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1 Conditional Expectation
1.1 Jan 21, 2020

[Our professor is Lionel Levine. His office MLT 438. Our TA is Hannah Cairns; we’ll meet her next week.
For the time being, Prof. Levine’s office hours are on Mondays, 2:00–3:00; Hannah’s are on Wednesdays,
3:00–5:00. Office hours start next week. Send Prof. Levine an email if you want to meet him this week.]

We will mostly follow Durrett’s Probability: theory and examples (5th edition), as well as Williams’s Proba-
bility with martingales. Topics, roughly, are:

• Martingales, discrete time

• Brownian motion, continuous time. These are some kind of universal object that contains a lot of
things in it, for example:

• Martingales in continuous time (and how they’re embedded in Brownian motion)

• Ergodic theory, stationary sequences

There will be problem sets, roughly one a week (due Thursdays, starting Jan 30), as well as presentations
towards the end of the semester. These will consist of 3–5 students presenting 1 topic.

Conditional expectation. (See Durrett 4.1, or Williams Ch. 9)
Let’s consider a probability space (Ω,F0,P) and a random variableX : (Ω,F0)→ (R,B), whereB denotes

the Borel sets. Suppose that

E|X| def
=

∫
Ω

|X| dP <∞.

Definition 1.1.1 (Conditional expectation). Given a σ-field F ⊆ F0, (a version of) the conditional expectation
E(X|F) is any random variable Y satisfying:

(i) Y ∈ mF (“Y is F-measurable”, i.e. Y −1(B) ∈ F for every B ∈ B)

(ii) For any A ∈ F , ∫
A

X dP =

∫
A

Y dP. 4

Remark 1.1.2. Note that Y is integrable, and in particular that E|Y | ≤ E|X|. 4

Proof. Let A = {Y > 0} = {ω ∈ Ω: Y (ω) > 0}. Note that A = Y −1(0,∞) ∈ F . Also, |Y | = Y 1A + (−Y )1Ac .
Taking expectations, E|Y | = E(Y 1A) + E((−Y )1Ac). Now property (ii) of Definition 1.1.1 says

E(Y 1A) =

∫
A

Y dP =

∫
A

X dP = E(X1A).

Similarly, E((−Y )1Ac) ≤ E(|X|1Ac). Adding these together, we obtain E|Y | ≤ E|X|.

Remark 1.1.3. The random variable Y , if it exists, is unique up to measure zero, that is, if Y and Y ′ both
satisfy (i) and (ii), then Y = Y ′ a.s.. (In other words, P(Y = Y ′) = 1.) 4

Proof. Fix ε > 0. Let Aε = {Y − Y ′ ≥ ε}. Then∫
Aε

(Y − Y ′) dP ≥ εP(Aε).

On the other hand,∫
Aε

(Y − Y ′) dP =

∫
Aε

Y dP−
∫
Aε

Y ′ dP =

∫
Aε

X dP−
∫
Aε

X dP = 0.
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It follows that P(Aε) = 0 for all ε > 0. To finish, we observe that

{Y > Y ′} =
⋃
ε>0

{Y > Y ′ + ε} =
⋃
ε>0

Aε =
⋃
n≥1

A2−n

is a countable union of measure zero sets, and P(Y > Y ′) = 0. Likewise, P(Y ′ > Y ) = 0 as well.

We’ll use some nontrivial measure theory to prove that Y exists.

Definition 1.1.4 (Absolute continuity). Let µ, ν be σ-finite measures on (Ω,F). We say ν is absolutely contin-
uous with respect to µ if

µ(A) = 0 =⇒ ν(A) = 0

for all A ∈ F . We denote this by ν � µ. 4

(Notice that this notion is asymmetric.)

Example 1.1.5. Consider:

1. Let X ∼ N(0, 1) and let ν = νX be the distribution of X . Denote by

ν(A) = P(X ∈ A) =

∫
A

e−x
2/2 dλ(x),

where λ is the Lebesgue measure on R. Then ν � λ, since if λ(A) = 0 then ν(A) is an integral over a
measure zero set. More generally, any random variable with a density gives rise to a distribution that
is absolutely continuous with respect to λ.

2. Let Y ∼ Be( 1
2 ), so P(Y = 0) = P(Y = 1) = 1

2 . Then νY 6� λ, since νY ({0}) = 1
2 whereas λ({0}) = 0.

More generally, any random variable with an atom gives rise to a distribution that is not absolutely
continuous with respect to λ.

3. There are random variables with no atoms whose distribution is not absolutely continuous with respect
to λ [cf. [HW 1, Ex 4]]. Indeed, let

W =
∑
n≥1

βn
3n
,

where the βn ∼ 2Be( 1
2 ) are independent. Indeed, W is supported on the Cantor set. (Its distribution

function is the Cantor-Lebesgue function.)

4

Here’s the measure theory that will help us prove the existence of conditional expectations:

Theorem 1.1.6 (Radon–Nikodym). If ν � µ, then there exists f ∈ mF with f ≥ 0 such that

ν(A) =

∫
A

f dµ

for all A ∈ F . Sometimes this is denoted f = dν
dµ , and f is called the Radon-Nikodym derivative.

(Note that f is unique up to measure zero.)
We won’t prove this right now. (Williams manages to avoid using Theorem 1.1.6, and then uses martin-

gales to prove Theorem 1.1.6. We won’t follow this route, though.)

Theorem 1.1.7. The conditional expectation Y = E(X|F) exists.

4
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Proof. Let us assume first that X ≥ 0. Let µ = P as a measure on (Ω,F) (not F0 (!)), and for every A ∈ F , let

ν(A) =

∫
A

X dP.

Both ν, µ are measures on (Ω,F) and ν � µ. (We used nonnegativity of X to conclude that ν is an hon-
est measure.) The Radon–Nikodym Theorem (Theorem 1.1.6) asserts the existence of Y ∈ mF such that∫
A
X dP =

∫
A
Y dP for all A ∈ F . This Y is (a version of) the conditional expectation E(X|F).

For general X , write X = X+ − X− for nonnegative X+ and X−. We have conditional expectations
Y1 = E(X+|F) and Y2 = E(X−|F) and Y = Y1 − Y2 serves as a E(X|F).

Note in general that Y 6= X , because X might not be F-measurable. (Only when X is F-measurable is
Y = X possible.)

Remark 1.1.8. Let’s discuss the intuitive meaning of E(X|F). This is a random variable, not just a real num-
ber. Then, E(X|F)(ω) is the best guess of the value of X(ω), given all information in F . Last semester we
briefly discussed σ-fields F as information, namely, as answers to yes–no questions of the form “is ω ∈ A?”,
where A ∈ F (see [6710, Definition 2.4.6] or [6710 HW 2, Ex 2(iv)]).

Let’s consider extreme cases. We said before that if X ∈ mF then E(X|F) = X a.s..
On the other hand, suppose X and F are independent. This means that σ(X) and F are independent,

so P({X ∈ B} ∩ A) = P(X ∈ B)P(A) for all A ∈ F and B ∈ B; equivalently, that X and Y are independent
random variables for all Y ∈ mF .

If X and F are independent, E(X|F) is the constant random variable EX (a.s., of course). To see this,
observe that for any A ∈ F ,∫

A

X dP = E(X1A) = (EX)(E1A) = (EX)P(A) =

∫
A

(EX) dP. 4

5
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1.2 Jan 23, 2020
Today we’ll connect conditional expectation to the elementary definition we learnt a long time ago.

Specifically, we’ll discuss the random variable E(X|Z), where X and Z take finitely many values, denoted
X1, . . . , Xm and Z1, . . . , Zn respectively.

Traditionally, for an event B with P(B) > 0 we have the quantity

P(A|B) =
P(A ∩B)

P(B)
.

Specifically, in our setting

P({X = xi}|{Z = zj}) =
P({X = xi and Z = Zj})

P(Z = zj)
.

Thus we may define
E(X|{Z = zj}) =

∑
i

xiP({X = xi}|{Z = zj})

Let us denote the sum above by Yj . We now define the random variable

E(X|Z)(ω)
def
= Yj whenever ω ∈ {Z = zj}

Claim 1.2.1. The equality of random variables

E(X|Z) = E(X|σ(Z)) a.s..

holds.

(The left side is as defined earlier, whereas the right side is in the sense of Definition 1.1.1. Recall also
that σ(Z) = {{Z ∈ B} : B ⊆ {Z1, . . . , Zn}} = {disjoint unions of {Z = zj}}.)

Proof of Claim 1.2.1. Note that Y = E(X|Z) is constant on each event {Z = zj}, hence

Y −1(Yj) = {Z = zj} =⇒ Y ∈ mF .

This verifies property (i) of Definition 1.1.1. To verify property (ii), it suffices to check for A = {Z = zj} that∫
A

Y dP =

∫
A

X dP.

Since we observed Y is constant on A = {Z = zj}we have∫
A

Y dP = YjP(Z = zj)

=
∑
i

xiP({X = xi}|{Z = zj})P(Z = zj)

=
∑
i

xiP({X = xi and Z = zj})

=
∑
i

xiP(X1A = xi)

= E(X1A) =

∫
A

X dP.

Remark 1.2.2. Recall (see e.g. [6710 HW 2, Ex 4]) that if Y ∈ m(σ(Z)) then Y = f(Z) for some measurable
function f : R → R. In particular, E(X|Z) is a measurable function of Z. It’s the best guess for X(ω), given
the value of Z(ω). 4
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Proposition 1.2.3. Some properties of E(X|F):

1. E(aX + bY |F) = aE(X|F) + bE(Y |F) a.s..

2. If X ≤ Y then E(X|F) ≤ E(Y |F) a.s..

3. If Xn ≥ 0 and Xn ↑ X with EX <∞ then E(Xn|F) ↑ E(X|F).

4. Jensen: If ϕ : R→ R is convex, E|X| <∞, and E|ϕ(X)| <∞, then

ϕ(E(X|F)) ≤ E(ϕ(X)|F) a.s..

5. [HW 1, Ex 1] If F1 ⊆ F2, then

E
[
E(X|F1)

∣∣F2

]
= E(X|F1) = E

[
E(X|F2)

∣∣F1

]
a.s.,

so “the smaller sigma field wins”.

6. If X ∈ mF , E|Y | <∞, E|XY | <∞, then

E(XY |F) = XE(Y |F) a.s.. (1)

(Part 6 above is often a key step in many proofs. These properties can be found in the back cover of
Williams (!).)

Proof of part 6 of Proposition 1.2.3. It’s easy to check condition (i), namely, that XE(Y |F) ∈ mF .
To check condition (ii), we apply the usual four-step machine:
If X = 1B for B ∈ F , then for all A ∈ F we have∫

A

1BE(Y |F) dP =

∫
A∩B

E(Y |F) dP =

∫
A∩B

Y dP =

∫
A

1BY dP.

Now if X =
∑k
i=1 1Bi

is simple, use linearity of Equation (1).
Now ifX,Y ≥ 0 and we have a sequence of simple functionsXn ↑ X , then by part 3 of Proposition 1.2.3

we obtain ∫
A

XE(Y |F) =
MCT

lim
n→∞

∫
A

XnE(Y |F) dP = lim

∫
A

Xn dP =
MCT

∫
A

XY dP,

where we applied monotone convergence theorem twice.
Finally, we may write X = X+ − X− and Y = Y + − Y − as a difference of nonnegative functions and

apply linearity.

As promised, let’s describe E(X|F) as orthogonal projection in L2(Ω,F0,P) = {Y ∈ mF0 : EY 2 <∞}.
If F ⊆ F0, then L2(Ω,F ,P) is a closed subspace of the Hilbert space L2(Ω,F0,P).

Claim 1.2.4. If X ∈ L2(F0), then E(X|F) is the point in L2(F) closest to X .

For a [rare!] picture:

X

L2(F) ⊆ L2(F0)

E(X|F)

L2(F0)

7
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Proof. If Z ∈ L2(F) then
ZE(X|F) = E(ZX|F).

(Note of course that E|ZX| < EZ2 + EX2 <∞, so we may apply item 6 in Proposition 1.2.3.) Thus

E
[
ZE(X|F)

]
= E

[
E(XZ)

∣∣F] = E(XZ)

and hence
E
(
Z(X − E(X|F))

)
= 0.

Since L2 is endowed with the inner product 〈X,Y 〉 = E(XY ), we have shown that Z is orthogonal to
X − E(X|F). In particular, for Y ∈ L2(F) we have

E(X − Y )2 = E(X − E(X|F))2 + EZ2 (2)

is minimized when Z = 0. Thus Y = E(X|F).
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2 Martingales
2.2 Jan 23, 2020
Definition 2.2.1. A filtration is a sequence of σ-fields (Fn)n≥0 with F0 ⊆ F1 ⊆ F2 ⊆ . . . . 4

Definition 2.2.2. A martingale (sometimes abbreviated MG) relative to a filtration (Fn)n≥0 is a sequence of
random variables (Xn)n≥0 satisfying for all n ≥ 0 the conditions:

1. E|Xn| <∞

2. Xn ∈ mFn

3. E(Xn+1|Fn) = Xn a.s.. 4

Although we require equality in part 3 of the definition, replacing it with ≤ gives the notion of a super-
martingale, whereas replacing it with ≥ gives the notion of a submartingale.

Example 2.2.3. We may consider a simple random walkXn = ξ1+· · ·+ξn for independent random variables
ξi with ξi = ±1 with probability 1

2 .
Then (Xn)n≥1 is a martingale relative to the filtration

Fn = σ(ξ1, . . . , ξn) = σ(X1, . . . , Xn).

This is sometimes called the natural filtration, since it’s the smallest filtration for which (Xn)n≥1 is a martin-
gale. (It is sometimes useful to consider filtrations other than the natural one.) [cf. [HW 1, Ex 6].] 4

The first two conditions in Definition 2.2.2 are easy to check. To see the third one, observe that

E(Xn+1 −Xn|Fn) = E(ξn+1|Fn) = Eξn+1 = 0

where the second last equality follows from independence of ξn+1.

Example 2.2.4 (cf. [6710 HW6, Ex 2]). Let (ξn)n≥1 be independent with Eξn = 1 for all n. Let Xn = ξ1 . . . ξn.
As before Fn = σ(ξ1, . . . , ξn) = σ(X1, . . . , Xn) wil be the natural filtration. Then

E(Xn+1|Fn) = E(Xnξn+1|Fn).

Since Xn is Fn-measurable, we obtain

E(Xnξn+1|Fn) = XnE(ξn+1|Fn) = XnEξn+1 = Xn. 4

Example 2.2.5. Fix X ∈ L1(Ω,F ,P) and a filtration (Fn). Let Xn = E(X|Fn). (There is an interpretation of
this setup in financial terms.)

We may check that
E(Xn+1|Fn) = E

(
E(X|Fn+1)

∣∣Fn) = E(X|Fn) = Xn.

4
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2.3 Jan 28, 2020
[There will be office hours today from 3–4pm at 438 MLT!]
Let’s begin with another example of a martingale, which hopefully motivates the definition of sub- and

super-martingale.

Example 2.3.1 (Random walks in higher dimensions). Suppose Xn = ξ1 + · · ·+ ξn, where ξ ∼ Unif(B(0, 1))
are i.i.d.. Here B(0, 1) is the unit ball in Rd. Suppose also that f : Rd → R is superharmonic, which means its
Laplacian is nonpositive, i.e.

∆f
def
=

d∑
i=1

∂2f

∂x2
i

≤ 0. (3)

One can show that (f(Xn))n≥1 is a supermartingale. (This is Durrett Exercise 5.2.2 in the 4th edition.) [See
[Durrett Exercise 5.4.3].]

We call f satisfying (3) superharmonic because if h is any harmonic function defined on the same do-
main D as f , and h = f on ∂D, then f ≥ h on D. (This follows from the minimum principle, which says
superharmonic functions attain their minimum on the boundary.) 4

Lemma 2.3.2. If (Xn)n≥1 is a supermartingale with respect to (Fn)n≥1, then for all n > m we have E(Xn|Fm) ≤
Xm a.s..

Proof. Write n = m+ k for k ≥ 1. We have almost sure (in)equalities

E(Xm+k|Fm) = E
(
E(Xm+k|Fm+k−1)

∣∣Fm) ≤ E(Xm+k−1|Fm)

since conditional expectation is monotone (Proposition 1.2.3, part 2). Then induction says E(Xm+k−1|F) ≤
Xm a.s..

Remark 2.3.3. Note that (Xn)n≥1 is a supermartingale if and only if (−Xn)n≥1 is a submartingale. Further-
more, (Xn)n≥1 is a martingale if and only if (Xn)n≥1 is both a supermartingale and submartingale. 4

Doob transform.

Definition 2.3.4. The random variables (Hn)n≥1 are said to be predictable (with respect to a filtration (Fn)n≥0)
if Hn ∈ mFn−1. 4

Think of Hn as a betting strategy at time n, and think of Xn as net winnings at time n if you always bet
$1. On round n, you win Xn −Xn−1 if you bet $1, so in particular you win Hn(Xn −Xn−1) if you bet $Hn.
Hence, our net winnings at time n, using gambling system H , is:

Definition 2.3.5. The Doob transform of H and X is

(H ·X)n
def
=

n∑
m=1

Hm(Xm −Xm−1).

4

Theorem 2.3.6 (You can’t beat an unfavorable game). If (Xn)n≥0 is a supermartingale and (Hn)n≥0 is predictable
with 0 ≤ Hn ≤ C, i.e. nonnegative and bounded, then (H ·X)n≥0 is also a supermartingale.

Proof. We have

E
(
(H ·X)n+1 − (H ·X)n

∣∣Fn) = E
(
Hn+1︸ ︷︷ ︸
∈mFn

(Xn+1 −Xn)
∣∣Fn) = Hn+1E(Xn+1 −Xn|Fn) ≤ 0,

with the last inequality following fromHn+1 ≥ 0 andE(Xn+1|Fn) ≤ E(Xn|Fn) by supermartingaleness.

Stopping times.
Recall that a random variable T taking values in {0, 1, 2, . . . } ∪ {∞} is a stopping time with respect to

F = (Fn)n≥0 if {T = n} ∈ Fn for all 0 ≤ n <∞ (or if equivalently {T ≤ n} ∈ Fn for all 0 ≤ n <∞).
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Example 2.3.7. If T is a stopping time, the sequenceHn = 1{T≥n} = 1{T≤n−1}c ∈ mFn−1 is predictable. 4

Thus we obtain

Corollary 2.3.8. If (Xn)n≥0 is a supermartingale andT is a stopping time, then (XT∧n)n≥0 is also a supermartingale.

(As usual, T ∧ n means min(T, n).) In particular, Lemma 2.3.2 says

E(XT∧n) ≤ EXT∧0 = EX0.

We’d like to show that E(XT ) ≤ EX0.

Suppose that T < ∞ a.s, so XT∧n → XT a.s. as n → ∞. Does it follow that E(XT∧n) → E(XT )? Not in
general:

Example 2.3.9 (A common enemy to martingale proofs). Consider a simple random walk Xn =
∑n
i=1 ξi for

i.i.d. ξi with P(ξi = ±1) = 1
2 . Take T = inf{n : Xn = 1}.

We know T <∞ a.s. because simple random walks are recurrent, but also that ET =∞. 4

Martingale convergence theorem.
Let (Xn)n≥0 be a supermartingale, and let

UN [a, b] = #{upcrossings of [a, b] by time N}
= max{k : there are 0 ≤ s1 < t1 < s2 < t2 < · · · < sk < tk ≤ N with Xsi < a,Xti > b for i ∈ [k]}.

(Since supermartingales generally decrease, there shouldn’t be so many of these.)
Let Y = H ·X whereH1 = 1{X0<a} andHn = 1{Hn−1=1,Xn−1≤b}+1{Hn−1=0,Xn−1≤a}. (The first indicator

says one should keep betting ifXn is below b, while the second indicator says one should start betting ifXn

is below a.)
By definition,

YN ≥ (b− a)UN [a, b]− (XN − a)−,

where (Xn − a)− = (Xn − a)1{Xn<a}. If (Xn)n≥0 is a supermartingale, then so is (Yn)n≥0; hence EYN ≤ 0.
Thus we arrive at the upcrossing inequality

(b− a)EUN [a, b] ≤ E(Xn − a)−. (4)

Corollary 2.3.10. If (Xn)n≥0 is a supermartingale bounded in L1 (which means supn E|Xn| <∞), then

P(U∞[a, b] =∞) = 0.

(Here, U∞[a, b]
def
= limN→∞ UN [a, b] ∈ {0, 1, 2, . . . } ∪ {+∞}.)

Proof of Corollary 2.3.10. Apply monotone convergence theorem to obtain

(b− a)EU∞[a, b] ≤ |a|+ sup
n

E|Xn| <∞.

We can now state the martingale convergence theorem:

Theorem 2.3.11 (Doob’s Martingale Convergence Theorem). Let (Xn)n≥0 be a supermartingale bounded in L1.
Then

P( lim
n→∞

Xn exists in R) = 1.

