = 0.

O

Let us build towards Wald Lemma 2. We begin with:
Lemma 3.16.4. Let Q(t) = B(t)? — t. Then Q is a martingale.
Proof. Indeed, for s < ¢, we have

E(Q(t)|F*(s)) = E[B(s)” +2B(s)(B(t) — B(s)) + (B(t) — B(s))* — t[F*(s)]

We may estimate these terms separately: note that E(B(s)(B(t) — B(s))|F*(s)) = 0 and that B(t) —

B(s) ~ N(0,t — s), hence E((B(t) — B(s))?|F*(s)) =t — s. It follows that
E(Q)|F*(s)) = B(s)* + 0+ (t —s) —t = B(s)* — s = Q(s),

as desired. O

Lemma 3.16.5 (Wald Lemma 2). IfET < oo then EB(T)? = ET.

47


https://www.stat.berkeley.edu/~aldous/205B/bmbook.pdf

Proof. The idea is to use optional stopping time for the martingale Q(¢): then we’d have
E(B(T)* - T) = EQ(T) = EQ(0) = E(B(0)* — 0) = 0.

So we need to justify using optional stopping to get the second equality above.
Let T,, = inf{t: |B(t)| > n}. Then

QAT AT)|<n*+T e L

Thus, we can apply optional stopping to obtain EQ(T,, A T') = EQ(0) = 0. In particular, EB(T}, A T)? =
E(T,AT).

Note that T;, AT + T as n 1 co. Corollary 3.16.3 implies EB(T")> > EB(T,, A T)?> = E(T,, AT). Now
monotone convergence says E(T;, A T) 1 ET. This implies ET' < EB(T)?.

Fatou’s lemma gives the other direction: because B(T,, AT) — B(T'), we have

EB(T)? < liminf E(B(T, AT))? = liminf E(T,, AT) = ET. O
The Wald lemmas are useful for the Skorohod embedding:

Theorem 3.16.6 (Skorohod embedding). Let X be a real-valued random variable with EX = 0 and EX? < oc.
Then there exists a stopping time T such that X 4 B(T) and EX? = ET.

(Without the second conclusion, the result is not so hard.)
We’ll prove this next time.

Example 3.16.7. Consider the case where X takes values in {—a, b}, for —a < 0 < b. Thenif p = P(X = —a),
the condition EX = 0 forces p = aL—&-b

A stopping time T satisfying the conclusion of the Skorohod embedding theorem is T = inf{t: B; €
{—a,b}}. Note that EB(T')?> = ET by Wald Lemma 2 (Lemma 3.16.5). We'll see in [HW 5] ET' = ab; it’s easy

to check EX? = ab, so we obtain ET = EX?2. A
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3.17 Apr9, 2020

To build up to Skorohod embedding (Theorem 3.16.6), let us first discuss Dubbin’s binary splitting. (It’s

kind of like playing “20 questions” to determine a random variable.)

Given a random variable X with EX = 0, EX? < oo, let X, T px = 0, and let

g %! 1 if X > X
7 1-1 otherwise
With the information of &, we can update our “best guess” for X, by setting

X, « E(X|&) = E(X[X > Xo)Lix>x,) + EX|X < Xo)Ll{x<x,}-

We iterate this process: define F,, = o(&,...,&,—1) and X,, = E(X|F,). Then we define

g, & +1 ifX>X,
" ]1=1 otherwise

One would expect that as n — oo, our “best guesses” X, should converge to X. This is true:
Lemma 3.17.1. The random variables X,, converge to X a.s. and in L>.

Proof. Note that X,, is a martingale. Furthermore,
EX2 = E(E(X|F,)?) <EX?

because conditional expectation is projection in L? (see Claim 1.2.4, or Equation (2) in the proof)

The Lévy upward theorem says that X,, — X, = E(X|F) a.s. and in L?, by the L? martingale conver-
gence theorem ([Theorem 2.6.6?]), where F, = o (U, Fp).

The claim is that X = X a.s.. Indeed, if X (w) < X (w), then there exists N (w) such that X (w) < X,,(w)
for all n > N(w). This implies &, = —1 for all n > N(w). This sounds quite improbable:

Indeed, define Y,, = &, (X —X,,41); forn > N(w) wehaveY,, = | X—X,, ;1| Itfollows thatY, — |X—X|.
Now we compute

EY;, = E(E(&n(X — Xpg1)|Fns1))
=E( E(X — Xpt1|Fng1))
=0

Also, the family {Y},} is uniformly integrable, since
EY? =B(X — X,11)? <EX? < .
We conclude 0 = EY,, = E| X — X |, hence X = X, as.. O

Last time we stated

Theorem 3.17.2 (Skorohod embedding). Let X be a real-valued random variable with EX = 0 and EX? < oo.
Then there exists a stopping time T such that X 4 B(T) and EX? = ET.

Last time we used T, = inf{¢: B(¢) € {—a,b}} to embed the random variable

a+b

P with probability -2
R otherwise

In the general case we’ll use Dubbins binary splitting:
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Proof of Theorem 3.17.2. For round one, let —a = E(X|X < 0)and b = E(X|X > 0). LetTh = T_, 5. In [HW

5, Ex 1] we show that
— ith ility -2
ET, —ab and B(Ty) = { @ Withprobability oo
b with probability -4
and so

_J—a on{X <0}
Xl_{b on {X >0}

is equal in distribution to B(T}). Furthermore, EX? = ET}.
Now let —a; = E(X|X < X;) and b; = E(X|X > X;). We may define

_ X1 — ax OH{X <X1}
TUX +b on{X > X}

and

T = inf{t > Ty B(t) S {Xl —ay, X1+ bl}}
= inf{t >T: B(t) — B(Tl) S {—al,bl}}.

By the strong Markov property, B(t) — B(11) € {—a1, b1}, this is a standard Brownian motion independent
of F(T1). We see that B(T3) 4 X,,and

ETQ = ]ETl + a1b1
=EX? + E(Xy — X;)?
=EX3,

where the last equality is due to orthogonality of martingale increments.

In general, we obtain stopping times T, with B(T},) 4x n, and

ET, = ETy +E(Ty —T1) + - + E(T), — Th—1)
=EX]+EX> — X1)? 4+ + E(X, — X,_1)?
=EX2.

The stopping times T,, T T so ET,, T ET by the monotone convergence theorem. On the other hand, ET,, =
EX? — EX? so ET = EX? < co. (In particular, we have 7' < cc a.s..) O

Azema-Yor proof of Theorem 3.17.2. Given EX = 0 and EX? < oo, let ¢(z) = E(X|X > z) for x € R. Let
T =inf{t: M(t) > ¢(B(¢))},

where M (t) —sup{B(s): 0 < s < t}.
One can show that Er = EX?2 and B(7) < X. O

Embedding random walks in Brownian motion
Let X1, Xs,... beiid withEX; =0,EX? =1. Let S, = X1 + - + X,,.

