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1 Preamble

1.1 Jan 22, 2019

We’ll get a detailed syllabus on Thursday; due to the snowstorm we’ll mostly give a big picture overview
today. There is a Toric Varieties course that will be coordinated with this course happening at TR 10:10 in
MLT 207; he encourages us to attend.

This course will be slightly different from what has been done in the past (usually, there are varieties and
then schemes later). Starting Thursday we’ll be talking about schemes. Unfortunately it’s fairly technically
demanding – it’s important to know the theory of manifolds, vector/line bundles, number theory, represen-
tation theory, commutative algebra, category theory...

The classical objects of study in algebraic geometry is an algebraic variety (on the other hand, the work-
ing algebraic geometer doesn’t often think about these) over a field k. Roughly, algebraic varieties are the
set of solutions to a system of polynomial equations with coefficients in k.

But this course is about schemes, which is a surprisingly modern construction. We’ll talk about some
natural contexts where schemes pop up, and why you should care even if you’re not an algebraic geometer.
It’ll be inherently somewhat unrigorous today.

Another first approximation of an algebraic variety is that it is an “algebraic manifold”. Importantly,
varieties don’t need to be smooth. We want to bootstrap our understanding of manifolds onto varieties and
consequently the theory of schemes.

Definition 1.1.1. Given a field k and polynomials f1, . . . , fk ∈ k[X1, . . . , Xn], define

V (f1, . . . , fk) : {x ∈ kn : fi(x) = 0∀1 ≤ i ≤ k}.

[I might denote 1 ≤ i ≤ k by i ∈ [k] out of habit].

An affine variety over k is a set of the form V (f1, . . . , fk) for some choice of polynomials fi. Morphisms
of affine varieties are given by polynomials in the coefficients. A variety is a space that can be covered by
finitely many affine varieties; a general morphism between varieties is a map such that when restricted to
affine varieties in this covering is a morphism of affine varieties. 4

Your intuition for these should come from manifolds (charts, atlases).

Example 1.1.2. If k = 0, that is, there are no equations, then we get kn = Ank , which we sometimes call
affine n-space over k. 4

The “affine” is referring to the fact that we do not choose a distinguished base point (ie. origin) when
we work with the space.

Example 1.1.3. In k[x1, x2], with f1 = x2, we have

V (x2)
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On the other hand, if f1 = x2
2, then we still have the same topological picture

V (x2
2)

though somehow we want to account for the multiplicity of x2
2, that is, there needs to be two lines (alge-

braically), even though topologically the picture is the same. This is one aspect where working with scheme
explains more than working with varieties.

If we have f1 = {x2
1 + x2

2 = 1} and f2 = {x2 = 1}, then we have the picture

x1

x2

Schemes remember more than just the blue point – it also remembers that the point is the intersection
of the circle and the line.

If instead we have f1 = {xy = 0} then we can also talk about the spaces

x

y

which is never a manifold. In this sense we are really gaining something (we can study spaces such as the
one above), even though we are losing some nice structure from the theory of manifolds. 4

In scheme theory there is a very basic perspective switch: instead of focusing on the set of points of
an affine variety, look at the ring of polynomial functions on it. This was controversial in the beginning.
Hopefully after taking this class you’ll also accept this perspective switch.

Example 1.1.4. The ring of polynomial functions on kn = Ank is k[x1, . . . , xn]. 4

Example 1.1.5. The ring of polynomial functions on the circle over R, that is, V (f1) for f1 = {x2 +y2 = 1},
is given by R[x, y]/〈x2 + y2 − 1〉. 4
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In many cases, the ring of polynomial functions on a variety in kn cut out by f1, . . . , fk, is precisely
k[x1, . . . , xn]/〈f1, . . . , fk〉. But the ring of polynomials in k2 cut out by y2 = 0 is k[x, y]/〈y〉, not k[x, y]/〈y2〉.

As a justificiation for Grothendieck’s perspective switch, we can recover both the set of points and the
topological structure from this ring of functions.

Here’s another sketchy defintion:

Definition 1.1.6. An affine scheme, denoted Spec (A), is the data of a ring A in a sense. A morphism
of affine schemes Spec (A) → Spec (B) is a ring homomorphism B → A (that is, Spec is a contravariant
functor). 4

It’s slightly misleading to think about Spec (A) as just the set of prime ideals – it is actually much more
than that (it is endowed with a topology, and so on).

An affine scheme over a field k is a scheme Spec (A) where A has the structure of a k-algebra.

So why should a morphism be defined this way? For algebraic varieties, functions are defined on the
target pulled back to the source. This leads us to scheme theory perspective switch #2: this is now the
definition of a morphism; don’t worry about functions given by formulas, partitions of unity, and so on.

So what happened to the points? Points of a (classical) variety can be recovered as the maximal ideals
in the ring of functions. Roughly, this is Hilbert’s Nullstellensatz, which is the primary vehicle used to move
between the worlds of algebra and geometry:

Theorem 1.1.7. Every maximal ideal of the ring A = [x1, . . . , xn]/〈f1, . . . , fk〉 is 〈x1−a1, x2−a2, . . . , xn−an〉
where (a1, . . . , an) ∈ V (f1, . . . , fk).

Of course, this gives a bijection between maximal ideals of A and points of V (f1, . . . , fk). So perhaps
you’d guess that the points of Spec (A) should be maximal ideals of A. You’d be pretty close – you gain a
little more by looking at prime ideals of A instead.

A morphism of affine schemes should give a map on points. How can we construct the map? In other
words, given a ring homomorphism B → A, what objects on A pull back to the same kind of object on B?
It is not hard to show

Proposition 1.1.8. Given a map f : B → A between commutative rings with unity, for every prime ideal
p ⊂ A, the set f−1(p) is a prime ideal of B.

This is not true generally if you replace “prime” by “maximal”. This proposition might appear on our
homeworks – but we’ll get to administrative details on Thursday.

Definition 1.1.9. A point of an affine scheme Spec (A) is a prime ideal p of A. 4
Under some mild additional hypotheses, a map of affine schemes takes classical points (ie., maximal

ideals) to classical points.

The point is that really Spec (A) should not be thought of as the set of prime ideals, but as endowed
with all this extra structure that you can pull from A (that he will tell us in the future, but it will take some
time). As an aside, the point set of Spec (A) has a natural topological structure, called the Zariski topology.

Summary. Why bother with schemes?

• Schemes have a generic (non-classical) point.

• Schemes can be defined over arbitrary rings (for example, Spec (Z) is a scheme, but not a variety for
any field k).

• Schemes can have nilpotent elements. For example, Spec (k[x, y]/〈y〉) 6= Spec (k[x, y]/〈y2〉).

On Thursday we’ll start talking about sheaves (not much more on varieties). We’ll go “somewhat slowly”.
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2 Sheaves on spaces

2.2 Jan 24, 2019

There was a questionnaire to fill out. There is a website here. Last time was preamble, today we’ll get a
little technical. We’ll define sheaves today.

Let f : Y → X be a continuous map between topological spaces, and let V ⊆ U ⊆ X be open subsets.
We define

F(U) := {s : U → Y continuous maps such that f ◦ s = idU}.

If you are familliar with vector bundles, these are sometimes called local sections over U . Note that restricting
s to V , we get a map between sets

ρUV : F(U)→ F(V )

s 7→ s|V

By definition, if we have subsets W ⊆ V ⊆ U , we have (s|V )|W = s|W , or equivalently, we have ρUU = id and
ρUW = ρVW ◦ ρUV .

Definition 2.2.1. A presheaf of sets (or of groups, rings, etc.) F assigns to every open subset U of X a set
(or group, ring, etc.) F(U) and every inclusion of open subsets V ⊆ U a map of sets (or groups, rings, etc.)
ρUV : F(U)→ F(V ), called “restriction maps”, such that ρUU = id and ρUW = ρVW ◦ ρUV holds for all inclusions
W ⊆ V ⊆ U . 4

Definition 2.2.2. A presheaf F is a sheaf if it satisfies the sheaf condition/axiom: if U = {Ui}i∈I is an
open cover of U , and si ∈ F(Ui) for all i ∈ I, and si|Ui∩Uj = sj |Ui∩Uj for all i, j ∈ I, then there exists a
unique s ∈ F(U) such that s|Ui = si for all i ∈ I. 4

Equivalently, this says that

F(U)
∏
i∈I F(Ui)

∏
i,j F(Ui ∩ Uj)

si si|Ui∩Uj

is an equalizer diagram (if the category has products).

Remark 2.2.3. Note that by an open covering of U , we can take I to be any set, possibly empty, and
each Ui is open (but possibly Ui = ∅). This has nontrivial technical consequences: for a sheaf F , since
∅ = ∪i∈∅Ui, then F(∅) = {∗}, the final object in the category of sets. Consequently, if U = V tW , then the
sheaf condition says

F(U) = F(V )×F(∅) F(W )︸ ︷︷ ︸
fiber product over F(∅)

= F(V )×F(W )

since we knew F(∅) is the final object. So there are important consequences in the structure of sheaves. 4

Example 2.2.4 (Constant sheaf). Let X be a topological space and S a fixed set, and define F(U) = S for
all opens U ⊆ X (with the caveat that F(∅) := {∗}), and for all V ⊆ U ⊆ X, define ρUV = idS . This is not a
sheaf in general, when X is not connected, say X = V tW , we must have F(X) = F(V )×F(W ). 4

But there is such a sheaf such that F(U) = S whenever ∅ 6= U is connected. We call this SX .

Give S the discrete topology. Then π : X × S → X is continuous. For all U 6= ∅, define

SX(U) := {locally constant sections of π : X × S → X}.
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Remark 2.2.5. If X is a “reasonable” topological space (for instance, paracompact or something like this),
the cohomology of ZX is isomorphic to the singular cohomology H∗sing(X,Z). 4

Example 2.2.6. Let X be a topological space, and let F be given by real valued functions on U . This is a
sheaf (though it is badly behaved, because the functions only have to be real valued). 4

Example 2.2.7. Let X be a differentiable manifold and let F be given by smooth functions on U . 4

In this sense sheaves axiomatize the gluing tricks that you see in manifold theory.

Let X be a topological space. We denote by PSh(X) to be the presheaves on X, Sh(X) to be sheaves
on X, PShAb(X) to be presheaves of abelian groups on X, Ab(X) to be sheaves of abelian groups on X,
and arguably most importantly Mod(OX) to be the sheaf of OX -modules on X. What’s the O doing here?

Definition 2.2.8. A ringed space is a pair (X,OX) where X is a topological space and OX is a sheaf of
rings (not a presheaf). 4

Definition 2.2.9. Let (X,OX) be a ringed space. Then a sheaf of OX modules F is given by a sheaf of
abelian groups F endowed with a map of sheaves

OX ×F → F

such that for all U ⊆ X open, OX(U) × F(U) → F(U) makes F(U) into an OX(U)-module as a sheaf of
sets. Here (OX ×F)(U) := OX(U)×F(U). 4

A natural question one can ask is the following: given sheaves of OX -modules F ,G, how do we define
F ⊗OX G? The naive thing to do is to map U 7→ F(U)⊗OX(U) G(U), but in general, this is only a presheaf,
that is to say only PShMod(OX) has a tensor product. This leads to interesting phenomena in algebraic
geometry.

Definition 2.2.10 (Adjoint functors). Let C,D be categories with functors U : C → D and V : D → C.
We say U and V are adjoint if MorC(X,V Y ) ∼= MorD(UX, Y ) for all X ∈ Ob(C), Y ∈ Ob(D), and this
isomorphism is functorial in X and Y . More specifically, we say that U is a left adjoint of V , and we denote
it U a V . 4

We note that when the functor and object is clear, sometimes we drop parentheses (so we write V Y
instead of V (Y )).

Example 2.2.11. Consider the forgetful functor U : Ab → SetS (so M 7→ M), and F : Set → AbS
mapping S 7→ ⊕s∈SZS . We have MorSetS (S,UM) ∼= MorAb(F (S),M). 4

Example 2.2.12. Fix a ring homomorphism R→ S, and let N be an R-module and M an S-module. We
have HomR(N,MR) ∼= HomS(S ⊗R N,M). This commutative algebra fact is just the fact that tensoring
· ⊗R S and restriction of scalars (·)R are adjoints. 4

Example 2.2.13 (Sheafification). We have PSh(X) → Sh(X) given by F 7→ F ]. This functor is adjoint
to inclusion, that is,

MorPSh(X)(F ,G) ∼= MorSh(X)(F ],G).

4

We’ll describe what F ] is later.

The sheafification F ] of F comes with a map of presheaves fc : F → F ] such that for all morphisms of
presheaves α : F → ιG there exists a unique factorization

F ιG

ιF ]
∃!α]
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The idea of sheafification is that we force the sheaf condition to hold. Let U ⊆ X be an open set and
U = {Ui}i∈I be an open covering of U . Let F be a presehaf of sets on X. Then we have

Ȟ0(U ,F) := ker

(∏
i∈I
F(Ui)⇒

∏
i,j

F(Ui ∩ Uj)
)

= {(si)i∈I : si|Ui∩Uj = sj |Ui∩Uj ∀i, j ∈ I}

Lemma 2.2.14. There is a natural map

F(U)→ Ȟ0(U ,F)

s 7→ (s|Ui)i∈I

If F is a sheaf, this is an isomorphism.

Given a presheaf F , define F+ to be a presheaf with value

F+(U) := colimU Ȟ
0(U ,F).

Definition 2.2.15. A covering U = ∪i∈IUi is a refinement of U ′ = ∪i∈IU ′i if there is an α : I → I ′ such that
Ui ⊆ U ′α(i) for all i ∈ I. 4

Given such an α, we can define

Ȟ0(U ′,F)→ Ȟ0(U ,F)

(si)i∈I 7→ (sα(i)|Ui)i∈I

This is well-defined and independent of choices f α, that is, since Ui ⊆ Uα(i) then Ui ⊆ Uα(i) ∩ Uβ(i), and
since Uj ⊆ Uβ(j) then sα(i)|Ui = (sα(i)|Uα(i)∩Uβ(i))|Ui = (sβ(i))|Ui .

Observation 2.2.16. Any two open coverings U1 and U2 of U have a common refinement, so the set of
covers of U is a poset, and colimU is a directed colimit! Thus,

F(U) =

(∐
U
Ȟ0(U ,F)

)
/ ∼ .

Where si ∈ Ȟ0(Ui,F) for i = 1, 2 are equivalent if there is a common refinement where s1 and s2 are the
same. 4

So we can define restriction mappings in the following way: If V ⊆ U ⊆ X are open subsets and

U : U =
⋃
i∈I

Ui, s = (si)i∈I ∈ Ȟ0(U ,F),

then
V : V =

⋃
i∈I

Ui ∩ V, s|V := (si|Ui∩V ) ∈ Ȟ0(V,F),

since there exists a canonical map of presheaves θ : F → F+ by regarding U as an open cover of itself,

F(U)→ F+(U)

s 7→ [s] ∈
∐

Ȟ0(U ,F)/ ∼
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2.3 Jan 29, 2019

[Homeworks are due Thursday on Gradescope]
[For those interested in class field theory reading group, talk to Brian after class]

Recall that a presheaf F is a sheaf if for all open coverings {Ui}i∈I of U , given si ∈ F(Ui) for all i ∈ I
such that si|Ui∩Uj = sj |Ui∩Uj for all i, j ∈ I, there is a unique s ∈ F(U) such that s|Ui = si ∈ F(Ui).

We were in the process of defining sheafification, with motivation coming from ⊗ for OX -modules. It is
a left adjoint to ι : Sh(X) ↪→ PSh(X). We had notation: for F a presheaf, we had the Čech cohomology

Ȟ0(U ,F) := {(si)i∈I : si|Ui∩Uj = sj |Ui∩Uj}

and
F+(U) := colimU Ȟ

0(U ,F) =
∐

Ȟ0(U ,F)/ ∼

where the colimit is directed.

Definition 2.3.1. A presheaf F is separated if for any open covering U = {Ui}i∈I of U , the natural map

F(U)→
∏
i∈I
F(Ui)

is injective. 4

This is an important definition: the operation F 7→ F+ takes presheaves to separable presheaves, and it
takes separable presheaves to sheaves. In light of this, sheafification will be F 7→ (F+)+ =: F ] [we’ll make
this precise in Theorem 2.3.5].

Remark 2.3.2. For many presheaves, F+ is already a sheaf. But not generally. 4

Example 2.3.3. Let X = {x, y} with the discrete topology. Define the presheaf F such that F(∅) = {0},
F({x}) = F({y}) = Z/2Z, and F({x, y}) = (Z/2Z)3, with maps F({x, y})→ F({x}) is given by projection
onto the first factor π1 and F({x, y}) → F({y}) is given by projection onto the second factor π2. Since
F({x, y})→ F({x})×F({y}) is not injective, F is not separated. 4

Exercise: Check that F+ is separated.

Example 2.3.4. Consider the constant presheaf of sets F(U) = S with |S| > 1, with restriction maps
ρUV = idS for V ⊆ U arbitrary. Then:

• F+ doesn’t change anything except for F(∅) = ∅. This is just the usual constant presheaf, so not a
sheaf.

• But (F+)+ is the constant sheaf.

4

Theorem 2.3.5. Let F be a presheaf. Then:

1. F+ is a separated presheaf.

2. If F is separated, then F+ is a sheaf.

3. If F is a sheaf, then F ' F+

4. The construction F 7→ (F θ−→ F+) is functorial in F and given a morphism of presheaves F → G there
exists a factorization

9



F G

F+

ϕ

θ ∃!ϕ+

Proof. We’ll start with part 2. Let F be separated. Pick U ⊆ X open. Let U = {Ui}i∈I be an open cover.
Pick si ∈ F+(Ui), where Ui[= {Uik}k∈Ii ] is the induced subcover of Ui. Then sik ∈ F(Ui ∩ Uk) = F(Uik),
so given j, k we have sik|Uik∩Uij = sij |Uik∩Uij . We have si|Ui∩Uj = sj |Ui∩Uj ∈ F+(Uij).