11



2.4 Jan 30, 2020
We had stated the martingale convergence theorem yesterday:

Theorem 2.4.1 (Doob’s Martingale Convergence Theorem). Let (Xn)n≥0 be a supermartingale bounded in L1.
Then

P( lim
n→∞

Xn exists in R) = 1.

Proof. Let’s define the event

Λ
def
= {ω : Xn(ω) does not converge in [−∞,∞]}
= {ω : lim inf Xn(ω) < lim supXn(ω)}

=
⋃
a<b
a,b∈Q

{lim inf Xn(ω) < a and lim supXn(ω) > b}︸ ︷︷ ︸
call this Λa,b

.

Recall that the random variables

Un[a, b] = #{upcrossings of [a, b] by time n}

are monotone increasing in n, hence converges to a limit Un[a, b] ↑ U∞[a, b]. In Corollary 2.3.10 we showed
P(U∞[a, b] =∞) = 0.

Since Λa,b ⊆ {U∞[a, b] =∞}, it follows that P(Λa,b) = 0 for all a < b, and hence P(Λ) = 0.
It is left to rule out the cases that the limit is ±∞. Note that we may define X∞

def
= limXn, which exists

in [−∞,∞]. Fatou’s lemma says

E|X∞| ≤ lim inf E|Xn| < supE|Xn| <∞.

In particular, P(X∞ ∈ R) = 1.

We can squeeze out a little more:

Corollary 2.4.2. If (Xn)n≥0 is a supermartingale with Xn ≥ 0 for all n, then Xn → X∞ a.s. and EX∞ ≤ EX0.

Proof. Since (Xn)n≥0 is a supermartingale, we have EXn ≤ EX0 for all n (e.g. by Lemma 2.3.2). Thus
supE|Xn| < ∞. Then the martingale convergence theorem (Theorem 2.4.1) says Xn → X∞ a.s.. Further-
more, Fatou says EX∞ ≤ lim inf EXn ≤ EX0.

Example 2.4.3 (Enemy, cf. Example 2.3.9). Let Yn be a simple random walk and let T = inf{n : Yn = 1}. Let
Xn = Yn∧T . Both (Yn)n≥0 and (Xn)n≥0 are martingales. However, they’re not bounded in L1.

It turns out that a limit Xn → X∞ exists a.s. and in particular X∞ = 1 a.s.. Corollary 2.4.2 fails to hold
for (Xn)n≥0, since 1 = EX∞ > EX0 = 0. 4

Lemma 2.4.4. Let X = (Xn)n≥0 be a martingale with |Xn+1 −Xn| ≤M <∞ for all n. Let

C
def
= {limXn exists in R}

D
def
= {lim supXn = +∞ and lim inf Xn = −∞}.

Then P(C ∪D) = 1.

(The condition |Xn+1 − Xn| ≤ M < ∞ is sometimes called bounded increments. This does not imply X
is bounded in L1; a counterexample is the simple random walk. The simple random walk does not satisfy
martingale convergence, i.e. P(C) 6= 1, but it is recurrent and hence P(D) = 1.)

Proof. The proof is in [Durrett, Lem 4.3.1]. It’s a dense, short proof, and it’s a good exercise to decode it!
The idea is if lim inf Xn > −∞ then we may shift to get a nonnegative martingale, which converges

a.s..
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Theorem 2.4.5 (Improved Borel-Cantelli Lemma 2). Let (Fn)n≥0 be a filtration, and let A1, A2, . . . be events
with An ∈ Fn. Then

{An i.o.} =

{∑
n≥1

P(An|Fn−1) =∞
}

a.s..

Remark 2.4.6 (Borel-Cantelli 2). Let’s see how Theorem 2.4.5 implies the usual Borel-Cantelli 2 (cf. [6710,
Lemma 5.13.2]). If An are independent and

∑
P(An) = ∞, then P(An|Fn−1) = P(An). Hence P(An i.o.) =

1. 4

Proof of Theorem 2.4.5. Let

Xn =

n∑
m=1

(
1Am

− P(Am|Fm−1)

)
.

We claim that this is a martingale with respect to (Fn)n≥1 that has bounded increments. The latter part is
easy to see; thatXn is a martingale is a special case of a general recipe to construct martingales (Remark ??),
namely the case Ym = 1Am

.
Since Xn is a martingale we may apply Lemma 2.4.4, so P(C ∪D) = 1. If ω ∈ D then∑

1Am(ω) =∞ and
∑

P(Am|Fm−1)(ω) =∞.

Conversely if ω ∈ C then ∑
1Am

(ω) =∞ ⇐⇒
∑

P(Am|Fm−1)(ω) =∞.

Remark 2.4.7 (A general recipe to construct martingales). namely, given any sequence of random variables
Yn with E|Yn| <∞, let

Xn =

n∑
m=1

(
Ym − E(Ym|Fm−1)

)
.

Then Xn+1 −Xn = Yn+1 − E(Yn+1|Fn). Conditioning both sides on Fn, the right hand side becomes zero.
It’s a common trick, given a stochastic process Yn “in the wild”, to decompose it into a “martingale part”Xn

and a “compensating term”, and analyze the two parts separately. 4

Example 2.4.8 (Polya’s urn). Suppose we have a large urn with r red balls and g green balls. Start with
r = g = 1. At each time n, pick a ball uniformly at random and put it back along with an extra ball of the
same color:

1
2

1
2

2
3

2
3

1
3

1
3
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This can be thought of as a model for reinforcement; once a red ball is picked, the whole model is skewed
towards redness. Let

Xn
def
=

#{red balls at time n}
n+ 2

.

So if there are i green balls and j red balls at time n, then

Xn+1 =

{
j+1
i+j+1 with probability j

i+j
j

i+j+1 with probability i
j+1

We can compute

E(Xn+1|Fn) =
j + 1

i+ j + 1

j

i+ j
+

j

i+ j + 1

i

i+ j
=

j(i+ j + 1)

(i+ j)(i+ j + 1)
= Xn.

[The above is an equality on the set {Xn = j
i+j }, but it holds for every such set and hence holds on Ω.]

Thus Xn is a nonnegative martingale and Xn → X∞ a.s. for some limit, by Corollary 2.4.2. What is the
distribution of X∞?

We’re going to prove thatX∞ ∼ Unif(0, 1). Indeed, letGn = #{green balls at time n}. We may compute
directly that

P
(
Gi = i+ 1 for i = 1, . . . ,m and then Gm+1 = · · · = Gn = m+ 1

)
=
m!(n−m)!

(n+ 1)!
.

But this probability is independent of the red-green drawing order (e.g. the probability of drawing it green-
green-red-red is the same as red-green-red-green). It follows that

P(Gn = m+ 1) =

(
n

m

)
m!(n−m)!

(n+ 1)!
=

1

n+ 1

for all m = 0, . . . , n. Then
Gn
n+ 2

d→ Unif(0, 1)

and
Xn = 1− Gn

n+ 2

d→ X∞ ∼ Unif(0, 1). 4

Optional stopping/sampling.

Theorem 2.4.9 (Optional Stopping). Let (Xn)n≥0 be a submartingale. Let T be a stopping time which is bounded,
so 0 ≤ T ≤ n. Then EX0 ≤ EXT ≤ EXn.

Proof. We’ve seen that EX0 ≤ EXT , using the gambler strategy (Doob transform with Hk = 1{k≤T} =
1{T>k−1} ∈ mFk−1).

On the other hand, when we Doob transform with Hk = 1{k>T} = 1{k−1≥T} ∈ mFk−1, then

(H ·X)m − (H ·X)0 =

m∑
k=1

1{k>T}(Xk −Xk−1) = Xm −XT∧m.

Since H ·X is a submartingale (Theorem 2.3.6), we obtain

0 ≤ E((H ·X)n − (H ·X)0) = E(Xn −XT∧n) = EXn − EXT .

Theorem 2.4.10 (Doob’s submartingale inequality). Let Xn be a submartingale, and let Mn = max0≤k≤nX
+
n .

Then
P(Mn ≥ λ) ≤ EX+

n

λ
.

(cf. Markov, which says λP(Xn ≥ λ) ≤ EXn1{Xn>λ} ≤ EX+
n . Theorem 2.4.10 is a strengthening because

we are controlling the max of the X+
n as opposed to just the Xn. Roughly, submartingaleness says the

maximum Mn is not much larger than the current X+
n )
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2.5 Feb 4, 2020
Using the π-λ theorem ([6710, Thm 1.2.11]) would’ve made [HW 1, Ex 2] easier. As a reminder, this states

that if A ⊆ F is a π-system contained in a σ-field, and L is a λ-system with A ⊆ L ⊆ F , then σ(A) ⊆ L. (So
for [HW 1, Ex 2], the claim is that L def

= {A ∈ F : E(X1A) = E(Y 1A)} really is a λ-system.)
We stated Doob’s submartingale inequality last time:

Theorem 2.5.1 (Doob’s submartingale inequality). Let Xn be a submartingale, and let Mn = max0≤k≤nX
+
n .

Then
P(Mn ≥ λ) ≤ EX+

n

λ
.

Proof. Consider the stopping time T def
= min{k : Xk ≥ λ or k = n}. Let A def

= {Mn ≥ λ} = {XT ≥ λ}. So
Markov ([6710, Lem 3.8.4]) gives

λP(A) ≤ E(XT1A).

Furthermore, T is bounded, so optional stopping (Theorem 2.4.9) says EXn ≥ EXT ≥ EX0. Since

EXT = E(XT1A +XT1Ac) = EXT1A + EXn1Ac ,

the fact that EXT ≤ EXn implies

λP(A) ≤ EXT1A ≤ EXn − EXn1Ac = EXn1A ≤ EX+
n .

Corollary 2.5.2 (Kolmogorov maximal inequality, cf. [6710, Thm 7.25.5]). Let Sn = ξ1 + · · ·+ ξn, where ξi are
independent and Eξi = 0, Eξ2

i = σ2
i <∞ for all i. Then

P( max
1≤k≤n

|Sk| ≥ y) ≤ var(Sn)

y2
.

Proof. The claim is that S2
n is a submartingale. Indeed,

E(S2
n+1|Fn) ≥ E(Sn+1|Fn)2 = S2

n a.s.,

by conditional Jensen (Proposition 1.2.3, part 4). Since S2
n is a submartingale, we may apply Doob’s sub-

martingale inequality (Theorem 2.5.1), and for λ = x2 we obtain

P( max
1≤k≤n

|Sk| ≥ x) = P( max
1≤k≤n

S2
k ≥ x2) ≤ ES2

n

x2
=

var(Sn)

x2
.

In Corollary 2.3.8, we saw the following result: Let (Xn)n≥0 be a supermartingale, and let T be a stopping
time (both with respect to a filtration (Fn)n≥0). Then

EXT∧n ≤ EX0 for all n. (5)

We wondered when EXT ≤ EX0.

Theorem 2.5.3 (Doob’s optional stopping theorem). We have:

1. If T is bounded, so P(T > k) = 0 for some k ∈ N, then EXT ≤ EX0.

2. If X is bounded, so |Xn| ≤ k for all n, and P(T <∞) = 1, then EXT ≤ EX0.

3. If ET <∞ and X has bounded increments (|Xn+1 −Xn| ≤ k for all n ∈ N), then EXT ≤ EX0.
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Proof. For part 1, apply Equation (5) for n = k. Then T ∧ n = T .
For part 2, observe that XT∧n → XT a.s., so EXT∧n → EXT by bounded convergence theorem. Then

Equation (5) does the trick.
For part 3, observe that

XT∧n −X0 =

T∧n∑
k=1

(Xk −Xk−1),

so

|XT∧n −X0| ≤
T∧n∑
k=1

|Xk −Xk−1| ≤ kT.

It follows that
|XT∧n| ≤ |X0|+ kT︸ ︷︷ ︸

∈L1

,

so we may apply dominated convergence to obtain EXT∧n → EXT .

Let’s remind ourselves of the counterexample, showing that EXT ≤ EX0 does not necessarily hold in
general:

Example 2.5.4 (Enemy, cf. Example 2.3.9, 2.4.3). Let Yn be a simple random walk and let T = inf{n : Yn = 1}.
Let Xn = Yn∧T . [Missed this part in lecture. But I think 1 = EXT > EX0 = 0, right?] 4

Branching Process
Let (Zn)n≥0 denote a population at generation n, with Z0 = 1 and

Zn+1 =

Zn∑
i=1

ξi,n+1 for n ≥ 0,

where (ξi,n)i,n≥1 are i.i.d. N-valued random variables. In particular there are numbers pk ≥ 0 with P(ξi,n =
k) = pk. With this setup in place, a question one could ask is whether the population will die out almost
surely or whether it has a chance of living forever.

Lemma 2.5.5. Let Fn = σ(ξi,m)i≥1,1≤m≤n. Then Zn

µn is a martingale with respect to (Fn)n≥0, where µ = Eξi,n.

Proof. We certainly have Zn ∈ mFn. Now fix k ∈ N and let Ak = {Zn = k} ∈ mFn. Then

E(Zn+1|Fn)1Ak
= E(Zn+11Ak

|Fn) = E
( k∑
i=1

ξi,n+1

∣∣∣∣Fn)1Ak
= E

( k∑
i=1

ξi,n+1

)
1Ak

= kµ1Ak
.

So we may sum over k to get

E(Zn+1|Fn) =

∞∑
k=0

E(Zn+11Ak
|Fn) =

∞∑
k=0

kµ1Ak
= µZn. (6)

The last equality comes from the fact that

Zn =

∞∑
k=0

k1Ak
,

which follows from the definition of Ak.
Equation (6) guarantees that

E
(
Zn+1

µn+1

∣∣∣∣Fn) =
Zn
µn

,

which proves the lemma.
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Since Zn

µn ≥ 0 is a nonnegative martingale, Zn

µn → W for some finite limit by the martingale convergence
theorem (Corollary 2.4.2). Note that

E
(
Zn
µn

)
= E

(
Z0

µ0

)
= 1

so that EZn = µn. If µ < 1, then P(Zn ≥ 1) ≤ EZn = µn ↓ 0. Let e = P({Zn = 0 eventually}). Then

e = lim
n→∞

P(Zn = 0) = lim
n→∞

(1− P(Zn ≥ 1)) = 1,

so W = 0 a.s..
If µ = 1, then Zn itself is a martingale. Then Zn → W a.s.., and P(Zn = W eventually) = 1. If p1 = 1

then Zn = 1 for all n, and W = 1. Otherwise, p1 < 1 and hence p0 > 0. In this case

P(Zn = k for all n ≥ N) ≤ P(ZN+1 = k|ZN = k)︸ ︷︷ ︸
<1, since p0>0

P(ZN+2 = k|ZN+1 = k)︸ ︷︷ ︸
<1, since p0>0

· · · = 0.

Again, e = 1 and W = 0 a.s..
If µ > 1, define the generating function

ϕ(t) =
∑
k≥0

pkt
k.

Next lecture, we’ll prove

Theorem 2.5.6. The number e is the unique fixed point of ϕ in [0, 1).

(In particular, e 6= 1.)
Note that the theorem doesn’t say anything about W , and in particular this theorem is consistent with

W = 0, since Zn might be subexponential. We will later investigate the behavior of W .
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2.6 Feb 6, 2020
We discussed branching processes (Zn)n≥0 with Z0 = 1; we saw in Lemma 2.5.5 that (Zn/µ

n)n≥0 is a
martingale, where µ =

∑
k≥0 kpk is the mean number of offspring per individual.

We showed last time that if µ ≤ 1 and p1 < 1 then e def
= P({Zn = 0 eventually}) = 1. Today, we consider

the case µ > 1. We may consider the generating function

ϕ(t) =
∑
k≥0

pkt
k,

so that
ϕ′(t) =

∑
k≥1

kpkt
k−1 ≥ 0 for t ≥ 0 and ϕ′′(t) =

∑
k≥2

k(k − 1)pkt
k−2 > 0 for t > 0.

So the function ϕ is increasing and convex; furthermore

ϕ(1) =
∑
k≥0

pk = 1,

ϕ′(1) =
∑
k≥0

kpk = µ > 1,

ϕ(0) = p0 < 1.

Note that there is a unique f ∈ [0, 1) so that ϕ(f) = f . Existence is the intermediate value theorem on ϕ′ [In
particular, ϕ′(0) < 1]; uniqueness is convexity.

Theorem 2.6.1 (cf. Theorem 2.5.6). The number e = P({Zn = 0 eventually}) is equal to the fixed point f ∈ [0, 1)
of ϕ.

Proof. Let em = P(Zm = 0). Then em ↑ e. We have

em+1 =
∑
k≥0

P(Zm+1 = 0|Z1 = k)P(Z1 = k)︸ ︷︷ ︸
pk

We claim that P(Zm+1 = 0|Z1 = k) = ekm. This is because each of the k individuals at Z1 define independent
branching processes of length m, and for Zm+1 = 0 we need each independent branching process to go
extinct. We obtain

em+1 =
∑
k≥0

ekmpk = ϕ(em).

It follows that
ϕ(e) = ϕ(lim em) = limϕ(em) = lim em+1 = e.

By uniqueness of f ∈ [0, 1), it follows that either e = f or e = 1.
We rule out e = 1 as follows. Observe that e0 = P(Z0 = 0) = 0 ≤ f . Then e1 = ϕ(e0) ≤ ϕ(f) = f ,

because ϕ is increasing. In particular, by induction we have em ≤ f for all m. It follows that e ≤ f .

We can understand the situtation better using martingales. In particular, recall (by Lemma 2.5.5) that
(Zn/µ

n)n≥0 is a nonnegative martingale, hence converges

Zn
µn
→W a.s.,

by Corollary 2.4.2. In the case µ ≤ 1, then e = 1 andW = 0 a.s.. The question, which motivates the following
martingale theory, is:

Question 2.6.2. If µ > 1 is it possible that P(W > 0) > 0?
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Orthogonality of martingale increments.
Let (Xn)n≥0 be a martingale with respect to a filtration (Fn)n≥0 with EX2

n <∞ for all n.

Lemma 2.6.3. For all k < n and Y ∈ mFk with EY 2 <∞, we have

E((Xn −Xk)Y ) = 0.

Proof. We have E|(Xn −Xk)Y | <∞ by Cauchy-Schwarz. Then

E((Xn −Xk)Y ) = E
[
E((Xn −Xk)Y |Fk)

]
,

by the tower rule (cf. [HW 1, Ex 1]). Since Y ∈ mFk,

E
[
E((Xn −Xk)Y |Fk)

]
= E

[
Y E(Xn −Xk|Fk)︸ ︷︷ ︸

=0 a.s.

]
= 0.

Example 2.6.4. Let us take Y = Xi −Xj for some i < j < k < n. Then Lemma 2.6.3 says

E((Xn −Xk)(Xi −Xj)) = 0. (7)

In a random walk, the incrementsXn−Xn−1 are independent (by definition). A special case of Equation (7),
specifically the case k = n− 1 and i = j − 1, says

E((Xn −Xn−1)(Xj −Xj−1)) = 0,

so that the increments Xn −Xn−1 of any martingale are uncorrelated.
In general, independent increments implies martingaleness, which in turn implies uncorrelated incre-

ments. Although having uncorrelated increments is formally much weaker than being a martingale, it is
often simpler to verify martingaleness only to use it to say that increments are uncorrelated. 4

Lemma 2.6.5 (cf. HW 3). For k < n, we have

E((Xn −Xk)2|Fk) = E(X2
n|Fk)−X2

k .

Martingales bounded in L2. (See Williams Ch. 12)
Let (Mn)n≥0 be a martingale adapted to a filtration (Fn)n≥0. Suppose∑

n≥1

E(Mn −Mn−1)2 <∞. (8)

Theorem 2.6.6. Assume Equation (8) holds. Then:

1. supn EM2
n <∞,

2. Mn converges a.s.,

3. Mn converges in L2.

Proof. For part 1, observe that

EM2
n = EM2

0 +

n∑
k=1

E(Mk −Mk−1)2,

since we may write Mn = M0 + (M1 −M0) + · · ·+ (Mn −Mn−1), and the cross terms E((Mk −Mk−1)Mj)
vanish for j < k (Lemma 2.6.3). Then

EMn ≤ EM2
0 +

∑
k≥1

E(Mk −Mk−1)2 <∞.

Observe also that
supE|Mn| ≤ sup(EM2

n)1/2 <∞
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by part 1, so the martingale convergence theorem (Theorem 2.4.1) applies and says

Mn →M∞ a.s.

for some finite limit M∞. Then Fatou says

E(Mn −M∞)2 ≤ lim inf
k→∞

E(Mn −Mn+k)2

= lim inf
k→∞

n+k∑
j=n+1

E(Mj −Mj−1)2

=
∑

j≥n+1

E(Mj −Mj−1)2 → 0 as n→∞.

where the sum tends to zero because of Equation (8).

Theorem 2.6.7 (Doob decomposition). Any submartingale (Xn)n≥0 can be uniquely written as Xn = Mn + An
where (Mn)n≥0 is a martingale and (An)n≥0 is an increasing predictable sequence with A0 = 0.
Proof. If we had a decomposition, we would need

E(Xn|Fn−1) = E(Mn|Fn−1) + E(An|Fn−1) = Mn−1 +An = Xn−1 −An−1 +An.