Lemma 3.17.3. There exist stopping times Ty < Ty, < ... for standard Brownian motion (B(t));>o such that

ET,, = n, and
(S)nen = (B(T,))mnen.

Proof. Iterate the Skorohod embedding: take a stoppign time T} so that X 4B (T1) and ETy = EX? = 1.
The strong Markov property implies that (B(t) — B(T1)):>1, is a standard Brownian motion independent
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of F(11). By Skorohod, there is T5 so that X5 4 B(Ty) — B(Ty), withE(T, — T}) = EXZ = 1. In general, we
have stopping times T, with X, 4 B(T,) — B(T,,—1), with E(T,, — T,,_1) = 1. It follows that

d
(Sn)nen = (B(Tn))nen:
O
Corollary 3.17.4 (Central limit theorem for i.i.d. random variables). We have
Sn
- 4 B(1) ~ N(0,1).
Proof. We have
Ty
— =1 as
n
by the strong law of large numbers, because the increments are i.i.d. with mean 1. Then
Sn a B(Tn) _ B(n)  B(n) = B(Ty)
——
~N(0,1) error term
We will check next time that the error term converges in distribution to zero. O
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3.18 Apr 14,2020

Last time, we were in the middle of embedding random walks in Brownian motion. We were about to
prove Corollary 3.17.4:

Corollary 3.18.1 (Central limit theorem for i.i.d. random variables, cf. Corollary 3.17.4). We have
Sn

- 4 B(1) ~ N(0,1).

Proof. Last lecture we had shown

Su Su a B(n)  B(n)— B(T)

Jnvn  Jn N
—— N————
NN(()’]) error term

so it suffices to show that the error term converges to 0 in distribution. It is convenient to denote

For each fixed n, note that (W, (t));>o is a standard Brownian motion by scale invariance. Then the error

term is B(T B T
( n) - (n) =Wy =) - Wn(l)
Vn n
We claim that this converges to 0 in probability (hence, in distribution, as desired). Indeed,

{‘W(Z) _ Wn(l)‘ > e} C (Wi (t) — Wi (1)] >  for some ¢ € (1 — 5,1+ 8)} U {

T,
"—1‘>6},
n

since either T;,/n € (1 — 4,1 + 0) is close to 1 (in which case we are in the first event), or |T,,/n — 1| > § (in
which case we are in the second event).
Now we fix ¢ small to make

P{|W,,(t) — W,(1)] > e forsomet € (1 —§,14+6)})
small, and then choose n to make P(|T},/n — 1| > 0) small. O

The same idea gives a strengthening of the central limit theorem, using uniform continuity of W,, on
[0, 2]. Specifically, we get

Lemma 3.18.2. Let
S(nt)
Vv’

where S(nt) is a linear interpolation of the discrete time process S. Then

+ def
S) =

sup |S;(t) — Wy,(t)] = 0 in probability.
te[0,1]

Weak convergence in a metric space
Let X,,, X be random variables taking values in a metric space (M, d). (The key examples for our pur-
poses are R with Euclidean norm, and C'[0, 1] with sup norm.)

We want to spell out what it means for X, 4 x , called weak convergence, or convergence in distribution.
Theorem 3.18.3 (Portmanteau theorem). The following are equivalent:

1. Eg(X,) — Eg(X) for all bounded continuous g: M — R.

2. limsup,,_,.  P(X, € K) <P(X € K) forall closed K C M.
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3. liminf, o P(X,, € U) > P(X € U) forall open U C M.
4. limy, 0o P(X,, € A) =P(X € A) for all borel A C M such that P(X € JA) = 0.
5. Eg(X,,) — Eg(X) for all bounded measurable g: M — R such that P{w: g discontinuous at X (w)} = 0.

If any of these conditions hold, we write X, 4 X,

Donsker’s Theorem (on weak convergence of random walks to Brownian motion)
Let {Y,, }nen be iid. with EY,, = 0 and EY,? = 1. Let S, = Y; + - - - + Y,,. (The general case of Z,, with
possibly nonzero mean and finite variance follows by letting

Yn _ Zn - ]EZn ,
\/Var(Z,)
so the conditions on Y are without loss of generality.) Let

St) S, 4+ (t—n)Yuyy fort € [n,n+1]

be the linear interpolation of S,,. Rescale S} (t) = % for0 <t <1.

Theorem 3.18.4 (Donsker’s theorem). S} converges weakly to a standard Brownian motion (B(t))>o on (C10, 1], sup).

By definition, this means that
Eg(Sy) — Eg(B)

for all continuous bounded g: C[0,1] — R. So let F' € C|0, 1] and let g(¥') = F(1). The fact that
ES;(1) =Eg(S;) — Eg(B) =EB(1) =0

reflects the fact that a sum of mean zero random variables is still mean zero.
Now let v: R — R be any bounded continuous function, and let g(F') = v(F(1)). Then

Ev(5,(1)) = Eg(S;,) = Eg(B) = Ey(B(1)).
It follows that .S (1) 4 B(1) ~ N(0,1), which is a restatement of the central limit theorem.
Proof of Donsker’s Theorem (Theorem 3.18.4). Fix a closed subset K C C[0, 1] and an e > 0. Let
K. ={F € C[0,1]: sup|F — G| < ¢ for some G € K}.

Then P(S) € K) <P(W, € K.) +P(sup | X, — S;;| > ¢) =P(B € K.). Because

—0as n—o0

K =K.,

e>0

we have P(B € K) = lim. o P(B € K.), so

limsupP(S} € K) < limsupP(B € K,)

n—oo n—oo

for every ¢, and we see that
limsupP(S); € K) <P(B € K).

n—oo

This verifies condition 2 of the Portmanteau theorem (Theorem 3.18.3) O

Let’s consider the maximum of a random walk. As in the setup of Donsker’s theorem let Y,, be i.i.d.
random variables with EY; = 0and EY? = 1. Let S, = Y; + --- +Y,, and M,, = max(Sy, ..., S,). Then:
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Theorem 3.18.5. We have

In particular, we have the same limit regardless of the distribution of the increments Y,,.

Proof. Let~y: R — R be bounded and continuous. We aim to show that

E7<J‘i”) = Ey( max B(t)).

te[0,1]

We apply Donsker’s theorem (Theorem 3.18.4): let g: C[0, 1] — R be the function g(F') = y(max,c[o,1] F(t));
note that g is bounded since 7 is, and g is continuous because + is. Donsker (Theorem 3.18.4) says

S(tn) B . B
E7<tr€rl[g§] = ) = Ey(57) > Eg(B) = B max B(0)

(s *) =2 (s ) = ()

the first equality is because S(n) is a linear interpolation of .S,, (hence its extrema occur at the “vertices” of
the path S(n)). It follows that

Note that

4 max B(t). O
n o tefo,1]
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3.19 Apr 16,2020

We'll talk about arcsine distributions today.