Now si|Ui∩Uj is given by (sik|Uik∩Uj )k∈I . As elements of F+(Ui ∩ Uj) this is equal to sj |Ui∩Uj given by
(sjk|Ujk∩Ui)k∈I . We’ll denote this agreement by (∗). Thus it remains to show that there exists a unique
section s ∈ F+(U) such that s|Ui = si ∈ F+(Ui).

Consider the refinement Ũ of U where U = {Uik}i,k∈I , and pick elements sik ∈ F(Uik). It follows by

construction that sik|Uik∩Ujk′ = sjk|Uik∩Ujk′ . It follows that (sik) defines a section in Ȟ0(Ũ ;F). Since F is
separated, we get uniqueness.

If i = j, we are done by our initial hypothesis. If i 6= j, look at the open covering Ũjk = {Uik∩Ujk′}k,k′∈I
of Ui ∩ Uj , which are the open covers corresponding to si|Ui∩Uj and sj |Ui∩Uj . Then, (sik|Uik∩Ujk′ ) and

(sjk′ |Uik∩Ujk′ ) are in Ȟ0(Ũij ,F) and these define the same element under further refinements by (∗). We
have

Lemma 2.3.6. If F is separated then all maps from refinements are injective, ie. if U ′ is a refinement of
U then

Ȟ0(U ;F)→ Ȟ0(U ′,F).

Proof. Consider U ′′ given by the intersections of the two coverings, that is by open sets⋃
i∈I
j∈I′

Ui ∩ Uj .

This is a refinement of U and U ′ and U ′′ are refinements of each other because U ′ refines U . Then

Ȟ0(U ′,F) = Ȟ0(U ′′,F).

Given (si), (ti) ∈ Ȟ0(U ,F) with the same image in Ȟ0(U ′′,F), then si, ti ∈ F(Ui) have the same image in∏
i F(Ui ∩ U ′i), so that si = ti ∈ F(Ui) because F is separated

In other words, the lemma implies (sik|Uik∩Ujk′ ) = (sjk′ |Uik∩Ujk′ ) ∈ Ȟ
0(Uij ,F). This completes the proof

of part 2 of the theorem.

Part 3 of the theorem is immediate from the definition of F+ as a directed colimit, and the functoriality
in part 4 is also immediate, but we have

F G

F+ G+

ϕ

θ ∼

∃!

So it remains to show part 1; if we have a raw presheaf F , then F+ is separated. That is to say, given
s, s′ ∈ F+(U) such that the restriction to an open cover U = {Ui}i∈I of U agree, we need to show that
s = s′ ∈ F+(U).

For each F+(Ui) we have s|Ui = s′|Ui there exists a refinement Ui = {Uik}k∈I of the cover on Ui such
that s|Uik = s′|Uik ∈ F(Uik). Since Ũ = {Uik}i,k∈I is an open cover of U refining U , s = s′.

10



[For a reference, there is: Bredon, Sheaf Theory.]

Definition 2.3.7. Given a presheaf F , we say that F ] := (F+)+ with the morphism F θ−→ F+ θ+−−→ (F+)+

is the sheafification of F , ie. the unique sheaf such that

MorPSh(X)(F ,G) = MorSh(X)(F ],G).

4

Definition 2.3.8. Let x ∈ X and let F be a presheaf on X. The stalk of F at x is

F(x) := colimU3xF(U) = {(U, s) : s ∈ F(U), U 3 x}/ ∼

where the colim runs over all neighborhoods U containing x. The equivalence relation says that (U, s) ∼ (U ′, s′)
if and only if there exists an open V ⊆ U ∩ U ′ with x ∈ V such that s|V = s′|V . 4

The main properties of the stalks are as follows:

• F ]x = Fx = F+
x .

• The maps F → Fx are functorial in F .

We can define maps between presheaves and sheaves at the level of stalks.

Proposition 2.3.9. Let ϕ : F → G be a morphism of sheaves. Then

1. ϕ is an isomorphism if and only if for all x ∈ X, the map ϕx : Fx → Gx is an isomorphism, if and
only if for all U ⊆ X open, ϕ : F(U)

∼−→ G(U).

2. ϕ is a monomorphism if and only if for all x ∈ X, the map ϕx : Fx → Gx is injective, if and only if
for all U ⊆ X open, we have ϕU : F(U) ↪→ G(U)

3. ϕ is an epimorphism if and only if for all x ∈ X, the map ϕx : Fx → Gx is surjective, if and only if for
all U ⊆ X open and s ∈ G(U), there is U = {Ui} of U such that s|Ui lifts to F(Ui).

We’ll talk more about this next time.

11



2.4 Jan 31, 2019

[Homework 2 will be posted tonight.]
[The main reference of this class is Hartshorne Chapter II, heavily supplemented. We’ll follow Eisenbud-

Harris, Chapter I for the beginning.]

We’ll make some remarks about sheafification. The point is that any presheaf can be sheafified. Again,
this is important because schemes rely on sheaves in a fundamental way. We defined

F ](U) = (F+)+,

where

F+(U) := colimUȞ
0(U ,F) = ker

(∏
i∈I
F(Ui)⇒

∏
i,j

F(Ui ∩ Uj)
)
.

It comes with a canonical map θ : F → F+ corresponding to the trivial cover U = {U}. The key fact to note
is that sheafification is defined by a universal property: F ] is the unique sheaf such that

MorPSh(X)(F ,G) = MorSh(X)(F ],G),

that is to say, if G is a sheaf, then

F G

F ]
θ]

∃!

Proof (of the equivalence). We have

F F+ F ]

G G+ G]

θ θ+

∼= ∼=

[Stacks 7.10.12 gives more details]

Recall that if x ∈ X and F is a presheaf, we defined stalks

Fx := colimU3xF(U) = {(U, s) : s ∈ F(U), U open}/ ∼

where (U, s) ∼ (U ′, s′) if there exists an open W ⊆ U ∩ U ′ with x ∈W such that s|W = s′|W .

Fact 2.4.1. We have

• F ]x = Fx = F+
x .

• The maps F → Fx are functorial in F .

This gives an alternate construction of F ]: we have

F ](U) := {functions s : U →
⋃
x∈U
Fx}

such that s(x) ∈ Fx for all x ∈ U , and such that for all x ∈ U , there is a neighborhood V 3 x with V ⊆ U
and t ∈ F(V ) such that for all y ∈ V , we have ty = s(y) ∈ Fy. This is called the “espace étalé construc-
tion” of the sheafification (as opposed to the “hypercover construction”). We remark that this construction
only works when there is a notion of “point” (ie. a topology), so you can actually take stalks. On the other
hand, the hypercover construction works in more generality; for example you can think about sheaves on sites.

12



Lemma 2.4.2. Let ϕ : F → G be a morphism of sheaves. Then

(a) We have that ϕ is an isomorphism if and only if for all x ∈ X, the induced map ϕx : Fx → Gx is an
isomorphism, if and only if for all U ⊆ X open, ϕ : F(U)

∼−→ G(U).

(b) We have that ϕ a monomorphism if and only if for all x ∈ X, the induced map ϕx : Fx → Gx is injective,
if and only if for all U ⊆ X open, F(U) ↪→ G(U)

(c) We have that ϕ is an epimorphism if and only if for all x ∈ X, we have ϕx : Fx → Gx is surjective, if
and only if for all U ⊆ X open and s ∈ G(U), there exists an open cover U = {Ui}i∈I of U such that
s|Ui lifts to F(Ui) for all i ∈ I.

We note that item (a) does not hold for presheaves – luckily, we can sheafify.
[Apr 25, 2019: As Kabir and Jake noted, it is crucial that these ϕx arise as the induced map of a morphism

ϕ of sheaves. Otherwise, all invertible sheaves would be OX !]

Proof. We note that the stalk conditions and the open set conditions are readily seen to be equivalent. We’ll
show the equivalence of these conditions to the conditions on ϕ.

For part (a), the backwards direction is easy. Fix an isomorphism ϕ and pick U ⊆ X open. We want to
show that ϕ : F(U)

∼−→ G(U). To show injectivity, let s, s′ ∈ F(U) such that ϕ(s) = ϕ(s′). Their images in
Gx are the same for all x ∈ U . Since ϕx is injective, we have sx = s′x ∈ Fx for all x ∈ U . By definition of
stalks, there exists a neighborhood Ux of x such that s|Ux = s′|Ux . But U = {∪x∈UUx} is an open cover of
U , and hence s = s′ by the sheaf property.

To show surjection, we pick t ∈ G(U). By our hypothesis, for all x ∈ U , there exists a neighborhood Ũx
containing x, and an s ∈ F(Ũx) such that ϕ(sx) = tx ∈ Gx. Hence by definition of stalks, there exists an
open neighborhood Ux 3 x such that Ux ⊆ Ũx where ϕ(s)|Ux = t|Ux . If s′ is another such section in F(U ′x),
then we know that ϕ(s′x) = ϕ(s′)x = ϕ(s)x = ϕ(sx) for all x ∈ Ux ∩ U ′x. By the injectivity we just proved,
we must have s′ = s on Ux ∩U ′x. By the sheaf property, these local sections {(Ux, s)} glue to a section on U .

The moral of these proofs is that if you want to talk about maps between sheaves you should think about
them in terms of the stalks.

Remark 2.4.3. In Sh(X), there exist fiber products and pushouts. In other words, F → G is a monomor-

phism if and only if we have an isomorphism of sheaves F
∼=−→ F ×G F , if and only if Fx ∼= Fx ×Gx Fx (by

(a) in the Lemma above), if and only if Fx → Gx is injective. 4

Remark 2.4.4. In general, since taking stalks is a filtered colimit, it commutes with colimits and finite
limits (in particular, finite products). 4

Recall that PShAb(X), Ab(X), Mod(OX) are abelian categories. Thus, given ϕ : F → G in these cate-
gories, kerϕ : U 7→ ker(F(U)→ G(U)) remains in each category. We also have PShCokerϕ : U 7→ coker(F(U)→ G(U))
is in PShAb(X), and

coker(ϕ) := (PShCoker(ϕ))]

is in Ab(X),Mod(OX). Moreover, taking kernels and cokernels commutes with taking stalks, and given a
short exact sequence

0 F G H 0

it is in Ab(X) or Mod(OX) if and only if for all x ∈ X,

0 Fx Gx Hx 0

is a short exact sequence.
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Definition 2.4.5 (Skyscraper Sheaf). Given x ∈ X and S a set, the skyscraper sheaf ιx∗(S) is the (sugges-
tively notated) sheaf of sets

ιx∗(S)(U) :=

{
S x ∈ U
{∗} x 6∈ U

4

An easy property of the skyscraper sheaf is that the stalks, for y ∈ X,

(ιx∗(S))u =

{
S y ∈ {x}
{∗} y 6∈ {x}

As a cautionary note, the closure of a point is not always a point.

Remark 2.4.6. We have:

• If S is an abeilan group (or ring, monoid, etc.), then it is not hard to see that ιx∗(S) is also a sheaf of
abelian groups (or rings, monoids, etc.).

• If (X,OX) is a ringed space, if x ∈ X and S is an OX,x-module (where OX,x is the completion of OX
with respect to x), then ιx∗(S) is a OX -module.

• There are also nice adjointness proeprties: we have MorPSh(X)(F , ιx∗(S)) ∼= MorSets(Fx, S) (and

similarly for Sh(X), Ab(X), Mod(OX)). This is why F ]x = Fx for any presheaf F .

4

Proof (of F ]x = Fx). We have MorPSh(X)(F , ιx∗(S)) = MorSets(Fx, S), while on the other hand

MorPSh(X)(F , ιx∗(S)) = MorSh(X)(F ], ιx∗(S)) = MorPsh(X)(F ], ιx∗(S)) = MorSets(F ]x, S).

Since ιx : {x} ↪→ X is continuous, ιx∗(S) is the “pushforward” of Sx adjoint to the “pullback” which is
taking stalks.

Let’s talk about tensor products. Let (X,OX) be a ringed space and F ,G ∈ Mod(OX). We have a
presheaf of OX -modules

F ⊗PSh(OX) G(U) = F(U)⊗OX(U) G(U)

Thus,
F ⊗OX G := (F ⊗PSh(OX) G)]

lies in Mod(OX). An immediate consequence is that

(F ⊗OX G)x = Fx ⊗OX,x Gx.

Commutative algebra properties imply consequences for sheaves. For example, fix a ring homomorphism
A→ B and fix M an A-module and N a B-module. Then

HomB(M ⊗A B,N) = HomA(M,NA).

This means that if X is a topological space and O1 → O2 is a map of sheaves of rings, and F is an O1-module,
and G is an O2-module, then

HomO1
(F ,G|O1

) = HomO2
(F ⊗O1

O2,G).
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Example 2.4.7. Let X = {p, q} be endowed with the discrete topology, and consider the constant sheaf
CX = OX . Let U = {p} and V = {q}. What is an OX -module on X?

Thus OX(U) = C = OX(V ). Thus F(U) = K1 is a complex vector space (a module over C). Similarly
F(V ) = K2 is a complex vector space. Since F is a sheaf we have F(∅) = {0}. We also have F(X) = K1⊕K2

as a (C⊕ C)-module (this is more structure than thinking of K1 ⊕K2 as a complex vector space).

Let G be an OX -module; G(U) = L1,G(V ) = L2. We have

(F ⊗PSh(OX) G)(U)× (F ⊗PSh(OX) G)(V ) = (K1 ⊗C L1)× (K2 ⊗C L2).

On the other hand

(F ⊗PSh(OX) G)(X) = (K1 ⊕K2)⊗C⊕C (L1 ⊕ L2) = (K1 ⊗C L1)⊕ (K2 ⊗C L2).

We check for the sheaf condition:

(F ⊗PSh(OX) G)(X)→ (F ⊗PSh(OX) G)(U)× (F ⊗PSh(OX) G)(V )→ 0

This is in fact a sheaf. 4
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2.5 Feb 5, 2019

Last time we defined skyscraper sheaves: fix a set S and an x ∈ X; the skyscraper sheaf suggestively
denoted

ιx∗(S)(U) =

{
S if x ∈ U
{∗} if x 6∈ U

The key point is that it is the pushforward of S{x} on {x} that is adjoint to “ι−1” (taking stalks).

We also talked about tensor products. If (X,OX) is a ringed space, and F ,G are sheaves of OX -modules,
we have a presheaf

(F ⊗PShOX G)(U) := F(U)⊗OX(U) G(U)

and so we can define
(F ⊗OX G) := (F ⊗PShOX G)]

Let’s give an example where F⊗PShOXG is not a sheaf. LetX = R andOX = ZX . Define F = ι0∗(Z)⊕ι1∗(Z).
Note that OX,0 = Z, and OX,1 = Z. We see that

F ⊗OX F = F

by looking at stalks. In particular,
F ⊗OX F(X) = Z⊕ Z.

On the other hand,
F ⊗PShOX F(X) ∼= (Z⊕ Z)⊗Z (Z⊕ Z) = Z4.

Let’s talk about the functoriality of sheaves.

There is a philosophy called the 6-functor formalism: if you want to develop a sheaf theory on a new
kind of space, everything can be deduced from the six functors f∗, f

∗, f!, f
!,⊗L,RHom. Hence you should

figure out what these should be and the homological algebra should give everything else.

Let f : X → Y be a continuous map. This induces f∗ : PSh(X)→ PSh(Y ) given by

(f∗F)(V ) := F(f−1(V ))

for V ope in Y , with obvious restriction maps from F . If F is a sheaf, then f∗F is a sheaf. Proof is in
homework 2.

We want to define the adjoint of f∗, which we usually denote fp for reasons that will be clear soon:

PSh(X) PSh(Y )
f∗

fp

We note that the adjoint of ιx∗ is like taking stalks. So we also need a colimit. Here’s a naive idea: suppose
we analogously try to define

f∗G(U) := G(f(U))

for U open in X. Unfortunately f(U) is not always open, so we need to “approximate by open sets”. In
fact, this is precisely what we will do.

Definition 2.5.1. Given G in PSh(Y ), define fp(G) in PSh(X)

fp(G)(U) := colimf(U)⊆V
V open

G(V )

with restriction maps, for U1 ⊆ U2 ⊆ X open

16



fp(G)(U2) fp(G)(U1)

colimV⊇f(U2)G(V ) colimV⊇f(U1)G(V )

= =

where the map in the bottom row is given by idG(V ), because if V ⊇ f(U2) then V ⊇ f(U1). 4

As an immediate corollary we have (fpG)x = Gf(x).

This is not generally a sheaf. For example, let Y = {u} and G any sheaf in Y . Then fpG is a constant
presheaf.

Lemma 2.5.2. We have MorPSh(X)(fpG,F) = MorPSh(X)(G, f∗F).

Proof. A map from a colimit is a compatible collection of maps on objects in the colimit, that is,

ϕ : fpG(U) = colimV⊇f(U)G(V )→ F(U)

is given by
ϕU,V : G → F(U)

for all diagrams

U X

V Y

f f

compatible with restrictions, that is, whenever

U ′ U X

V ′ V Y

f f f

then the square

F(U ′) F(U)

G(V ′) G(V )

ϕU′,V ′ ϕU,V

commutes. On the right hand side, a map ψ : G → f∗F is given by a collection of maps

ψV : G(V )→ f∗F(V ) = F(f−1(V ))

and compatible with restrictions. For the forward direction, it is enough to define ψV := ϕf−1(V ),V and

check straightforward details. The backwards direction is trickier. We define ϕU,V := ρ
f−1(V )
U ◦ ψV . Let’s

check that we get maps LHS to RHS to LHS, that is, ϕ 7→ ψ 7→ ϕ′:

ϕ′U,V = ρ
f−1(V )
U ◦ ψV = ρ

f−1(V )
U ◦ ϕf−1(V,V ) = ϕU,V ,

and that we get maps RHS to LHS to RHS, that is, ψ 7→ ϕ 7→ ψ′:

ψ′V = ϕf−1(V ),V = ρ
f−1(V )
f−1(V ) ◦ ψV = ψV .