This would recursively define An, namely, we would need

An −An−1 = E(Xn|Fn−1)−Xn−1. (9)

Since A0 = 0, this defines (An)n≥1. Then we would need

Mn = Xn −An,

and we would need to check that An is predictable and that Mn is a martingale.
Since An − An−1 ∈ mFn−1, it follows that (An)n≥0 is predictable. Furthermore since (Xn)n≥0 is a sub-

martingale, An −An−1 ≥ 0, so An is increasing. Then (Mn)n≥0 is a martingale, because

E(Mn|Fn−1) = E(Xn|Fn−1)−An
(9)
= Xn−1 −An−1 = Mn−1

Let (Mn)n≥0 be a martingale with EM2
n < ∞ for all n, and suppose M0 = 0. Then (M2

n)n≥0 is a sub-
martingale with Doob decomposition

M2
n = Nn +An,

where
An −An−1 = E(M2

n|Fn)−M2
n−1 = E(M2

n −M2
n−1|Fn) = E((Mn −Mn−1)2|Fn),

with the last equality from orthogonality of increments. Note that

EM2
n = EAn,

e.g. by writing Mn =
∑n
j=1(Mj −Mj−1), squaring, and taking expectations. So

supEM2
n <∞ if and only if EA∞ <∞,

where A∞ = limn→∞An is a R≥0 ∪ {+∞}-valued random variable.
Theorem 2.6.8. The random variable limn→∞Mn(ω) exists for almost every ω such that A∞(ω) <∞, i.e.

{ω : A∞(ω) <∞} ⊆ {ω : limMn(ω) exists} ∪N

for some event N with P(N) = 0.
TheAn’s of a square of a martingale are sufficiently important that they have a name and special notation,

which varies from book to book. We’ll use:
Definition 2.6.9. The An’s are called the quadratic variation of the martingale (Mn)n≥0. They are denoted

(〈M〉n)n≥0
def
= (An)n≥0. 4
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2.7 Feb 11, 2020
Last time, we considered a martingale (Mn)n≥0 adapted to (Fn)n≥0, withEM2

n <∞ for alln. If
∑
k≥1 E(Mk−

Mk−1)2 < ∞, then we showed supn EM2
n < ∞ and Mn converges a.s. and in L2 (Theorem 2.6.6). If

Mn = X1 + · · ·+Xn where the Xi are independent with EXi = 0 and EX2
i = σ2

i <∞, then Theorem 2.6.6
says:

Corollary 2.7.1. The random variable
∑∞
i=1Xi converges almost surely.

Proof. Note that (Mn)n≥1 is a martingale with respect to σ(X1, . . . , Xn−1). Then E(Mk −Mk−1)2 = EX2
k =

σ2
k, so

∑
k≥1 E(Mk −Mk−1)2 <∞ by assumption. Thus Mn converges a.s., by Theorem 2.6.6.

A strengthening of Corollary 2.7.1 is the Kolmogorov 3-series theorem ([6710, Thm 7.25.6]).

Example 2.7.2. Let’s consider a supercritical branching process (so µ > 1), call it Zn =
∑Zn−1

k=1 ξi,n. As usual
Zn denote the population of the nth generation, and the ξi,n are independent Z-valued random variables
with P(ξi,n = k) = pk. We assume µ =

∑
kpk > 1 and σ2 = var(ξi,n) <∞.

Recall that E(Zn|Fn−1) = µZn−1 (Lemma 2.5.5) and we’ll show in [HW 3] that var(Zn|Fn−1) = σ2Zn−1.
So we have a martingale Mn = Zn

µn . Does Theorem 2.6.6 apply?
Well, we have

E((Mn −Mn−1)2|Fn−1) =
1

µ2n
E((Zn − µZn−1)2|Fn−1) =

1

µ2n
var(Zn|Fn−1) =

1

µ2n
σ2Zn−1.

Taking expectations,

E
(
E((Mn −Mn−1)2|Fn−1)

)
= E

(
1

µ2n
σ2Zn−1

)
=

σ2

µ2n−(n−1)
↓ 0,

since µ > 1, and Theorem 2.6.6 does apply, and Mn → M∞ a.s. and in L2. (Although we knew the a.s.
convergence from martingale convergence (Theorem 2.3.11), we now have convergence in L2 as well.) Since

1 = EM0 = EMn → EM∞,

it follows that EM∞ = 1, and P(M∞ = 0) < 1. This answers Question 2.6.2 (!), at least under the assumption
that σ2 <∞. 4

What if
∑

E(Mk −Mk−1)2 =∞? Let

〈M〉n =

n∑
k=1

E((Mk −Mk−1)2|Fk−1)

denote the quadratic variation of M . It is a predictable and increasing process, so 〈M〉n ↑ 〈M〉∞ increases
to a random variable taking values in [0,∞].

Theorem 2.7.3 (L2 strong law). We have

{〈M〉∞ =∞} a.s.
=⇒

{
Mn

〈M〉n
→ 0

}
.

(The notation A a.s.
=⇒ B means P(A ∩Bc) = 0.)

Example 2.7.4. SupposeMn = X1+· · ·+Xn whereXi are independent mean 0 variance 1 random variables.
In this case,

〈M〉n =

n∑
k=1

E(X2
k) = n.

So Theorem 2.7.3 says Mn

n → 0 a.s.. We knew this as the strong law of large numbers (!). 4
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The intuition for Theorem 2.7.3 is roughly that 〈M〉n is the best measure for “total elapsed time”, in the
sense that the most natural measurement occurs when variance is introduced at a constant rate, and that
〈M〉n measures the variance at n. [cf. conditional expectation as orthogonal projection (Claim 1.2.4)...?]

Proof of Theorem 2.7.3. We can assume M0 = 0. We use the Kronecker Lemma, which says that if bn ∈ (0,∞)
with bn ↑ ∞, and xn ∈ R such that

∑
n≥1

xn

bn
converges, then limn→∞

x1+···+xn

bn
= 0.

We set up a Doob transform. The idea is to bet f(〈Mk〉)−1 = Hk on round k, where f ≥ 1, increasing,
and ∫ ∞

0

1

f(t)2
dt <∞

(think, for example, f(t) = (1 + t)a for a > 1
2 ). Note that Hk is predictable, so

Wn = (H ·M)n =

n∑
k=1

(Mk −Mk−1)Hk

is a martingale. Furthermore,

E((Wk −Wk−1)2|Fk−1) = H2
kE((Mk −Mk−1)2|Fk−1) = H2

k(〈M〉k − 〈M〉k−1).

The martingale (Wn)n≥0 has a quadratic variation 〈W 〉n ↑ 〈W 〉∞ and

〈W 〉∞ =
∑
k≥1

〈M〉k − 〈M〉k−1

f(〈M〉k)2
≤
∑
k≥1

∫ 〈M〉k
〈M〉k−1

dt

f(t)2
=

∫ ∞
0

dt

f(t)2
<∞.

Then Wn → W∞ < ∞ by Theorem 2.6.6. We can apply Kronecker with xn = 〈M〉n − 〈M〉n−1 and bn =
f(〈M〉n) ↑ ∞. Observe that

Wn =

n∑
k=1

xk
bk

converges as n→∞,

so Kronecker says x1+···+xn

bn
→ 0. [Proof to be finished Thursday.]

Theorem 2.7.5 (Lévy). Let (Fn)n≥0 be a filtration and let B1, B2, . . . be a sequence of events with Bn ∈ Fn for all
n. Let

Zn =

n∑
k=1

1Bk
, Zn ↑ Z∞

count the number of events that occur by time n. Also let

Yn =

n∑
k=1

ξk, where ξk = P(Bk|Fk−1) = E(1Bk
|Fk−1)

be the “running forecast of Zn”. Then:

1. Y∞ <∞ a.s.
=⇒ Z∞ <∞

2. Y∞ =∞ a.s.
=⇒ Zn/Yn → 1.

Theorem 2.7.5 contains both Borel Cantelli lemmas as corollaries:

• (Borel-Cantelli 1): If
∑
k≥1 P(Bk) < ∞, then EY∞ < ∞, so Y∞ < ∞ a.s., and part 1 of Theorem 2.7.5

says Z∞ <∞ a.s., so only finitely many Bk occur.

• (Borel-Cantelli 2): IfBk are independent, then ξk = P(Bk) a.s.. Let Fk = σ(B1, . . . , Bk). If
∑

P(B∞) =
∞, then Y∞ =∞ a.s., and part 2 of Theorem 2.7.5 says Z∞ =∞ a.s., so infinitely many Bk occur.
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Proof of Theorem 2.7.5. Since (Zn)n≥0 is a submartingale, it has a Doob decomposition (Theorem 2.6.7)

Zn = Mn + Yn,

where Yn is as given in the theorem statement. Then

〈M〉n − 〈M〉n−1 = E((Mn −Mn−1)2|Fn−1) = E((1Bn
− ξn)2|Fn−1) = var(1Bn

|Fn−1) = ξn(1− ξn) ≤ ξn.

Summing the inequality over n, we obtain

〈M〉n ≤ ξ1 + · · ·+ ξn = Yn.

Since Y∞ <∞ a.s.
=⇒ 〈M〉∞ <∞, we conclude that limMn exists in R, and hence limZn exists in R. In other

words, Z∞ <∞. This is part 1 of the theorem.
Now observe that

{Y∞ =∞, 〈M〉∞ <∞} a.s.
=⇒ {limMn exists in R},

so
Zn
Yn

=
Mn

Yn
+
Yn
Yn
→ 0 + 1.

On the other hand,
{Y∞ =∞ = 〈M〉∞}

a.s.
=⇒ Mn

〈M〉n
→ 0

which implies Mn

Yn
→ 0 and hence Zn

Yn
→ 1. In total, we’ve verified part 2 of Theorem 2.7.5.
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2.8 Feb 13, 2020
Let’s discuss uniform integrability:

Definition 2.8.1. A set of random variables {Xi}i∈I is uniformly integrable (U.I.) if

lim
M→∞

sup
i∈I

E(|Xi|1{|Xi|>M}) = 0. 4

This condition can be hard to check with bare hands, but we’ll see some sufficient conditions later. Uni-
form integrability has nice consequences:

Remark 2.8.2. Let {Xi}i∈I be uniformly integrable. Then for sufficiently largeM , the supremum is less than
1. It follows that

sup
i∈I

E|Xi| = sup
i∈I

(E|Xi|1{|Xi|≤M} + E|Xi|1{|Xi|>M}) ≤M + 1 <∞.

The converse does not hold, i.e. supE|Xi| < ∞ does not imply uniform integrability. We may take the
standard example (Ω,F ,P) = ([0, 1],B, λ) where λ is the Lebesgue measure. SetXn = n1[0, 1n ). Then EXn =

1 for all n. But also
E(|Xn|1{|Xn|>M}) = 1 for all n > M,

so (Xn)n∈N is not uniformly integrable. (The limit is equal to 1.) 4

Let’s discuss some sufficient conditions for uniform integrability.

Lemma 2.8.3.

1. If |Xi| ≤ Y for all i ∈ I , and EY <∞, then {Xi}i∈I is uniformly integrable.

2. If supi∈I E|Xi|p <∞ for some p > 1, then {Xi}i∈I is uniformly integrable.

Proof. We verify part 1. Observe that

E(|Xi|1{|Xi|>M}) ≤ E(Y 1{|Xi|>M}) ≤ E(Y 1{Y >M})→ 0.

We next verify part 2. Note that if x ≥M > 0 then x ≤M1−pxp. So

E(|Xi|1{|Xi|>M}) ≤ E(M1−p|Xi|p1{|Xi|>M}) ≤M
1−p supE|Xi|p︸ ︷︷ ︸

finite

→ 0 as M →∞.

More nontrivial than Lemma 2.8.3 is

Theorem 2.8.4. Let X ∈ L1(Ω,F0,P). Then {E(X|F)}F⊆F0 is uniformly integrable.

By {E(X|F)} we mean the family which contains every version of every E(X|F); here, F runs over all
sub-σ-fields of F0.

To prove Theorem 2.8.4 we use

Lemma 2.8.5. If E|X| <∞ then for all ε > 0 there exists δ > 0 such that E|X|1A < ε for allA ∈ F0 with P(A) ≤ δ.

[There was a comment about the lemma was saying that the measure ν(A)
def
= E(|X|1A) is absolutely

continuous with respect to µ(A)
def
= P(A).]

Proof. Otherwise, there exist events A1, A2, . . . with P(An) ≤ 2−n and E|X|1An
> ε for all n.

By Borel-Cantelli 1, P({An i.o.}) = 0, so |X|1An
→ 0 a.s.. Dominated convergence saysE|X|1An

→ 0.
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Proof of Theorem 2.8.4. Fix ε > 0 and choose δ from Lemma 2.8.5, i.e. choose δ so that

P(A) ≤ δ =⇒ E|X|1A ≤ ε for all A ∈ F0.

Now choose M so that 1
ME|X| < δ. If Y is any version of E(X|F) then Jensen’s inequality says

Y ≤ E
(
|X|
∣∣F) a.s..

So
MP(|Y | > M) ≤ E|Y | ≤ E|X|,

and P(|Y | > M) < δ. Define A = {|Y | > M} ∈ F . We have

|Y |1A ≤ E
(
|X|
∣∣F) = E

(
|X|1A

∣∣F).
Taking expectations of both sides,

E(|Y |1A) ≤ E(|X|1A) < ε.

This verifies uniform integrability.

Uniform integrability and L1 convergence.

Theorem 2.8.6. Let Xn → X in probability. The following are equivalent:

1. {Xn}n≥0 is uniformly integrable

2. Xn → X in L1 (i.e., E|Xn −X| → 0)

3. E|Xn| → E|X|.

Proof. Let’s prove that item 1 implies item 2. Let

ϕM : R→ [−M,M ]

ϕM (x) =


−M if x < −M
x if x ∈ [−M,M ]

M if x > M

with graph that looks like

M

−M

M−M

Note that for all Y , we have

|ϕM (Y )− Y | = (|Y | −M)+ ≤ |Y |1{|Y |>M}. (10)

Then

|Xn −X| ≤ |Xn − ϕM (Xn)|+ |ϕM (Xn)− ϕM (X) + E|ϕM (X)−X|
≤
(10)

E(|Xn|1{|Xn|>M}) + E|ϕM (Xn)− ϕM (X)|+ E(|X|1{|X|>M}).
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The first summand satisfies E(|Xn|1{|Xn|>M}) < ε by uniform integrability of Xn.
The third summand satisfies E(|X|1{|X|>M}) < ε by Fatou: since |Xnk

| → |X| a.s., Fatou says E|X| ≤
supn E|Xn| <∞ and its truncations E(|X|1{|X|>M}) can be made as small as desired.

Finally, the second summand satisfies E|ϕM (Xn) − ϕM (X)| < ε because Xn
P→ X implies ϕM (Xn)

P→
ϕM (X), and bounded convergence theorem says E|ϕM (Xn)− ϕM (X)| → 0.

This completes the proof of item 1 implying item 2.
Let’s show that item 2 implies item 3. Observe that E|Xn−X| → 0 and E|X| ≤ E|Xn−X|+E|Xn| <∞.

Then Jensen says ∣∣E|X| − E|Xn|
∣∣ ≤ E

∣∣|X| − |Xn|
∣∣ ≤ E|X −Xn| → 0.

Finally, let’s show item 3 implies item 1. Let ψM : [0,∞)→ [0,M ] be given by the graph

M − 1

M − 1 M

and defined piecewise linearly by the formula

ψM (x) =


x if x ≤M − 1

(M − x)(M − 1) if M − 1 ≤ x ≤M
0 if x > M

Bounded convergence says
EψM (|Xn|)→ EψM (|X|) as n→∞. (11)

Since X ∈ L1, dominated convergence says

EψM (|X|)→ E|X| as M →∞ (12)

Then, for n ≥ n0 sufficiently large,

E(|Xn|1{|Xn|>M}) ≤ E|Xn| − EψM (|Xn|)
(11)
< E|X| − EψM (|X|) + ε

(12)
< 2ε for M ≥M0.

(Here, the assumption E|Xn| → E|X| is also used to conclude E|Xn| −EψM (|Xn|) < E|X| −EψM (|X|) + ε.)
Take M larger if needed so that

E|X| − EψM (|X|) + ε < 2ε

also holds for n = 1, . . . , n0 − 1. It follows that (Xn)n≥0 is uniformly integrable.

L1 convergence theorems for martingales.
Lemma 2.8.7. If (Xn)n≥0 is a martingale adapted to a filtration (Fn)n≥0 andXn → X in L1, thenXn = E(X|Fn)
for all n ≥ 0.
Proof. For m > n we have E(Xm|Fn) = Xn, so for A ∈ Fn we have

E(Xm|Fn)1A = Xn1A.

This gives
E(Xn1A) = E(Xm1A)→ E(X1A). (13)

Note that because Xm → X in L1,

|E(Xm1A)− E(X1A)| ≤ E|Xm1A −X1A| ≤ E|Xm −X| → 0

so Xm1A → X1A in L1 for all A ∈ F . With this in mind, Equation (13) implies

E(X|1A) = E(Xn1A)

for all A ∈ Fn. It follows that Xn = E(X|Fn) a.s., by definition of conditional expectation.
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2.9 Feb 18, 2020
[OH will be moved to Tuesday, 3–4 at 438 MLT this week.]
Last time we showed

Lemma 2.9.1 (cf. Lemma 2.8.7). If (Xn)n≥0 is a martingale adapted to a filtration (Fn)n≥0 and Xn → X in L1,
then Xn = E(X|Fn) for all n ≥ 0.

Using this, let’s prove

Theorem 2.9.2. Let (Xn)n≥0 be a martingale adapted to (Fn)n≥0. The following are equivalent:

1. {Xn} is uniformly integrable

2. Xn converges a.s. and in L1

3. Xn converges in L1

4. There is X with E|X| <∞ such that Xn = E(X|Fn) a.s.

Proof. We first show item 1 implies item 2. In Remark 2.8.2 we showed that uniform integrability implies
supn E|Xn| < ∞. This implies Xn → X a.s. by martingale convergence theorem. Then by Theorem 2.8.6,
Xn → X in L1.

That item 2 implies item 3 is trivial.
That item 3 implies item 4 is Lemma 2.9.1.
That item 4 implies item 1 follows because {E(X|F) : F ⊆ F0} is uniformly integrable (Theorem 2.8.4).

Theorem 2.9.3. Let (Fn)n≥0 be a filtration, and let

F∞ = σ

( ⋃
n≥0

Fn
)
.

Let E|X| <∞. Then E(X|Fn)→ E(X|F∞) a.s. and in L1.

Corollary 2.9.4 (Lévy 0-1 law). If A ∈ F∞, then E(1A|Fn)→ 1A a.s. and in L1.

This is just a special case of Theorem 2.9.3, when X = 1A for A ∈ F∞. Although this looks innocent, it
implies the Kolmogorov 0-1 law:

Corollary 2.9.5 (Kolmogorov 0-1 law, cf. [6710, Thm 7.25.4]). Let Y1, Y2, . . . be independent random variables
and let

A ∈ T def
=
⋂
n≥1

σ(Yn, Yn+1, Yn+2, . . . ).

Then P(A) ∈ {0, 1}.

Proof. Let’s show that the Kolmogorov 0-1 law follows from the Lévy 0-1 law. Let Fn = σ(Y1, . . . , Yn);
observe that Fn ⊥ σ(Yn+1, Yn+2 . . . ) ⊇ T . Since A is independent of Fn, we obtain

E(1A|Fn) = E1A = P(A).

The Lévy 0-1 law says P(A) = 1A a.s., where P(A) is interpreted as the constant function. So P(A) = 1 or
P(A) = 0.

Proof of Theorem 2.9.3. Let Xn = E(X|Fn). Note that (Xn)n≥0 is a uniformly integrable martingale. Thus
Theorem 2.9.2 says Xn → X∞ a.s. and in L1. It remains to show that X∞ = E(X|F∞) a.s..

Lemma 2.8.7 says Xn = E(X∞|Fn) for all n <∞. In particular, for all A ∈ Fn we have

EX1A = EX∞1A.

Note that ∪n≥0Fn is a π-system containing Ω and generating F∞. So E(X|F∞) = E(X∞|F∞) a.s., by [HW
1, Ex 2]. Then E(X∞|F∞) = X∞ a.s. because X∞ ∈ mF∞.
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Backwards martingales.
Let (Fn)n≤0 be a filtration, so

· · · ⊆ F−2 ⊆ Fn−1 ⊆ F0.

Definition 2.9.6. We say (Xn)n≤0 is a backwards martingale if

1. E|Xn| <∞ for all n,

2. Xn ∈ mFn for all n,

3. E(Xn+1|Fn) = Xn a.s., for all n ≤ −1.

4

Theorem 2.9.7. For any backwards martingale (Xn)n≤0, the limit

X−∞ lim
n→−∞

Xn

exists a.s. and the convergence is in L1.