Definition 3.19.1. We say the random variable X is arcsine distributed if

P(XecA

dx
)= /A my/x(l —x)
forall A C [0,1]. A

The distribution function s — P(X < s) is

/S dx 2 0 /5
———— = —arcsin+/s,
0o my/x(l—xz) 7

hence the name.

Now let

M* = argmaxse[o_l]B(s) =sup{s < 1: B(s) = M(s)},
where M (t) = maxo<s<: B(s).
Theorem 3.19.2 (The 1st arcsine law). The random variable M* is arcsine distributed.

Proof. Observe that

P(M* <s)=P(M(s) > tren[a>1<] B(s))

=P(max B(u) — B(s) > max B(t) — B(s)).
u€|[0,s] te[s,1]

We denote et ot
Bi(u) = (B(u) = B(s))ucjo.s] and  Ba(t) = (B(t) — B(s))ie[s.1);

where time in B; runs backwards from s to 0. The processes B; and B, are standard Brownian motions
which are independent from each other, by the Markov property. It follows that

P(M™ < s) = P(Mi(s) 2 Ma2(1 = 5)) = P(|B(s)| 2 [ B2(1 — 5)|)-
For (Z1, Z5) ~ N(0, I,), recall that (B;(s), Ba(s)) = (v/5Z1,v/1 — 575), and so
P(M* < s) =P(\/s5|Z1| > V1 —5|Zs]) = P(sZ} > (1 — 5)Z3).
We now apply rotational symmetry of joint normal distributions. Specificaly, let
{ 71 = Rcosf }
Zy = Rsind
for 6 uniformly distributed. With this notation, we continue the long string of equalities with

_ 4arcsin/s

P(M*s) = P(sR* > Z3) = P(s > (sin)?) o

Corollary 3.19.3. The random variable L = sup{t < 1: B(t) = 0} is also arcsine distributed.

(Note in particular that the distribution of L is symmetric about 1.)
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Proof. Let B(t) = M(t) — B(t); Lévy (Theorem 3.14.4) says that (B(t));>0 = (|B(t)|):>0. Now,

L =sup{t <1:|B(t)] =0} L sup{t < 1: B(t) =0}
=sup{t <1: M(t)=B(@)}=M".

O

Transfer of arcsine law from Brownian motion to random walks

Let S, = X1 +---+ X, where X; arei.i.d. withEX; = 0and EX? = 1. Let N,, = max{k < n: SpSx_1 <
0} be the last sign change before time n.
Theorem 3.19.4. We have

N,
—"ngsup{tgl:Bt:O}.
n

2

Hence, P(N,, < sn) — = arcsin /s as n — oo.

Proof. We use Donsker’s theorem (Theorem 3.18.4), i.e. we choose g: C[0,1] — R so that E¢(S}) — Eg(B).
The naive guess of g(F) = max{t < 1: F(t) = 0} turns out not to be continuous (if the root of F' at g(F) is
tangent to the z-axis, incrementing F(t) by € makes g jump).

Thankfully, part 5 of the Portmanteau theorem (Theorem 3.18.3) says that the converngence

Eg(S;) — Eg(B)

holds even for bounded discontinuous g, provided P(g is discontinuous at B) = 0. It turns out g satisfies
this condition: in Morters-Peres they show that for

y — {F € Co,1]: F(1) #0, and for all z € [0, 1] such that F(z) =0 for all § > 0, }7

F takes both positive and negative values in (z — §, z + 6)

we have P(B € Y) = 1. (Note that g is continuous on Y'.)
Composing with any bounded continuous v: R — R, we may apply Donsker to get

Ev(9(S7)) = En(9(B))

to conclude that ¢(S}) N g(B). Since

ss=rvo(r)  and )=,

the result follows. O

Againlet S, = X; + - - + X,, with X i.i.d. with mean 0 and variance 1. Let P, = >_}_, I{s, >0} count
the amount of time that .S is positive. Then
Theorem 3.19.5. We have

P,
ﬁgT:/\{tglzB(t)>0}

and A(t < 1: B(t) > 0) is arcsine distributed.

(Here, X is the Lebesgue measure.)
Hence

]P’(Pn < s) — 2 arcsin /s. (17)
n T

Proof outline. One can first prove Equation (17) in the special case of a simple random walk X; € {£1},
which can be handled combinatorially.

Then apply Donsker to see that T is arcsine distributed.

By Donsker again, one concludes that Equation (17) holds in general. O

56


https://www.stat.berkeley.edu/~aldous/205B/bmbook.pdf

3.20 Apr 21,2020

We have been able to embed random walks in Brownian motion (see Lemma 3.17.3). In fact, one can
embed discrete time martingales in Brownian motion.
Specifically, let (S, ), >0 be a discrete time martingale and suppose ES? < co and Sy = 0. Then:

Lemma 3.20.1. There exist stopping times0 = Ty < Ty < Ty < ... suchthat (So, S1,. .., S) 4 (B(Ty), B(T1),...,B(Ty))
for all k > 0, where (B(t)):>o is a standard Brownian motion. Moreover, E(T,,11 — Tp,|Fn) = E((Spt1 — Sn)?).

Proof. We iterate Skorohod (Theorem 3.16.6), as we did for random walks in Lemma 3.17.3. Specifically,

since S; has ES; = 0 and ES? < oo, there exists a stopping time T} with B(T}) 46, and ET, = ES?.
By the strong Markov property (Theorem 3.13.11), given 71, . . . , T;,_1, the process

E déf (B(t) — B(kal))tZTk—l

is a standard Brownian motion independent of 71 (T}_;). By Skorohod (Theorem 3.16.6), there exists T
with E(T}c) 4 Sk — Sg—1 and ET}, = E(S; — Sk,1)2. O

Our goal is to use Lemma 3.20.1 to prove a central limit theorem for certain dependent random variables.

Definition 3.20.2. A martingale difference array (X,, m)1<m<n adapted to a filtration (F,, 1 )1<m<n is a collec-
tion of random variables so that X, ,,, is F,, ,,-measurable and

]E(Xn,mu:n,m—l) =0 for all m <n.