We remark that any ϕ ∈ MorPSh(X)(fpG,F) or ψ ∈ MorPSh(X)(G, f∗F) gives a map Gf(x) → Fx.
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Definition 2.5.3. If G is a sheaf on Y , define the inverse image sheaf

f−1(G) := (fp(G))].

4

Remark 2.5.4. In topology this is f∗, but we’ll need the notation f∗ later for something a little more
fundamental. 4

Proposition 2.5.5. We have MorSh(X)(f
−1G,G) = MorSh(Y )(G, f∗F).

Proof. We have

MorSh(X)(f
−1G,G) = MorPSh(X)(fpG,F)

= MorPSh(Y )(G, f∗F)

= MorSh(Y )(G, f∗F)

because f∗F is a sheaf.

Corollary 2.5.6. We have a canonical isomorphism (f−1G)x ∼= Gf(x).

Proof. Let ιx∗S be a skyscraper in Sh(X). Then

MorSh(X)(f
−1G, ιx∗S) = MorSh(Y )(G, (f ◦ ιx)∗S)

= MorSh(Y )(G, ιf(x)∗S)

= MorSets(Gf(x), S)

implies (f−1G)x ∼= Gf(x).

Let’s talk about morphisms of ringed spaces.
Our goal is as follows: Given a ring homomorphism A→ B, we want to define morphisms between affine

schemes (examples of ringed spaces)

Spec (B)→ Spec (A) and MorRings(A,B) = MorAffSch(SpecB, SpecA).

We’ll give some motivation from smooth manifolds. Let ψ : M → N be a smooth map between smooth
manifolds. We can think of it as a map between ringed spaces (M,C∞M ) → (N,C∞N ). Suppose U ⊆ M ,
V ⊆ N are open such that if h ∈ C∞(N)(V ) then h ◦ ψ ∈ C∞(M)(U), that is, we have the commutative
diagram

U M

R V N

ψ ψ

h

In other words, this gives a map

ψpC
∞
N C∞M

ψ−1C∞N

or equivalently a map C∞N → ψ∗C
∞
M .

Definition 2.5.7. A morphism of ringed spaces (X,OX) → (Y,OY ) is a pair (f, f ]) where f : X → Y is
continuous and f ] : OY → f∗OX (equivalently, f ] : f−1OY → OX), that is to say, a collection of continuous
maps

f ]U,V : OY (V )→ OX(U)

for all diagrams
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U X

V Y

f f

4

Given such a morphism (f, f ]), we get:

(i) f∗ : Mod(OX) → Mod(OY ) given by F 7→ f∗F , where f∗F is an f∗OX -module regarded as an OY -
module via f ] : OY → f∗OX .

(ii) f∗ : Mod(OY )→Mod(OX) given by G 7→ f−1G ⊗f−1OY OX =: f∗G.

Note that f−1OY → OX is the canonical one adjoint to f ] : OY → f∗OX . Everything we did in this
course so far led up to f∗G above.

Theorem 2.5.8. We have adjointness: HomOY (G, f∗F) = HomOX (f∗G,F).

Proof. The proof is as [“]trivial[”] as always

HomOY (G, f∗F) = Homf−1OY (f−1G, (F)f−1OY )

= HomOX(f−1G ⊗f−1OY OX ,F)

= HomOX (f∗G,F).

Corollary 2.5.9. We have f∗OY = OX and (f∗G)x = Gf(x) ⊗OY,f(x) ⊗OX,x.

Let’s talk about schemes.

Definition 2.5.10. A locally ringed space (X,OX) is a ringed space such that all stalks OX,x are local
rings. A morphism of locally ringed spaces is a morphism (f, f ]) : (X,OX)→ (Y,OY ) of ringed spaces such
that for all x ∈ X, the map f ]x : OY,f(x) → OX,x is a local homomorphism of local rings (in particular maps
maximal ideals to lie in the maximal ideal). 4

Lemma 2.5.11. If X,Y are ringed saces and f : X → Y is an isomorphism (in the category of ringed
spaecs), then f is also an isomorphism in the category of locally ringed spaces.

We want to work in this generality because given (X,OX) locally ringed spaces and j : U ↪→ X inclusion
of some open set, then (U, j−1OX =: OX |U ) is also a locally ringed space. For example:

Example 2.5.12. Let R be a commutative ring. Then (SpecR,R) is a locally ringed space. These are
affine schemes. 4
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3 Schemes

3.6 Feb 7, 2019

Last time, we defined pushforwards, which were easy, and pullbacks, which were more complicated.
In particular, if f : X → Y we can define the pushforward f∗ : Sh(X) → Sh(Y ); on the other hand we
needed to define fp and f−1 := (fp)

]. This defined f∗G := f−1G ⊗f−1OY OX , which became the pullback
f∗ : Sh(Y )→ Sh(X).

Let’s talk about schemes as ringed spaces (and locally ringed spaces). The motivation is that we want

MorRingedSpaces(SpecA,SpecB) = MorRings(B,A).

However, there is an issue: this is not literally true, so we need to add some extra algebraic data. For
example:

Example 3.6.1. Let R be a discrete valuation ring. Then SpecR = {〈0〉,m}. For a DVR, m is usually
called the closed point, whereas 〈0〉 is called the open point. Suppose that K is the faction field of R, so
that SpecK = {〈0〉} (which is also called the open point, as is the case in general with domains). We have
a ring homomorphism R ↪→ K sending r 7→ r/1.

But there are two maps of ringed spaces SpecK → SpecR: the first maps the open point to the closed
point, giving a map R = OSpecR,m → OSpecK,〈0〉, and the second maps the open point to the open point,
which induces a map K = OSpecR,〈0〉 7→ OSpecK,〈0〉 = K. 4

Definition 3.6.2. We’ll define locally ringed spaces:

(a) A locally ringed space is a ringed space (X,OX) such that all stalks OX,x are local rings.

(b) A morphism of locally ringed spaces is a morphism

(f, f ]) : (X,OX)→ (Y,OY )

of ringed spaces, suh that for all x ∈ X we have that f ]X : OY,f(x) → OX,x is a local homomorphism of
rings.

4

Let x ∈ X. We write K(x) = OX,x/mX,x.

We view functions f ∈ OX and evaluate them, then pass to the residue field, that is,

“f(x) := quotient of f in K(x)”.

Recall that an affine scheme is (SpecR,R) for R a ring. Note that SpecR is the set of prime ideals in R,
whereas R should be thought of as functions on SpecR. To make this a locally ringed space, we need to say
what the topology on SpecR = X is.

Given an ideal a ⊂ R, we have V (a) := {p ∈ SpecR : p ⊇ a}, called the algebraic subsets. These will be
our closed sets of X. The corresponding topology is the called the Zariski topology. This is a bad topology to
work with (non-Hausdorff etc.), but it is the right topology to work with when trying to glue things together.

An important role is played by distinguished open sets: for f ∈ R, define D(f) = X\V (〈f〉). An impor-
tant fact is that the D(f), for f ∈ R, form a basis for the topology on SpecR.

If V (a) is a closed set and p 6∈ V (a), then p 6⊇ a, so there is f 6∈ p. Then p ∈ D(f) and D(f) ∩ V (a) = ∅.
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Lemma 3.6.3. Let R be a ring and let M be an R-module. If f, g ∈ R are such that D(g) ⊆ D(f) (that is,
V (〈f〉) ⊆ V (〈g〉)), then

• f is invertible in Rg

• ge = af for some e ≥ 1, a ∈ R

• There exists a canonical map Rf → Rg

• There exists a canonical Rf -module homomorphism Mf →Mg.

Also, any open covering of

D(f) =

n⋃
i=1

D(gi).

If g1, . . . , gn ∈ R and D(f) ⊆ ∪iD(gi), then g1, . . . , gn generate the unital ideal in Rf .

Now let B be the collection of distinguished opens of SpecR = X. This collection is sometimes called
the standard opens. Recall that by HW 2, to define a sheaf on X it is enough to define it on B.

Given anR-moduleM , we have the “tilde construction”. We define a presheaf M̃ on B via M̃(D(f)) := Mf .
This is well defined: consider D(f) = D(g). Then f is invertible in Rg, and hence Mgf = (Mg)f = Mg.
Similarly we have Mgf = Mf .

If D(g) ⊆ D(f), then ρ
D(f)
D(g) : M̃(D(f)) = Mf → Mg = M̃(D(g)) is just the canonical Rf -module homo-

morphism guaranteed by Lemma 3.6.3.

Note that the sheaf axiom here says that we have a standard covering of

D(f) =

n⋃
i=1

D(gi),

where here we are using implicitly the quasi-compactness of SpecR, then we have the sequence

0 M̃(D(f))
⊕

i M̃(D(gi))
⊕

i,j M̃(D(gigj))

and get the exactness by the gluing lemma on the sheafification and D(g) ⊆ D(f) implies f is a unit in Rg.
This means that D(g) = D(gf) and Mg = (Mf )g and Mgigj = (Mf )gigj .

Fact 3.6.4. There is an equivalence of categories ShB(SpecR) = Sh(SpecR), where we usually take
B = {D(f)}f∈R, and ShB denotes the category of B-sheaves.

Proof. Is in the homework. But one remark: say U ⊆ X is an open set. Let Γ(U, M̃) denote the set of
elements {sp} ∈

∏
p∈U Mp for which there exists a covering of U by D(fα)s together with elements sα ∈Mfα

such that sβ equals sα under the restriction Mfα → Mβ . We have the natural restriction maps V ⊆ U by

coordinate projection
∏
p∈U Mp →

∏
p∈V Mp. One can check that Γ(−, M̃) is a sheaf. By the gluing lemma,

we have Γ(D(f), M̃) = Mf . This gives us the equivalence of categories needed.

Remark 3.6.5. Hopefully this clarifies the M̃ construction in Hartshorne II.2. 4

Summary. There exists a unique sheaf of rings OSpecR such that OSpecR(D(f)) = R̃(D(f)) = Rf .

Moreover, for any R-module M , there exists a unique sheaf of OSpecR-modules F = M̃ such that

F(D(f)) = M̃(D(f)) = Mf

as a OSpecR(D(f)) = Rf -module. In particular, Γ(SpecR,OSpecR) = R.
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Definition 3.6.6. An affine scheme is a locally ringed space isomorphic to (SpecR,OSpecR) for some ring
R. 4

Definition 3.6.7. A scheme is a locally ringed space such that every point has an open neighborhood which
is an affine scheme. 4

Remark 3.6.8. Let F = M̃ .

• Then a point x ∈ SpecR corresponds to p ⊆ R. We have

Fx = colimD(f)3xF(D(f)) = colimf∈R,f∈pMf = Mp

(since we know f, g ∈ R\p implies fg ∈ R\p and D(fg) ⊆ D(f) ∩D(g)).

• The functor F → Fx (or M̃ →Mp) is exact.

• If ϕ : M̃ → Ñ is a OSpecR-module map, then we get the induced map on global sections, that is, we
get ϕ : M → N back.

4

Example 3.6.9 (Why we define M̃ on just D(f)). Consider X = Spec k[x, y], and let U = X\{0}, where
{0} here corresponds to the maximal ideal 〈x, y〉 ⊆ k[x, y]. We claim that OX(U) = k[x, y], This is because
we have

0 OX(U) OX(D(x))⊕OX(D(y)) OX(D(xy))

which implies
OX(U) = ker(k[x, y, 1/x]⊕ k[x, y, 1/y]→ k[x, y, 1/xy]) = k[x, y]

This is reminiscent of Hartog’s theorem in complex analysis. 4
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3.7 Feb 12, 2019

Last time we talked about the˜construction for affine schemes. In particular, let X = SpecR and let
M be an R-module. Then M̃(D(f)) = Mf , which gives a unique sheaf of OSpecR modules. In the special
case that M = R, then we get this sheaf of rings OSpecR. We also defined affine schemes, which are locally
ringed spaces isomorphic to (SpecR,OSpecR). A scheme is a locally ringed space such that every point has
a local neighborhood that is an affine scheme. Then we defined

Γ(U, M̃) :=

{
{sp} ∈

∏
p∈U

Mp : ∃ covering U =
⋃
α

D(fα) and sα ∈Mfα such that sp = sα under Mfα →Mp

}
.

Our main goal was to establish

MorRings(A,B) = MorRingedSpaces(SpecB, SpecA)

but we saw that this was not quite enough (ie. there were not enough morphisms on one side). Today we’ll
see that the corrected statement:

MorRings(A,B) = MorLocRingedSpaces(SpecB, SpecA).

Example 3.7.1. Consider (SpecZ,OSpecZ). We have prime ideals 〈0〉 and 〈p〉 for all primes p, where the
〈p〉 are classical points, and the 〈0〉 is stitched everywhere. We call 〈0〉 an open point.

Functions on SpecZ are elements n ∈ Z. For example, if n = 12, then the function 12 evaluated at
the point 〈2〉 is an element of the quotient field Z/2Z; we have 12(2) = 0 ∈ Z/2Z. Similarly we have
12(3) = 0 ∈ Z/3Z, and 12(5) = 2 ∈ Z/5Z, 12(7) = 5 ∈ Z/7Z, 12(11) = 11 ∈ Z/11Z, and so on.

Note that the standard opens in our space are D(n), and OSpecZ(D(n)) = Z[1/n]. 4

Theorem 3.7.2. Let (X,OX), (Y,OY ) be locally ringed paces and assume Y is affine, say, isomorphic to
SpecR. Then

MorLocRinSp(X,Y ) = Hom(R,Γ(X,OX))

and this equality is functorial in X.

Remark 3.7.3. By Yoneda’s lemma, such maps for all X uniquely determine Y as a locally ringed space
(because R = Γ(Y,OY )). 4

Proof of Theorem 3.7.2. Given (ψ,ψ]) ∈ MorLocRinSp(X,Y ) we get a ring homomorphism from ψ]

α : R = Γ(Y,OY )→ Γ(Y, ψ∗OX) = Γ(X,OX).

We want to express ψ as a map of sets in terms of α: given x ∈ X, how do we define ψ(x) ∈ Y ? We have
the diagram

Γ(X,OX) OX,x

R = Γ(Y,OY ) OY,ψ(x)

which commutes because it is a map between locally ringed spaces.

Well, if ψ(x) = p ∈ SpecR, then we get

OX,x

R Rp
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and applying Spec gives

SpecOX,x

SpecR SpecRp

Since Rp → OX,x is a local homomorphism of local rings, the unique closed point of SpecOX,x must be
mapped to the closed point of SpecRp (note that this is one reason why we need locally ringed spaces).
Thus, this closed point is mapped to p under SpecRp → SpecR.

Hence ψ(x) ∈ Y corresponds to p ⊆ R which is the kernel of the composite of the maps

R Γ(X,OX) OX,x K(x) = OX,x/mX,xα

Lemma 3.7.4. Given any locally ringed space (X,OX) and any global section f ∈ Γ(X,OX), we want to
show that the set D(f) := {x ∈ X : f 6∈ mx ⊆ OX,x} is open in X and furthermore that f ∈ Γ(D(f),O∗X),
where O∗X is called the sheaf of units in O.

Proof. For all x ∈ D(f) we have f 6∈ mx. This means that f is a unit in OX,x, and hence there is g ∈ OX,x
such that fg = 1 ∈ OX,x. By the definition of a stalk we know there exists U 3 x sch that fg = 1 on U .
This means that f ∈ Γ(U,O∗X). Since this works for all x ∈ D(f), we see that D(f) is open. Furthermore,
we get f ∈ Γ(D(f),O∗X).

From a ring homomorphism α : R→ Γ(X,OX) we want to construct a morphism of locally ringed spaces
(ψ,ψ]). Set

ψ(x) := ker

(
R

α−→ Γ(X,OX)→ OX,x → K(x)

)
.

It turns out that ψ is continuous (because we have ψ−1(D(f)) = D(α(f)), which is open by our lemma).
For ψ] : OY → ψ∗OX , it’s enough to show on standard opens that

Rf Γ(D(α(f)),OX)

R Γ(X,OX)α

and since Rf = Γ(D(f),OY ) and Γ(D(α(f)),OX) = Γ(D(f), ψ∗OX), then we get an induced map

Γ(D(f),OY )→ Γ(D(f), ψ∗OX).

By the lemma, α(f) is a unit in Γ(D(α(f)),OX). Using the universal property of localization, we see that
α lifts to a map Rf → Γ(D(α(f)),OX). Since we’ve defined ψ] on distinguished open sets, we are done. To
end, you need to check that this functor is inverse to Γ(Y,−).

Summary. There is an antiequivalence of categories

AffSch Rings

Γ(·)

Spec

and our theorem says that Spec (as a functor) is fully faithful.

Corollary 3.7.5. If Y is an affine scheme and f ∈ Γ(Y,OY ), then (D(f),OY |D(f)) ∼= (SpecRf ,OSpecRf ).
Thus, any scheme has a topology whose basis is given by affine opens.
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The details are left to the homework. The moral is that whenever there is something you want to un-
derstand locally, you can reduce to the case where we have an affine open and then reason from that point
(and you can even assume it’s of this nice form).

Immersions of locally ringed spaces.Let (X,OX) be a locally ringed space, with U ⊆ X open. Then
(U,OX |U ) is an open subspace of locally ringed spaces.

Definition 3.7.6. An open immersion of locally ringed spaces is a morphism j : V → Y such that j is a

homeomorphism onto an open subset of Y and j] : j−1OY → OV is an isomorphism. 4

Lemma 3.7.7. Let X
f−→ Y be a morphism of locally ringed spaces. Let U ⊆ X and V ⊆ Y be opens such

that f(U) ⊆ V . Then the following diagram commutes (in the category of locally ringed spaces):

U X

V Y

f |U f

Proof. This follows from the previous theorem and the homework problem on open subsets.