Proof. Fix a < b ∈ R and let Un be the number of upcrossings of [a, b] by X−n,X−n+1, . . . , X0. (Recall that
an upcrossing is (s, t) with s < t, Xs < a, and Xt > b.)

Note that Un ↑ U∞, so EUn ↑ EU∞. The upcrossing inequality says

EUn ≤
E(X0 − a)+

b− a
<∞ for all n,

and in particular EU∞ satisfies the same inequality. Thus U∞ is a.s. finite, and by the same proof as the
martingale convergence theorem (Theorem 2.3.11) we obtain

P( lim
n→−∞

Xn exists in R) = 1.

This gives the a.s. convergence.
Let’s show the L1 convergence. For all n ≤ 0 we have E(X0|Fn) = Xn, by the martingale property. In

particular the (Xn)n≥0 is uniformly integrable. In light of the a.s. convergence of Xn, the L1 convergence of
the Xn follows (e.g. by Theorem 2.8.6).

Theorem 2.9.8 (Lévy’s downward theorem). Let (Xn)n≥0 be a backwards martingale. LetX−∞ = limn→−∞Xn

and let F−∞ = ∩n≤0Fn. Then
X−∞ = E(X0|F−∞) a.s..

Proof. Note that X−∞ ∈ mσ((Xk)k≤n)) ⊆ Fn for all n ≤ 0. This implies that X−∞ ∈ mF−∞. If A ∈ F−∞¡
then since Xn = E(X0|Fn) a.s. and A ∈ Fn we have

EXn1A = EX01A.

On the other hand EXn1A → EX−∞1A since Xn → X−∞ in L1 (same yoga as in Lemma 2.8.7), and we
obtain

EX−∞1A = EX01A.

Hence X−∞ = E(X0|F−∞) a.s.

Corollary 2.9.9. If E|Y | <∞ and Fn ↓ F−∞ as n ↓ −∞, then E(Y |Fn)→ E(Y |F−∞).

Here, the notation Fn ↓ F−∞ means that

F0 ⊇ F−1 ⊇ F−2 ⊇ . . . and
⋂
n≤0

Fn = F−∞.

28



Proof. LetXn = E(Y |Fn). This is a backwards martingale, soXn → X−∞ a.s. and in L1 for some limitX−∞.
It follows that

X−∞ = E(X0|F−∞) = E(E(Y |F0)|F−∞) = E(Y |F−∞) a.s.,

because the smaller σ-algebra wins.

Backwards martingales allow us to prove the sharp strong law of large numbers. We’ve seen various
weaker forms of this, such as when fourth moments are bounded [6710, Thm 5.13.4] and when second
moments are bounded (Theorem 2.7.3). But now we can prove:

Theorem 2.9.10. Let ξ1, ξ2, . . . be i.i.d. with E|ξi| <∞. Let Sn = ξ1 + · · ·+ ξn. Then

Sn
n
→ Eξ1 a.s..

Proof. For n ≥ 0, define

X−n
def
=

Sn
n

and F−n
def
= σ(Sn, Sn+1, . . . ).

We want to show this is a backwards martingale, so we need to understand the random variableE(X−n|F−n−1).
Observe that

E(ξj |F−n−1) = E(ξk|F−n−1) a.s.,

for all j, k ≤ n. This is by symmetry: note that ξj
d
= ξk, and for N ≥ n+ 1 the random variable SN depends

on ξj and ξk only via ξj + ξk. Then

E(ξn+1|F−n−1) =
1

n+ 1

n+1∑
j=1

E(ξj |Fn−1)

= E
(

1

n+ 1

n+1∑
j=1

ξj

∣∣∣∣F−n−1

)

= E
(
Sn+1

n+ 1

∣∣∣∣F−n−1

)
=
Sn+1

n+ 1
, a.s..

Let’s come back to trying to understand E(X−n|F−n−1). Note that

E(X−n|F−n−1) = E
(
Sn+1 − ξn+1

n

∣∣∣∣F−n−1

)
=
Sn+1

n
− 1

n
E(ξn+1|F−n−1) =

Sn+1

n
− 1

n

Sn+1

n+ 1
= X−n−1.

We’ve verified that (Xn)n≤0 is a backwards martingale. It follows that lim Sn

n exists a.s. and in L1 (Theo-
rem 2.9.7). But

lim
Sn
n

= E(X−1|F−∞) = E(ξ1|F−∞).

Note that lim Sn

n ∈ mT , so by the Kolmogorov 0-1 law (Corollary 2.9.5) we have

P
(

lim
Sn
n

= x

)
∈ {0, 1} for all x ∈ R,

and lim Sn

n is an a.s. constant. Since E(ξ1|F−∞) is an a.s. constant, this constant must be E(ξ1). In total, we’ve
verified

lim
Sn
n

= E(ξ1).
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2.10 Feb 20, 2020
[I was out of town. I am grateful for Jake Wasserstein’s and Sara Venkatraman’s notes, from which I

copied.]
We begin with

Theorem 2.10.1 (Doob’s L2 inequality). If Mn ≥ 0 is a submartingale with EM2
n <∞ for all n, then

E(max(M0,M1, . . . ,Mn)2) ≤ 4EM2
n,

and E(supM2
n) ≤ 4 supEM2

n.

Proof. See Durrett 4.4, or Williams Ch. 14.

LetXn ≥ 0 be independent random variables with EXn = 1. ThenMn = X1 . . . Xn is a martingale. Note
that by the martingale convergence theorem (Theorem 2.3.11), limMn exists a.s. in R.

Example 2.10.2. If Xn ∼ Unif(0, 2), then limMn = 0 a.s. (cf. [6710 HW6, Ex 2]). 4

When is limMn not equal to zero a.s.?

Theorem 2.10.3 (Kakutani). Let Xn ≥ 0 be independent random variables with EXn = 1 for all n. Then Mn =
X1 . . . Xn is a martingale. Let an = E

√
Xn ≤

√
EXn = 1. (The inequality holds by Jensen.) Then:

1. If
∏
n≥1 an > 0 then Mn →M∞ in L1, and hence EM∞ = EMn = 1, so P(M∞ > 0) > 0.

2. If
∏
n≥1 an = 0, then P(M∞ = 0) = 1.

Proof. Let

Nn =

n∏
i=1

X
1/2
i

ai
.

We claim that Nn is a martingale. Indeed, we compute

E(Nn+1|Fn) = E
(
X

1/2
n+1

an+1
Nn

∣∣∣∣Fn) = 1 ·Nn,

so (Nn)n≥1 is a martingale. Since Nn ≥ 0 there is an a.s. limit Nn → N∞.
Let’s now show the first item. Note that

Mn = a2
1 . . . a

2
nN

2
n ≤ N2

n,

so

EN2
n =

EX1 . . .EXn

a2
1 . . . a

2
n

=

n∏
i=1

1

a2
i

<

(∏
i≥1

1

ai

)2

<∞,

because we assumed
∏
n≥1 an > 0. Because Mn is dominated by supMn, and

E(supMn) ≤ E(supNn)2 ≤ 4 supEN2
n ≤

4∏
n≥1 a

2
n

<∞,

it follows that Mn is uniformly integrable and Mn →M∞ in L1.
To show item 2, we compute

M∞ = limMn = lim(a2
1 . . . a

2
n)N2

n = lim(a2
1 . . . a

2
n) · limN2

n︸ ︷︷ ︸
a.s. finite

= 0.
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Two stopping times.

Definition 2.10.4. If (Fn)n≥0 is a filtration and L is a stopping time, then σ-algebra FL consists of the sets
A such that A ∩ {L = `} ∈ F` for all ` ∈ N. Note that YL ∈ mFL. 4

Theorem 2.10.5. Let (Yn)n≥0 be a uniformly integrable submartingale adapted to (Fn)n≥0. Let L ≤M be stopping
times, and assume M is finite a.s.. Then

YL ≤ E(YM |FL) a.s..

Proof. Let A ∈ FL and let N = L1A +M1Ac ≤M . One can check that N is a stopping time.
Let Xn = YM∧n. Lemma 2.10.6 will show that Xn is uniformly integrable. By uniform integrability, we

know that Xn → X∞ a.s. and EXn → EX∞ = EYM , because X∞ = YM . Now,

EYN = EYN∧M = EXN ≤ EX∞ = EYM

with the last inequality from the forthcoming Theorem 2.10.7. SinceN = M onAc and YN = YN1A+YN1Ac ,
we have

E(YL1A) = E(YN1A) ≤ E(YM1A) = E(E(YM |FL)1A).

Let Aε = {YL − E(YM |FL) > ε} ∈ FL. By the above inequality,

εP(Aε) ≤ E(YL − E(Ym|FL)) ≤ 0,

so P(Aε) = 0.

Lemma 2.10.6. If (Xn)n≥0 is a uniformly integrable submartingale and N is a stopping time, then (XN∧n)n≥0 is
uniformly integrable.

(The lemma holds even if P(N =∞) > 0; we use the convention that∞∧ n = n for all n ∈ N.)

Proof. Note that 0 ≤ N ∧n ≤ n, and (X+
n )n≥0 is also a uniformly integrable submartingale (because x 7→ x+

is convex). We already know that
EX+

N∧n ≤ EX+
n ,

so supEX+
N∧n ≤ supEX+

n < ∞, since (Xn)n≥0 is uniformly integrable. The martingale convergence theo-
rem says XN∧n → XN a.s. and E|XN | <∞. We obtain

E(|XN∧n|1{|XN∧n|>k}) = E(|XN |1{|XN |>k,N≤n}) + E(|Xn|1{|Xn|>k,N>n}) < ε+ ε,

because E|XN | <∞ and (Xn)n≥0 is uniformly integrable.

Theorem 2.10.7. If (Xn)n≥0 is a uniformly integrable submartingle, withXn → X∞ a.s., andN is a stopping time,
then EX0 ≤ EXN ≤ EX∞.

Proof. We have, for every n,
EX0 ≤ EXN∧n ≤ EXn.

But Xn → X∞ a.s. and in L1 by uniform integrability, and XN∧n → XN a.s. and in L1 by uniform integra-
bility guaranteed by Lemma 2.10.6. We obtain

EX0 ≤ EXN ≤ EX∞.

De Finetti’s Theorem
Let Ω = SN andF = SN; letX1, X2, . . . be random variables taking values in (S,S) such thatXn(ω) = ωn.

[Here, ω = (ω1, ω2, . . . ) ∈ SN.]

Definition 2.10.8. The random variables (Xn)n≥1 is exchangeable if for all n ∈ N and all permutations π ∈ Sn,

(X1, . . . , Xn)
d
= (Xπ(1), . . . , Xπ(n)). 4

For example, if X1, X2, . . . are i.i.d. then they are exchangeable.
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Example 2.10.9. Mint a coin that comes up heads with probability U ∼ Unif(0, 1), then flip it:

P(Xn = 1|U) = U and P(Xn = 0|U) = 1− U for all n.

Assume flips are independent conditioned on U , so that

P(X1 = b1, . . . , Xn = bn|U) = P(X1 = b1|U) . . .P(Xn = bn|U) = Um(1− U)n−m,

where m = b1 + · · ·+ bn. These Xn are exchangeable but not independent. 4

Definition 2.10.10. The event A ⊆ Ω = SN is exchangeable if πA = A for all n ∈ N and all π ∈ Sn. 4

Define
E def

= {exchangeable events A}.

Note that
E ) T =

⋂
n≥0

σ(Xn+1, Xn+2, . . . ).

As an example,

Example 2.10.11. We have {Xn > 0 for all n} ∈ M, but {Xn > 0 for all n} 6∈ T . 4

Theorem 2.10.12 (Hewitt-Savage 0-1 law). If (Xn)n≥0 are i.i.d., then P(A) ∈ {0, 1} for all A ∈ E .

Example 2.10.13. Consider the coin example from Example 2.10.9. We have U ∈ mE . The strong law of
large numbers says

X1 + · · ·+Xn

n
→ U a.s.. 4

Theorem 2.10.14 (De Finetti). If (Xn)n≥0 is exchangeable then conditioned on E , the random variables (Xn)n≥1

are i.i.d..
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3 Brownian Motion
3.11 Feb 27, 2020

Sources include Durrett Ch. 7, as well as Mörters-Peres Brownian Motion and Baudoin Diffusion processes
and stochastic calculus.

Definition 3.11.1. A continuous time stochastic process is a collection of random variables (Xt)t∈[0,∞) indexed
by t ∈ [0,∞), all defined on the same probability space (Ω,F < P). 4

Definition 3.11.2. The continuous time stochastic process (Xt)t≥0 has independent increments if for all t0 <
t1 < · · · < tn, the random variables Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1

are independent. 4

Definition 3.11.3. The random variables (Bt)t≥0 is a Brownian motion if

1. It has independent increments,

2. Bs+t −Bs ∼ N(0, t) for all s, t > 0,

3. t 7→ Bt is almost surely continuous.

If B0 = 0, then we additionally say that (Bt)t≥0 is a standard Brownian motion. 4

Thus there are two views of B(t, w) : [0,∞)× Ω→ R. One view is through the map

t 7→ (ω 7→ B(t, w)),

i.e. for each t we have a random variable ω 7→ B(t, ω). Another view is through the map

ω 7→ (t 7→ B(t, ω)),

i.e. for each ω ∈ Ω we have a continuous function [0,∞)→ R. (Think of these functions as a squiggly graph;
for each ω ∈ Ω we have a bunch of squiggly graphs.)

In other words, the second viewpoint is to think of B as a function

f : Ω→ C[0,∞) = {continuous functions [0,∞)→ R}.

With this viewpoint it is natural to endow C[0,∞) with a σ-algebra. The natural one to endow it with is

σ{At,y : t ∈ [0,∞), y ∈ R}, where At,y = {f ∈ C[0,∞) : f(t) ≥ y}. (14)

Let’s pause to consider existence of brownian motions. The conditionBs+t−Bs ∼ N(0, t) is crucial, and
it turns out that in general, if we replace N(0, t) with other random variables they might not exist.

Lévy’s construction of Brownian motion.
The idea is to first construct standard Brownian motions B(d) for d a dyadic rational,

d =

{
k

2n
: 0 ≤ k ≤ 2n

}
.

We know B0 = 0 and B1 ∼ N(0, 1). We begin by linearly interpolating B0 and B1, and then we perturb B
at 1

2 (in some way to be made precise later), as below:

B1 ∼ N(0, 1)

1
2 1
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Then we perturb B at 1
4 and 3

4 , as below:

B1 ∼ N(0, 1)

1
2 13

4
1
4

To perturb it, we use a lemma (which was [6710, HW 9, Ex 1])

Lemma 3.11.4. If (X,Y ) ∼ N(0, σ2I2) then (X + Y,X − Y ) ∼ N(0, 2σ2I2).

Roughly, the lemma follows from rotational invariance of the normal distribution.
Given d ∈ Dn \Dn−1, if we’ve already constructed B(d′) for each d′ ∈ Dn−1, we set

B(d) =
B(d+ 2−n) +B(d− 2−n)

2
+

Zd
2(n+1)/2

,

where (Zd)d∈∪nDn
are i.i.d. N(0, 1) random variables. Then note that if

X =
B(d+ 2−n) +B(d− 2−n)

2
∼ N

(
0,

2 · 2−n

4

)
and

Y =
Zd

2(n+1)/2
∼ N

(
0,

1

2n+1

)
then Lemma 3.11.4 says

X + Y = B(d+ 2−n)−B(d) and X − Y = B(d)−B(d− 2−n)

are independent N(0, 2 · 1
2n+1 ) random variables.

We need to show that the limit is continuous (item 3 in Definition 3.11.3). Let

Fn(t) =


2−(n+1)/2Zt, t ∈ Dn \Dn−1

0 t ∈ Dn−1

linear otherwise

and define
B(t) =

∑
n≥0

Fn(t).

Note that

B(d) =

n∑
k=0

Fk(d)

is a finite sum for each d ∈ Dn.

Claim 3.11.5. The series defining B(t) is a.s. uniformly convergent.

Because the uniform limit of continuous functions is continuous, we’ll getP(t 7→ B(t) is continuous) = 1.

Proof of Claim 3.11.5. We have
P(|Zd| ≥ c

√
n) < e−(c

√
n)2/2

so ∑
d∈Dn

P(|Zd| ≥ c
√
n) < (2n + 1)e−c

2n/2 < λn
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for some λ < 1. On the other hand

P(max
d∈Dn

|Zn| ≥ c
√
n) ≤

∑
d∈Dn

P(|Zd| ≥ c
√
n) < λn,

so summing over n we obtain ∑
n≥0

P(max
d∈Dn

|Zn| ≥ c
√
n) <

∑
n≥0

λn <∞.

Borel-Cantelli now says
P(max
d∈Dn

|Zn| ≥ c
√
n i.o.) = 0.

Thus with probability 1, there existsN <∞ so that for all n > N the estimate ‖Fn‖∞ ≤ c
√
n2−n/2 holds.

So far we’ve defined Brownian motion on [0, 1]. To extend from [0, 1] to [0,∞), we let B1, B2, . . . be
independent copies of B(t)t∈[0,1]. For t ∈ [0,∞), write t = n+ u for n ∈ N and u ∈ [0, 1). Set

B(t) =

n∑
i=1

Bi(1) +Bn+1(u).

After extending from the dyadics to all of R by continuity, it’s not so bad to verify that B(s + t) − B(s) ∼
N(0, t). This completes the construction of a Brownian motion.

Definition 3.11.6. A stochastic process (Xt)t≥0 is called a Gaussian if for every t0 < · · · < tn, the random
vector (Xt0 , . . . , Xtn) is Gaussian. 4

(We say the random vector X = (X1, . . . , Xn) is a multivariate distribution, so X ∼ N(µ,Σ).)

Definition 3.11.7. We say a Gaussian is centered if its mean is zero. 4

Brownian motion (Bt)t≥0 is a centered Gaussian process: the joint distribution of Bt0 , . . . , Btn is

Bt0...
Btn

 =


1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
...

...
...

. . .
...

1 1 1 1 1




Bt0
Bt1 −Bt0

...
Btn −Btn−1


and the vector (Bt0 , Bt1 −Bt0 , . . . , Btn −Btn−1

) consists of independent normals.

Definition 3.11.8. We say (Xt)t≥0
fdd
= (Yt)t≥0 ifX and Y have the same finite-dimensional distributions, i.e.

for all t0 < · · · < tn we have
(Xt0 , . . . , Xtn)

d
= (Yt0 , . . . , Ytn).

4

To specify the finite dimensional distributions of a centered Gaussian process (Xt)t≥0 it suffices to specify
E(XsXt) for s ≤ t.

Remark 3.11.9. Iff X,Y are a.s. continuous random paths Ω → C[0,∞) and X
fdd
= Y, then X

d
= Y, i.e.

P(X ∈ A) = P(Y ∈ A) for all A ∈ F ′ = σ(At,y) (see Equation (14)). 4

Proof. This is because X
fdd
= Y implies (Xt)t∈Q

d
= (Yt)t∈Q, which in turn implies X d

= Y by continuity.

Note also that if (Bt)t≥0 is a Brownian motion and s ≤ t, then

E(BsBt) = E(Bs(Bs + (Bt −Bs))) = EB2
s + E(Bs(Bt −Bs)) = s+ 0, (15)

sinceBs ∼ N(0, s) andBs is independent ofBt−Bs. This leads to another equivalent definition of Brownian
motion, which we’ll explore next time.
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3.12 Mar 3, 2020
[I was out of town for this lecture. I’m grateful for Will Gao’s notes, from which I copied. I’m sorry it’s

late!]
[For [HW 4, Ex 1(e)]: change “2” to “3”, i.e. prove P(Xn ≥

√
3n log n i.o.) = 0.]

Claim 3.12.1. Let (Bt)t≥0 be a standard Brownian motion. Let X(t) = 1
aB(a2t) for fixed a > 0. Then (X(t))t≥0 is

a standard Brownian motion.

In this sense, Brownian motion is a random fractal (when space/time are rescaled correctly).

Proof. Note that

X(t)−X(s) =
1

a
B(a2t)− 1

a
B(a2s) ∼ 1

a
N(0, a2(s− t)) ∼ N(0, t− s).

Also, X has independent increments (since B does) and continuous sample path (since B does). Finally,
X(0) = 1

aB(0) = 0.

Time inversion of Brownian motion
We also have

Claim 3.12.2. Let (B(t))t≥0 be a standard Brownian motion. Let

Y (t) =

{
tB( 1

t ) t > 0

0 t = 0.

Then (Y (t))t≥0 is a standard Brownian motion.

Proof. Let’s check that Y (t) is a Gaussian process with the same covariance as B(t). Note that

(Y (t0), . . . , Y (tn)) = (t0B(1/t0), . . . , tnB(1/tn))

has a multivariate normal distribution. Its covariance can be computed as follows: For t, h > 0 we have

E(Y (t+ h)Y (t)) = E
(

(t+ h)B

(
1

t+ h

)
tB

(
1

t

))
= t = E(B(t+ h)B(t)),

by Equation (15). Hence, (Y (t))t≥0
fdd
= (B(t))t≥0. It remains to check that t 7→ Y (t) is a.s. continuous. For

t > 0, this follows since t 7→ B(t) is a.s. continuous.
Finally, because (B(t))t∈Q

d
= (Y (t))t∈Q, we have

lim
t∈Q,
t↓0

Y (t) = lim
t∈Q,
t↓0

B(t) = B(0) = 0.