A
So for each n, the process
Spm =Xn1+ -+ Xnm
is a martingale with respect to the filtration (F, 1 )m>1-
Now let .
Vi = Y B(X | Fnj1)
j=1
denote the quadratic variation. We have:
Theorem 3.20.3. Suppose there exists a sequence of real numbers € |, 0 such that:
1. | Xy m| < ey foralln,
2. Vi |nt) — t in probability for all t € [0, 1].
Then (Sn.nt)tefo,1] it (B())te0,1]-
(The process (Sy,nt)ie[o,1] shall be the linear interpolation of the discrete process Sy, = Xp1 + -+ +

Xom-)

Remark 3.20.4. Condition (i) can be weakened to

Z ]E[be,m]l{\xn,mx}] -0 in probability

m=1

as in Lindeberg-Feller (see [6710, Theorem 6.19.4]). In HW 6, we'll show that there exist a sequence of
independent mean 0 variance 1 random variables X,, such that

Sn —0 in probability,

Vn
where S,, = X7 + - + X,,. A
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Proof of Theorem 3.20.3. By Lemma 3.20.1, there exist stopping times T, j so that

(Spts--vsSnn) 2 (B(Tp1), ..., B(Twn)).

We claim that T}, |,,;) — ¢ in probability for ¢ € [0,1]. Indeed, let 7,, s, = Ty, — Thn,m—1 (We set Ty, o = 0),
and observe that
E(Xim‘fn,m—l) - E(Tn,mlfn,m—l)-

Summing over m, we see that

[nt]
Z E<Tn,m|]:n,m71) = Vn,Lntj — 1 in probab111ty

m=1

by condition (ii).
Now observe that

[nt] 2
]E(Tn,nt - Vn,nt)2 - E|: Z (Tn,m - E[Tn,m|fn,m71])

m=1
[nt]
=E Z (Trm — ElTnm|Frm—1])?
m=1 <E(r2, | Fn.m_1)
< Ce2EV,,, — 0,

where the last inequality follows from the chain of inequalities
E(Tgmwf”,m—l) < O]E(Xﬁ,mLFnﬂn—l) < OE?L]E(XEL,mLF”,m—l)
applied to each term in the summand. It follows that ET,, ,; — ¢ in probability, since V;, ,,+ does too. O

Before we move on from Brownian motion, let us remark that Brownian motion lives in the intersection
of three worlds (Gaussian processes, Martingales, and Markov processes); the families of random variables
living in two but not three are also of interest and include

e Fractional Brownian motions, which have some memory of the past (i.e. some “momentum”)
¢ Ornstein-Uhlenbeck processes, which have some restoring force
e Brownian bridges

e Lévy processes
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4 Ergodic Theory
4.21 Apr 23,2020

We begin by discussing stationary sequences:

Definition 4.21.1. A sequence of random variables (Xo, X1, ...) is stationary if for all £ > 0 and m > 0 we
have (Xo,Xl,...,Xm)g(Xk,Xk+1,...,Xk+m). AN

Example 4.21.2. Any set of i.i.d. random variables is stationary. A

Example 4.21.3. More generally, let (X, ),,>0 be a Markov chain with state space S (with S finite or countable)
and transition matrix (p(z, y))z.yes-
(Recall that a Markov chain is defined by

P(Xn+1 = y|fn) = IP()(n—‘,-l = y|Xn) = p(me)
foralln >0andy € S.)

Definition 4.21.4. A stationary dsitribution for p is a probability distribution 7 on S such that

> w(@)plx,y) =x(y)  forallyeS. A

€S

(This can be thought as a matrix equation, where © = (7(z)) is a row vector and p = (p(z,y))isan S x S
matrix; then 7p = 7.)

If Xy ~ 7 is a stationary distribution, then we claim X,, ~ 7 for all n > 1, and (X,,),>0 is a stationary
sequence. (In HW 6, we’ll show that there exists a sequence that is not stationary, but all marginals are
equal.)

Indeed, to show X,, ~ 7, note that

P(X;=y)=> P(X1=y,Xo=2)=»_ w(x)p(x,y) = 7(y).

zeS zeS
Then we can induct. Then, to show (X,,),,>¢ is stationary, we just note
P( Xk, .-, Xitm) = (S0, -, 8m)) = m(s0)p(S0, $1)p(81,52) - - . D(Sm—1, Sm),
using the Markov property. This holds for every k, as desired. A

Example 4.21.5. Let’s consider the Markov chain with state space S = {a, b} and
101
p - 1 0 ’
so the stationary distribution is 7(a) = 7(b) = 3. Then
(a,b,a,b,...) with probability 3
(X )HZO = . a1
(b,a,b,a,...) with probability 5

A

Definition 4.21.6. Let (€2, 7, P) be a probability space. We say ¢: Q — Q is measure-preserving if P(o = A) =
P(A) forall A € F. A

Example 4.21.7. Let 2 = R/Z be the circle and let P be Lebesgue measure. Then:
1. The rotation ¢(w) = w + 0 (mod 1) by angle # is measure preserving.

2. The map ¢(w) = 2w (mod 1) is measure preserving. (Note it’s not true that P(pA) = P(A).)
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Lemma 4.21.8. Let X € mF. If ¢ is measure-preserving, then
Xn(w) = X(p"w)
is a stationary sequence.

Proof. For any Borel set B C R™ 1!, let
A={w: (Xo(w),..., Xm(w)) € B}.
Then

P(Xg, ..., Xpem) € B) = P(w: (Xo(¢"w), ..., Xm(p"w)) € B)

A). O

Conversely, if (Y,,),, >0 is a stationary sequence, then by the Kolmogorov extension theorem ([6710, Thm.

4.10.11]) there exists a measure P on (R, BY) such that (Y},),>0 4 (X1)n>0, where X, ((wo, w1, - -.)) = wp. In
particular, if ¢(wo, w1, . .. ) is the (measure-preserving) shift map, then X,, = X, o0¢". Thus, every stationary
sequence arises from Lemma 4.21.8.

(Here, RN = {(wo,w1,...): w; € R)} and BY is the o-field generated by finite codimensional rectangles
(ag,bo] X - X (ag,bpg] X RxR x ....)

Lemma 4.21.9. If (X,,),>0 is a stationary sequence and g: RN — R is measurable, then Y, = g(X,, Xpi1,...) is
a stationary sequence.

Proof. Forany B € BY,let A = {z € RY: (g(x0,21,...),9(x1,72,...),9(x2,73,...),...) € B}. Then
P(Yo,yl,...) S B) :P((Xle,...) S A)

= P((Xk,X]H_l, .. ) S A)
P((Yk,Yk+1, .. ) S B),

hence Y is stationary. O

Example 4.21.10. Let (X,,),>0 be i.i.d. Bernoulli % random variables, and let

X x T

This is the binary expansion of w ~ Unif(0, 1). Upon shifting, we get

y=nopInal g

g(xn750n+1,~-- D) 4

which is the binary expansion of 2"w (mod 1). So this stationary sequence arises from the measure preserv-
ing map ¢(w) = 2w (mod 1) which we saw in part 2 of Example 4.21.7. A

Definition 4.21.11. Let (Q, F,P) be a probability space. Let ¢: @ — Q be a measure preserving map, so
P(p=1(4)) = P(A) forall A € F. Let X: Q@ — Rand X,,(w) = X(p"w). We say A € F is invariant if
¢~ 1(A) = Aholds P-a.s., that is to say, P(p T AAA) = 0. A

(Here, we write AAB = (AN B°) U (A° N B) to denote the symmetric difference of the two sets.)
In HW 6, we'll show that:

1. 7 = {invariant A € F} is a o-field, and
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2. X e mZ if and only if X (pw) = X (w) holds P-a.s..