We note that closed immersions are trickier to define. The definition in Hartshorne for closed immersions
between schemes doesn’t work in general for locally ringed spaces.

Example 3.7.8. Let X = R and OX be the constant sheaf Z/2Z. Let Z = {0} and OZ = Z/2Z. We have
ι : Z → X and ι] being the natural map. Should this be a closed immersion?

The answer is “yes?”. This agrees with the usual definition of closed immersion for schemes. But this is
not good because we want closed sets that are cut out by ideals of regular functions. 4

This leads to the following definition:

Definition 3.7.9. Let ι : Z ↪→ X be a morphism of locally ringed spaces. We say ι is a closed immersion if:

1. ι is a homeomorphism of Z onto a closed subset of X,

2. Our map ι] : OX → ι∗OX is surjective with kernel J , and

3. As an OX -module, J is locally generated by sections, that is to say, for all x ∈ X there is an open
U ⊆ X such that x ∈ U , and sections si ∈ J̃(U), for i ∈ I,∪Ui = U , such that⊕

i∈I
OX |Ui → J |U

(fi)i∈I 7→
∑

fisi

is surjective.

4

Example 3.7.10 (Example 3.7.8 revisited). Note that J = ker(OX → ι∗OZ) is not locally generated by
sections. For all U 3 x such that U is connected, we have

Z/2Z = OX(U)
∼=−→ ι∗OZ(U) = Z/2Z

and hence J(U) is 0. If there existed a U such that it were generated by (constant) sections, we would have
J(U) 6= 0 becuase Iy ∼= Z/2Z 6= 0 for all y ∈ U and Y 6= 0. Hence, don’t consider ({0},Z/2Z) ↪→ (R,Z/2Z)
as a closed immersion. 4

Summary. If ι : Z ↪→ X is a closed immersion, then for all z ∈ Z there is an open U ⊆ X with ι(z) ∈ U
and fi ∈ OX(U) such that ι(Z) ∩ U is cut out by vanishing sets of fj ’s, that is,⋂

j

{x ∈ U : fj = 0 in K(x)}
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3.8 Feb 14, 2019

[Use the regrading feature on Gradescope if you feel like you need to (to create some dialogue, also as a
semi-replacement for the lack of OH, ...)]

Last time, we had the following

Theorem 3.8.1. Let (X,OX), (Y,OY ) be locally ringed spaces, and let Y = SpecR. Then

MorLocRinSp(X,Y ) = HomRings(R,Γ(X,OX))

and this is functorial in X.

and the following

Corollary 3.8.2. There is an anti-equivalence of categories

AffSch Rings

Γ(·)

Spec

and Spec is fully faithful (as a functor).

We talked about open vs closed immersions of locally ringed spaces. As a warning, closed immersions for
locally ringed spaces are not what we want for schemes (i.e. we need this surjectivity on sheaf of rings and
locally generated by sections condition).

Fact 3.8.3. If X = SpecR is an affine scheme, then any closed immersion ι : Z ↪→ X is of the form

SpecR/I
ϕ−→ SpecR for a unique ideal ⊆ R. Furthermore, ker(OSpecR → ϕ∗OSpecR/I) = Ĩ ⊆ R̃ = OSpecR.

We note that replacing I with
√
I leaves the maximal ideals invariant (ie. it will be the same as a variety,

but different as a scheme).

We saw this nice result in the homework:

Lemma 3.8.4. If X is a scheme and U ⊆ X is open, then U is a scheme.

Equivalently:

Lemma 3.8.5. Let j : X → Y is an open immersion and Y is a scheme, then X is a scheme.

Warning. If Y is affine, this X may not be affine in general.

Example 3.8.6. Consider A2
k = Spec k[x, y] ⊇ U = D(x) ∪D(y). So we are looking at the open set of A2

k

with the origin removed [picture coming later, or maybe never lol]. This is not affine (you can check this
using, for example, the correspondence between affine schemes and ring homomorphisms). On the other
hand, open subsets of affines are called quasi-affine (these are related, but not quite the same). 4

Using Fact 3.8.3, we get

Lemma 3.8.7. If i : X → Y is a closed immersion and Y is a scheme, then X is a scheme.

This is because the fact implies i−1(SpecR) = SpecR/I for a unique ideal I ⊆ R. Warning. The
convention in Hartshorne is that he always requires X to be a scheme.

Definition 3.8.8. A morphism f : X → Y is said to be a locally closed immersion (often just called an
immersion) f such that f = j ◦ i where i is a closed immersion and j is an open immersion. 4

This should remind you of the notion of being locally closed in topology.
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Lemma 3.8.9. An immersion is closed if and only if its image is closed.

Here’s another important fact that we will use:

Lemma 3.8.10. Let X be a scheme. Then any irreducible closed subset has a unique generic point.

This property is called “being sober”.

Proof. Let Z ⊆ X be closed and irreducible. Pick an open affine U = SpecR ⊆ X such that U ∩ Z 6= ∅.
Then U ∩Z is irreducible, closed, and by Fact 3.8.3, this corresponds to a unique (radical) ideal p. Since this
is irreducible and p is prime, p ∈ SpecR ⊆ X has the property that {p} = Z because {p} ∩ Z contains an
open subset U ∩Z ⊆ Z and Z is irreducible. Uniqueness follows because any generic point of Z is in U .

Lemma 3.8.11. The open affines of a scheme X form a basis for its topology.

Warning. If U , V are affine schemes then U ∩ V is not necessarily affine. (This is true for varieties, but
not schemes.)

But nonetheless, we have

Lemma 3.8.12. Let X be a scheme and let U = SpecA, V = SpecB be affine schemes in X. Pick
x ∈ U ∩ V . Then there exists a W ⊆ U ∩ V such that W distinguished open in both U and V .

Proof. Choose f ∈ A, we have D(f) ⊆ U ∩ V , and also have g ∈ B such that D(g) ⊆ D(f) ⊆ U ∩ V . Then
g ∈ B = Γ(V,OX) restricts to an element. We have

a

fn
∈ Af = Γ(D(f),OX),

and hence D(g) = D(af) is also a standard open in SpecA = U)

Definition 3.8.13. A scheme X = (X,OX) is said to be reduced if for all x ∈ X, the local ring OX,x is
reduced (i.e., has no nilpotents). 4

Lemma 3.8.14. The scheme X is reduced if and only if for all U ⊆ X open, the ring OX(U) is reduced.

Proof. The backwards direction is just commutative algebra: the colimit of reduced rings is reduced. For
the forwards direction, we note that for all U ⊆ X open, pick f ∈ OX(U) such that fn = 0. This implies
that f = 0 ∈ OX,x for all x ∈ U . Since OX,x is reduced, then f = 0 in OX,x. Using that OX,x is a sheaf, we
get f = 0 on OX(U).

Corollary 3.8.15. We have X = SpecR is reduced if and only if R is reduced.

Corollary 3.8.16. Let X be a scheme. The following are equivalent:

(i) X is reduced

(ii) there exists an open cover X = ∪iUi with Γ(Ui,OX) is reduced for all i

(iii) For all U affine and open, we have Γ(U,OX) reduced, and

(iv) For all U open, Γ(U,OX) is reduced.

Definition 3.8.17. Let X be a scheme and F be a sheaf of OX -modules. We say F is quasi-coherent if for
all SpecR = U ⊆ X affine open, we have

F|U = M̃ for some R-module M

4

Lemma 3.8.18. It’s enough to check this for a single affine open cover of X.

Proof. Homework.
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Suppose that X is a scheme and I is a quasicoherent sheaf of ideals. Then for all affine opens U = SpecR,
we have

I|U = Ĩ for some ideal I ⊆ R.

By looking at the short exact sequences of sheaves given by

0 I OX OX/I 0

on X, and

0 Ĩ R̃ R̃/I 0

on U .

Fact 3.8.19. There is a unique closed subscheme ι : Z ↪→ X such that I = ker(OX → ι∗OZ) such that on
each affine open U = SpecR, we have Z ∩ U = SpecR/I.

This gives us

Fact 3.8.20. For a scheme X, there is an inclusion-reversing bijection

{closed subschemes of X} ↔ {quasicoherent sheaves of ideals of OX}
(ι : Z ↪→ X) 7→ ker(OX → ι∗OZ)

Lemma 3.8.21. Let X be a scheme and T ⊆ X a closed subset. Then there exists a unique closed subscheme
Z ⊆ X such that

(a) Z = T as sets

(b) Z is reduced.

Proof. To construct Z, it suffices to construct a quasi-coherent sheaf of (radical) ideals (by the fact above).
Indeed, given T ⊆ X closed, define

I(U) := {f ∈ OX(U) : f(t) = 0 (mod mt) for all t ∈ U ∩ T

where mt is the maximal ideal of OX,t. Note that I is a subsheaf of OX . It remains to show that it is
quasi-coherent. So pick U = SpecR ⊆ X affine and open. Since T is closed in X, we know T ∩ U = V (I)
for some (radical) ideal I ⊆ R. Such an I is unique, since

I =
⋂

p∈T∩U
p = Γ(U, I) ⊆ R.

We need to show I|U = Ĩ. Recall that it suffices to check this on standard opens: for all f ∈ R, we have

Γ(D(f), I|U ) = Γ(D(f), I)

=

{
h ∈ OX(D(f)) : h(t) ≡ 0 (mod mt) for all D(f) ∩ T

}
=

⋂
p∈D(f)∩V (I)

p

= If = Ĩ(D(f)).

Then we can take Z to be the closed subscheme associated with Ĩ.
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3.9 Feb 19, 2019

[This week, OH will be moved from Friday to Wednesday at 2:30-4?]
[Look out for emails! There will be a nuts and bolts survey, and solutions for homework.]
Last time we saw many things. We saw that reduced schemes are those schemes whose local rings have no

nilpotents. We saw that closed subschemes of X correspond to quasicoherent sheaves of ideals of OX . Also,
we saw that given X a scheme and T ⊆ X any closed subset, then there exists a unique closed subscheme
structure on T where T = Z is reduced (there are infinitely many closed subscheme structures you can endow
T with, but they’re not reduced). This is usually called the (reduced) induced closed scheme structure on
T .

Definition 3.9.1. A scheme X is integral if for all U ⊆ X open, the ring OX(U) is an integral domain. 4

Lemma 3.9.2. The scheme X is integral if and only if X is irreducible and reduced.

Remark 3.9.3. Varieties over a field k, when viewed as schemes, are usually taken to be integral. But
this choice means that varieties are irreducible, which is not what people always mean when they say
“variety”. 4

Let’s talk about characterizations of closed immersions.

Lemma 3.9.4. Let ι : Z ↪→ X be a morphism of schemes. The following are equivalent:

1. ι is a closed immersion (as defined before).

2. For all U = SpecR ⊆ X open affine, we have

ι−1(U)(= ι|ι−1(U)) : SpecR/I → SpecR

corresponding to some ideal I ⊆ R.

3. There exists an open affine covering X = ∪jUj with Uj = SpecRj such that ι−1(Uj) = SpecRj/Ij.

4. (Hartshorne)

(a) ι is a homeomorphism onto a closed subset of X

(b) The induced map ι] : OX → ι∗OZ is surjective.

5. Both (a) and (b) hold, and furthermore that ker ι] : OX → ι∗OZ is a quasicoherent sheaf of ideals.

6. Both (a) and (b) hold, and furthermore that the subsheaf ker ι] of OX is a sheaf of ideals, locally
generated by sections.

Remark 3.9.5. The assumption that ι is a morphism of schemes is key for these equivalences. 4

Given a quasicoherent sheaf of ideals I ⊆ OX , there exists a closed immersion ι : Z → X such that
I = ker(ι]).

Warning. Given an immersion ι : Z ↪→ X, recall that ι must factor as a “closed, then open”, but there
does not generally exist a factoring

Z X

Z̄

ι

open
closed

This is okay for varieties, but not for schemes (key property is reducedness).
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Example 3.9.6. This example is common (somewhat like sin(1/x)). Let X = SpecC[x1, x2, . . . ], which we’ll
also call A∞C for now. Let U = ∪∞i=1D(xi). Let Z ↪→ U be defined on D(xi) = SpecC[x1, x2, . . . , xi−1, x̄i, . . . ]
by the ideal Ii := 〈xi1, xi2, . . . , xii=, xi−1, xi+1, xi+2, . . . 〉. This ideal corresponds to a closed point (0, . . . , 0, 1, 0, . . . )
with a nonreduced structure.

On D(xixj), we have Ii|D(xixj) = SpecC[x1, x2, . . . , 1/(xixj)] = Ij |D(xixj). Thus the Ii’s glue to give a
closed subscheme in U . However, there is no closed subscehem structure on Z̄ in X that restricts to this
scheme structure of Z in U because for all f ∈ C[x1, x2, . . . ] with f |D(xi) ∈ Ii implies that deg f ≥ i, and
hence f = 0. 4

Let’s talk about how to construct schemes. Say that for a given index set I, for all i ∈ I, we have
schemes (Xi,Oi), and for all i, j, there exist open subschemes Uij ⊆ Xi and Uij ⊆ Xj such that there exists
an isomorphism ϕij : Uij → Uji, such that if i = j then Uii = Xi and ϕii = idXi , and for all I, j, k we have

1. ϕ−1
ij (Uji ∩ Ujk) = Uij ∩ Uik

2. The maps

Uij ∩ Uik Uki ∩ Ujk

Uji ∩ Ujk

ϕik

ϕji ϕkj

commute (this is sometimes called the cocycle condition). Suppose all of this is true; then we call ((Xi,Oi);Uij , ϕij)
the gluing data.

Proposition 3.9.7. Given a gluing datum, there eixsts a unique scheme X with open subschemes Ui ⊆ X
and isomorphisms ϕi : Xi → Ui such that

1. ϕi(Uij) = Ui ∩ Uj

2. ϕij = ϕ−1
j |Ui∩Uj ◦ ϕi|Uij

Also MorSch(XY ) = {(fi)i∈I such that fi : Xi → Y and fj ◦ ϕij = fi|Uij}

Example 3.9.8. This is another common counterexample: A1 with a doubled point. Let k be an alge-
braically closed field. Let X1 = Spec k[x] and X2 = Spec k[y], and pick Oi ∈ Xi. We have open sets
X1 ⊇ U = D(x) = Spec k[x, 1/x] and analogously X2 ⊇ V = D(y) = Spec k[y, 1/y]. Let ϕ : U → V be
the isomorphism corresponding to the ring homomorphism k[y, 1/y]→ k[x, 1/x] given by y 7→ x (if you use
y 7→ 1/x and glue, you can get P1).

Let X = X1 ∪U=V X2. What is Γ(X,OX)? We have

0 Γ(X,OX) Γ(X1,OX1
)× Γ(X2,OX2

) Γ(U,OX)
ϕ

with Γ(X1,OX1
)×Γ(X2,OX2

) = k[x]×k[y] and Γ(U,OX) = k[x, 1/x], and the map ϕ : (f(x), g(y)) 7→ f(x)−g(x).
Thus Γ(X,OX) ∼= k[x].

Note that given f ∈ Γ(X,OX) we must have f(O1) = f(O2) ∈ k, and so X is not affine, for example
because affine schemes are always T0 (that is, for all x, y ∈ X, at least one has a neighborhood not containing
the other), and alternatively we can look at maps, say, out of X into affine schemes. 4

Let’s talk about relative schemes and fiber products. Relative schemes are schemes with a structure map
X → S for S a scheme. Sometimes these are called “S-schemes”.

Definition 3.9.9. Given two morphisms of schemes f : X → S and g : Y → S, its fiber product is a scheme
X ×S Y such that there are projection maps π1 and π2 and
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X ×S Y Y

X S

π2

π1 g

f

commutes. Its universal property is that given a scheme T and morphisms a : T → X and b : T → Y , we
have a commutative diagram

T

X ×S Y Y

X S

a

b

∃!

π2

π1 g

f

4

Theorem 3.9.10. Fiber products exist.

The proof is painful, especially if you want to do it in a lot of generality.

Idea of proof. Some books give an explicit construction, but it’s not so informative to go through this.
Assuming X ×S Y exists,

• If U ⊆ X, V ⊆ Y , and W ⊆ S are opens such that f(U), g(V ) ⊆W , then U ×W V = π−1
1 (U)∩π−1

2 (V )
is an open subset of X ×S Y . This is abstract nonsense.

• If X = SpecA, Y = SpecB, and S = SpecR, then X ×S Y = Spec (A⊗R B) because

MorSch(T, Spec (A⊗R B)) = Hom(A⊗R B,OT (T ))

= Hom(A,OT (T ))×Hom(R,OT (T )) Hom(B,OT (T ))

= Mor(T, SpecA)×Mor(T,SpecR) Mor(T, SpecB)

• In general, take an affine open covering and glue.

Example 3.9.11. If R is a ring, we have AnR = SpecR[x1, . . . , xn]→ SpecR. We have

AnR ×SpecR Am = An+m
R

because R[x1, . . . , xn] ⊗R R[y1, . . . , ym] ∼= R[x1, . . . , xn, y1, . . . , ym]. On points, X ×S Y is not necessarily
|X|×|S||Y |. Namely, consider A2

C versus A1
C×A1

C on points. On one hand, we have A1
C = {〈x−α〉 : α ∈ C}∪{〈0〉}

and so on the product A1
C × A1

C we have points

{〈x− α, y − β〉, 〈x− α〉, 〈y − β〉, 〈0〉 : α, β ∈ C}

and yet, for example, 〈x2 − y3〉 ∈ A2
C, but is not in A1

C × A1
C. They do match on closed points, that is,

maximal ideals, but not generally. 4

31



3.10 Feb 21, 2019

[disclaimer: many typos, i was not really awake]
Last time we were talking about fiber products: given X,Y, S schemes, we had the commutative diagram

X ×S Y Y

X S

and showed that fiber products exist for S-schemes.