Thus Y (t) is a standard Brownian motion, as claimed.

Notice we have proven that

lim
s↑∞

1

s
B(s) = lim

t↓0
tB(1/t) = lim

t↓0
Y (t) = 0.

Here’s another proof of this fact. Let n = bsc. Then

B(s) = (B(1)−B(0)) + (B(2)−B(1)) + · · ·+ (B(n)−B(n− 1)) + (B(s)−B(n)) = Z1 + · · ·+ Zn︸ ︷︷ ︸
i.i.d.N(0,1)

+Z ′,

where Z ′ is some independent N(0, s− n). The strong law of large numbers says

Z1 + · · ·+ Zn
n

→ 0 a.s.,

so the claim follows by observing that Z ′/n→ 0.
Note that we may have instead divided by

√
s; hereB(s)/

√
s ∼ N(0, 1) for all s, soB(s)/

√
s 6→ 0. In fact:
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Lemma 3.12.3. We have

lim sup
s→∞

B(s)√
s

= +∞ a.s.,

lim inf
s→−∞

B(s)√
s

= −∞ a.s..

Proof. Let Xn = B(n)−B(n− 1) ∼ N(0, 1), so the Xn are independent. Note also that B(n)/
√
n ∼ N(0, 1).

Then,

P
(
B(n)√
n

> c i.o.
)

= E1{B(n)√
n
>c i.o.}

= E1∩N≥1∪n≥N{B(n)√
n
>c}

= E lim sup
n→∞

1{B(n)√
n
>c}

≥ lim sup
n→∞

E1{B(n)√
n
>c}

= lim sup
n→∞

P
(
B(n)√
n

> c

)
> 0.

We may now apply Theorem 2.10.12. The event

A =

{
B(n)√
n

> c i.o.
}

is exchangeable under finite permutations of X1, X2, . . . . Then

P(A) ∈ {0, 1}, hence P(A) = 1.

A sharp result is given by the law of the iterated logarithm [cf. [HW 4, Ex 1]]:

lim sup
s→∞

B(s)√
2s log log s

= 1.

Nondifferentiability of Brownian motion

Definition 3.12.4. We define the upper-right derivative and lower-right derivative of a function f by

D∗f(t)
def
= lim sup

h↓0

f(t+ h)− f(t)

h

D∗f(t)
def
= lim inf

h↓0

f(t+ h)− f(t)

h

respectively. 4

Theorem 3.12.5. Fix t ≥ 0. Then,

P(D∗B(t) = +∞) = P(D∗B(t) = −∞) = 1.

Hence P({ω : x 7→ B(x) is differentiable at x = t}) = 0.

Proof. Let X(s) = B(t + s) − B(t). Then (X(s))s≥0 is a standard Brownian motion. (This is not difficult to
see.)

Now note that (D∗B)(t) = (D∗X)(0), so we may assume t = 0.
Consider the standard Brownian motion

Y (s) =

{
sX(1/s) s > 0

0 s = 0
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(Claim 3.12.2 asserts Y is indeed a standard Brownian motion.)
Then

(D∗X)(0) = lim sup
h↓0

X(h)−X(0)

h
= lim sup

n→∞

X(1/n)

1/n
= lim sup

n→∞
Yn =∞.

A similar argument holds for D∗.

Remark 3.12.6. Actually, t 7→ B(t) is a.s. Hölder continuous for c < 1/2 and a.s. not Hölder continuous for
c ≥ 1/2. 4

Theorem 3.12.7 (Paley-Wiener-Zygmund). We have

P(D∗B(t)−D∗B(t) = +∞ for all t ∈ [0, 1]) = 1.

In particular
P({ω : t 7→ B(t) is differentiable for some t = t0 ∈ [0, 1]}) = 0.

This is an uncountable union over t0 ∈ [0, 1], so it’s a strengthening of Theorem 3.12.5.

Example 3.12.8. Let Zt = {s > t : B(t) = B(s)} and

At = {t ∈ Zt} = {there are si ↓ t with B(sn) = B(t) for all n}.

On Thursday we’ll show that

P(At) = 1 but P
( ⋂
t∈[0,1]

At

)
= 0.

For now let
L = sup{t < 1: B(t) = 1}

and note that
P(L < 1) ≥ P(B(1) 6= 1) = 1.

But ZL ∼ (L, 1) 6= 0. If L < 1, then AL does not occur. [i’m very lost, sorry] 4
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3.13 Mar 5, 2020
Let’s talk today about the Markov property of Brownian motion. (Durrett spends some time on Markov

chains, but we skipped that for now.)
Suppose (B(t))t≥0 is a Brownian motion. Then for all s ≥ 0, we may consider the process

(B(t+ s)−B(s))t≥0,

which is a standard Brownian motion that is independent of (B(u))0≤u≤s.

Definition 3.13.1. A (continuous time) filtration on (Ω,F ,P) is a family of σ-algebras (F(t))t≥0 withF(t) ⊆ F
and F(s) ⊆ F(t) for s < t.

A (continuous time) stochastic process (X(t))t≥0 is adapted to (F(t))t≥0 ifX(t) ∈ mF(t) for all t ≥ 0. 4

Example 3.13.2. A standard brownian motion (B(t))t≥0 is adapted to (F0(t))t≥0, where

F0(t) = σ(B(s) : 0 ≤ s ≤ t).

But we could take a slightly larger filtration: specifically, (B(t))t≥0 is also adapted to (F+(t))t≥0, where

F+(t) =
⋂
s>t

F0(s).

(Here, F+ can be thought of as looking infinitesimally into the future; it turns out that F+(t) ) F0(t).)
Let’s think about how much bigger F+ is. 4

Theorem 3.13.3. Let X(t) = B(t+ s)−B(s). Then (X(t))t≥0 is independent of F+(s).

(The Markov property is the same statement but with F0(s), so this is a strengthening.)

Proof. We’re going to use continuity of B. Let sn = s+ 1
n . Then

X(t) = lim
n→∞

(B(sn + t)−B(sn)) a.s.

which exists since t 7→ B(t) is a.s. continuous. Since X is continuous, it is enough to check that the finite
dimensional distributions of X are independent of F+(s). But now

(X(t1), . . . , X(tm)) = lim
n→∞

(B(sn + t1)−B(sn), . . . , B(sn + tm)−B(sn))︸ ︷︷ ︸
independent of F+(s)

.

Anytime one proves an “independence from yourself” result, one gets a 0-1 law.

Corollary 3.13.4 (Blumenthal’s 0-1 law). Let (B(t))t≥0 be a Brownian motion withB(0) = x. Then P(A) ∈ {0, 1}
for A ∈ F+(0).

Example 3.13.5. We have

A = {ω : t 7→ B(t) is differentiable at t = 0} ∈ F+(0).

Last time we showed P(A) = 0. 4

Proof of Corollary 3.13.4. Take s = 0 in Theorem 3.13.3. Then (B(t) − B(0))t≥0 is independent of F+(0). It
follows that (B(t))t≥0 is independent of F+(0).

Any event A ∈ F+(0) satisfies A ∈ σ(B(t))t≥0. It follows that A is independent of itself, and hence
P(A)2 = P(A ∩A) = P(A).

Corollary 3.13.6. For any tail event
A ∈ T =

⋂
t≥0

σ(B(s) : s ≥ t)

we have P(A) ∈ {0, 1}.
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Proof. The inversion

Y (t) =

{
tB(1/t) if t > 0

0 t = 0

is a standard Brownian motion (Claim 3.12.2). Also,

TB = F+
Y (0).

Zero set of Brownian motion
Let B be a standard Brownian motion and let

τ
def
= inf{t > 0: B(t) > 0}

σ
def
= inf{t > 0: B(t) = 0}.

One might expect σ = τ , since otherwise B(t) would obtain a local max at t = σ. In fact, more is true:
Theorem 3.13.7. We have P(σ = 0) = P(τ = 0) = 1.

Proof. Observe that
{τ = 0} =

⋂
n≥1

{B(ε) > 0 for some 0 < ε < 1/n}.

In particular, {τ = 0} ∈ F+(0). Now fix t > 0 and observe that

P(τ ≤ t) ≥ P(B(t) > 0) =
1

2
,

since B(t) ∼ N(0, t). We conclude
P(τ = 0) = lim

t↓0
P(τ ≤ t) ≥ 1

2
.

Since {τ = 0} ∈ F+(0), Blumenthal’s 0-1 law (Corollary 3.13.4) says P(τ = 0) ∈ {0, 1}. We conclude
P(τ = 0) = 1.

Now let
τ ′

def
= inf{t > 0: B(t) < 0}

and observe that P(τ ′ = 0), either by repeating the proof or by using the scale invariance(
1

a
B(a2t)

)
t≥0

d
= (B(t))t≥0

for a = −1 (cf. Claim 3.12.1).
The intermediate theorem says σ ≤ max(τ, τ ′) and the maximum is zero almost surely. It follows that

P(σ = 0) = 1.

Example 3.13.8. Fix t and let
Zt = {s > t : B(t) = B(s)},

so that Zt is the zero set of the process

X(s) = (B(t+ s)−B(t))s≥0.

Let
At = {t ∈ Zt}.

We claimed last time that
P(At) = 1 but P

( ⋂
t∈[0,1]

At

)
= 0.

(So for any fixed time, At almost surely happens, but there’s almost surely a time when it fails.)
The claim that P(At) = 1 since P(σ = 0) = 1 for the standard brownian motion X(s). Now let

L = sup{t < 1: B(t) = 0}.

Then note that P(L = 1) = P(B(1) = 0) = 0, since B(1) ∼ N(0, 1). On the other hand, P(AL) = 0. 4
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Right continuous filtrations

Definition 3.13.9. The filtration (F(t))t≥0 is right-continuous if

F(t) =
⋂
ε↓0

F(t+ ε)

for all t ≥ 0. 4

For example, the filtrations (in the notation of Example 3.13.2) F0 is not right continuous but F+ is.

Lemma 3.13.10. If (F(t))t≥0 is right-continuous and T is a random time such that {T < t} ∈ F(t) for all t, then T
is a stopping time for (F(t))t≥0, i.e. {T ≤ t} ∈ F(t) and {T = t} ∈ F(t) for all t.

Proof. It’s enough to prove {T ≤ t} ∈ F(t), since {T = t} = {T ≤ t} \ {T < t}.
Observe that

{T ≤ t} =
⋂
n≥1

{
T < t+

1

n

}
∈
⋂
n≥1

F
(
t+

1

n

)
= F(t)

with the last equality from right-continuity.

Strong Markov Property of Brownian motion

Theorem 3.13.11. Let B be a standard Brownian motion and let T be an F+-stopping time with P(T < ∞) = 1.
Define

X(t)
def
= B(T + t)−B(T ).

Then (X(t))t≥0 is a standard Brownian motion that is independent of F+(T ).

Recall that F+(T ) is the σ-algebra consisting of those sets A with A ∩ {T = t} ∈ F+(t) for all t.
Theorem 3.13.11 is usually false when T is not a stopping time:

Example 3.13.12.

1. Let T = sup{t < 1: B(t) = 0}.

2. Let T = argmax{B(t) : t ∈ [0, 1]}.

4
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3.14 Mar 10, 2020
Last time we defined the σ-algebras

F0(u) = σ(B(s) : 0 ≤ s ≤ u)

F+(t) =
⋂
u>t

F0(u).

We asserted that
A = {t 7→ B(t) is differentiable at 0} ∈ F+(0) \ F0(0).

We may see this in HW 5.
We also discussed the Strong Markov Property of Brownian motion: if T is a stopping time (so {T ≤ t} ∈

F+(t) for all t), then we define F+(T ) = {A : A ∩ {T ≤ t} ∈ F+(t)}. Then

Theorem 3.14.1 (cf. Theorem 3.13.11). If P(T < ∞) = 1, then (B(T + t) − B(t))t≥0 is a standard Brownian
motion independent of F+(T ).

Proof. We proved this for a fixed time T = t0. To prove it in general, let Tn = (k + 1)2−n, where k ∈ N and
k2−n ≤ T < (k + 1)2−n.

Note that Tn is a stopping time, because

{Tn ≤ t} =
⋃
k∈N
{Tn ≤ t, k2−n ≤ T < (k + 1)2−n}.

We have Tn ↓ T . Define the standard brownian motion

Bk(t) = B(t+ k2−n)−B(k2−n);

note that this is independent of F+(k2−n) (this is the ordinary Markov property). Let’s define

B∗(t) = B(t+ Tn)−B(Tn).

Let E ∈ F+(Tn). We want to show

P({B∗ ∈ A} ∩ E) = P({B∗ ∈ A})P(E).

On the other hand,

P({B∗ ∈ A} ∩ E) =
∑
k≥0

P({Bk ∈ A} ∩ E ∩ {Tn = k2−n}︸ ︷︷ ︸
∈F+(k2−n)

)

=
∑
k≥0

P(Bk ∈ A)P(E ∩ {Tn = k2−n})

=
∑
k≥0

P(B0 ∈ A)P(E ∩ {Tn = k2−n})

= P(B0 ∈ A)P(E).

(In the second equality we used that Bk
d
= B0.)

We’ve shown that for each n, (B(t + Tn) − B(Tn))t≥0 is a standard Brownian motion independent of
F+(Tn) ⊇ F+(T ). Then

B(t+ T )−B(T ) = lim
n→∞

(B(t+ Tn)−B(Tn))

is independent of F+(T ). Furthermore, B is a Brownian motion because it is a pointwise limit of Brownian
motions.
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The Reflection Principle
Theorem 3.14.2. If (B(t))t≥0 is a standard Brownian motion and T is a stopping time, then

B∗(t) = B(t)1{t≤T} + (2B(T )−B(t))1{T>t}

is also a standard Brownian motion.
A good example is the stopping time given by T = {inf t : B(t) > y}. Then the graph ofB∗(t) is obtained

from that of B(t) reflected along the horizontal axis B = y starting at time T :

y

Proof of Theorem 3.14.2. By the strong Markov property, (g1(t))t≥0
def
= (B(t + T ) − B(T ))t≥0 is a standard

Brownian motion independent of F+(T ). But so is (g2(t))t≥0
def
= (−B(t+ T ) +B(T ))t≥0.

For f, g ∈ Ω = C[0,∞) with g(0) = 0 and T : Ω→ [0,∞), define Glue(f, g) : [0,∞)→ Ω by

Glue(f, g)(t) =

{
f(t) t ≤ T = T (f)

f(T ) + g(t− T ) t > T
.

Now B = Glue(B, g1) and B∗ = Glue(B, g2), and B d
= B∗.

Corollary 3.14.3. Let Ty = min{t : B(t) = y}. Then P(Ty ≤ t) = 2P(B(t) ≥ y).
Proof. We have

{Ty ≤ t} = {B(t) ≥ y} t {M(t) ≥ y,B(t) < y},
where

M(t) = max
0≤s≤t

B(s).

Then

{Ty ≤ t} = {B(t) ≥ y} t {B∗(t) > y} =⇒ P(Ty ≤ t) = P(B(t) ≥ y) + P(B∗(t) > y) = 2P(B(t) ≥ y),

where the last equality is the reflection principle (Theorem 3.14.2).

Theorem 3.14.4 (Lévy’s Theorem). Let Y (t) = M(t)−B(t). Then (Y (t))t≥0
d
= (|B(t)|)t≥0.

Proof idea. We want to show that Y and |B| have the same finite dimensional distributions, and use the fact
that both Y and |B| are both a.s. continuous.

Note that

P(|B(t)| ≥ y) = P({B(t) ≥ y} t {B(t) ≤ −y}) = 2P(B(t) ≥ y) = P(Ty ≤ t) = P(M(t) ≥ y),

with the penultimate equality from Corollary 3.14.3. This shows that M(t)
d
= |B(t)|. From here we’d try to

show Y
fdd
= |B|.

Note that Brownian motion is a continuous time martingale, since for s < t we have

E(B(t)|F+(s)) = E(B(s) + (B(t)−B(s))|F+(s))

= B(s) + E(B(t)−B(s)|F+(s))

= B(s) + E(B(t)−B(s)︸ ︷︷ ︸
∼N(0,t−s)

)

= B(s).

Let’s develop optional stopping for continuous time martingales.
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Theorem 3.14.5. Let (X(t))t≥0 be a martingale adapted to (F(t))t≥0, and let S ≤ T be F-stopping times with
P(T <∞) = 1. Assume also that

P(t 7→ X(t) is continuous) = 1

and furthermore that there exists Y with E|Y | <∞ and |X(t ∧ T )| ≤ Y a.s.. Then

E(X(T )|F(S)) = X(S).

We could prove this by adapting the proof of the discrete time case to the continuous time case; alterna-
tively, we can take discrete approximations and take a limit. We’ll adapt the second method here:

Proof of Theorem 3.14.5. Fix k ∈ N and let Xn = X(T ∧ n2−k). Then (Xn)n≥0 is a discrete time martingale
adapted to

(F ′(n))n∈N where F ′(n) = F(n2−k).

Let S′ = b2kSc + 1 and let T ′ = b2kT c + 1. These are discrete stopping times, and the discrete optional
stopping (Theorem 2.4.9) implies the desired claim. Details to follow on Thursday.
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3.15 Mar 12, 2020
[Classes are online now.]
Let (B(t))t≥0 be a standard Brownian motion. Fix two numbers −a, b ∈ R and consider the stopping

time T = inf{t ≥ 0: B(t) ∈ {−a, b}}.

Theorem 3.15.1.

1. P(B(T ) = b) = a
a+b , and

2. ET = ab.

Proof. As in the proof for the discrete case, we’re going to use optional stopping (but the continuous version
in Theorem 3.14.5). For part 1, we’ll consider the continuous-time martingaleB(t); for part 2, we’ll consider
the continuous-time martingale B(t)2 − t. The technical part of the proof will be to verify that we can use
optional stopping. For now, let’s apply it and see what happens:

For part 1, optional stopping (Theorem 3.14.5) says EB(T ) = 0. On the other hand, for p = P(B(T ) = b)

EB(T ) = pb+ (1− p)(−a),

and solving this gives p = a
a+b .

For part 2, optional stopping (Theorem 3.14.5) says E(B(T )2 − T ) = EM(T ) = EM(0) = 0. This gives

ET = EB(T )2 = b2p+ (−a)2(1− p),

where as before p = P(B(T ) = b) = a
a+b . Solving this gives ET = ab.

So why can we use optional stopping? The answer is Lemma 3.15.3 below.

Wald’s Lemma for Brownian Motion
Let (B(t))t≥0 be a standard brownian motion and let T be a stopping time. Then B(t) ∼ N(0, t) implies

EB(t) = 0. When is EB(T ) = 0? This is not always true, for example:

Example 3.15.2 (Enemy, cf. Examples 2.3.9, 2.4.3, 2.5.4). Let T = T1 = inf{t > 0: B(t) = 1}. Then P(T1 =
∞) = 0; this follows, for example, from Lemma 3.12.3, or from using scale invariance. Note that EB(T1) = 1
since B(T1) = 1 a.s.. (This is a familiar counterexample to us, from the discrete time case!) 4

Similar to the discrete time case, we have

Lemma 3.15.3 (Wald’s Lemma for Brownian motion). If ET <∞ then EB(T ) = 0.

Proof. We first show that ET <∞ implies the condition

there exists Y ∈ L1 such that B(t ∧ T ) ≤ Y for all t ≥ 0. (16)

[Apr 8: Should this say |B(t ∧ T )| ≤ Y ?] and later that condition (16) implies EB(T ) = 0. Sometimes, even
when ET =∞we can still verify the more technical condition (16), so it’s good to remember this.

Let
Mk = max

t∈[k,k+1]
|B(t)−B(k)|

and let

Y = M1 + · · ·+MdTe

=

∞∑
k=1

1{T>k−1}Mk.

Then

|B(t ∧ T )| ≤ |B(1)−B(0)|+ |B(2)−B(1)|+ · · ·+ |B(t ∧ T )−B(bt ∧ T c)|
≤M0 +M1 + · · ·+MdTe = Y.
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To complete the proof of condition (16) we should check that EY <∞. To see this, note that

EY =
MCT

∞∑
k=1

E(1{T>k−1}Mk),

where 1{T>k−1} ∈ mF+(k + 1) and Mk ∈ σ(B(t)− B(k))t≥k. So these random variables are independent,
and

EY =
∑
k

P(T > k − 1)EMk ≤ (EM0)E(T + 1)

because EMk = EM0, and
∑

P(T > k − 1) ≤ E(T + 1).
We showed last time ([Theorem 3.14.4, I think?]) that EM0 = E|B(1)| = 2

π <∞.
That condition (16) implies EB(T ) = 0 follows from optional stopping, which says EB(T ) = EB(0) = 0.
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3.16 Apr 7, 2020
[Zoom links are on Canvas! For the next several classes, we’ll be following Mörters-Peres.]
Recall the setup for Wald’s Lemma:
Let (Bt)t≥0 be a standard Brownian motion. Then EBt = 0 for all t ∈ R≥0, since Bt ∼ N(0, t). What

about EBT where T is a stopping time?
We saw in Example 3.15.2 that T = inf{t : Bt ≥ 1} satisfies P(T < ∞) = 1 and BT = 1 a.s.. Thus

EBT = 1 6= 0.