Definition 4.21.12. The map ¢ is ergodic if P(A) € {0,1} for all A € Z. Similarly, we say (X, )»>0 is ergodic
if the measure-preserving map ¢ it arises from is ergodic. A

Note that if ¢ is not ergodic, then thereis A € Z with 0 < P(A4) < 1 with p(A) = Aand ¢(A°) = A°, both
holding P-a.s.. So in this sense, the map is “not irreducible”.

Example 4.21.13.

1. A sequence of i.i.d. random variables is ergodic, because for any A € 7 there exists a tail event 7" € T
such that A = T holds P-a.s.. (The Kolmogorov 0-1 law says that every A € 7 has P(A) € {0,1}.)

2. The Markov chain (X,,),>0 is ergodic if and only if it’s irreudcible: we say  communicates with y if
p™(z,y) > 0 for some n; this generates an equivalence relation on S; irreducibility of the Markov chain
means that there is only one equivalence class.

3. We will see next time that the rotation of the circle p(z) = 46 (mod 1) is ergodicif and only if 0 ¢ Q.
A
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4.22 Apr 28, 2020

Let O = RY and F = BY, and let P be a probability measure on (€2, F). Also let Xo(wo, w1, ..) = wp and
@: Q — Q be the shift map, i.e. (wo, w1,...) = (w1, w2, ...). Define X,, = Xo(¢"w) = wy,.

Definition 4.22.1. Anevent A € F is called strictly invariant if o' A = A. Anevent A € F is called invariant

if P((p~tA)AA) =0. A
In HW 6, we'll show for any invariant A € F, there is a strictly invariant A’ such that P(AAA’) = 0.
Observe that strictly invariant events are tail events: we have A = ¢7!4 = o724 = ..., and hence that

A= "A={weQ: (wn,wnt1,...) € A} € 0(Xp, Xng1,---)-

Thus
AeT=()o(Xn Xnt1,...).

n>1

Example 4.22.2. Not every tail event is invariant.

Let (£,)n>1 be independent +1 random variables with P(§,, = +1) = % Let X, = Xg+& +--+&,
(mod k), where Xy ~ Unif(Z/kZ). Then (X,,),>0 is a stationary sequence (in fact, it’s a Markov chain and
X follows a stationary distribution).

Note that the event A = {Xj is even} is not invariant, since o' A = {X; is even} # A. But if k is even,
then X is even if and only if X5, is even for all n; in other words,

A = {Xs, is even} for all n,
hence A € T. A
Theorem 4.22.3 (Birkhoff ergodic theorem). We have

Ti X(p"w) = E(X|T)(w) a.s.and in L*.

m=0

1

n

(Here, 7 is the invariant o-field.)
Example 4.22.4.

1. If X,,(w) = X(p"w) isiid., then P(A) € {0,1} for all A € Z. Thus E(X|Z) = EX a.s., and we get the
strong law of large numbers.

2. If (X,)n>0 is an irreducible Markov chain, one can prove that Z is trivial (i.e. consists of probability 0
or 1 events). If the state space S is countable, then given f: .S — R satisfying

Y f(@)lr(e) < oo,

z€eS

where 7 is the stationary distribution, then applying the ergodic theorem to stationary sequence (f (X, )n>0
we get

n—1

Y f(Xm) = E(f(X0)T)  as,

1
n m=0

time average over m

= E(f(X0)|Z)
=Ef(Xo) =) _ fla)m(z).
€S

space average over T

So the mantra of the ergodic theorem is that time averages are space averages.
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. Consider the rotation of the circle, i.e. let @ = R/Z and let p(z) = 2 + 60 (mod 1), where 6 is irrational.
We claim ¢ is ergodic, i.e. that 7 is trivial. It’s enough to show that if f € mZ then f is constant a.e..

To show this, recall that any measurable f: R/Z — R has a Fourier series
Z cre®™ R f(2) in L*(R/7Z)
kEZ
and furthermore, the ¢, are unique (by Fourier inversion). Now for f € mZ, we have

f(ﬁpl') _ Z Ck€27rik(m+0 (mod 1))
keZ

_ E Cke2ﬂ'ik(w+9)
keZ

_ Z(Cke%rin)eZﬂ'ikz )
keZ
On the other hand,
flpz) = f(z) = Z cpe’mike for all k,

so by uniqueness of Fourier coefficients we obtain

cp = cpe’™0k forall k € Z.
Since for k # 0 we have e2™% — 1 =£ ( by irrationality of 6, we see that c;, = 0 for k # 0, and hence f is
constant.

We remark that rational rotations are not ergodic: for § = § for p,q € N, we may consider the finite

union
A= e
n>0

for a little interval 1.
Let us now apply the ergodic theorem to ¢(z) =  + 6 (mod 1), where 0 is irrational. Given a Borel
set A C[0,1),let X = 14 and let X,,(w) = X (¢"w). Then

n—1
% > Xm(w) 2 E(X|T) =EX = \(4)  as, (18)

m=0

where ) is Lebesgue measure. Note that the left hand side of Equation (18)

3=

n—1

1
Z X = E#{m <n:w+mb (mod1) e A}.
m=0

In this example, the a.s. convergence in Equation (18) can be upgraded to pointwise convergence; this
is exactly the claim of Weyl’s equidistribution theorem.

A
If f: @ — Ris integrable and ¢: 2 — Q is measure-preserving, then

(¢:P)(A) = P(p™' A) = P(A),

so ¢.P = P. In particular,

| feaae= [ et = [ sa

Intuitively, ¢ “scrambles” .

The next lemma is an important step in proving the ergodic theorem (Theorem 4.22.3). Let ¢ be measure

preserving on (€2, F,P) and let X € L*(Q, F,P). Suppose X, (w) = X (¢"w). Let S,, = Xo+ -+ + X,,—1 and
M, = max(0, S1,...,S5,),and let A, = {M,, > 0}.
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Lemma 4.22.5 (Maximal ergodic lemma). With notation as above, we have
E(X14,)>0 for all n.
Proof. We have

Sit1(w) = Xo(w) + - + X;(w)
+ Xo(pw) + -+ + X1 (pw)
+ 5 (pw).

In other words, we obtain
Sit1(w) = X(w) + 5;(pw) < X(w) Mg (pw) forall k£ > j.

Thus
X(w) > Sjq1(w) — My (pw) forj=1,... k.