Definition 3.10.1. Let K be a field and S a scheme. A K-point of S is a morphism SpecK → S. They
can be viewed as sections

S

SpecK

K-points

4

We note that MorSch(K,S) = {(s ∈ S,K(s) ↪→ K)}. In particular, for all s, there is a canonical mor-
phism s = (SpecK(s)→ S).

Last time we saw that A2
C 6= A1

C×A1
C; for example they don’t even have the same points (eg. 〈x2− y3〉).

But what is true is that A2
C = A1

C ×C A1
C (on the algebraic side, we need C[x]⊗C C[y] ∼= C[x, y]).

Given a morphism of schemes f : X → S and a point s ∈ S, the fiber of X at s, denoted (Xs), is

Xs = SpecK(s) xf

SpecK(s) S

Note that Xs naturally lie over SpecK. For example, we have

X X0 X2 X3 . . .

SpecZ Q F2 F3 . . .

Another example is that of A2
C = X → A1

C sending (x, y) 7→ (x); in this case K-points are C[x]→ C[x, y].

Over closed points, 〈x− α〉 ⊆ C[x]. Then

C[x, y]⊗C[x] C[x]/〈x− α〉 ∼= C[x, y]/〈x− α〉.

For a closed s ∈ SpecC[x] ∼= C[y], we have Xs
∼= A1

C (these are called “closed fibers”, or in number theory
sometimes “special fibers”). Over a generic point η = 〈0〉,

C[x, y]⊗C[x] = C(x)[y]

which implies Xη
∼= A1

C(x) (this is the “generic fiber”).

Example 3.10.2. Let X = SpecZ[x]/〈x2 − 50〉 map into SpecZ.
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For any point s 6= 〈2〉, 〈5〉, that is a closed point (take, for example, s = 〈59〉), then

XS = Spec (Z[x]/〈x2 − 50, 59〉) ∼= Spec (F5[x]/〈x2 − 50〉).

Since 50 is not a square in F59, this should be one point. However if 50 is a square mod p, then for p 6= 2, 5,
XS consists of two points.

If s = 〈2〉 or 〈5〉, then
XS
∼= SpecFp[x]/〈x2〉,

and we get a single non-reduced point. 4

Example 3.10.3. (Families of curves.) Consider a map SpecC[x, y, t]/〈ty− x2〉 → SpecC[t]. This is some-
times called a 1-parameter family of curves (think of this as parabolas “expanding any contracting with
respect to t”), so for t = 1 we have [picture coming soon i promise] and for t = 4 we have [picture coming
soon i promise], but for t = 0 we have SpecC[x, y]/〈x2〉[picture coming...]. So this map has general fibers ( 6=
generic fiber) which are reduced, but over 0 we have an unreduced fiber.

When the fibers are intersected by horizontal lines we typically get two points of intersection; the point
is that even at t = 0 the scheme theory also allows us to recover this intersection number of two. 4

Here’s a variant of the above example:

Example 3.10.4. Consider C[x, y, t]/〈xy− t〉 → SpecC[t]. But at t = 0, we have C[x, y]/〈xy〉, which is not
irreducible. 4

Let’s talk about S-schemes. Recall that these were schemes X with a morphism (“structure map”)
X → S . This is a category of S-schemes which has fiber products X ×S Y with morphisms

X Y

S

that commute.

As a special case of this, given any morphism S′ → S we have the base change of the S-scheme X to S′

given by

XS X

S′ S

Example 3.10.5. With SpecK(s) → S, the fiber over s is just the base change to K(s). For ex-
ample, consider SpecZ[x]/〈f(X)〉 → SpecZ for f(x) ∈ Z[x]. Given a prime 〈p〉 ∈ SpecZ, we have
Xp
∼= SpecFp[x]/〈f̄(x)〉. 4

Here’s a question. What properties of X are preserved under base change?

Lemma 3.10.6. Let f : X → Y be an open (respectively closed, locally closed) immersion of S-schemes.
Let S′ → S be any morphism of schemes. Then the base change morphism f ′ : XS′ → YS′ is also an open
(respectively closed, locally closed) immersion of S-schemes.

This follows from

Lemma 3.10.7. Suppose we had maps

X ×S Y Y

X S

q

f
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such that f is an open (respectively closed) immersion, then q is an open (respectively closed) immersion.

Proof. The open case is simple.

Closed immersions correspond to a quasicoherent sheaf of ideals, namely we have

0 I OS ι∗OX 0

where ι : X → S. The map ι fits into the commutative square

X ×S Y Y

X S

q

ι

We have im (g∗I → OY ) = im (g∗I → g∗OS = OY ) is locally generated by sections, and hence it cuts out a
closed subscheme Z ⊆ Y . Then Z = X ×S Y .

By the homework we can check on affine affines. So on S-algebras, we have

A/IA A

R/I R

If A is an R-algebra, then the diagram commutes; by quasicoherence we see that q : Z → Y is a closed
immersion.

Proof of Lemma 3.10.6. We note that we have maps

XS′ X

YS′ Y

S′ S

f ′ f

and we see that XS′ is a fiber product because of the universal property. We check that

Mor(T,XS′) = Mor(T,X)×Mor(T,S) Mor(T, S′)

= Mor(T,X)×Mor(T,Y )

(
Mor(T, Y )×Mor(T,S) Mor(T, S′)

)
= Mor(T,X)×Mor(T,Y ) Mor(T, YS′).

Thus, by the previous lemma, if f is open (respectively closed, locally closed) then so is f .

Definition 3.10.8. A morphism of schemes is f : X → S is quasicompact if the map on the underlying
topological spaces is quasicompact. 4
Proposition 3.10.9. (Characterization of quasicompact morphisms) Let f : X → S be a morphism of
schemes. Then the following are equivalent

1. f is quasicompact

2. For all U ⊆ S open affine, f−1(U) is quasicompact

3. There exists an affine open covering

S =
⋃
i∈I

Ui such that f−1(Ui) is quasicompact ∀i

4. There exists an affine open covering S = ∪i∈IUi such that f−1(Ui) is a finite union of open affines.
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3.11 Feb 28, 2019

[Brian will be out of town next week, but there will be class. Harrison Chen will be substituting. There
will be no OH (there will be usual homeworks etc.)]

Last time we talked about families of schemes, and base change (and some properties preserved under
it).

Definition 3.11.1. A morphism of schemes f : X → S is quasicompact (qc) if the underlying map on

topological spaces is quasicompact, i.e. for all quasicompact open U ⊆ S, we have f−1(U) quasicompact. 4

We had this characterization for quasicompact morphisms, namely, it is enough to check this on an open
affine covering of S such that f−1(each open) is a finite union of open affines.

Lemma 3.11.2. 1. The base change of a quasicompact morphism is quasicompact.

2. The composition of quasicompact morphisms is quasicompact.

3. Closed immersions are quasicompact.

These are the three main situations when our invocation of this condition is important.

Proof. For 1., we can consider the fiber product, namely for all s ∈ S, there exists an open affine neighborhood
V of s such that g(V ) ⊆ U

X ′ X

S′ S

g′

f ′ f

g

Then f−1(U) is covered by finitely many opensW1, . . . ,Wn. Then {V×UWi} is a finite affine cover of f−1(V ).

For 2., we have quasicompact maps X
f−→ Y

g−→ Z. Thus for all U ⊆ Z open, g−1(U) = ∪ni=1Vi, with
Vi ⊆ Y open affine. Then f−1(Vi) = ∪Nj=1Wi,j , with Wi,j ⊆ X is an open affine. Thus

(g ◦ f)−1(U) =
⋃
i

⋃
j

Wi,j ,

which is a finite union of open affines.

For 3., all closed immersions are locally of the form SpecA/I → SpecA for some ideal I ⊂ A, and then
we get our cover.

Example 3.11.3. Open immersions are not necessarily quasicompact.

Consider the locally closed subscheme in U given as U = ∪∞i=1D(xi) ⊆ C[x1, x2, . . . ]. On each open
D(xi) = SpecC[x1, . . . ][1/xi], it is the closed subscheme corresponding to Ii := 〈xi1, . . . , xii−1, xi−1, xi+1, . . . 〉
(that nonreduced ideal we saw at some point earlier). On D(xixj), for i 6= j, note that

Ii · C[x1, . . . ][1/(xixj)] = IjC[x1, . . . ][1/(xixj)] = C[x1, x2, . . . ][1/(xixj)]

and hence by gluing we get a scheme on U . On the other hand, there is no closed subscheme on SpecC[x1, . . . ]
that gives rise to this closed subscheme structure on U . Indeed, if it did, it would correspond to an ideal
I ⊂ C[x1, . . . ], but for all f ∈ I, we have f 6∈ IN where N > deg f . 4

Towards valuative criteria.
The idea of valuative criteria is that we want to make sense of “limits” relative to a base scheme S.

By limits we mean with respect to the points (remember that our spaces are not Hausdorff): roughly,
separatedness (the AG notion of being Hausdorff) corresponds to the fact that “limits” are unique, and
properness (the AG notion of compactness) corresponds to the fact that “limits” exist.
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Definition 3.11.4. Given X a scheme and x, x′ ∈ X, we say that x specializes to x′ (denoted x  x′) if

x′ ∈ {x}. A subset Z ⊆ X is closed under specialization if for all x, x′ ∈ X such that x ∈ Z and x x′, we
have x′ ∈ Z. 4

Lemma 3.11.5. (for algebra.) Let f ] : B → A be a ring homomorphism. Let T ⊆ SpecA be closed. If f(T )
is closed under specialization, for any f : SpecA→ SpecB, then f(T ) is closed.

Proof. Write T = V (I) for an I ⊆ A. Consider J = ker(B → A→ A/I). Then we have

Spec (A/I) = V (I) = T ⊆ SpecA→ SpecB ⊇ V (J) = Spec (B/J)

and f(T ) ⊆ V (J). We want this to be an equality.

We are reduced to the setting where: 1. B ↪→ A, 2. T = SpecA, and 3 f(T ) is closed under specialization.
We want to show that f(T ) = SpecB. Let q ⊆ B be any minimal prime. Then Bq is a local ring with only 1
prime ideal. Also, Bq ⊆ Aq implies Aq 6= 0, that is, q ∈ im f . Now, any prime of B is a specialization of some
minimal prime of B. Thus, since f(T ) is closed under specialization, it follows that f(T ) = SpecB.

Definition 3.11.6. Let f : X → S be a map of topological spaces. We say specializations lift along f if for
all f(x) = s and s s′ there exists an x′ ∈ X with x x′ and f(x′) = s′. 4

Lemma 3.11.7. (for topology.)

1. If specializations lift along f and T is closed under specializations, then so is f(T ).

2. Specializations lift along closed maps between topological spaces.

Lemma 3.11.8. Let f : X → S be a quasicompact morphism of schemes. Then f is closed if and only if
specializations lift along f .

Proof. The forward direction is the above Lemma 3.11.7.

The backwards direction is proven as follows: take T to be a closed set in X. We can cover S by affine
opens Ui, and to show that f(T ) ∩ Ui = f(T ∩ f−1(Ui)) is closed in Ui. Thus we reduce to the case where
S is affine.

Since f is quasicompact, we have X = ∪ri=1Xi with Xi = SpecAi affine opens. Since S = SpecR, we
know that Ai is an R-algebra. Since we know f(T ) ⊆ SpecR is closed under specialization, we have

n∐
i=1

T ∩Xi ⊆
n∐
i=1

Xi = Spec (

n∏
i=1

Ai)→ S ←↩ f(T )

and now the algebra lemma (Lemma 3.11.5) applies.

Lemma 3.11.9. (for number theory.)

If B
f]−→ A is a ring homomorphism and f : SpecA→ SpecB then B → A satisfies going up if and only

if specializations lift along f . In particular, f is closed as a map of topological spaces.

For example, if A is integral over f ](B), then it satisfies going up. In particular, finite maps and
surjections satisfy going up.

Definition 3.11.10. Suppose that K is a field, and suppose that A,B ⊆ K are local domains (but not
fields). We say that A dominates B if B ⊆ A and mB = B ∩mA. 4

Then, valuation rings (the rings we’ll use for valuative criteria) are the maximal elements under the
domination relation (which form a poset on local domains). An alternative, more down to earth definition
is the following:
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Definition 3.11.11. An integral domain A with FracA = K is a valuation ring if for all x ∈ K×, either
x ∈ A or x−1 ∈ A. 4

Such rings are always local.

Remark 3.11.12. Such rings admit a homomorphism ν : K× → Γ, where Γ is an ordered abelian group
such that x ∈ A if and only if ν(x) ≥ 0. 4

Examples of valuation rings are Zp with the p-adic valuation, and k((x)): the Laurent series in a field k
with trivial or degree valuation.

Remark 3.11.13. If working with local Noetherian schemes, you only need to work with discrete valuation
rings (e.g. most of Hartshorne has this assumption). But without this assumption, it’s important to work
with arbitrary valuation rings. 4

If A is a valuation ring, then it has a unique generic point (η) = 〈0〉 and a unique special point (s) = m,
where m is the maximal ideal of A (it is always given by {x ∈ A : ν(x) > 0}).

Valuative Criterion.
Let f : X → S be a morphism of schemes. We say f satisfies the existence part of the valuative criterion

if, given any valuation ring A with K := FracA, and given any diagram

SpecK X

A S

f∃

the dashed arrow exists. We say f satisfies the uniqueness part of the valuative criterion if this dashed arrow
is unique.

How do we map a local ring A into a scheme? Given SpecA→ S, we have

MorSch(SpecA,S) = {(s,OS,s
ψ−→ A) : ψ is a local homomorphism of local rings}.

The inverse is given as follows: for all (s, ψ : OS,s → A), take an open affine neighborhood SpecR of s. Then
s corresponds to a prime ideal p ⊆ R, and we have maps

R→ Rp = OS,s
ψ−→ A

which induces SpecA→ SpecR ⊆ S.

Theorem 3.11.14. If f : X → Y be a morphism of schemes and the diagonal map of f (denoted ∆f ) is
quasicompact, then f is separated if and only if f satisfies the uniqueness part of the valuative criterion.

Theorem 3.11.15. If f : X → Y is a morphism of schemes and f is quasicompact, then f is universally
closed if and only if it satisfies the existence part of the valuative criterion.

(Here universally closed means closed with respect to any base change; we’ll talk more about that later)

Theorem 3.11.16. If f : X → Y is a morphism of schemes of finite type and ∆f (the diagonal map of
f) is quasicompact, then f is proper if and only if it satisfies the existence and uniqueness of the valuative
criterion.
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4 (Affine) Algebraic Groups

4.12 Mar 5, 2019

For this week we’re going to talk about a side topic.

For this week, k will denote a field; usually char k = 0. If X is the scheme, we denote by O(X) := Γ(X,Ox)
the global sections, and denote by ∗ := Spec k, which is “a point”.

For references: there is Mumford’s GIT, and notes by Brion called “Introduction to Algebraic Groups”,
and Milne’s notes called “Algebraic Groups”. There is also Borel’s “Linear Algebraic Groups”.

Definition 4.12.1. An algebraic group is a scheme G/k with the following maps of schemes:

• Multiplication µ : G×G→ G

• Unit e : ∗ → G

• Inversion ι : G→ G

such that the following diagrams commute:

G×G

G×G×G G

G×G

µ

id×µ

µ×id

µ

(which encodes assiciativity)

G×G

G G

G×G

µ

e×1

1×e

id

µ

(which encodes the unit)

G×G G×G

G ∗ G

G×G G×G

1×ι

µ∆

∆

e

ι×1

µ

(which encodes inverses).

This is all to say that G is a group object in the category Schk. We say that G is an affine algebraic
group if G is affine as a scheme. 4

The slogan is that the theory of affine algebraic groups is the same as the theory of (commutative) Hopf
algebras.

Definition 4.12.2. A coalgebra over k is a k-vector space C with
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• Comultiplication ∆: C × C × C

• Counit ε : C → k

satisfying the dual diagrams to the associativity and unit diagrams described above. 4

Definition 4.12.3. A Hopf algebra H is an algebra and a coalgebra with an antipode map S : H → H
satisfying the dual to the inverse diagram described above. 4

Remark 4.12.4. Antipodes are a property, not a structure (maybe.). That is to say, antipodes, if they
exist are unique, and thus characterize Hopf algebras. 4

Proposition 4.12.5. If G is a group scheme, O(G) are a Hopf algebra. If H is a Hopf algebra, SpecH is
an affine algebraic group.

Proof. The first part is just functoriality of taking global sections; the second part is purely formal so we
won’t do it.

Example 4.12.6. Any finite group G = Spec (
∏
g∈G k) =

∐
g∈G Spec k (finiteness is needed here; as an

exercise, show that when k is algebraically closed, Z :=
∐
n∈Z Spec k is not affine, in particular points of

Spec (
∏
n∈Z k) corresponds to filters on Z).

Then comultiplication gives a map∏
g∈G

kg →
∏
g∈G

kg ⊕
∏
h∈G

kh ∼=
∏
g,h∈G

kg,h

sending 1g 7→
∑
x,y∈G;xy=g 1x,y. Also the counit gives a map

kg 7→

{
0 if g 6= e

1 if g = e

4

Example 4.12.7. Consider the general linear group GLn = Spec k[aij ,∆,∆
−1]/(det(aij) = ∆; ∆∆−1 = 1).

Definition 4.12.8. A group G is called a linear algebraic group if there is a closed embedding cl : G ↪→ GLn
into GLn. 4

We note that linear algebraic groups are affine algebraic groups. 4

Example 4.12.9. Consider SL2 = Spec k[a, b, c, d]/(ad− bc = 1). We get[
a1 b1
c1 d1

] [
a2 b2
c2 d2

]
=

[
a1a2 + b1d2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

]
we can read off comultiplication by pulling back across this map, that is, we get maps

a 7→ a⊗ a+ b⊗ d
b 7→ a⊗ b+ b⊗ d
c 7→ c⊗ a+ d⊗ c
d 7→ c⊗ b+ d⊗ d

and we can read off counits

a 7→ 1

b 7→ 0

c 7→ 0

d 7→ 1
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that is just pulling back the identity, and similarly we can read off antipodes

a 7→ d

b 7→ −b
c 7→ −c
d 7→ a

4

Example 4.12.10. We have the multiplicative group Gm = Spec k[z, z−1] = GL1 with ∆(z) = z ⊗ z (and
∆(zn) = zn ⊗ zn), and S(z) = z−1 and ε(z) = 1 (which is evaluation at 1). 4

Example 4.12.11. We have the additive group Ga = Spec k[t], which we can think of as a subgroup of GL2

via

Ga 3 x 7→
[
1 x
0 1

]
∈ GL2.