Lemma 3.16.1 (Wald’s Lemma 1, cf. Lemma 3.15.3).

1. If ET <∞ then EBT = 0.

2. If Bt∧T ≤ Y ∈ L1 for all t ≥ 0, then EBT = 0.

Corollary 3.16.2. If S ≤ T are stopping times with ET <∞, then E(B(T )−B(S)|F+(S)) = 0 a.s..

Proof. By the strong Markov property (Theorem 3.13.11), B̃(t)
def
= (B(t)−B(S))t≥S is a standard Brownian

motion independent of F+(S). Apply Wald’s Lemma 1 (Lemma 3.16.1) to B̃.

Corollary 3.16.3. If S ≤ T are stopping times with ET <∞, then EB(T )2 = EB(S)2 + E(B(T )−B(S))2

Proof. Square both sides of the equality B(T ) = B(S) + (B(T )−B(S)) to obtain

B(T )2 = (B(S) + (B(T )−B(S)))2.

Thus, we need to check that

E
[
E(B(S)(B(T )−B(S)))

∣∣F+(S)
]

= E(B(S)(B(T )−B(S))) = 0.

Because B(S) is F+(S)-measurable, we have

E(B(S)(B(T )−B(S))|F+(S)) = B(S)E(B(T )−B(S)|F+(S))︸ ︷︷ ︸
=0, by Corollary 3.16.2

= 0.

It follows that
E
[
E(B(S)(B(T )−B(S)))

∣∣F+(S)
]

= 0.

Let us build towards Wald Lemma 2. We begin with:

Lemma 3.16.4. Let Q(t) = B(t)2 − t. Then Q is a martingale.

Proof. Indeed, for s ≤ t, we have

E(Q(t)|F+(s)) = E
[
B(s)2 + 2B(s)(B(t)−B(s)) + (B(t)−B(s))2 − t|F+(s)

]
We may estimate these terms separately: note that E(B(s)(B(t) − B(s))|F+(s)) = 0 and that B(t) −

B(s) ∼ N(0, t− s), hence E((B(t)−B(s))2|F+(s)) = t− s. It follows that

E(Q(t)|F+(s)) = B(s)2 + 0 + (t− s)− t = B(s)2 − s = Q(s),

as desired.

Lemma 3.16.5 (Wald Lemma 2). If ET <∞ then EB(T )2 = ET .
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Proof. The idea is to use optional stopping time for the martingale Q(t): then we’d have

E(B(T )2 − T ) = EQ(T ) = EQ(0) = E(B(0)2 − 0) = 0.

So we need to justify using optional stopping to get the second equality above.
Let Tn = inf{t : |B(t)| ≥ n}. Then

|Q(t ∧ Tn ∧ T )| ≤ n2 + T ∈ L1.

Thus, we can apply optional stopping to obtain EQ(Tn ∧ T ) = EQ(0) = 0. In particular, EB(Tn ∧ T )2 =
E(Tn ∧ T ).

Note that Tn ∧ T ↑ T as n ↑ ∞. Corollary 3.16.3 implies EB(T )2 ≥ EB(Tn ∧ T )2 = E(Tn ∧ T ). Now
monotone convergence says E(Tn ∧ T ) ↑ ET . This implies ET ≤ EB(T )2.

Fatou’s lemma gives the other direction: because B(Tn ∧ T )→ B(T ), we have

EB(T )2 ≤ lim inf E(B(Tn ∧ T ))2 = lim inf E(Tn ∧ T ) = ET.

The Wald lemmas are useful for the Skorohod embedding:

Theorem 3.16.6 (Skorohod embedding). Let X be a real-valued random variable with EX = 0 and EX2 < ∞.
Then there exists a stopping time T such that X d

= B(T ) and EX2 = ET .

(Without the second conclusion, the result is not so hard.)
We’ll prove this next time.

Example 3.16.7. Consider the case whereX takes values in {−a, b}, for−a < 0 < b. Then if p = P(X = −a),
the condition EX = 0 forces p = b

a+b .
A stopping time T satisfying the conclusion of the Skorohod embedding theorem is T = inf{t : Bt ∈

{−a, b}}. Note that EB(T )2 = ET by Wald Lemma 2 (Lemma 3.16.5). We’ll see in [HW 5] ET = ab; it’s easy
to check EX2 = ab, so we obtain ET = EX2. 4
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3.17 Apr 9, 2020
To build up to Skorohod embedding (Theorem 3.16.6), let us first discuss Dubbin’s binary splitting. (It’s

kind of like playing “20 questions” to determine a random variable.)
Given a random variable X with EX = 0, EX2 <∞, let X0

def
= EX = 0, and let

ξ0
def
=

{
1 if X ≥ X0

−1 otherwise

With the information of ξ0, we can update our “best guess” for X , by setting

X1
def
= E(X|ξ0) = E(X|X ≥ X0)1{X≥X0} + E(X|X < X0)1{X<X0}.

We iterate this process: define Fn = σ(ξ0, . . . , ξn−1) and Xn = E(X|Fn). Then we define

ξn
def
=

{
+1 if X ≥ Xn

−1 otherwise

One would expect that as n→∞, our “best guesses” Xn should converge to X . This is true:

Lemma 3.17.1. The random variables Xn converge to X a.s. and in L2.

Proof. Note that Xn is a martingale. Furthermore,

EX2
n = E(E(X|Fn)2) ≤ EX2

because conditional expectation is projection in L2 (see Claim 1.2.4, or Equation (2) in the proof)
The Lévy upward theorem says that Xn → X∞ = E(X|F∞) a.s. and in L2, by the L2 martingale conver-

gence theorem ([Theorem 2.6.6?]), where F∞ = σ(∪nFn).
The claim is thatX∞ = X a.s.. Indeed, ifX(ω) < X∞(ω), then there existsN(ω) such thatX(ω) < Xn(ω)

for all n > N(ω). This implies ξn = −1 for all n > N(ω). This sounds quite improbable:
Indeed, defineYn = ξn(X−Xn+1); forn > N(ω) we haveYn = |X−Xn+1|. It follows thatYn → |X−X∞|.

Now we compute

EYn = E(E(ξn(X −Xn+1)|Fn+1))

= E(ξn E(X −Xn+1|Fn+1)︸ ︷︷ ︸
=0

)

Also, the family {Yn} is uniformly integrable, since

EY 2
n = E(X −Xn+1)2 ≤ EX2 <∞.

We conclude 0 = EYn = E|X −X∞|, hence X = X∞ a.s..

Last time we stated

Theorem 3.17.2 (Skorohod embedding). Let X be a real-valued random variable with EX = 0 and EX2 < ∞.
Then there exists a stopping time T such that X d

= B(T ) and EX2 = ET .

Last time we used T−a,b = inf{t : B(t) ∈ {−a, b}} to embed the random variable

X =

{
−a with probability b

a+b

b otherwise

In the general case we’ll use Dubbins binary splitting:
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Proof of Theorem 3.17.2. For round one, let −a = E(X|X < 0) and b = E(X|X ≥ 0). Let T1 = T−a,b. In [HW
5, Ex 1] we show that

ET1 = ab and B(T1) =

{
−a with probability b

a+b

b with probability a
a+b

and so

X1 =

{
−a on {X < 0}
b on {X ≥ 0}

is equal in distribution to B(T1). Furthermore, EX2
1 = ET1.

Now let −a1 = E(X|X < X1) and b1 = E(X|X ≥ X1). We may define

X2 =

{
X1 − a1 on {X < X1}
X1 + b1 on {X ≥ X1}

and

T2 = inf{t > T1 : B(t) ∈ {X1 − a1, X1 + b1}}
= inf{t ≥ T1 : B(t)−B(T1) ∈ {−a1, b1}}.

By the strong Markov property, B(t)−B(T1) ∈ {−a1, b1}, this is a standard Brownian motion independent
of F(T1). We see that B(T2)

d
= X2, and

ET2 = ET1 + a1b1

= EX2
1 + E(X2 −X1)2

= EX2
2 ,

where the last equality is due to orthogonality of martingale increments.
In general, we obtain stopping times Tn with B(Tn)

d
= Xn, and

ETn = ET1 + E(T2 − T1) + · · ·+ E(Tn − Tn−1)

= EX2
1 + E(X2 −X1)2 + · · ·+ E(Xn −Xn−1)2

= EX2
n.

The stopping times Tn ↑ T so ETn ↑ ET by the monotone convergence theorem. On the other hand, ETn =
EX2

n → EX2, so ET = EX2 <∞. (In particular, we have T <∞ a.s..)

Azema-Yor proof of Theorem 3.17.2. Given EX = 0 and EX2 <∞, let ψ(x) = E(X|X ≥ x) for x ∈ R. Let

τ = inf{t : M(t) ≥ ψ(B(t))},

where M(t)− sup{B(s) : 0 ≤ s ≤ t}.
One can show that Eτ = EX2 and B(τ)

d
= X .

Embedding random walks in Brownian motion
Let X1, X2, . . . be i.i.d. with EXi = 0, EX2

i = 1. Let Sn = X1 + · · ·+Xn.

Lemma 3.17.3. There exist stopping times T1 ≤ T2 ≤ . . . for standard Brownian motion (B(t))t≥0 such that
ETn = n, and

(Sn)n∈N
d
= (B(Tn))n∈N.

Proof. Iterate the Skorohod embedding: take a stoppign time T1 so that X1
d
= B(T1) and ET1 = EX2

1 = 1.
The strong Markov property implies that (B(t) − B(T1))t≥T1 is a standard Brownian motion independent
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of F(T1). By Skorohod, there is T2 so that X2
d
= B(T2)−B(T1), with E(T2 − T1) = EX2

2 = 1. In general, we
have stopping times Tn with Xn

d
= B(Tn)−B(Tn−1), with E(Tn − Tn−1) = 1. It follows that

(Sn)n∈N
d
= (B(Tn))n∈N.

Corollary 3.17.4 (Central limit theorem for i.i.d. random variables). We have

Sn
n

d→ B(1) ∼ N(0, 1).

Proof. We have
Tn
n
→ 1 a.s.

by the strong law of large numbers, because the increments are i.i.d. with mean 1. Then

Sn√
n

d
=
B(Tn)√

n
=

B(n)√
n︸ ︷︷ ︸

∼N(0,1)

− B(n)−B(Tn)√
n︸ ︷︷ ︸

error term

We will check next time that the error term converges in distribution to zero.
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3.18 Apr 14, 2020
Last time, we were in the middle of embedding random walks in Brownian motion. We were about to

prove Corollary 3.17.4:

Corollary 3.18.1 (Central limit theorem for i.i.d. random variables, cf. Corollary 3.17.4). We have

Sn
n

d→ B(1) ∼ N(0, 1).

Proof. Last lecture we had shown

Sn√
n

Sn√
n

d
=

B(n)√
n︸ ︷︷ ︸

∼N(0,1)

− B(n)−B(Tn)√
n︸ ︷︷ ︸

error term

,

so it suffices to show that the error term converges to 0 in distribution. It is convenient to denote

Wn(t) =
B(nt)√

n
.

For each fixed n, note that (Wn(t))t≥0 is a standard Brownian motion by scale invariance. Then the error
term is

B(Tn)−B(n)√
n

= Wn

(
Tn
n

)
−Wn(1).

We claim that this converges to 0 in probability (hence, in distribution, as desired). Indeed,{∣∣∣∣Wn

(
Tn
n

)
−Wn(1)

∣∣∣∣ > ε

}
⊆ {|Wn(t)−Wn(1)| > ε for some t ∈ (1− δ, 1 + δ)} ∪

{∣∣∣∣Tnn − 1

∣∣∣∣ > δ

}
,

since either Tn/n ∈ (1 − δ, 1 + δ) is close to 1 (in which case we are in the first event), or |Tn/n − 1| > δ (in
which case we are in the second event).

Now we fix δ small to make

P({|Wn(t)−Wn(1)| > ε for some t ∈ (1− δ, 1 + δ)})

small, and then choose n to make P(|Tn/n− 1| > δ) small.

The same idea gives a strengthening of the central limit theorem, using uniform continuity of Wn on
[0, 2]. Specifically, we get

Lemma 3.18.2. Let
S∗n

def
=

S(nt)√
n
,

where S(nt) is a linear interpolation of the discrete time process S. Then

sup
t∈[0,1]

|S∗n(t)−Wn(t)| → 0 in probability.

Weak convergence in a metric space
Let Xn, X be random variables taking values in a metric space (M,d). (The key examples for our pur-

poses are Rm with Euclidean norm, and C[0, 1] with sup norm.)
We want to spell out what it means for Xn

d→ X , called weak convergence, or convergence in distribution.

Theorem 3.18.3 (Portmanteau theorem). The following are equivalent:

1. Eg(Xn)→ Eg(X) for all bounded continuous g : M → R.

2. lim supn→∞ P(Xn ∈ K) ≤ P(X ∈ K) for all closed K ⊆M .
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3. lim infn→∞ P(Xn ∈ U) ≥ P(X ∈ U) for all open U ⊆M .

4. limn→∞ P(Xn ∈ A) = P(X ∈ A) for all borel A ⊆M such that P(X ∈ ∂A) = 0.

5. Eg(Xn)→ Eg(X) for all bounded measurable g : M → R such that P{ω : g discontinuous at X(ω)} = 0.

If any of these conditions hold, we write Xn
d→ X .

Donsker’s Theorem (on weak convergence of random walks to Brownian motion)
Let {Yn}n∈N be i.i.d. with EYn = 0 and EY 2

n = 1. Let Sn = Y1 + · · · + Yn. (The general case of Zn with
possibly nonzero mean and finite variance follows by letting

Yn =
Zn − EZn√

Var(Zn)
,

so the conditions on Y are without loss of generality.) Let

S(t)
def
= Sn + (t− n)Yn+1 for t ∈ [n, n+ 1]

be the linear interpolation of Sn. Rescale S∗n(t) = S(nt)√
n

for 0 ≤ t ≤ 1.

Theorem 3.18.4 (Donsker’s theorem). S∗n converges weakly to a standard Brownian motion (B(t))t≥0 on (C[0, 1], sup).

By definition, this means that
Eg(S∗n)→ Eg(B)

for all continuous bounded g : C[0, 1]→ R. So let F ∈ C[0, 1] and let g(F ) = F (1). The fact that

ES∗n(1) = Eg(S∗n)→ Eg(B) = EB(1) = 0

reflects the fact that a sum of mean zero random variables is still mean zero.
Now let γ : R→ R be any bounded continuous function, and let g(F ) = γ(F (1)). Then

Eγ(S∗n(1)) = Eg(S∗n)→ Eg(B) = Eγ(B(1)).

It follows that S∗n(1)
d→ B(1) ∼ N(0, 1), which is a restatement of the central limit theorem.

Proof of Donsker’s Theorem (Theorem 3.18.4). Fix a closed subset K ⊆ C[0, 1] and an ε > 0. Let

Kε = {F ∈ C[0, 1] : sup |F −G| ≤ ε for some G ∈ K}.

Then P(S∗n ∈ K) ≤ P(Wn ∈ Kε) + P(sup |Xn − S∗n| > ε)︸ ︷︷ ︸
→0 as n→∞

= P(B ∈ Kε). Because

K =
⋂
ε>0

Kε,

we have P(B ∈ K) = limε↓0 P(B ∈ Kε), so

lim sup
n→∞

P(S∗n ∈ K) ≤ lim sup
n→∞

P(B ∈ Kε)

for every ε, and we see that
lim sup
n→∞

P(S∗n ∈ K) ≤ P(B ∈ K).

This verifies condition 2 of the Portmanteau theorem (Theorem 3.18.3)

Let’s consider the maximum of a random walk. As in the setup of Donsker’s theorem let Yn be i.i.d.
random variables with EY1 = 0 and EY 2

1 = 1. Let Sn = Y1 + · · ·+ Yn and Mn = max(S1, . . . , Sn). Then:
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Theorem 3.18.5. We have
Mn√
n

d→ max
t∈[0,1]

B(t)
d
= |B(1)|.

In particular, we have the same limit regardless of the distribution of the increments Yn.

Proof. Let γ : R→ R be bounded and continuous. We aim to show that

Eγ
(
Mn

n

)
= Eγ( max

t∈[0,1]
B(t)).

We apply Donsker’s theorem (Theorem 3.18.4): let g : C[0, 1]→ R be the function g(F ) = γ(maxt∈[0,1] F (t));
note that g is bounded since γ is, and g is continuous because γ is. Donsker (Theorem 3.18.4) says

Eγ
(

max
t∈[0,1]

S(tn)√
n

)
= Eg(S∗n)→ Eg(B) = Eγ( max

t∈[0,1]
B(t))

Note that
Eγ
(

max
t∈[0,1]

S(tn)√
n

)
= Eγ

(
n

max
k=0

Sk√
n

)
= Eγ

(
Mn√
n

)
;

the first equality is because S(n) is a linear interpolation of Sn (hence its extrema occur at the “vertices” of
the path S(n)). It follows that

Mn√
n

d→ max
t∈[0,1]

B(t).
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3.19 Apr 16, 2020
We’ll talk about arcsine distributions today.

Definition 3.19.1. We say the random variable X is arcsine distributed if

P(X ∈ A) =

∫
A

dx

π
√
x(1− x)

for all A ⊆ [0, 1]. 4

The distribution function s 7→ P(X ≤ s) is∫ s

0

dx

π
√
x(1− x)

=
2

π
arcsin

√
s,

hence the name.
Now let

M∗ = argmaxs∈[0,1]B(s) = sup{s ≤ 1: B(s) = M(s)},

where M(t) = max0≤s≤tB(s).

Theorem 3.19.2 (The 1st arcsine law). The random variable M∗ is arcsine distributed.

Proof. Observe that

P(M∗ < s) = P(M(s) ≥ max
t∈[s,1]

B(s))

= P( max
u∈[0,s]

B(u)−B(s) ≥ max
t∈[s,1]

B(t)−B(s)).

We denote
B1(u)

def
= (B(u)−B(s))u∈[0,s] and B2(t)

def
= (B(t)−B(s))t∈[s,1],

where time in B1 runs backwards from s to 0. The processes B1 and B2 are standard Brownian motions
which are independent from each other, by the Markov property. It follows that

P(M∗ < s) = P(M1(s) ≥M2(1− s)) = P(|B(s)| ≥ |B2(1− s)|).

For (Z1, Z2) ∼ N(0, I2), recall that (B1(s), B2(s))
d
= (
√
sZ1,

√
1− sZ2), and so

P(M∗ < s) = P(
√
s|Z1| ≥

√
1− s|Z2|) = P(sZ2

1 > (1− s)Z2
2 ).

We now apply rotational symmetry of joint normal distributions. Specificaly, let{
Z1 = R cos θ
Z2 = R sin θ

}
for θ uniformly distributed. With this notation, we continue the long string of equalities with

P(M∗s) = P(sR2 > Z2
2 ) = P(s > (sin θ)2) =

4 arcsin
√
s

2π
.

Corollary 3.19.3. The random variable L = sup{t ≤ 1: B(t) = 0} is also arcsine distributed.

(Note in particular that the distribution of L is symmetric about 1
2 .)
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Proof. Let B̃(t) = M(t)−B(t); Lévy (Theorem 3.14.4) says that (B̃(t))t≥0
d
= (|B(t)|)t≥0. Now,

L = sup{t ≤ 1: |B(t)| = 0} d
= sup{t ≤ 1: B̃(t) = 0}
= sup{t ≤ 1: M(t) = B(t)} = M∗.

Transfer of arcsine law from Brownian motion to random walks
Let Sn = X1 + · · ·+Xn, whereXi are i.i.d. with EX1 = 0 and EX2

1 = 1. LetNn = max{k ≤ n : SkSk−1 ≤
0} be the last sign change before time n.

Theorem 3.19.4. We have
Nn
n

d→ L = sup{t ≤ 1: Bt = 0}.

Hence, P(Nn < sn)→ 2
π arcsin

√
s as n→∞.

Proof. We use Donsker’s theorem (Theorem 3.18.4), i.e. we choose g : C[0, 1] → R so that Eg(S∗n) → Eg(B).
The naive guess of g(F ) = max{t ≤ 1: F (t) = 0} turns out not to be continuous (if the root of F at g(F ) is
tangent to the x-axis, incrementing F (t) by ε makes g jump).