In fact the inequality also holds for j = 0, since M}, > 0. Now

E(X1a) = [ XdP2 [ max(Sjs(w) - My(gw)) dP.
Ay A J=

Since max?;& Sit1(w) > My (w) for w € A, we have

max(S) 1 (w) — Mi(pw)) dP > [ My(w) — My(pw) dP > / Mi(w) — My (pw) dP,

A J=0 A

since the integrand is nonpositive for w € Q\ A, = {M(w) = 0}. But note that ¢ is measure preserving, so

/QMk(w) — My (pw) dP = 0.

Chaining the inequalities together gives the desired claim. O
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4.23 Apr 30, 2020

We're ready to prove the ergodic theorem today. We have a probability space (€2, F,P), a random variable
X € LY(Q, F,P), and a measure preserving ¢: 2 — (2. The ergodic theorem says:

Theorem 4.23.1 (Birkhoff ergodic theorem, cf. Theorem 4.22.3). We have
1 « . .
- E (¢"w) = E(X|T)(w) a.s.and in L*.
n

(Here, 7 is the invariant o-field.)
Claim 4.23.2. It suffices to prove Theorem 4.23.1 for the special case E(X|Z) = 0 a.s..

Proof. Let X' = X —E(X|Z) so that E(X'|Z) = 0 a.s.. Since E(X|Z) is Z-measurable, we have E(X|Z)(w) =
E(X|Z)(¢™w) for each m. (There is a different null set for each m where this a.s. equality fails.)
We see that

1n1

Y X'(emw) = % > <X(<p’"w) ~EXD("))
m=0

3

where the a.s. equality holds on the (full measure!) set where E(X|Z)(w) = E(X|Z)(¢™w) holds for all m
simultaneously. O

Proof of Theorem 4.23.1. Let

S, = Z X (¢Mw) and X = limsup &

n
m—0 n—00

The goal is to show P(D) = 0, where D = {X > ¢}. This suffices to show a.s. convergence since we'd get
P(limsupsn>5> =0 and P(limsup_sn>5) —P(liminfsn<6> =0,
n n n

where in the right side above we applied the result to —X.
Note that D = {X > ¢} € Z. Since X (¢w) = limsup Z2(#) and

n—1 n
Slpw) = > X(pp™w) = Y X(p™w) = Spp1(w) — X ().
m=0 m=1
It follows that
— ' X . —
X (pw) = limsup S _,_;(w) nL—l—l — lim sup 7(;0) = lim sup Sn%l(f) = X(w).

Now let X* = (X —¢)lp and S} = X*(w) + X*(¢w) + -+ + X*(¢" 'w) and M} = max(0, S,...,S}).
Define the event F,, = {M;} > 0} = {S} > 0 for some k € [n]}. Finally, let

F= U F, = {i’“ >Of0rsomek€N}

n>1

:Dﬁ{s;:>sforsomekeN}

=D.
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By the maximal ergodic lemma (Lemma 4.22.5), we have
EX*1p, > 0.

Because E|X*| < E|X|+¢and X € L' we may apply dominated convergence to see that EX*1p > 0. But
now E(X*1p) = E(X*1p) =E((X —¢)1p).
Since D € Z, we have

E((X — ¢)1p) = E[E(X — £)1p|T)] = E[1p(E(X|Z) - ¢)] = ~¢P(D).

Hence P(D) = 0. This shows a.s. convergence.
To show the L' convergence, we first fix M > 0 and write X = Y + Z where Y = X Iix<m} and
Z = X1 x>y The point is that the convergence

% i Y (p"w) = E(Y|T) a.s.

also holds in L' because we can apply bounded convergence theorem to Y. Furthermore,

1 -
E|~ Z E(Z|T)| < 2E|Z| — 0
as M — oo by dominated convergence theorem (since Z < X). O

Theorem 4.23.3. Let p: Q — Q be a measure preserving map. Then ¢ is ergodic if and only if for all A, B € T we
have

- Z P((¢~™A)N B) = P(A)P(B)  asn — oco. (19)

Proof. We first prove the backwards direction. Pick any A € 7, so ¢™™A = A a.s. for all m. Thus, Equa-
tion (19) implies
n—1
1 > P(p AN B) = P(A)P(B) = P(A)*.
n
m=0

On the other hand the left hand side is just

n—1 ]P(A) _

m=0

3=

soP(A) € {0,1} and ¢ is ergodic.
Let’s now prove the forwards direction. Suppose ¢ is ergodic. Then E(14|Z) = E14 = P(A).
Applying the ergodic theorem (Theorem 4.23.1) to the event 1 4, we have

n—1
1
- Z 1a(e™w) — P(A) as.andin L'.

m=0

Multiplying both sides of the convergence by 15, we conclude furthermore that

E[i i ]lA(gomw)]lB(w)} — E(P(A)1g(w)).
m=0

By the bounded convergence theorem, we conclude that

n—1
% S Py~ AN B) = P(A)P(B).

m=0

There are exotic examples where P(¢=" A N B) — P(A)P(B) for all A, B € F as m — oc; this is stronger
than ergodicity of . O
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4.24 May 5, 2020

Let (Q, F,P) be a probability space and let ¢: Q@ — € be measure preserving. Let A € F.
Definition 4.24.1. We say a € A is recurrent (with respect to A) if ¢™(a) € A for some n > 1. A
Theorem 4.24.2 (Poincaré recurrence). Almost every point a € A is recurrent (with respect to A).

Proof. Let
B={be A: ¢"(b) & Aforalln > 1}
=A\J e ).

n>1

If b € B then ¢"(B) ¢ B, so B is disjoint from ¢~"(B) for all n > 1. In particular, ¢~ *(B) is disjoint
from ~"(B) for all n > k. So we have countably many disjoint sets ¢ ~*(B); all of these sets have the same
probability by measure-preservingness of . It follows that P(B) = 0. O

Example 4.24.3 (Ehrenfest urn model). We have two urns. There is a Markov chain on {0, 1,..., N}, where
state k represents k balls in the left urn and N — k balls in the right urn. We pick a ball uniformly at random
and move it to the other urn. This gives rise to transition matrix

N —
Pk,k—1) = % and Plk,k+1)= Tk’

with all other P(i,5) = 0.

Let’s find the stationary distribution. Set w(k) = P(k balls in the left urn in the steady state). By defini-
tion, we have 7P = P. [We got a few minutes in breakout rooms trying to solve this ourselves.]

It turns out that

(i)

(k) = oV

Welabel balls 1, ... N and consider the state space {L, R}"; the act of taking a ball and moving it to the other

urn becomes a simple random walk on the hypercube {L, R} (we are picking a coordinate at random and

flipping it.)

The stationary distribution 7(z1, ..., z,) is 3% by symmetry. The original Markov chain is Y,, = f(X,,),
where f(z1,...,2,) = #{k: X}, = L}.