We have ∆(t) = 1⊗ t+ t⊗ 1, ε(t) = 0, and s(t) = −t. We have ∆(tn) = (1⊗ t+ t⊗ 1)n 6= 1⊗ tn + tn⊗ 1 4

Example 4.12.12. Let E be a smooth genus 1 curve, ie., an elliptic curve. So we have

E = Proj k[x, y, z]/〈y2z = x(x+ z)(x− z)〉 ⊆ P2.

We get the “projective completion” {y2 = x(x+ 1)(x− 1)} ⊆ A2. 4

We have the following technical proposition:

Proposition 4.12.13. If char k = 0, then every group scheme is smooth (and is in particular reduced).

So this says that group schemes are nice (they’re varieties, for example).

Example 4.12.14. Let G = Spec k[x]/xp ↪→ Ga. Suppose we defined ∆: x 7→ x ⊗ 1 + 1 ⊗ x. Then in
characteristic 0, we have

∆(xp) =
∑(

p

k

)
xk ⊗ xp−k,

whereas in characteristic p we have

∆(xp) = xp ⊗ 1 + 1⊗ xp = 0,

so over characteristic p, the above proposition does not hold. 4

Definition 4.12.15. A G-action on X is a map α : G×X → X with usual conditions: the diagrams

G×X

G×G×X X

G×X

α1×α

µ×1 α

and

X G×X X
e×1

1

α

commutes. 4

Dually, define a comodule for any coalgebra, for example O(G).
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Proposition 4.12.16. If G acts on X, then O(X) is a comodule for O(G). Likewise, if M is an algebra
with a compatible comodule structure for O(G), then SpecM has a G-action.

Example 4.12.17. What are the O(Gm)-comodules? We claim these are precisely the graded vector spaces.
Indeed, consider ρ : M →M ⊗ k[z, z−1] given by m 7→

∑
mi ⊗ zi, where the counit gives m =

∑
mi.

Thus the coaction ρ gives a way to decompose m ∈M into homogenous parts compatibly. As an exercise,
check the rest of the claims (that we really get a grading, so that M = ⊕i∈ZMi, and that this is equivalent
to giving the ρ comodule structure). 4

Proposition 4.12.18. (Maybe “fundamental theorem of comodules”). Every comodule is the union of its
finite dimensional subcomodules.

Proof. Let M be our comodule and C its coalgebra. We just need to show that each element is in a finite
dimensional subcomodule. So take m ∈ M , and fix a basis for C, call it {ci}. Say ρ(m) =

∑
mi ⊗ ci for

some (finitely many! ) mi. We’re going to try to show that Span (mi) is a submodule, and m =
∑
ε(ci)mi

(where ε is the counit), so that m ∈ Span (mi).

We have ∆(ci) =
∑
j,k a

i
j,kcj ⊗ ck for some constants aij,k ∈ k. Using associativity we get:∑

i,j,k;i∈I

mi ⊗ (aij,k ⊗ cj ⊗ ck) =
∑
i

ρ(mi)⊗ ci =
∑
k∈I

ρ(mk)⊗ ck.

Equate the coefficients of ck in the third ⊗-factor, so that∑
i,j,k;i∈I

aij,k ⊗mi ⊗ cj = ρ(mk).

So ρ(mi) is in the sum of mi ⊗ C.

Proposition 4.12.19. If C is an algebra, then its k-linear dual C∗ is an algebra (note that the converse
isn’t true). Furthermore, if M is a left C-comodule, then M is a right C∗-module.

Proof sketch. Suppose f ∈ C∗. Then f ·m = evf (ρ(m)). Then everything works.

Definition 4.12.20. Any C∗-module that comes from a C-comodule is called rational. Note that rational
C∗-modules are unions of finite dimensional submodules. 4

Note that we have a map G → O(G)∗ → End(V ). So V is a rational G-representation if it arises from
an O(G)-comodule.

Note that if you unwind the definition of what it means to be a sheaf on BG, then what you get is a
O(G)-comodule.

Proposition 4.12.21. Suppose G acts on X. Then O(X) is a rational G-representation.

Proof. Well, O(X) is a O(G)-comodule.

As an aside, if f ∈ O(X), then g ◦ f(x) = f(g−1x). As an application, if G is an affine algebraic group
and X is affine, then there is a finite dimensional G-representation V and G-equivariant embedding of X
into V .

Proof. If f1, . . . , fr ∈ O(X) be generators, then let V = Span (G · (f1, . . . , fr)), which is finite dimensional.
Then the symmetric algebra Sym(V )� O(X), and taking Spec gives a closed embedding X ↪→ V ∗.
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4.13 Mar 7, 2019

Remark 4.13.1. (On rational representations.) If V is a vector space, you can consider Spec SymkV
∗,

which is V as a scheme. You get a scaling map A1 × V → V , addition V × V → V , and so on.

Now a rational representation is a vector space V with the map G×V α−→ V with all compatibilities that
is locally finite: every v ∈ V is in a finite dimensional subrepresentation. In particular, we claim that V can
be infinite dimensional, but now he’s not exactly sure if the above Spec SymkV

∗ construction is the right
construction (though this is probably okay). 4

As an exercise, one might want to show that this is equivalent to the comodule definition. Some hints:

1. The A1 action will induce a positive Z≥0 grading on O(V ); pick out V ∗.

2. Linearity and associativity gives that V ∗ ⊆ O(V ) is a comodule.

3. Rationality lets us take the finite/restricted/Hopf dual of V ∗.

Definition 4.13.2. (The Hopf Dual.) Let V ∗ � W with W finite dimensional. Then we define
(V ∗)◦ = ∪W ∗. 4

4. (V ∗)◦ is a O(G)∗-module. Use the antipode to make it O(G)-comodule.

Proposition 4.13.3. (A “structure theorem”.)

1. The orbits G · x ⊆ X are locally closed, smooth, and each component has dimension dimG− dimGx.

2. G · x is the union of orbits of smaller dimension.

3. Any orbit of minimal dimension is closed, and there is a closed orbit in G · x.

Definition 4.13.4. Let X be a noetherian topological space. A subset S ⊆ X is constructible if it is a finite
union or intersection of open and closed subsets. 4

Remark 4.13.5. Even if X is a scheme, S may not be a scheme. For example, take f : A2 → A2 given by
(x, y) 7→ (x2, xy). If the first coordinate of the image is 0 then the second one is zero too. The image is
constructible, but it’s not a scheme (roughly, because you can only glue schemes along opens – this is not
strictly true but essentially you can’t just glue the two half spaces on a point). 4

Exercise: Any constructible set is the finite disjoint union of locally closed sets (Vakil 7.4A).

Theorem 4.13.6. (Due to Chevalley) (Also in Vakil 7.4.2) Let f : X → Y be a morphism of finite type of
noetherian schemes. Then f(X) is constructible.

Proof of Proposition 4.13.3. For 1., we’ll show it is locally closed. Let a : G·X → X be given by (g, x) 7→ g ·x.
The image of a is G · x.

The orbit G · x is constructible: write

G · x =
∐

Zi locally closed

Zi.

Hence one of the Zi must be open and dense in G · x. To see this, write each Zi as an open submersion of
closed spaces: we have that there is an open Zi ↪→ Yi and a closed Yi ↪→ G · x; we know ∪Yi = G · x, and
(as an exercise) there is Yi = G · x. Take Zi dense in Yi (modulo insisting that Yi is irreducible). Then Zi
is open in G · x, and Zi = G · x.

So G · Zi = G · x is open, so G · x is open in G · x. Hence G · x is locally closed.
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Smoothness follows from standard generic smoothness results and translation from group action; dimen-
sion results come from verifying certain flatness conditions.

For 2., show that G · x is G-closed.

Exercise: Show that.

3. is immediate from 2. and finiteness (ie. Noetherianness).

Example 4.13.7. 1. We have Gm �An, given by t · (x1, . . . , xn) = (tx1, . . . , txn).

2. We have Gm �A2 given by t · (x, y) = (tx, t−1y), giving us {xy = c}.

3. We have G = SLn, or G = GLn, or G = PGLn, etc.; and G

�

G by conjugation, and orbits are
conjugacy classes (for example, SLn is classified with Jordan Normal Form).

4

Lemma 4.13.8. 1. If H ⊆ G is a subgroup, then H̄ is a subgroup.

2. If H is a constructible subgroup, then H̄ = H, that is, H is closed.

3. If f : H → G is a homomorphism of algebraic groups, then im (f) and ker(f) are closed subgroups.

Proof. For 1., If x ∈ H̄, we want to show that H · x ⊆ H̄. Well, this is true because Hx ⊆ HH̄ = H̄, where
the equality follows for example because HH̄ = ∪y∈HyH̄ = ∪y∈HyH = ∪H̄. Now we can take the closure
of Hx ⊆ H̄, and that is what we want.

For 2., we first claim that if U, V ⊆ G are open, then U · V = G. To see this, note that for x ∈ G, we
have xU−1 ∩V 6= ∅, since there is u, v such that xu−1 = v, that is, x = uv. Now suppose H is constructible,
and suppose U ⊆ H is open in H̄ (and dense). Now U · U = H̄ ⊆ H ·H = H. So H̄ = H.

For 3., for the image use Chevalley, and for the kernel used the fact that closedness is preserved by
pullback.

Proposition 4.13.9. Affine implies linear.

Proof. Last class, we got a finite dimensional G-representation G ↪→ V that is G-equivariant, where G �G
by left multiplication. So G → GL(V ) which is injective since G acts on G transitively. So it is a closed
sub.

Let’s talk about homogeneous spaces. Let H ⊆ G be a closed subgroups. Is there a quotient G/H?

Definition 4.13.10. Suppose G �X. Then p : X → Y is a geometric quotient if

(i) p is surjective, and the fibers are precisely G-orbits

(ii) p is open

(iii) For each U ⊆ Y open, then the diagram

O(U) O(π−1(U))

O(π−1(U))

π](U)

∼= G

commutes, where the map G is the induced representation.

4
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Definition 4.13.11. Suppose G

�

X. The categorical quotient (in AffSch/Sch) is p : X → Y such that for
any Z in the category (ie. AffSch/Sch) with a trivial G-action and map, we have

X Y

Z

p

∃!

that is, Y is initial in G-trivial schemes under X. 4

We claim the following. Let G = SL2 and B ∈ G. In Sch, the categorical quotient G/B = P1 (for
example by looking at this as a stack, showing it’s realizable as a scheme, etc.). In AffSch, the categorical
quotient G/B is just a point.

Theorem 4.13.12. (due to Chevalley.) Let G be linear, and H ↪→ G be a closed submersion. There is a
finite dimenisional G-representation V and ` ⊂ V such that G` = H.

The punchline is that we are looking for G

�

X transitive and x ∈ X such that Gx = H.

Proof. Consider

IH O(G) O(H)

with IH = 〈f1, . . . , fr〉. Let W = Span (H · {f1, . . . , fr}), and note that W is a finite dimensional H-
representation. We claim that Stab(W ) = H. Indeed, f ∈ IH if and only if f vanishes on H, so
x · f(−) = f(x−1 · −) wich vanishes on xH. So H ↪→ Stab(W ). Also, Stab(W ) ⊆ H: if x stabilizes
W , then 〈x ·W 〉 defines a subscheme Z = xH. So x ∈ H.

Now take V = Span (G · {f1, . . . , fr}). Now consider the line

` :=

dim(W )∧
W ⊆

dim(W )∧
V.

We claim that Stab(`) = H. It is easy to show that H ⊆ Stab(`). The reverse direction is a little trickier:
we have ω ∈ ` if and only if ω ∧ w = 0 for all w ∈ W . Take g ∈ G and ω ∈ ∧topW , such that gω = cω for
some constant c. This is equivalent to saying gω ∧ w = 0 for all w ∈ W , which says that g(ω ∧ g−1w) = 0,
which happens if and only if g−1 ∈ Stab(W ) = H.

To get the punchline, we take P(V ) ⊇ G ·` locally closed. This defines a subscheme X (since it’s quasipro-
jective). This is (a candidate for) homogenous spaces.

Let’s talk about the Proj construction. From this point of view, you might have Gm �

V − {0}. The
problem is that V − {0} is not affine (though it’s quasiaffine). So choose coordinates x0, . . . , xn of V ∗ and
Ui{xi 6= 0} is affine, and O(Ui) = k[x0, . . . , xn, x

−1
i ]. Then Ui/Gm = Spec O(Ui)

Gm = Spec k[x0

xi
, . . . , xnxi ].

Now, glue them together to get P(V ).

More generally, if A is a positively graded algebra, SpecA is a “cone” (there’s a scaling action that
contracts everything to a single point). Then we can do the same thing, that is, delete the cone point and
then quotient.
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5 Schemes

5.14 Mar 12, 2019

Previously, we wrote x  x′ if x′ ∈ {x}, and we say x specializes to x′. We say that Z ⊆ X is
closed under specialization if for all x, x′ ∈ X such that x ∈ Z and x  x′, we have x′ ∈ Z. We had three
lemmas:

Lemma 5.14.1. (for algebra.)
Suppose f ] : R � A is a ring homomorphism with T ⊆ SpecA closed. Then if f(T ) is closed under

specialization, then f(T ) is closed. See Lemma 3.11.5.

Lemma 5.14.2. (for topology.)

1. If specializations lift along f and T ⊆ X is closed under specializations, so is f(T ).

2. Specializations lift along closed maps.

See Lemma 3.11.7.

Lemma 5.14.3. (for number theory.)
Suppose f : X → X is a quasicompact morphism. Then f is closed if and only if specializations lift along

f . In the affine case, this corresponds to going up. See Lemma 3.11.9.

We talked about valuative criterion: let f : X → S be a morphism of schemes. We say f satisfies the
existence part of the valuative criterion if given any diagram below for any valuation ring A (along with its
fraction field K), the dashed arrow exists:

SpecK X

SpecA S

f
∃

We say it satisfies the uniqueness part if whenever the dotted arrow exists, then it’s unique. You can satisfy
uniqueness part without the existence part (ie., you can have a unique map for some of the valuation rings
and no map for others).

We have

Lemma 5.14.4. Let f : X → S be a morphism of schemes. The following are equivalent:

(i) f satisfies the existence part of the valuative criterion.

(ii) Specializations lift along any base change of f .

We have the following terminology: if f satisfies a property P that is preserved upon all the base change
morphisms, then we say it is “universally P”. Thus the above lemma says that if f satisfies the existence
part of the valuative criterion, then f satisfies it universally.

Proof. We have maps

SpecK XS′ X

SpecA S′ S

∃∃

where SpecA → XS′ exists by the universal property fo the fiber product, and SpecA → X exists by our
hypotheses. Hence to show that (i) implies (ii), it is enough to show that specializations lift along f .

Let s s′ in S, and let x ∈ X such that f(x) = s (assume s 6= s′). We have maps
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SpecK(x) X

SpecK(s) SpecOS,s′ S

Let R be the image of OS,s′ in K (algebraically). Then R is not equal to the image of K(s) in K because
s 6= s′. This implies that R is dominated by

K(x) = K R

K(s) OS,s′

There exists a valuation ring A with fraction field K so that

K(x) = K A R

K(s) OS,s′

where A is the natural valuation induced by the maximal ideal. Under Spec we get

SpecK X

SpecA SpecR SpecOS,s′ S

∃

where the dashed arrow exists by the existence part of the valuative criterion.

Conversely, suppose we are given

SpecK X

SpecA S

f

Then by the definition of fiber product we get

SpecK XA = X ×S A X

SpecA SpecA S

f ′ f

Since specializations lift along f ′, there is x′ ∈ XA such that x  x′ where x is the image of SpecK and
f(x′) is the closed point of SpecA. Algebraically, we get maps

K OXA,x′

A

and the ring obtained as the image of OXA,x′ in K dominates A (and hence must equal A). Hence, the map

OXA,x′ K

A

factors, which is a local homomorphism of local rings. Hence we get a section of SpecA → XA. Compose
with the projection XA → X.

46



Definition 5.14.5. A morphism f : X → S is universally closed if for all S′ → S, the base change
XS′ := X ×S S′ → S′ is closed. 4

Lemma 5.14.6. Let f : X → S be quasicompact. The following are equivalent:

(i) f is universally closed

(ii) The existence part of the valuative criterion holds for f .

Proof. By the above Lemma 5.14.4 and our topology Lemma 3.11.7 on specializations.

Let’s talk about separability. The idea is the following: For a topological space X, X is Hausdorff if and
only if ∆: X → X ×X given by x 7→ (x, x) (endowed with the product topology) is closed.

Lemma 5.14.7. Let f : X → S be a morphism of schemes. The diagonal map ∆: X → X ×S X is an
immersion.

Proof. Define the open set

W =
⋃

U,V satisfying (*)

U ×V U ⊆ X ×S X.

where (∗) denotes the condition: “U ⊆ X is open affine, V ⊆ S is open affine, and f(U) ⊆ V ”. We want to
show that ∆(X) ⊆W .

For all x ∈ X, take V ⊆ S open affine such that f(x) ∈ V . Take U 3 x open affine such that f(U) ⊆ V .
Then (U, V ) satisfies (∗) and ∆(x) = (x, x) ∈ U ×V U .

Now suffices to show that ∆: X → W is closed. Since (∗) holds for (U, V ), say with U = SpecA and
V = SpecR, then ∆: U → U×V U is a closed immersion, since on the algebra side we have A⊗RA→ A→ 0.