Thankfully, part 5 of the Portmanteau theorem (Theorem 3.18.3) says that the converngence

Eg(S∗n)→ Eg(B)

holds even for bounded discontinuous g, provided P(g is discontinuous at B) = 0. It turns out g satisfies
this condition: in Mörters-Peres they show that for

Y =

{
F ∈ C[0, 1] :

F (1) 6= 0, and for all z ∈ [0, 1] such that F (z) = 0 for all δ > 0,
F takes both positive and negative values in (z − δ, z + δ)

}
,

we have P(B ∈ Y ) = 1. (Note that g is continuous on Y .)
Composing with any bounded continuous γ : R→ R, we may apply Donsker to get

Eγ(g(S∗n))→ Eγ(g(B))

to conclude that g(S∗n)
d→ g(B). Since

g(S∗n) =
Nn
n

+O

(
1

n

)
and g(B) = L,

the result follows.

Again let Sn = X1 + · · · + Xn with Xi i.i.d. with mean 0 and variance 1. Let Pn =
∑n
k=1 1{Sk>0} count

the amount of time that S is positive. Then

Theorem 3.19.5. We have
Pn
n

d→ T = λ{t ≤ 1: B(t) > 0}

and λ(t ≤ 1: B(t) > 0) is arcsine distributed.

(Here, λ is the Lebesgue measure.)
Hence

P
(
Pn
n
< s

)
→ 2

π
arcsin

√
s. (17)

Proof outline. One can first prove Equation (17) in the special case of a simple random walk Xi ∈ {±1},
which can be handled combinatorially.

Then apply Donsker to see that T is arcsine distributed.
By Donsker again, one concludes that Equation (17) holds in general.
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3.20 Apr 21, 2020
We have been able to embed random walks in Brownian motion (see Lemma 3.17.3). In fact, one can

embed discrete time martingales in Brownian motion.
Specifically, let (Sn)n≥0 be a discrete time martingale and suppose ES2

n <∞ and S0 = 0. Then:

Lemma 3.20.1. There exist stopping times 0 = T0 ≤ T1 ≤ T2 ≤ . . . such that (S0, S1, . . . , S)
d
= (B(T0), B(T1), . . . , B(Tk))

for all k ≥ 0, where (B(t))t≥0 is a standard Brownian motion. Moreover, E(Tn+1 − Tn|Fn) = E((Sn+1 − Sn)2).

Proof. We iterate Skorohod (Theorem 3.16.6), as we did for random walks in Lemma 3.17.3. Specifically,
since S1 has ES1 = 0 and ES2

1 <∞, there exists a stopping time T1 with B(T1)
d
= S1 and ET1 = ES2

1 .
By the strong Markov property (Theorem 3.13.11), given T1, . . . , Tk−1, the process

B̃
def
= (B(t)−B(Tk−1))t≥Tk−1

is a standard Brownian motion independent of F+(Tk−1). By Skorohod (Theorem 3.16.6), there exists Tk
with B̃(Tk)

d
= Sk − Sk−1 and ETk = E(Sk − Sk−1)2.

Our goal is to use Lemma 3.20.1 to prove a central limit theorem for certain dependent random variables.

Definition 3.20.2. A martingale difference array (Xn,m)1≤m≤n adapted to a filtration (Fn,m)1≤m≤n is a collec-
tion of random variables so that Xn,m is Fn,m-measurable and

E(Xn,m|Fn,m−1) = 0 for all m ≤ n.

4

So for each n, the process
Sn,m = Xn,1 + · · ·+Xn,m

is a martingale with respect to the filtration (Fn,m)m≥1.
Now let

Vn,k =

k∑
j=1

E(X2
n,j |Fn,j−1)

denote the quadratic variation. We have:

Theorem 3.20.3. Suppose there exists a sequence of real numbers ε ↓ 0 such that:

1. |Xn,m| < εn for all n,

2. Vn,bntc → t in probability for all t ∈ [0, 1].

Then (Sn,nt)t∈[0,1]
d→ (B(t))t∈[0,1].

(The process (Sn,nt)t∈[0,1] shall be the linear interpolation of the discrete process Sn,m = Xn,1 + · · · +
Xn,m.)

Remark 3.20.4. Condition (i) can be weakened to
n∑

m=1

E[X2
n,m1{|Xn,m>ε}]→ 0 in probability

as in Lindeberg-Feller (see [6710, Theorem 6.19.4]). In HW 6, we’ll show that there exist a sequence of
independent mean 0 variance 1 random variables Xn such that

Sn√
n
→ 0 in probability,

where Sn = X1 + · · ·+Xn. 4
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Proof of Theorem 3.20.3. By Lemma 3.20.1, there exist stopping times Tn,k so that

(Sn1, . . . , Snn)
d
= (B(Tn1), . . . , B(Tnn)).

We claim that Tn,bntc → t in probability for t ∈ [0, 1]. Indeed, let τn,m = Tn,m − Tn,m−1 (we set Tn,0 = 0),
and observe that

E(X2
n,m|Fn,m−1) = E(τn,m|Fn,m−1).

Summing over m, we see that

bntc∑
m=1

E(τn,m|Fn,m−1) = Vn,bntc → t in probability

by condition (ii).
Now observe that

E(Tn,nt − Vn,nt)2 = E
[ bntc∑
m=1

(τn,m − E[τn,m|Fn,m−1])

]2

= E
bntc∑
m=1

(τn,m − E[τn,m|Fn,m−1]︸ ︷︷ ︸
<E(τ2

nm|Fn,m−1)

)2

≤ Cε2
nEVn,n → 0,

where the last inequality follows from the chain of inequalities

E(τ2
nm|Fn,m−1) ≤ CE(X4

n,m|Fn,m−1) ≤ Cε2
nE(X2

n,m|Fn,m−1)

applied to each term in the summand. It follows that ETn,nt → t in probability, since Vn,nt does too.

Before we move on from Brownian motion, let us remark that Brownian motion lives in the intersection
of three worlds (Gaussian processes, Martingales, and Markov processes); the families of random variables
living in two but not three are also of interest and include

• Fractional Brownian motions, which have some memory of the past (i.e. some “momentum”)

• Ornstein-Uhlenbeck processes, which have some restoring force

• Brownian bridges

• Lévy processes
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4 Ergodic Theory
4.21 Apr 23, 2020

We begin by discussing stationary sequences:

Definition 4.21.1. A sequence of random variables (X0, X1, . . . ) is stationary if for all k ≥ 0 and m ≥ 0 we
have (X0, X1, . . . , Xm)

d
= (Xk, Xk+1, . . . , Xk+m). 4

Example 4.21.2. Any set of i.i.d. random variables is stationary. 4

Example 4.21.3. More generally, let (Xn)n≥0 be a Markov chain with state spaceS (withS finite or countable)
and transition matrix (p(x, y))x,y∈S .

(Recall that a Markov chain is defined by

P(Xn+1 = y|Fn) = P(Xn+1 = y|Xn) = p(Xn, y)

for all n ≥ 0 and y ∈ S.)

Definition 4.21.4. A stationary dsitribution for p is a probability distribution π on S such that∑
x∈S

π(x)p(x, y) = π(y) for all y ∈ S. 4

(This can be thought as a matrix equation, where π = (π(x)) is a row vector and p = (p(x, y)) is an S×S
matrix; then πp = π.)

If X0 ∼ π is a stationary distribution, then we claim Xn ∼ π for all n ≥ 1, and (Xn)n≥0 is a stationary
sequence. (In HW 6, we’ll show that there exists a sequence that is not stationary, but all marginals are
equal.)

Indeed, to show Xn ∼ π, note that

P(X1 = y) =
∑
x∈S

P(X1 = y,X0 = x) =
∑
x∈S

π(x)p(x, y) = π(y).

Then we can induct. Then, to show (Xn)n≥0 is stationary, we just note

P((Xk, . . . , Xk+m) = (s0, . . . , sm)) = π(s0)p(s0, s1)p(s1, s2) . . . p(sm−1, sm),

using the Markov property. This holds for every k, as desired. 4

Example 4.21.5. Let’s consider the Markov chain with state space S = {a, b} and

p =

[
0 1
1 0

]
,

so the stationary distribution is π(a) = π(b) = 1
2 . Then

(Xn)n≥0 =

{
(a, b, a, b, . . . ) with probability 1

2

(b, a, b, a, . . . ) with probability 1
2

4

Definition 4.21.6. Let (Ω,F ,P) be a probability space. We say ϕ : Ω→ Ω is measure-preserving if P(ϕ−1A) =
P(A) for all A ∈ F . 4

Example 4.21.7. Let Ω = R/Z be the circle and let P be Lebesgue measure. Then:

1. The rotation ϕ(ω) = ω + θ (mod 1) by angle θ is measure preserving.

2. The map ϕ(ω) = 2ω (mod 1) is measure preserving. (Note it’s not true that P(ϕA) = P(A).)
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4

Lemma 4.21.8. Let X ∈ mF . If ϕ is measure-preserving, then

Xn(ω) = X(ϕnω)

is a stationary sequence.

Proof. For any Borel set B ⊂ Rm+1, let

A = {ω : (X0(ω), . . . , Xm(ω)) ∈ B}.

Then

P((Xk, . . . , Xk+m) ∈ B) = P(ω : (X0(ϕkω), . . . , Xm(ϕkω)) ∈ B)

= P(ω : ϕkω ∈ A)

= P(ϕ−kA)

= P(A).

Conversely, if (Yn)n≥0 is a stationary sequence, then by the Kolmogorov extension theorem ([6710, Thm.
4.10.11]) there exists a measure P on (RN,BN) such that (Yn)n≥0

d
= (Xn)n≥0, whereXn((ω0, ω1, . . . )) = ωn. In

particular, if ϕ(ω0, ω1, . . . ) is the (measure-preserving) shift map, thenXn = X0 ◦ϕn. Thus, every stationary
sequence arises from Lemma 4.21.8.

(Here, RN = {(ω0, ω1, . . . ) : ωi ∈ R)} and BN is the σ-field generated by finite codimensional rectangles
(a0, b0]× · · · × (ak, bk]× R× R× . . . .)

Lemma 4.21.9. If (Xn)n≥0 is a stationary sequence and g : RN → R is measurable, then Yn = g(Xn, Xn+1, . . . ) is
a stationary sequence.

Proof. For any B ∈ BN, let A = {x ∈ RN : (g(x0, x1, . . . ), g(x1, x2, . . . ), g(x2, x3, . . . ), . . . ) ∈ B}. Then

P(Y0, Y1, . . . ) ∈ B) = P((X0, X1, . . . ) ∈ A)

= P((Xk, Xk+1, . . . ) ∈ A)

= P((Yk, Yk+1, . . . ) ∈ B),

hence Y is stationary.

Example 4.21.10. Let (Xn)n≥0 be i.i.d. Bernoulli 1
2 random variables, and let

g(x0, x1, . . . ) =
x0

2
+
x1

4
+
x2

8
+ . . . .

This is the binary expansion of ω ∼ Unif(0, 1). Upon shifting, we get

g(xn, xn+1, . . . ) =
xn
2

+
xn+1

4
+ . . . ,

which is the binary expansion of 2nω (mod 1). So this stationary sequence arises from the measure preserv-
ing map ϕ(ω) = 2ω (mod 1) which we saw in part 2 of Example 4.21.7. 4

Definition 4.21.11. Let (Ω,F ,P) be a probability space. Let ϕ : Ω → Ω be a measure preserving map, so
P(ϕ−1(A)) = P(A) for all A ∈ F . Let X : Ω → R and Xn(ω) = X(ϕnω). We say A ∈ F is invariant if
ϕ−1(A) = A holds P-a.s., that is to say, P(ϕ−1A4A) = 0. 4

(Here, we write A4B = (A ∩Bc) ∪ (Ac ∩B) to denote the symmetric difference of the two sets.)
In HW 6, we’ll show that:

1. I = {invariant A ∈ F} is a σ-field, and
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2. X ∈ mI if and only if X(ϕω) = X(ω) holds P-a.s..

Definition 4.21.12. The map ϕ is ergodic if P(A) ∈ {0, 1} for all A ∈ I. Similarly, we say (Xn)n≥0 is ergodic
if the measure-preserving map ϕ it arises from is ergodic. 4

Note that if ϕ is not ergodic, then there is A ∈ I with 0 < P(A) < 1 with ϕ(A) = A and ϕ(Ac) = Ac, both
holding P-a.s.. So in this sense, the map is “not irreducible”.

Example 4.21.13.

1. A sequence of i.i.d. random variables is ergodic, because for any A ∈ I there exists a tail event T ∈ T
such that A = T holds P-a.s.. (The Kolmogorov 0-1 law says that every A ∈ T has P(A) ∈ {0, 1}.)

2. The Markov chain (Xn)n≥0 is ergodic if and only if it’s irreudcible: we say x communicates with y if
pn(x, y) > 0 for some n; this generates an equivalence relation on S; irreducibility of the Markov chain
means that there is only one equivalence class.

3. We will see next time that the rotation of the circle ϕ(x) = x+θ (mod 1) is ergodic if and only if θ 6∈ Q.

4
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4.22 Apr 28, 2020
Let Ω = RN and F = BN, and let P be a probability measure on (Ω,F). Also let X0(ω0, ω1, . . . ) = ω0 and

ϕ : Ω→ Ω be the shift map, i.e. ϕ(ω0, ω1, . . . ) = (ω1, ω2, . . . ). Define Xn = X0(ϕnω) = ωn.

Definition 4.22.1. An event A ∈ F is called strictly invariant if ϕ−1A = A. An event A ∈ F is called invariant
if P((ϕ−1A)4A) = 0. 4

In HW 6, we’ll show for any invariant A ∈ F , there is a strictly invariant A′ such that P(A4A′) = 0.
Observe that strictly invariant events are tail events: we have A = ϕ−1A = ϕ−2A = . . . , and hence that

A = ϕ−nA = {ω ∈ Ω: (ωn, ωn+1, . . . ) ∈ A} ∈ σ(Xn, Xn+1, . . . ).

Thus
A ∈ T =

⋂
n≥1

σ(Xn, Xn+1, . . . ).

Example 4.22.2. Not every tail event is invariant.
Let (ξn)n≥1 be independent ±1 random variables with P(ξn = ±1) = 1

2 . Let Xn = X0 + ξ1 + · · · + ξn
(mod k), where X0 ∼ Unif(Z/kZ). Then (Xn)n≥0 is a stationary sequence (in fact, it’s a Markov chain and
X0 follows a stationary distribution).

Note that the event A = {X0 is even} is not invariant, since ϕ−1A = {X1 is even} 6= A. But if k is even,
then X0 is even if and only if X2n is even for all n; in other words,

A = {X2n is even} for all n,

hence A ∈ T . 4

Theorem 4.22.3 (Birkhoff ergodic theorem). We have

1

n

n−1∑
m=0

X(ϕmω)→ E(X|I)(ω) a.s. and in L1.

(Here, I is the invariant σ-field.)

Example 4.22.4.

1. If Xn(ω) = X(ϕnω) is i.i.d., then P(A) ∈ {0, 1} for all A ∈ I. Thus E(X|I) = EX a.s., and we get the
strong law of large numbers.

2. If (Xn)n≥0 is an irreducible Markov chain, one can prove that I is trivial (i.e. consists of probability 0
or 1 events). If the state space S is countable, then given f : S → R satisfying∑

x∈S
|f(x)|π(x) <∞,

whereπ is the stationary distribution, then applying the ergodic theorem to stationary sequence (f(Xn)n≥0

we get

1

n

n−1∑
m=0

f(Xm)︸ ︷︷ ︸
time average overm

→ E(f(X0)|I) a.s.,

= E(f(X0)|I)

= Ef(X0) =
∑
x∈S

f(x)π(x)︸ ︷︷ ︸
space average over x

.

So the mantra of the ergodic theorem is that time averages are space averages.
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3. Consider the rotation of the circle, i.e. let Ω = R/Z and let ϕ(x) = x+ θ (mod 1), where θ is irrational.
We claim ϕ is ergodic, i.e. that I is trivial. It’s enough to show that if f ∈ mI then f is constant a.e..
To show this, recall that any measurable f : R/Z→ R has a Fourier series∑

k∈Z
cke

2πikx → f(x) in L2(R/Z)

and furthermore, the ck are unique (by Fourier inversion). Now for f ∈ mI, we have

f(ϕx) =
∑
k∈Z

cke
2πik(x+θ (mod 1))

=
∑
k∈Z

cke
2πik(x+θ)

=
∑
k∈Z

(cke
2πiθk)e2πikx.

On the other hand,
f(ϕx) = f(x) =

∑
cke

2πikx for all k,

so by uniqueness of Fourier coefficients we obtain

ck = cke
2πiθk for all k ∈ Z.

Since for k 6= 0 we have e2πiθk − 1 6= 0 by irrationality of θ, we see that ck = 0 for k 6= 0, and hence f is
constant.
We remark that rational rotations are not ergodic: for θ = p

q for p, q ∈ N, we may consider the finite
union

A =
⋃
n≥0

ϕn(I)

for a little interval I .
Let us now apply the ergodic theorem to ϕ(x) = x + θ (mod 1), where θ is irrational. Given a Borel
set A ⊆ [0, 1), let X = 1A and let Xn(ω) = X(ϕnω). Then

1

n

n−1∑
m=0

Xm(ω)→ E(X|I) = EX = λ(A) a.s., (18)

where λ is Lebesgue measure. Note that the left hand side of Equation (18)

1

n

n−1∑
m=0

Xm =
1

n
#{m < n : ω +mθ (mod 1) ∈ A}.

In this example, the a.s. convergence in Equation (18) can be upgraded to pointwise convergence; this
is exactly the claim of Weyl’s equidistribution theorem.

4

If f : Ω→ R is integrable and ϕ : Ω→ Ω is measure-preserving, then

(ϕ∗P)(A) = P(ϕ−1A) = P(A),

so ϕ∗P = P. In particular, ∫
Ω

f(ϕω) dP =

∫
Ω

f(ω)d(ϕ∗P) =

∫
Ω

f dP.

Intuitively, ϕ “scrambles” Ω.
The next lemma is an important step in proving the ergodic theorem (Theorem 4.22.3). Let ϕ be measure

preserving on (Ω,F ,P) and let X ∈ L1(Ω,F ,P). Suppose Xn(ω) = X(ϕnω). Let Sn = X0 + · · ·+Xn−1 and
Mn = max(0, S1, . . . , Sn), and let An = {Mn > 0}.
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Lemma 4.22.5 (Maximal ergodic lemma). With notation as above, we have

E(X1An
) ≥ 0 for all n.

Proof. We have

Sj+1(ω) = X0(ω) + · · ·+Xj(ω)

= X(ω) +X0(ϕω) + · · ·+Xj−1(ϕω)

= X(ω) + Sj(ϕω).

In other words, we obtain

Sj+1(ω) = X(ω) + Sj(ϕω) ≤ X(ω)Mk(ϕω) for all k ≥ j.

Thus
X(ω) ≥ Sj+1(ω)−Mk(ϕω) for j = 1, . . . , k.

In fact the inequality also holds for j = 0, since Mk ≥ 0. Now

E(X1Ak
) =

∫
Ak

X dP ≥
∫
Ak

k−1
max
j=0

(Sj+1(ω)−Mk(ϕω)) dP.

Since maxk−1
j=0 Sj+1(ω) ≥Mk(ω) for ω ∈ Ak, we have∫
Ak

k−1
max
j=0

(Sj+1(ω)−Mk(ϕω)) dP ≥
∫
Ak

Mk(ω)−Mk(ϕω) dP ≥
∫

Ω

Mk(ω)−Mk(ϕω) dP,

since the integrand is nonpositive for ω ∈ Ω \Ak = {Mk(ω) = 0}. But note that ϕ is measure preserving, so∫
Ω

Mk(ω)−Mk(ϕω) dP = 0.

Chaining the inequalities together gives the desired claim.
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4.23 Apr 30, 2020
We’re ready to prove the ergodic theorem today. We have a probability space (Ω,F ,P), a random variable

X ∈ L1(Ω,F ,P), and a measure preserving ϕ : Ω→ Ω. The ergodic theorem says:

Theorem 4.23.1 (Birkhoff ergodic theorem, cf. Theorem 4.22.3). We have

1

n

n−1∑
m=0

X(ϕmω)→ E(X|I)(ω) a.s. and in L1.

(Here, I is the invariant σ-field.)

Claim 4.23.2. It suffices to prove Theorem 4.23.1 for the special case E(X|I) = 0 a.s..

Proof. Let X ′ = X − E(X|I) so that E(X ′|I) = 0 a.s.. Since E(X|I) is I-measurable, we have E(X|I)(ω) =
E(X|I)(ϕmω) for each m. (There is a different null set for each m where this a.s. equality fails.)

We see that

1

n

n−1∑
m=0

X ′(ϕmω) =
1

n

∑(
X(ϕmω)− E(X|I)(ϕmω)

)
a.s.
=

(
1

n

m−1∑
m=0

X(ϕmω)

)
− E(X|I)(ω),

where the a.s. equality holds on the (full measure!) set where E(X|I)(ω) = E(X|I)(ϕmω) holds for all m
simultaneously.