Now suppose we begin with the state N. How long does it take to return to the starting state? In other

words, let T = min{n > 1: Y;,, = N}, so for example P(T' = 1Y, = N) = 0and P(T = 2|Yy = N) = +. We

want to compute E(T'|Yy = N). To do this, we use Kac’s theorem (Theorem 4.24.4) below. A

Let ¢: Q — Q be measure preserving, ergodic, and invertible. (Invertibility is not such a strong assump-
tion. Although the shift map ¢((wn)nen) = (Wn+1)nen is not invertible, the 2-sided shift map ¢((wn)nez) =

(wn-l—l)neZ IS)
Let A € F withP(A) > 0. Let M, N: Q@ — N U {oo} be the random variables defined by
N(w) =inf{n > 1: p"(w) € A} and M(w) =inf{n > 0: o™ (w) € A}.

Theorem 4.24.4 (Kac’s theorem on mean recurrence time). With the notation as above, we have

/Nd]P’:l.
A

“Kakutani skyscraper”. Let A,, = {a € A: N(a) = n}. We construct a “skyscraper” whose ground (0-th) floor
is A = Ug>1 Ay, and whose n-th floor is ¢ (A) \ A = Ug>19" (Ap4x) forn > 1
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Ay A2 A3
All sets ¢'(A;) for 0 < i < j are disjoint since every w’(A;) has M(w) =i and N(w) = j —i. But M, N
are a.s. finite by the Poincaré recurrence theorem (Theorem 4.24.2). So
PO = Y P4 = Y Py = S R4;) = [ NP
0<i<j 0<i<j j A
O

Example 4.24.5 (Example 4.24.3, cont.). Let’s apply Kac’s theorem to a Markov chain (Y7,),,>owith countable
state space S and stationary distribution 7, for A = {a} and a € S. We have

1= / NdP =E(N1,) = 7(a)E(N[Yy = a).
A

It follows that

E(N|Yy = a) =

For the Ehrenfest urn,

A

Let’s consider ergodicity and dense orbits. Suppose (2 is a topological space with a countable base of
open sets. Let (€2, F,P) be a probability space, where F are the Borel sets of Q2. We assume further that
P(U) > 0 for all open U.

We say w € Q has a dense orbit under p: Q — Qif {w, p(w), P> (w), ... } is dense in Q.

Theorem 4.24.6. If ¢ is measure preserving and ergodic, then
P({w: w has a dense orbit under ¢}) = 1.

Proof. Observe that w has a dense orbit if and only if for all basic open sets U, there is n with ¢"(w) € U.
Thus, ¢ does not have a dense orbit if and only if there is a basic open U with ¢"(w) ¢ U for all n, i.e.
w & @~ "U for all n. It follows that

we e ")

is in an invariant set, call it A, disjoint from U. Since A is invariant, we have P(A) € {0, 1}, butsince P(U) > 0,
we conclude P(A4) = 0. O
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4.25 May 7,2020

We'll talk about Markov chain mixing, which will tell us about the rate of convergence in the ergodic
theorem. It’s a big topic, so today will be a little introduction.

Let (X,)n>0 be a Markov chain on a finite or countable state space with transition matrix p(z,y) =
P(X,+1 = y| X, = x) and stationary distribution 7 = 7p; here 7 is a row vector and p is a matrix.

If the chain is irreducible (i.e. for all z,y € S there’s some n so that p™(x,y) > 0) then the shift map is
ergodic, and the ergodic theorem (Theorem 4.23.1) implies [][]

n—1

S f(Xe) =Y fla)m(z)  as.,asn— oo, (20)

k=0

1
n
Taking the case f(z) = 1,, the convergence in Equation (20) becomes the convergence

1
—#{visits to y before time n} — 7 (y).
n

How fast is this convergence? Can we remove the averaging?

Definition 4.25.1. A Markov chain (X,,),,>0 is called aperiodic if for all z € S, we have

ged{n: p"(z,z) >0} = 1. A
Example 4.25.2. The Markov chain on state space S = {z, y} and transition matrix p = [(1) (1)} is not aperi-
odic, since the ged is 2. A

Note that if p(z, z) > 0 for al z, then the chain is aperiodic. Given a Markov chain, there is an associated

“lazy chain” with transition matrix 2t£, so there is a 3 chance of staying where you are. (This “slows” the

2
Markov chain down.)
We have a following convergence theorem:

Theorem 4.25.3. If p is both irreducible and aperiodic, then
p(z,y) = 7(y) asmn — 0o

forall z.

How fast is this convergence? How far apart are the probability distributions p™(z, -) and 7 (-)?
The total variation distance can be thought of as a distance between random variables X and Y or between
probability distributions p and v.

Definition 4.25.4. The total variation difference between two random variables X and Y with distributions
and v is defined by

le — v|ltv]| X = Y|ty = inf{P{X # Y}: (X,Y) is a coupling of X and Y’}
1
= 53" luta) — w(a)

reS
— Y ) - vle) = plAL) - v(AL)
z: p(x)>v(z)

sup [u(A4) — v(A),
A

where A, = {z: pu(z) > v(z)}. A
We consider the distance from stationarity: let

def
d(t) = max [|p*(z, ) — |1y
z€eS
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(Note that we drop the variable y in p and 7.) Also let

d(t) = max [lp*(x,-) —p'(y, ) ll1v;
z,y€S

one can show that B o B

Exercise: We have d < d < 2d and d(s)d(t) > d(s + t).

We define the mixing time as

tmix def min{¢: d(t) < e}.

Then one can show

Exercise: We have tmix(¢) < [logy(2)] - tmix(3)-

Consider the lazy random walk on the hypercube V' = {0,1}", defined by transition matrix p(x,y) = 0
unless z; = y; for all or all butone i € {1,...,n}, with

Tifw; =y; foralli
p(x,y) =144 .
5, otherwise

So half the time we are staying in place, and the other half we're doing a simple random walk. Note that
m(x) = 5 forallx € V.

Now let N; be the number of distinct coordinates chosen by time ¢. This N, is a Markov chain, given by
transition matrix

—k k
n and PNy, = k|N, = k) = _.
n

P(Nt+1 =k 4+ 1|Nt = k) —

Now let 7, = inf{¢: N, = k} (cf. coupon collector problem; see [6710, Example 5.12.2.2]). We have 7,41 — 73, ~
Geom(;"). Thus,

n—1
Tn:;(7k+l_7k) hence Eq-n:%—g----—kgznlogn.

We have

Lemma 4.25.5. We have
P(1, > nlogn+cn) < e “.