Corollary 5.14.8. We have that ∆ is closed if and only if ∆(X) ⊆ X ×S X is a closed subset.

(This is because an immersion is closed if and only if its image is closed)

Corollary 5.14.9. Given a commutative diagram

X Y

S

b

a

we have that the equalizer Z of a and b exists (because of fiber products). It’s at least a locally closed
subscheme of X. Furthermore, Z is closed if and only if ∆Y/S is closed.

Proof. We have (a, b) : X ×S X → Y ×S Y . Then the equalizer is the fiber product

Z Y

X ×S X Y ×S Y

∆Y/S

(a,b)

Then use the fact that immersions are stable under base change.

Definition 5.14.10. Let f : X → S be a morphism of schemes. Then

• f is separated if ∆X/S is closed.

• f is quasi-separated if ∆X/S is quasicompact.

• A scheme S is (quasi)-separated if ∆S/SpecZ is (quasi)-separated.
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4

Sometimes quasi-separated is shortened to “qs”.

Lemma 5.14.11. (Characterization of quasi-separated morphisms.) Let f : X → S. The following are
equivalent:

(i) f is quasi-separated.

(ii) For all U, V open affines mapping into a common affine open in S, the open U ∩ V is quasicompact.

(iii) There exists an affine open covering S = ∪i∈IUi with f−1(Ui) = ∪j∈JiVj an affine open covering such
that for all j1, j2 ∈ Ji, we have Vj1 ∩ Vj2 being quasicompact.

Lemma 5.14.12. (Characterization of separated morphisms.) Let f : X → S. The following are equivalent:

(i) f is separated.

(ii) For all U, V mapping into common affine open in S, we have

(a) The open U ∩ V is affine.

(b) The map OX(U)⊗Z OX(V )→ OX(U ∩ V ) is onto.

(iii) For all x, x′ ∈ X such that f(x) = f(x′), there exist affine opens U 3 x, V 3 x′ in X map into common
affine opens W in S such that both (a) and (b) hold.

Proof of Lemma 5.14.12. Let’s show that (i) implies (ii). Indeed, since f is separated, and U = SpecA,
V = SpecB map into W = SpecR ⊆ S an open affine, say via p : U →W and q : V →W , then

Spec (A⊗R B) = U ×W V = p−1(U) ∩ q−1(V ) ⊆ X ×S X ′

is an affine open. Since f is separated, then ∆ is a closed immersion. It follows that U ∩V = ∆−1(U ×W V )
is closed. This implies that U ∩ V = Spec (A ⊗R B/I) for some ideal I ⊆ A ⊗R B. Thus we get maps
A⊗Z B � A⊗R B � A⊗R B/I.

That (ii) implies (iii) is immediate.

To show that (iii) implies (i), we note that the U ×W V ’s form an open affine cover of X ×S X.
Thus it is enough to show that ∆−1(U ×W V ) = ∩V → U ×W V is closed. By (iii), U ∩ V = SpecC and
A⊗ZB → A⊗RB → C is surjective (since A⊗ZB � A⊗RB, A⊗RB � C, and ∆ is a closed immersion).

Corollary 5.14.13. Any affine scheme is separated.

Proof. R⊗Z R� R.

Remark 5.14.14. If X → S is separated and S is separated, then the intersection of any two affines in X
is affine. 4

The composition of separated morphisms is separated. Indeed, consider the maps

X X ×S X S

X ×T X S ×T S
∆T

∆S

Since the right side is a fiber product, the composition X → X ×T X is closed. We get that X → SpecZ is
separated and U ∩ V = ∆−1

Z (U ×Z V ) is a closed subscheme of an affine scheme and thus affine.

Theorem 5.14.15. (Valuative criteria for separatedness.) Let f : X → S be a morphism of schemes. If f
is quasi-separated, and f satisfies the uniqueness part of the valuative criterion, then f is separated.

Remark 5.14.16. If S is locally noetherian and f is locally of finite type, then f is automatically quasi-
separated. 4
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5.15 Mar 14, 2019

Last time, we talked about valuative criterion: for all valuation rings A with fraction field K, we have
the commutative diagram

SpecK X

SpecA S

f

and we say that the morphism f of schemes satisfies the existence part of the valuative criterion (sometimes
written (Exist)) if the dashed arrow exists, and that it satisfies the uniqueness part of the valuative criterion
(sometimes written (Unique)) if whenever the dashed arrow exists, then it’s unique. If f is quasicompact,
then (Exist)if and only if f is universally closed. We said f is separated if ∆X/S is closed, and quasi-separated
if ∆X/S is quasicompact. We say that the scheme X is quasi-separated if ∆X/SpecZ is quasi-separated.

Lemma 5.15.1. The map f is separated if and only if it satisfies an open affine matching condition and
onto-ness. (cf. Lemma 5.14.12)

Corollary 5.15.2. We have:

• Affine schemes are separated.

• Separated compositions are separated.

Theorem 5.15.3. (Valuative criterion of separatedness.) Let f : X → S be a morphism. If f is quasi-
separated, and f satisfies (Unique), then f is separated.

Remark 5.15.4. In particular, if S is locally noetherian, and f is clocally of finite type, then f is quasi-
separated. 4

Proof of Theorem 5.14.15. We need to show that X
∆−→ X ×S X is closed. Given

SpecK X

SpecA X ×S X

∆

g=(a,b)

we get maps

SpecK X

SpecA S

a

b

Consider the open U on which a and b agree. Then ∆ ◦ a = (a, a) = (a, b) = g. So we get

SpecK X

SpecA X ×S X

∆

g

a

Let’s see that P1
R is separated.

Recall our construction of

A1
R = SpecR[x] ⊇ D(x)

glue←−→ D(y) ⊆ A1
R = SpecR[y]

x 7→ y−1

x−1 ←[ y
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Let’s use this to check separated. We need to see that for the open covering U, V here, we getO(U)⊗ZO(V )� O(U∩V ).
We have maps R[x], R[x]→ R[x] and R[x], R[y]→ R[x, x−1] (given by y 7→ x−1) and R[y], R[x]→ R[x, x−1]
given by y 7→ x.

Let’s see that P1
R → SpecR is universally closed. It is enough to check (Exist). Consider

SpecK P1
R

SpecA SpecR

Suppose =(SpecK) ⊆ SpecR[x]. Then on the algebra side we have

K R[x]

A R

q]

If q](x) ∈ A then we’re done. Otherwise, since A is a valuation ring we have q](x)−1 = q](y) ∈ A. Then we
get

K R[y]

A R

q]

which gives the existence of a map SpecA→ SpecR[y], as we wanted.

Quasicoherent sheaves.

Definition 5.15.5. Let X be a ringed space. We say that an OX -module is quasi-coherent (sometimes
denoted quasi-coh, or QC (with capital letters to distinguish from qc = quasicompact)) if for all x ∈ X,
there exists a U 3 x open and an exact sequence⊕

j∈J OU
⊕

i∈I OU F|U 0.

Notice that there are no finiteness restrictions on I and J . 4

Lemma 5.15.6. Let X be a scheme, and let F be an OX-module. The following are equivalent:

1. F is quasicoherent.

2. For all affine opens U = SpecR ⊆ X, we have F|U ∼= M̃ for an R-module M .

3. There exists an affine open cover

X =
⋃
i∈I

SpecRi

such that F|Ui ∼= M̃i.

We won’t prove thus, but it is in EGA or in Hartshorne.

Lemma 5.15.7. Let X = SpecR. Let M be an R-module and let G be an O-module. Then

MorOX (M̃,G) = HomR(M,Γ(X,G)),

given by β 7→ βX : M = Γ(X, M̃)→ Γ(X,G).

Lemma 5.15.8. Let X be a scheme. We have
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(a) Kernels and cokernels of maps between quasicoherent sheaves are quasicoherent.

(b) If we have a short exact sequence

0 F1 F2 F3 0

of OX-modules, then if two out of three are quasicoherent, then the third is also quasicoherent.

Proof. For part (a), we note that by characterization of quasicoherence on schemes, it is enough to check

when X = SpecR. Now let ϕ̃ : M̃ → Ñ be an OX -module morphism. By the previous Lemma 5.15.7, we

have some R-module map ϕ : M → N that gives rise to ϕ̃. We want to show that ker ϕ̃ = (̃kerϕ) and that

cokerϕ̃ = ˜(cokerϕ). It is enough to show for OX -modules that

0 (̃kerϕ) M̃ Ñ ˜(cokerϕ) 0
ϕ̃

is exact. We can just check this on stalks:

0 (kerϕ)p Mp Np (cokerϕ)p 0
ϕp

and localization is exact. This proves part (a).

For part (b), it is enough to show on SpecR that if we have a short exact sequence of OX -modules given
by

0 M̃1 F M̃2 0

then F = M̃ for some R-module M . It suffices to show that

0 Γ(X, M̃1) Γ(X,F ) Γ(X, M̃2) 0
βX

is exact, namely βX is surjective.

Let m2 ∈ M2. Consider I = {f ∈ R : f ·m2 ∈ imβX}. Then I is an ideal of R. We want to show that
I = R. We have

X =

n⋃
i=1

D(fi)

our standard open cover such that m2 lifts locally, ie. there are si ∈ F(D(fi)) with β(si) = m2|D(fi). Then

si|D(fifj) − sj |D(fifj) ∈ kerβ|D(fifj) = im M̃1(D(fifj)). So we get

si|D(fifj) − sj |D(fifj) =
mij

(fifj)A
.

Since we have finitely many indices i and j, we can take A to be large enough for all i’s and j’s.

Fix i0, and set s′i0 = (fi0)Asi0 and s′i = fAi0si +mi0,i/f
A
i ∈ F(Ui) for all i 6= i0. We have

s′i − s′i0 = fAi0si +
mi0,i

fAi
− fAi0si0

= −fAi0 (si0 − si) +
mi0,i

fAi

=
−mi0,i

fAi
+
mi0,i

fAi
= 0.
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If i 6= j with neither equal to i0, we get

s′i − s′j = fAi0 (si − sj)−
mi0,i

fAi
+
mi0,j

fAj

fAi0

(
mi,j

(fifj)A

)
− mi0,i

fAi
+
mi0,j

fAj
.

Note that as a section of f , we have

Γ(D(fi0fifj), M̃1) = (M1)fi0fifj = ((M1)fifj )fi0 .

Thus we have
mij

(fifj)A
+

mi0,i

(fi0fi)
A
− mi0,j

(fi0fj)
A

= (si − sj) + (si0 − si)− (si0 − sj) = 0.

So by multiplying by a large enough power B of fi0 , the corresponding element on the left hand side will be
killed in Mfifj . Again by finiteness of i and j, we can take B sufficiently large to work for all pairs (i, j).

Thus, set s′′i0 = fA+B
i0

si0 and s′′i = fA+B
i0

si + fBi0mi0,i/f
A
i , for i 6= i0.

These glue to a section s ∈ Γ(X,F), ie., fA+B
i0

·m2 ∈ βX(s). Thus, since we can do this for an arbitrary

choice of index i0 ∈ [n], then R = 〈fN1 , . . . , fNn 〉 ⊆ I for some N sufficiently large. This means that R = I.

Remark 5.15.9. Later, these kinds of facts will follow because Hi(SpecR,F) vanishes for i > 0 and F
quasicoherent (ie. there is no higher cohomology). 4
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5.16 Mar 19, 2019

Last time, we saw that a map f : X → S is separated if and only if ∆X/S is closed, if and only if it satisfies
some algebraic criterion, and f is quasi-separated if and only if it satisfies (Unique)(ie. the uniqueness part
of the valuative criterion), which states that if A is a valuation ring, the dashed arrow below is unique when
it exists:

SpecK X

SpecA S

∃!

We also talked about quasi-coherent schemes: we say that an OX -module F is quasicoherent if for all x ∈ X,
there is a U 3 x open in X such that we have an exact sequence⊕

j∈J OU
⊕

i∈I OU F|U 0

We want to pullback and pushforward quasicoherent sheaves. So let f : X → S be a morphism of schemes.

Proposition 5.16.1. Let F be a quasicoherent sheaf of OS-modules. Then f∗F is quasicoherent on X. In

particular, if X = SpecA, and S = SpecR, and F = M̃ on S, then f∗F = ˜A⊗RM .

Proof. For all x ∈ X, there is an open affine U on X such that f(U) ⊆ V is open affine in S. Then we have⊕
j∈J OV

⊕
i∈I OV F 0

by quasicoherence of F . We apply f∗ to get⊕
j∈J OU

⊕
i∈I OU f∗F 0

where exactness follows because (f∗G)x = Gf(x) ⊗OS,f(x) OX,x, and ⊗ is right exact.

For the second part, we note that

MorOX (f∗F ,G) = MorOS (F , f∗G)

= HomR(M,Γ(S, f∗G))

= HomR(M,Γ(X,G))

= HomA(M ⊗R A,Γ(X,G))

= MorOX (M̃ ⊗R A,G).

For pushforwards, note that on affines f : SpecA → SpecR, if N is an A-module, then f∗(Ñ) = ÑR by
considering N as an R-module.

Remark 5.16.2. Pushforwards along proper maps behave well, but along general morphisms, quasicoher-
ence might not be preserved. 4

Example 5.16.3. Let k be a field (for simplicity). Consider

S =

∞∐
n=1

Spec k[x]
f−→ Spec k[x].

We get F = OX with global sections Γ(S, f∗F) = Γ(X,F) =
∏∞
n=1 k[x].
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On the other hand, Γ(D(x), f∗F) = Γ(f−1(D(x)),F) =
∏∞
n=1 k[x]〈x〉. But we have Γ(S, f∗F)→ Γ(D(x), f∗F),

which induces a map ( ∞∏
n=1

k[x]

)
〈x〉
→

∞∏
n=1

k[x]〈x〉

and if f∗F were quasicoherent this would be an isomorphism. But this is not: for example, 1, 1/x, 1/x2, . . . ) =
does not lie in the image. 4

Proposition 5.16.4. If f : X → S is quasiseparated and quasicompact, then f∗ preserves the property of
being quasicoherent.

Proof. We reduce immediately to the case where S is affine.

Let F be a quasicoherent OX -module, and let X = ∪ni=1Xi be an open affine cover of X. Since X is
quasiseparated, we have

Xi ∩Xj =

Ni,j⋃
k=1

Xi,j,k,

with each Xi,j affine opens. Then we get an exact sequence

0 f∗F
⊕

i(f |Xi)∗(F|Xi)
⊕

i,j,k(f |Xi,j,k)∗(F|Xi,j,k)

Hence f∗F is the kernel of the map between quasicoherent sheaves. By Lemma 5.15.8, this says that f∗F is
quasicoherent.

We want to talk about properties that can be detected locally. Let X be a scheme and let P be some
property of rings. We want to study the notion of “X being locally P”, that is, for all x ∈ X, there exists
U 3 x affine and open such that O(U) satisfies P.

We say “P is local” if

(a) P for R implies P for Rf for all f ∈ R.

(b) If f1, . . . , fn generate R and Rf satisfies P, then R satisfies P.

Lemma 5.16.5. If P is a local property of rings and X is a scheme, then the following are equivalent:

1. X is locally P.

2. For all U ⊆ X open affine, O(U) satisfies P.

3. There is an open affine covering X = ∪iUi such that O(Ui) satisfy P.

4. There is an open affine covering X = ∪iUi such that each each Xi is locally P.

If any of these equivalent conditions hold, then any open subscheme Y ⊂ X is locally P.

Proof. The only nontrivial part is the implication 3. implies 2..

For all X = ∪iUi affine open we have O(Ui) satisfy P for all i, by the previous lemma U = ∪mj=1Wj

of standard opens in U and in some subindexed open Uij . This means that O(Uij) satisfies P, and hence
O(Wj) satisfy P, and hence O(U) satisfy P.

Example 5.16.6. Being “Noetherian” =: P is a local property.

Indeed, if R is Noetherian then Rf is Noetherian, and given the sequence

0 R
∏n
i=1Rfi

∏n
i,j Rfifj
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Since Rfi is Noetherian we see that Rfifj is Noetherian. Since R is the kernel of a map between Noetherian
rings, it is Noetherian. 4

Definition 5.16.7. A scheme X is said to be Noetherian if X is locally Noetherian and quasi-compact. 4

Proposition 5.16.8. If j : U ↪→ X is an immersion and X is locally Noetherian, then j is quasicompact.

Proof. We know that X admits a cover by affine opens which are Spec s of Noetherian rings and affine opens
are thus quasicompact as topological spaces. Hence their subspaces are also quasicompact.

Definition 5.16.9. Let P be a property of ring homomorphisms. We say “P is local” if the following
conditions hold:

(a) For all f ∈ R, if R→ A satisfies P then Rf → Af satisfies P.

(b) For all f ∈ R and a ∈ A and Rf → A, if Rf → A satisfies P, then R→ Aa satisfies P.

(c) For all R→ A, if R→ Aai satisfies P and the ai generate A, then R→ A satisfies P. 4

Remark 5.16.10. Usually the first two conditions are almost immediate; condition (c) is hardest to verify
in practice. 4

Here are some examples of local properties of ring homomorhpisms:

Example 5.16.11. R→ A being finite type, that is to say, A being a finite type R-algebra. 4

Example 5.16.12. R→ A being finite presentation, that is to say, A is of finite presentation over R (as an
R-algebra, A has finitely many generators and relations). 4

Example 5.16.13. R→ A being flat, that is to say, A is a flat R-module. 4

Example 5.16.14. We’ll see later that “smoothness” is also a local property of ring homomorphisms. 4

Let’s check that Example 5.16.11 is a local property of ring homomorphisms.

We get condition (a), since R → A satisfies P if and only if A = R[x1, . . . , xn]/I, which implies
Af = Rf [x1, . . . , xn]/IRf [x], which happens if and only if Rf → Af satisfies P.