Proof of Theorem 4.23.1. Let

Sn =

n−1∑
m=0

X(ϕmω) and X = lim sup
n→∞

Sn
n
.

The goal is to show P(D) = 0, where D = {X > ε}. This suffices to show a.s. convergence since we’d get

P
(

lim sup
Sn
n
> ε

)
= 0 and P

(
lim sup

−Sn
n

> ε

)
= P

(
lim inf

Sn
n
< −ε

)
= 0,

where in the right side above we applied the result to −X .
Note that D = {X > ε} ∈ I. Since X(ϕω) = lim sup Sn(ϕω)

n and

Sn(ϕω) =

n−1∑
m=0

X(ϕϕmω) =

n∑
m=1

X(ϕmω) = Sn+1(ω)−X(ω).

It follows that

X(ϕω) = lim sup
Sn+1(ω)

n

n

n+ 1
− lim sup

X(ω)

n
= lim sup

Sn+1(ω)

n+ 1
= X(ω).

Now let X∗ = (X − ε)1D and S∗n = X∗(ω) + X∗(ϕω) + · · · + X∗(ϕn−1ω) and M∗n = max(0, S∗1 , . . . , S
∗
n).

Define the event Fn = {M∗n > 0} = {S∗k > 0 for some k ∈ [n]}. Finally, let

F =
⋃
n≥1

Fn =

{
S∗k
k
> 0 for some k ∈ N

}

= D ∩
{
Sk
k
> ε for some k ∈ N

}
= D.
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By the maximal ergodic lemma (Lemma 4.22.5), we have

EX∗1Fn ≥ 0.

Because E|X∗| ≤ E|X| + ε and X ∈ L1 we may apply dominated convergence to see that EX∗1F ≥ 0. But
now E(X∗1F ) = E(X∗1D) = E((X − ε)1D).

Since D ∈ I, we have

E((X − ε)1D) = E
[
E((X − ε)1D|I)

]
= E

[
1D(E(X|I)− ε)

]
= −εP(D).

Hence P(D) = 0. This shows a.s. convergence.
To show the L1 convergence, we first fix M > 0 and write X = Y + Z where Y = X1{X≤m} and

Z = X1{X>M}. The point is that the convergence

1

n

n−1∑
m=0

Y (ϕmω)→ E(Y |I) a.s.

also holds in L1 because we can apply bounded convergence theorem to Y . Furthermore,

E
∣∣∣∣ 1n

n−1∑
m=0

Z(ϕmω)− E(Z|I)

∣∣∣∣ ≤ 2E|Z| → 0

as M →∞ by dominated convergence theorem (since Z ≤ X).

Theorem 4.23.3. Let ϕ : Ω → Ω be a measure preserving map. Then ϕ is ergodic if and only if for all A,B ∈ I we
have

1

n

n−1∑
m=0

P((ϕ−mA) ∩B)→ P(A)P(B) as n→∞. (19)

Proof. We first prove the backwards direction. Pick any A ∈ I, so ϕ−mA = A a.s. for all m. Thus, Equa-
tion (19) implies

1

n

n−1∑
m=0

P(ϕ−mA ∩B)→ P(A)P(B) = P(A)2.

On the other hand the left hand side is just

1

n

n−1∑
m=0

P(A) = P(A),

so P(A) ∈ {0, 1} and ϕ is ergodic.
Let’s now prove the forwards direction. Suppose ϕ is ergodic. Then E(1A|I) = E1A = P(A).
Applying the ergodic theorem (Theorem 4.23.1) to the event 1A, we have

1

n

n−1∑
m=0

1A(ϕmω)→ P(A) a.s. and in L1.

Multiplying both sides of the convergence by 1B , we conclude furthermore that

E
[

1

n

n−1∑
m=0

1A(ϕmω)1B(ω)

]
→ E(P(A)1B(ω)).

By the bounded convergence theorem, we conclude that

1

n

n−1∑
m=0

P(ϕ−mA ∩B)→ P(A)P(B).

There are exotic examples where P(ϕ−mA ∩ B) → P(A)P(B) for all A,B ∈ F as m → ∞; this is stronger
than ergodicity of ϕ.
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4.24 May 5, 2020
Let (Ω,F ,P) be a probability space and let ϕ : Ω→ Ω be measure preserving. Let A ∈ F .

Definition 4.24.1. We say a ∈ A is recurrent (with respect to A) if ϕn(a) ∈ A for some n ≥ 1. 4

Theorem 4.24.2 (Poincaré recurrence). Almost every point a ∈ A is recurrent (with respect to A).

Proof. Let

B = {b ∈ A : ϕn(b) 6∈ A for all n ≥ 1}

= A \
⋃
n≥1

ϕ−n(A).

If b ∈ B then ϕn(B) 6∈ B, so B is disjoint from ϕ−n(B) for all n ≥ 1. In particular, ϕ−k(B) is disjoint
from ϕ−n(B) for all n > k. So we have countably many disjoint sets ϕ−k(B); all of these sets have the same
probability by measure-preservingness of ϕ. It follows that P(B) = 0.

Example 4.24.3 (Ehrenfest urn model). We have two urns. There is a Markov chain on {0, 1, . . . , N}, where
state k represents k balls in the left urn andN − k balls in the right urn. We pick a ball uniformly at random
and move it to the other urn. This gives rise to transition matrix

P (k, k − 1) =
k

N
and P (k, k + 1) =

N − k
N

,

with all other P (i, j) = 0.
Let’s find the stationary distribution. Set π(k) = P(k balls in the left urn in the steady state). By defini-

tion, we have πP = P . [We got a few minutes in breakout rooms trying to solve this ourselves.]
It turns out that

π(k) =

(
N
k

)
2N

.

We label balls 1, . . . N and consider the state space {L,R}N ; the act of taking a ball and moving it to the other
urn becomes a simple random walk on the hypercube {L,R}N (we are picking a coordinate at random and
flipping it.)

The stationary distribution π̃(x1, . . . , xn) is 1
2N by symmetry. The original Markov chain is Yn = f(Xn),

where f(x1, . . . , xn) = #{k : Xk = L}.
Now suppose we begin with the state N . How long does it take to return to the starting state? In other

words, let T = min{n ≥ 1: Yn = N}, so for example P(T = 1|Y0 = N) = 0 and P(T = 2|Y0 = N) = 1
N . We

want to compute E(T |Y0 = N). To do this, we use Kac’s theorem (Theorem 4.24.4) below. 4

Let ϕ : Ω→ Ω be measure preserving, ergodic, and invertible. (Invertibility is not such a strong assump-
tion. Although the shift map ϕ((ωn)n∈N) = (ωn+1)n∈N is not invertible, the 2-sided shift map ϕ((ωn)n∈Z) =
(ωn+1)n∈Z is.)

Let A ∈ F with P(A) > 0. Let M,N : Ω→ N ∪ {∞} be the random variables defined by

N(ω) = inf{n ≥ 1: ϕn(ω) ∈ A} and M(ω) = inf{n ≥ 0: ϕ−m(ω) ∈ A}.

Theorem 4.24.4 (Kac’s theorem on mean recurrence time). With the notation as above, we have∫
A

N dP = 1.

“Kakutani skyscraper”. LetAn = {a ∈ A : N(a) = n}. We construct a “skyscraper” whose ground (0-th) floor
is A = tk≥1Ak, and whose n-th floor is ϕn(A) \A = tk≥1ϕ

n(An+k) for n ≥ 1:
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A1 A2 A3

ϕ(A2) ϕ(A3)

ϕ2(A3)

All sets ϕi(Aj) for 0 ≤ i < j are disjoint since every ωi(Aj) has M(w) = i and N(w) = j − i. But M,N
are a.s. finite by the Poincaré recurrence theorem (Theorem 4.24.2). So

P(Ω) =
∑

0≤i<j

P(ϕi(Aj)) =
∑

0≤i<j

P(Aj) =
∑
j

jP(Aj) =

∫
A

N dP.

Example 4.24.5 (Example 4.24.3, cont.). Let’s apply Kac’s theorem to a Markov chain (Yn)n≥0with countable
state space S and stationary distribution π, for A = {a} and a ∈ S. We have

1 =

∫
A

N dP = E(N1A) = π(a)E(N |Y0 = a).

It follows that
E(N |Y0 = a) =

1

π(a)
.

For the Ehrenfest urn,

π(a) =

(
N
a

)
2N

, so E(N |Y0 = a) =
1

π(N)
= 2N .

4

Let’s consider ergodicity and dense orbits. Suppose Ω is a topological space with a countable base of
open sets. Let (Ω,F ,P) be a probability space, where F are the Borel sets of Ω. We assume further that
P(U) > 0 for all open U .

We say ω ∈ Ω has a dense orbit under ϕ : Ω→ Ω if {ω, ϕ(ω), ϕ2(ω), . . . } is dense in Ω.

Theorem 4.24.6. If ϕ is measure preserving and ergodic, then

P({ω : ω has a dense orbit under ϕ}) = 1.

Proof. Observe that ω has a dense orbit if and only if for all basic open sets U , there is n with ϕn(ω) ∈ U .
Thus, ϕ does not have a dense orbit if and only if there is a basic open U with ϕn(ω) 6∈ U for all n, i.e.
ω 6∈ ϕ−nU for all n. It follows that

ω ∈
⋂
n

(ϕ−nU)c

is in an invariant set, call itA, disjoint fromU . SinceA is invariant, we have P(A) ∈ {0, 1}, but since P(U) > 0,
we conclude P(A) = 0.
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4.25 May 7, 2020
We’ll talk about Markov chain mixing, which will tell us about the rate of convergence in the ergodic

theorem. It’s a big topic, so today will be a little introduction.
Let (Xn)n≥0 be a Markov chain on a finite or countable state space with transition matrix p(x, y) =

P(Xn+1 = y|Xn = x) and stationary distribution π = πp; here π is a row vector and p is a matrix.
If the chain is irreducible (i.e. for all x, y ∈ S there’s some n so that pn(x, y) > 0) then the shift map is

ergodic, and the ergodic theorem (Theorem 4.23.1) implies [][]

1

n

n−1∑
k=0

f(Xk)→
∑

f(x)π(x) a.s., as n→∞. (20)

Taking the case f(x) = 1y , the convergence in Equation (20) becomes the convergence

1

n
#{visits to y before time n} → π(y).

How fast is this convergence? Can we remove the averaging?

Definition 4.25.1. A Markov chain (Xn)n≥0 is called aperiodic if for all x ∈ S, we have

gcd{n : pn(x, x) > 0} = 1. 4

Example 4.25.2. The Markov chain on state space S = {x, y} and transition matrix p =

[
0 1
1 0

]
is not aperi-

odic, since the gcd is 2. 4

Note that if p(x, x) > 0 for al x, then the chain is aperiodic. Given a Markov chain, there is an associated
“lazy chain” with transition matrix p+I

2 , so there is a 1
2 chance of staying where you are. (This “slows” the

Markov chain down.)
We have a following convergence theorem:

Theorem 4.25.3. If p is both irreducible and aperiodic, then

pn(x, y)→ π(y) as n→∞

for all x.

How fast is this convergence? How far apart are the probability distributions pn(x, ·) and π(·)?
The total variation distance can be thought of as a distance between random variablesX and Y or between

probability distributions µ and ν.

Definition 4.25.4. The total variation difference between two random variables X and Y with distributions µ
and ν is defined by

‖µ− ν‖TV‖X − Y ‖TV = inf{P{X 6= Y } : (X,Y ) is a coupling of X and Y }

=
1

2

∑
x∈S
|µ(x)− ν(x)|

=
∑

x : µ(x)>ν(x)

µ(x)− ν(x) = µ(A∗)− ν(A∗)

= sup
A
|µ(A)− ν(A)|,

where A∗ = {x : µ(x) > ν(x)}. 4

We consider the distance from stationarity: let

d(t)
def
= max

x∈S
‖pt(x, ·)− π‖TV.
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(Note that we drop the variable y in p and π.) Also let

d(t) = max
x,y∈S

‖pt(x, ·)− pt(y, ·)‖TV;

one can show that
Exercise: We have d ≤ d ≤ 2d and d(s)d(t) ≥ d(s+ t).
We define the mixing time as

tmix
def
= min{t : d(t) ≤ ε}.

Then one can show
Exercise: We have tmix(ε) ≤ blog2( 1

ε )c · tmix( 1
4 ).

Consider the lazy random walk on the hypercube V = {0, 1}n, defined by transition matrix p(x,y) = 0
unless xi = yi for all or all but one i ∈ {1, . . . , n}, with

p(x,y) =

{
1
2 if xi = yi for all i
1

2n otherwise

So half the time we are staying in place, and the other half we’re doing a simple random walk. Note that
π(x) = 1

2n for all x ∈ V .
Now let Nt be the number of distinct coordinates chosen by time t. This Nt is a Markov chain, given by

transition matrix

P(Nt+1 = k + 1|Nt = k) =
n− k
n

and P(Nt+1 = k|Nt = k) =
k

n
.

Now let τk = inf{t : Nt = k} (cf. coupon collector problem; see [6710, Example 5.12.2.2]). We have τk+1 − τk ∼
Geom( n

n−k ). Thus,

τn =

n−1∑
k=0

(τk+1 − τk) hence Eτn =
n

1
+ · · ·+ n

n
≈ n log n.

We have

Lemma 4.25.5. We have
P(τn > n log n+ cn) < e−c.

Proof. Let Ai = {coordinate i never chosen by time n log n+ cn}. We have

P
(⋃

Ai

)
≤

n∑
i=1

P(Ai) = n

(
1− 1

n

)n logn+cn

≤ ne− logn−c = e−c.

At time τn (and any time t > τn) we have Xτn ∼ π It follows that d(n log n + cn) ≤ e−c, and it follows
that tmix(ε) ≤ n log n+ log( 1

ε )n.
In fact, this bound can be improved to

tmix(ε) ≤ 1

2
n log n+ log

(
1

ε

)
n.

Consider the following thought experiment. LetX = (x1, . . . , xn) ∼ π = Unif({·, 1})n and Y = (x′1, . . . , x
′
n)

which are the same except k random coordinates are set to zero. Given {X,Y }, can you tell which one is
which? More precisely, how large must k = k(n) be so that you can tell with probability more than 0.51?
[We got a few minutes in breakout rooms trying to solve this ourselves.]

One idea is to guess that whichever of {X,Y } has more zeros is the spiked one. If k �
√
n then this

algorithm will get it wrong 50% of the time in the limit as n→∞. (We’ll see next week that if n− k �
√
n

then we’re already well mixed.)
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Formalizing this, if you can’t tell the difference between X ∼ µ and Y ∼ ν with probability more than
1
2 + ε, then ‖X − Y ‖TV ≤ 2ε. Indeed, we may define

A = {Your algorithm selects correctly X ∼ µ and Y ∼ ν instead of X ∼ ν and Y ∼ ν}

and use that
‖X − Y ‖TV − inf

A
|µ(A)− ν(A)| <

∣∣∣∣(1

2
+ ε

)
−
(

1

2
− ε
)∣∣∣∣ = 2ε.
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5 Presentations
5.26 May 12, 2020

[I missed a lot of key points, because I am slow. Sorry!]
Enlargement of Filtrations (Karen Grigorian)
A filtration G = (Gt)t≥0 is called an enlargement of a filtration F = (Ft)t≥0 if Ft ⊂ Gt for all t.
A semimartingale is, roughly, the largest class of processes for which stochastic integration can be mean-

ingful; formally, X is a semimartingale if X = X0 +M + V , where M is an F-local martingale and V is an
F-adapted process with finite variation and M0 = V0 = 0.

It’s not true that every F-martingale is a G-martingale or even a G-semimartingale. We are interested in
conditions in F and G which would ensure:

Every F-martingale is a G-martingale (H)

or

Every F-martingale is a G-semimartingale (H′)

Stricker’s theorem says that any G-semimartingale is an F-semimartingale; this is a far reaching gener-
alization of a homework problem we worked on.

There are two main kinds of enlargement of filtrations:
• “Initial Enlargement”: G = F ∨ σ(ζ), where ζ is a random variable.

• “Progressive Enlargement”: the smallest G that turns a given positive random variable τ into a stop-
ping time.

[I might have missed the main theorem, which probably would’ve appeared here. Sorry!]
Example 5.26.1. Let B be a Brownian motion and let F its natural filtration; let Fσ(B1) = F ∨ σ(B1). Then
(E(Bt|Fσ(B1)))t≥0 is a Fσ(B1)-semimartingale. 4

Example 5.26.2. Let B be a standard Brownian motion under its natural filtration F = (Ft)t≥0. Define
G = (Gt)t≥0 by Gt = Ft+ε for some ε > 0. ThenB is not a G-semimartingale. This is because it can be shown
that B is not a good (G,P)-integrator, i.e. you cannot properly define a stochastic integral with respect to B;
then use the fact that the good (G,P)-integrators are precisely the G-semimartingales. 4

There is an application of these ideas to finance as follows. The high level idea is that enlargement of
filtrations can lead to arbitrage opportunities. The first fundamental theorem of asset pricing says that for a
semimartingale price process, having no arbitrage is equivalent to certain explicit probabilistic properties; if
enlarging the filtration (the information set) destroys semimartingaleness, then there is likely to be arbitrage
opportunities for insiders.

The Karhunen Loéve Theorem (Sara Venkatraman)
The theorem says that an L2 continuous-time stochastic process {Xt}t≥0 on [0, 1] can be expressed as

an infinite linear combination of orthogonal functions. (This is analogous to representing a function on a
bounded interval as a Fourier series.)

A continuous function K : [0, 1]× [0, 1]→ R is a kernel if it is symmetric and positive semidefinite:∑
i,j

K(xi, xj)cicj ≥ 0

for all xi ∈ [0, 1] and ci ∈ R. Given a kernel K we obtain a linear operator

(TKf)(x)
def
=

∫ 1

0

K(x, s)f(s) ds

which has eigenvalues and eigenfunctions. That is, we search for f and λ with∫ 1

0

K(s, t)f(s) ds = λf(t).
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Theorem 5.26.3 (Mercer). The eigenfunctions {ek(t)}k≥1 of TK are an orthonormal basis for L2 and the eigenvalues
{λk}k≥1 are nonnegative. We can write K as

K(s, t) =
∑
k

λkek(s)ek(t).

For an L2[0, 1] stochastic process, the covariance functionK(s, t) := cov(Xs, Xt) is a kernel. Then we can
expand Xt in the eigenbasis given by K. The Karhunen-Loéve theorem says:

Theorem 5.26.4 (Karhunen-Loéve). If EXt = 0 for all t ∈ [0, 1], then the coefficients Zk in the expansion

Xt =
∑
k

Zkek(t)

are given by

Zk =

∫ 1

0

Xtek(t) dt,

and furthermore EZk = 0, var(Zk) = λk, cov(ZjZk) = 0.

We have seen that for a standard Brownian motion, the covariance function K(s, t) = min(s, t). One can
work out the eigenvalues/eigenfunctions explicitly to obtain

Corollary 5.26.5. For every t ∈ [0, 1], we have

Bt =
√

2

∞∑
k=1

Zk
sin((k − 1

2 )πt)

(k − 1
2 )π

, where Zk
iid∼ N (0, 1).

Brownian motion and the heat equation (Emily Dautenhahn)
The heat equation is the PDE

ut =
1

2
∆u

where u(t, x) : (0,∞) × Rn → R and ∆ is the Laplacian. Solutions of the heat equation is a smooth (C2) u
satisfying the heat equation as well as the boundary condition u(0, x) = f(x) for some bounded continuous
f .

Theorem 5.26.6. The above equation has a unique bounded solution

u(t, x) = Exf(Bt) =

∫
Rn

1

(2πt)n/2
exp

(
−|x− y|2

2t

)
f(y) dy.

We generalize the heat equation setup to include a dissipation term V , and replace the spatial domain
U = Rn with an open bounded subset U ⊂ Rn. [I missed exactly what the PDE was.]

Theorem 5.26.7 (Feynman-Kac Formula 1). Suppose V : Rn → R is bounded. Then u : [0,∞)×Rn → R defined
by

u(t, x) = Ex
[

exp

(∫ t

0

V (B(r)) dr

)]
solves the heat equation on Rn with dissipation rate V and initial condition one.

This formula follows from a direct, though involved, computation. (Take a Taylor expansion of the ex-
ponential, consider things termwise, etc.)

Theorem 5.26.8 (Feynman-Kac Formula 2). If u is a bounded and sufficiently smoth solution of the heat equation
on U , with zero dissipation and continuous initial condition g, then

u(t, x) = Ex[g(B(t))1{t<τ}],

where τ is the first exit time from the domain U .
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This formula requires stochastic calculus and Itô’s formula:

Proposition 5.26.9. Let f be smooth. Then with probability 1, for all t ≥ 0,

f(t, Bt)− f(0, B0) =

∫ t

0

∂f

∂t
(s,Bs) ds+

d∑
i=1

∫ t

0

Dif(Bs) dB
i
s +

1

2

d∑
i=1

∫ t

0

Diif(Bs) ds.

This formulas will show that Ms = u(t− s,Bs) is a martingale.
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