Proof. Let A; = {coordinate i never chosen by time nlogn + cn}. We have

n n log n+cn
IP(UAi) < ZP(AO = n(l - i) < pelognTe — ¢7c,
=1

O

At time 7, (and any time ¢t > 7,,) we have X, ~ = It follows that d(nlogn + cn) < e™¢, and it follows
that tmix(€) < nlogn + log($)n.
In fact, this bound can be improved to

tmix(€) < 1nlogn + log (1)n
2 €
Consider the following thought experiment. Let X = (z1,...,z,) ~ 7 = Unif({-,1})" and Y = (21,...,z})
which are the same except k random coordinates are set to zero. Given {X,Y'}, can you tell which one is
which? More precisely, how large must & = k(n) be so that you can tell with probability more than 0.51?
[We got a few minutes in breakout rooms trying to solve this ourselves.]
One idea is to guess that whichever of {X, Y} has more zeros is the spiked one. If k¥ < /n then this
algorithm will get it wrong 50% of the time in the limit as n — co. (We'll see next week thatif n — k < \/n
then we're already well mixed.)
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Formalizing this, if you can't tell the difference between X ~ p and Y ~ v with probability more than
2 4¢ then || X — Y|rv < 2¢. Indeed, we may define

A = {Your algorithm selects correctly X ~ pand Y ~ vinstead of X ~vand Y ~ v}

and use that

IX = Ylrv —inf [u(4) = v(4)] < ’(; +5) - (; —5)’ = 2e.
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5 Presentations

5.26 May 12,2020

[I missed a lot of key points, because I am slow. Sorry!]

Enlargement of Filtrations (Karen Grigorian)

A filtration G = (G;):>o is called an enlargement of a filtration F = (F;)¢>o if F; C G, for all ¢.

A semimartingale is, roughly, the largest class of processes for which stochastic integration can be mean-
ingful; formally, X is a semimartingale if X = Xy + M + V, where M is an F-local martingale and V is an
F-adapted process with finite variation and M, = Vj = 0.

It’s not true that every F-martingale is a G-martingale or even a G-semimartingale. We are interested in
conditions in F and G which would ensure:

Every F-martingale is a G-martingale (H)
or
Every F-martingale is a G-semimartingale (H")

Stricker’s theorem says that any G-semimartingale is an F-semimartingale; this is a far reaching gener-
alization of a homework problem we worked on.
There are two main kinds of enlargement of filtrations:

e “Initial Enlargement”: G = F V ¢((), where ( is a random variable.

e “Progressive Enlargement”: the smallest G that turns a given positive random variable 7 into a stop-
ping time.

[I might have missed the main theorem, which probably would've appeared here. Sorry!]

Example 5.26.1. Let B be a Brownian motion and let F its natural filtration; let 77(51) = F v o(B;). Then
(E(By| Fo(B1)))>0 is a Fo(B1)-semimartingale. A

Example 5.26.2. Let B be a standard Brownian motion under its natural filtration 7 = (F;);>0. Define
G = (Gt)t>0 by G, = Fi1. for some e > 0. Then B is not a G-semimartingale. This is because it can be shown
that B is not a good (G, P)-integrator, i.e. you cannot properly define a stochastic integral with respect to B;
then use the fact that the good (G, P)-integrators are precisely the G-semimartingales. A

There is an application of these ideas to finance as follows. The high level idea is that enlargement of
filtrations can lead to arbitrage opportunities. The first fundamental theorem of asset pricing says that for a
semimartingale price process, having no arbitrage is equivalent to certain explicit probabilistic properties; if
enlarging the filtration (the information set) destroys semimartingaleness, then there is likely to be arbitrage
opportunities for insiders.

The Karhunen Loéve Theorem (Sara Venkatraman)

The theorem says that an L? continuous-time stochastic process {X;};>0 on [0, 1] can be expressed as
an infinite linear combination of orthogonal functions. (This is analogous to representing a function on a
bounded interval as a Fourier series.)

A continuous function K : [0, 1] x [0,1] — Ris a kernel if it is symmetric and positive semidefinite:

Z K(zi, xj)cicj > 0
1,3

for all z; € [0,1] and ¢; € R. Given a kernel K we obtain a linear operator

(Tie f) () / K(x,5)f(s) ds

which has eigenvalues and eigenfunctions. That is, we search for f and X with

1
/0 K(s,t)f(s)ds = Af(t).
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Theorem 5.26.3 (Mercer). The eigenfunctions {ex(t)}x>1 of Tk are an orthonormal basis for L* and the eigenvalues
{ Ak }x>1 are nonnegative. We can write K as

K(s,t) =Y Aren(s)ex(t).
k
For an L?[0, 1] stochastic process, the covariance function K (s, t) := cov(Xj, X;) is a kernel. Then we can

expand X, in the eigenbasis given by K. The Karhunen-Loéve theorem says:

Theorem 5.26.4 (Karhunen-Loéve). IfEX, = 0 for all t € [0, 1], then the coefficients Zy, in the expansion
X = Z Zrex(t)
k

are given by
1
Zk = / Xtek;(t) dt,
0
and furthermore EZy, = 0, var(Zy,) = i, cov(Z;Zy) = 0.

We have seen that for a standard Brownian motion, the covariance function K (s, t) = min(s,t). One can
work out the eigenvalues/eigenfunctions explicitly to obtain

Corollary 5.26.5. For every t € [0, 1], we have
oo 2 k _ l t i
Bt:ﬁZZ,me()W), where Z; " N(0,1).

Brownian motion and the heat equation (Emily Dautenhahn)
The heat equation is the PDE

1
up = iAu
where u(t,z): (0,00) x R® — R and A is the Laplacian. Solutions of the heat equation is a smooth (C?) u

satisfying the heat equation as well as the boundary condition «(0, ) = f(z) for some bounded continuous

f.

Theorem 5.26.6. The above equation has a unique bounded solution

—|z — y|?

) =180 = [ o e (Z )

We generalize the heat equation setup to include a dissipation term V, and replace the spatial domain
U = R" with an open bounded subset U C R”. [I missed exactly what the PDE was.]

Theorem 5.26.7 (Feynman-Kac Formula 1). Suppose V: R™ — R is bounded. Then u: [0, 00) x R™ — R defined

by t
u(t, z) =By {exp (/0 V(B(r))drﬂ

solves the heat equation on R™ with dissipation rate V' and initial condition one.

This formula follows from a direct, though involved, computation. (Take a Taylor expansion of the ex-
ponential, consider things termwise, etc.)

Theorem 5.26.8 (Feynman-Kac Formula 2). If u is a bounded and sufficiently smoth solution of the heat equation
on U, with zero dissipation and continuous initial condition g, then

u(t, z) = Eu[g(B(8)) Lir<ryl;

where T is the first exit time from the domain U.
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This formula requires stochastic calculus and Itd’s formula:

Proposition 5.26.9. Let f be smooth. Then with probability 1, forall t > 0,
t of d t ‘ 1 d t
ft,By) — f(0,By) = /0 E(S,BS)dS#* ;/o D;f(Bs)dB: + 2;/0 D;; f(Bs) ds.

This formulas will show that M, = u(t — s, B,) is a martingale.
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