We get condition (b) since Rf → A satisfies P precisely when

A = Rf [x1, . . . , xn]/I = R[x1, . . . , xn, y]/〈I, yf − 1〉.

This says that Aa = R[x1, . . . , xn, y, z]/〈I, yf − 1, za− 1〉, which happens if and only if R→ Aa satisfies P.

We get condition (c), since if R → Aai satisfies P then Aai = R[x1, . . . , xiki ]/Ii. Each xij in Aai must
be of the form hij/a

N
i for some sufficiently large N . Since 〈a1, . . . , an〉 = A, then the D(ai) cover SpecA,

and 1 =
∑
aigi for some gi. We claim that R[ui, vij , zk]� A given by Ui 7→ ai, vij 7→ hij , zk 7→ gk. Indeed,

for all a ∈ A, there are sufficiently large N,M so that

a = a · 1 =
∑

aN+M
i g̃i · a =

∑
aMi hij g̃i

where g̃i is some combination of aj ’s and gi’s. Take M sufficiently large such that aMi (a ·aNi −hij) = 0. This
shows us that A has property P.
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5.17 Mar 21, 2019

Last time, we talked about the following question: under what operations is the category of quasicoherent
sheaves well behaved? If f : X → S is quasicompact and quasiseparated, then f∗ preserves quasicoherentness.

We also talked about local properties in schemes:

• Geometrically, we said that X is “locally P” if for all x ∈ X there exists U 3 x open affine such that
O(U) is P.

• Algebraically, we said that “P is local” if R is P implies Rf is P for all f ∈ R, and if R = 〈f1, . . . , 〉
and Rfi is P for all i, then R is P.

• If “P is local”, then we can check locally P on an affine covering of X.

Definition 5.17.1. Let P be a property of ring homomorphisms. We say P is local if

(a) for all f ∈ R, if R→ A is P, then Rf → Af is P,

(b) for all f ∈ R, a ∈ A, and Rf → A, if Rf → A is P then R→ Aa is P,

(c) for all R→ A, if R→ Aai is P and A = 〈a1, . . . , an〉, then R→ A is P.

4

Examples include being finite type, being finitely presented (sometimes abbreviated “fp”), and being flat.

Definition 5.17.2. We say P is stable under base change if for all R→ A and R→ R′, if R→ A satisfies
P then R′ → R′ ⊗R A satisfies P. We say P is stable under composition if for all A → B and B → C
satisfying P, then A→ C also satisfies P. 4

Definition 5.17.3. Let P be a property of ring homomorphisms. Let f : X → S be a morphism of schemes.
We say f is locally P (or “locally of type P”) if for all x ∈ X there exists U 3 x affine open in X, and V ⊆ S
affine open, such that

f(U) ⊆ V is P. 4

Remark 5.17.4. For properties P considered, we usually only take conditions in which P is local. 4

For example, being locally of finite type is an example.

Lemma 5.17.5. Let f : X → S are maps of schemes. The following are equivalent:

(a) f is locally (of type) P.

(b) For all open affines U ⊆ X and V ⊆ S such that f(U) ⊆ V , we have OS(V )→ OX(U) satisfying P.

(c) There is an open covering S = ∪iVi and open coverings f−1(Vi) = ∪j∈IUj such that f |Uj → Vi is locally
of type P.

(d) There exists an affine open covering S = ∪iVi and affine open coverings f−1(Vi) = ∪j∈IjVj such that
OS(Vi)→ OX(Uj) satisfies P.

Proof. 2. implies 4. implies 3. implies 1. are all trivial. Let’s do 1. implies 2. There exists U = ∪iUi with
Ui = SpecAi. Then f(Ui) ⊆ Vi ⊆ S where Vi ⊆ S is open. Then Vi = SpecRi and Ri → Ai satisfies P.

Note that Vi is not necessarily in V . Let x ∈ Ui and f(x) ∈ V ∩ Vi. Thus, there is Vij ⊆ V ∩ Vi
with f(x) ∈ Vij , where the Vij are some standard opens in V and Vi. Write Vij = Spec (Ri)hj for some
hj ∈ Ri. Now f−1(Vij) ∩ Ui = Ui ×Vi Vij = Spec (Ai ⊗Ri (Ri)hj ). Since P is local (by Property (a)) we
have (Ri)hj → Ai⊗Ri (Ri)hj satisfies P. Now take U ′i = Spec (OX(U)ai) 3 x standard open affine in U and
Ui ∩ f−1(Vij). Since Vij = Spec (OS(V )tj) for some tj , f : OS(V )tj = (Ri)hj → Ai ⊗Ri (Ri)hj satisfy P, by
property (b) of “P is local”.

Since U is quasicompact, we know that finitely many OX(U) ai’s suffice. Thus, by (c) of “P is local”,
we get that OS(V )→ OX(U) satisfies P.
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Definition 5.17.6. A morphism of schemes is locally of finite type if it’s locally P as above with P being
“finite type” 4

Definition 5.17.7. The morphism f is of finite type if it is locally finite type and quasicompact. 4

Example 5.17.8. Let k be a field. Then an algebraic variety over k, is an integral, separated, scheme of
finite type over k. Here’s an interesting phenomenon: varieties are not stable under base change! One can
check that SpecQ(i) is a variety over Q. We get

SpecQ(i)×Q SpecC SpecQ(i)

SpecC SpecQ

4

Goals. In the immediate future, our goals are the following. We want to show that quasiseperated is
automatic in many contexts, and more importantly if f is of finite type and S is locally noetherian, then f∗
preserves quasicoherentness.

Lemma 5.17.9. Let P be a property of ring homomorphisms.

1. If P is local and stable under base change, then a morphism locally of type P is stable under base
change.

2. If P is local and stable under composition, then a morphism locally of type P is stable under composi-
tions.

Proof. Let g : S′ → S be a map between schemes, so we get a commutative diagram

X ′ X

S′ S

g

f ′ f

g

Then for all s′ ∈ S′, there is U ′ ⊆ S′ affine open and U ⊆ S affine open such that g(U ′) ⊆ U . Now
f−1(U) = ∪i∈IVi and f−1(U) = ∪iU ′ ×U Vi is an affine open cover, and OS(U)→ OX(Vi) satisfies P. This
means that

OS′(U ′)→ OX′(U ′ ×U Vi) = OS′(U ′)×OS(U) OX(Vj)

satisfies P.

For part ii, we consider morphisms f : X → Y and g : Y → Z locally of type P. For all U ⊆ Z affine
open, g−1(U) = ∪i∈IVi, we have OZ(U) → OY (Vi) satisfying P. We also have f−1(Vi) = ∪j∈IiWij and
OY (Vi) → OX(Wij) satisfies P. Since P is stalbe under compositions, it follows that OX(U) → OX(Wij)
satisfies P.

For example, P = “finite type” is stable under base change and composition. Thus, morphisms being
locally of finite type are as well.

Lemma 5.17.10. If f : X → S is locally of finite type, and S is locally noetherian. Then X is locally
Noetherian. (Thus, f is quasi-separated.)

This is why “quasiseparated is automatic in many contexts” – see the goals we outlined earlier.

Proof. For all x ∈ X, there is x ∈ U ⊆ X affine open with V ⊆ S affine open such that f(U) ⊆ V . Since S is
locally Noetherian, then OS(V ) is Noetherian. Since OS(V )→ OX(U) is of finite type, OX(U) is Noetherian.

Consider
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X X ×S X

X S

∆

π1

f

It’s enough to show X ×S X → X is locally Noetherian because ∆S/S . SinceX ×S X → X is local and
f : X → S is locally of finite type, X ×S X → S is locally of finite type by composition.

Note that if f : X → S and g : Y → S are both locally of finite type, so is X ×S Y → S.

Hence a key fact is that f is finite type and S is locally Noetherian, then f∗ sends quasicoherent sheaves
to quasicoherent sheaves.

Projective schemes. Let S = ⊕d≥0Sd be a graded commutative ring, and define S+ = ⊕d>0Sd its
irrelevant ideal. Instead of taking Spec we are taking Proj , so that

Proj (S) := {prime ideals p ⊆ S : p graded, and S+ ( p}.

Let M be a graded S-module, so that M = ⊕d∈ZMd. Here graded means that Sa ·Mb ⊆Ma+b.

Note that Proj (S) ⊆ SpecS. So we can give Proj the subspace topology, and our functions f ∈ S+ are
to be the homogenous polynomials. We define D+(f) := D(f) ∩ ProjS, and

M(f) :=

{
x

fn
: x ∈M homogenous, deg x = n · deg f

}
⊆Mf .

Hence D + (f) is open in ProjS.
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5.18 Mar 26, 2019

We’ll talk about projective schemes. The technical motivation for this is that projective schemes are
the most fertile source of proper maps. But the proto-motivation for this is that projective schemes are the
ultimate realization of the “projective perspective” in classical geometry. This projective perspective roughly
says that most essential geometry properties should be invariant under projection. Projective schemes pre-
serve algebra data under projection, too.

There is a classification of quadrics (degree 2 curves) in the plane. For example, there are parabolas and
hyperbolas, there are degenerate cases like double-lines:

x

y

x

y

x

y

x

y

x

y

and in general they are given by ax2 + bxy + cy2 + dx+ ey + f = 0. Homogenizing this equation yields an
equation ax2 + bxy + cy2 + dxy + eyz + fz2 = 0, and this gives a degree two curve in projective space.

Over an algebraically closed field k, we have Bezout’s theorem: given two distinct curves C and D in
P2
k, then they meet at exactly degC ·degD points, counted with multiplicity. Sheafy perspectives generalize

this very well (one can interpret this result as a statement in sheaf cohomology).

Our setup consisted of a graded ring S = ⊕d≥0Sd with its irrelevant ideal S+ := ⊕d>0Sd. We defined

ProjS = {p ⊆ S prime: p graded, S+ 6⊆ p} ⊆ SpecS.

It is endowed with the induced Zariski topology. If f ∈ S+ is a homogenous polynomial, we define
D+(f) := D(f) ∩ ProjS. Thus D+(f) is open in ProjS.

If M is a graded S-module, that is, M = ⊕d∈ZMd such that SaMb ⊆Ma+b. We can define

M+(f) := {x/fn : x ∈M homogenous, deg x = n deg f} ⊆Mf

and sometimes it is denoted M(f) if it is clear from context.

Some easy properties:
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(a) The D+(f) form a basis for the topology on ProjS.

(b) There is a natural bijection of sets D+(f)↔ SpecS(f), where

S(f) := {x/fk : x homogenous, deg x = k deg f} ⊆ Sf .

Hence we have the following picture:

SpecS D(f) SpecSf

ProjS D+(f) (??) SpecS(f)

⊆

⊆ ⊆

⊆

⊆

What should go in the (??) part of the diagram?

Lemma 5.18.1. Let S = ⊕d∈ZSd be a Z-graded ring. Assume there is d > 0 and f ∈ Sd such that f is
invertible. We have

SpecS ⊃ {Z-graded prime ideals of S}.

We also have a map

SpecS → SpecS0

q 7→ q ∩ S0√
pS ← [ p

There is a homeomorphism

ϕ : {Z-graded prime ideals of S} ↔ SpecS0.

Example 5.18.2. Suppose S = S0[x, x−1] so that

SpecS ∼= SpecS0 × Gm︸︷︷︸
=SpecZ[x,1/x]

where Gm is as we saw in Example 4.12.10. The lemma says that characters of Gm are in correspondence
with Z. 4

If p ⊆ S is a homogenous prime, then

M(p) := {x/f : x, f are homogenous, deg x = deg f, f 6∈ p} ⊆Mp.

In particular, S(p) is defined by considering S as a homogenous S-module.

Observation 5.18.3. If D+(f) ⊆ D+(f), then ge = af where e ≥ 1 and a is homogenous in H. Hence we
have the commutative diagram

Sf Sg

S(f) S(g)

where the horizontal maps are localization (by g at the top row, and gdeg f/fdeg g at the bottom row). We
also get the commutative diagram

Mf Mg

M(f) M(g)
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We also have

D+(f) D+(g)

SpecS(f) SpecS(g)

⊆

ϕf ϕg

and for any h ∈ S(f), there is g ∈ S+ homogenous such that D+(g) = ϕf (D(h)) ∈ SpecS(f). 4

Hence we get

Proposition-Definition 5.18.4. Let S be a graded ring and M a graded S-module. Then

(a) The structure sheaf OProjS is the (unique) sheaf of rings on ProjS such that

OProjS(D+(f)) = S(f)

with restriction maps which commute

OProjS(D+(f)) = S(f) OProjS(D+(g)) = S(g)

Sf Sg

This defines a B-sheaf which upgrades uniquely to a sheaf.

(b) (ProjS,OProjS) is a scheme, where D+(f) opens are all affine and isomorphic to SpecS(f).

(c) There exists a unique sheaf of OProjS-modules M̃ such that M̃(D+(f)) = M(f) with restriction maps

M̃(D+(f)) = M(f) M̃(D+(g)) = M(g)

Mf Mg

(d) M̃ is a quasicoherent sheaf of OProjS-modules, ie. M̃ |D+(f)
∼= M̃(f).

(e) There is a canonical map M0 → Γ(ProjS, M̃) which when restricted to D+(f) is given by M0 →M(f),
where x 7→ x/1.

(f) There is a canonical morphism of schemes ProjS → SpecS0 induced by

S0 → Γ(ProjS, S̃) = Γ(ProjS,OProjS).

Remark 5.18.5. The map in part (f) of Proposition-Definition 5.18.4 is in general neither injective nor
surjective, and this makes commutative algebra and algebraic geometry hard/interesting. 4

The fact that global sections of ProjS are small, but that ProjS still encodes a lot of information, is
reflected in the fact that Proj has higher cohomology. This is in stark contrast to Spec ; affine schemes have
vanishing higher cohomology [More on this next semester, I guess].

Definition 5.18.6. For n ∈ Z, write M(n) to be the graded S-module such that M(n)d = Md+n. In

particular, OProjS(n) := S̃(n). So we shift the grading, and shifting gives various maps into global sections,
that is, we have Sn = S(n)0 → Γ(ProjS,OProjS(n)). 4
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Given graded S-modules M,N , we have a canonical OProjS-module map

M̃ ⊗OProjS
Ñ → M̃ ⊗S N.

For the same reason as in Remark 5.18.5, this map is neither injective nor surjective in general. But people
study the kernel and cokernel of this map (and also the map in part (f) of 5.18.4), there’s a whole theory.

Anyways, on D+(f), this restricts to

M(f)⊗S(f) N(f)→ (M ⊗S N)(f)

m

fk
⊗ n

f `
7→ m⊗ n

fk+`

so we have maps
OProjS(n)⊗OProjS

OProjS(m)→ OProjS(m+ n)

and
OProjS(n)⊗ProjS M̃ → M̃(n).

Warning. ProjS is not generally quasicompact.

Example 5.18.7. Let S = C[x1, x2, . . . ]. Then ProjS is not compact, because for example we can cover
with D+(xi) for i = 1, 2, . . . , but no finite subset will cover (since we now need to respect the grading, in
contrast to the affine case). 4

Lemma 5.18.8. The morphism ProjS → SpecS0 is separated.

Proof. It suffices to show that:

• D+(f) ∩D+(g) = D+(fg) is affine. This is because D+(fg) ∼= SpecS(fg).

• The map S(f)⊗ZS(g)� S(fg). This is because for all a/(fngm) ∈ S(fg) with deg a = n deg f+m deg g,
we see that

ag`

fn + k
⊗ afn

gn+`
7→ a

fngm

for some k = (deg g)(deg f)r and ` = (deg f)r+1 −m for r sufficiently large.

Example 5.18.9. Let R be a ring, and let S = R[x0, x1, . . . ] with deg xi = 1. With

ProjS = PnR → SpecR

we get another (easy and general) proof that PnR is separated. 4
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5.19 Mar 28, 2019

Last time, for S a graded ring with irrelevant ideal S+, we defined

ProjS := {p ∈ SpecS : p graded, S+ 6⊆ p}.

We also had distinguished opens D+(f) := D(f) ∩ ProjS, and for graded S-modules M we defined

M(f) :=

{
x

fn
: x ∈M homogenous, deg x = ndeg f

}
⊆Mf .

There is a scheme (ProjS,OProjS), where OProjS(D+(f)) = S(f). Geometrically, projective schemes are
the right thing to look at – they’re just harder algebraically.

The analogous M̃ ’s on ProjS are always quasicoherent. We also defined, for n ∈ Z, these graded S-

modules M(n); they shift indices, so that M(n)d = Md+n. Then OProjS(n) = S̃(n) is a twisted structure
sheaf. We have multiplication maps

OProjS(n)⊗OProjS
OProjS(m)→ OProjS(m+ n)

and
OProjS(n)⊗ M̃ → M̃(n).

Lemma 5.19.1. Let Y = ProjS, and assume that Y = ∪f∈S1D+(f). Then each OY (n) is invertible (as
modules) and are locally free of rank 1 over primes. Furthermore, these multiplication maps are isomor-
phisms.

Proof. Pick f ∈ S1, and note that OY (n)|D+(f) = S̃(n)(f) = (̃Sf )n, viewing (Sf )n as an S(f)-module. But

fn ∈ (Sf )n so S(f)→ (Sf )(n) given by x 7→ fnx is an isomorphism. For the isomorphism on multiplication,
note that we have maps

(Sf )(n)⊗S(f) (Sf )(m)→ (Sf )(m+ n)

xfn ⊗ yfm 7→ xyfm+n

and similarly

(Mf )(n)⊗S(f) (Sf )(m)→ (Sf )(m+ n)

mfn ⊗ yfm 7→ ymfm+n

Hence, these are isomorphisms.

Observation 5.19.2. If we can view Y = ∪f∈S1
D+(f) then

S →
⊕
d≥0

Γ(Y,OY (d)) =: Γ∗(Y,OY (1))

is a map of graded rings. 4

Corollary 5.19.3. In this situation, OY (n) ∼= OY (1)⊗n, and M̃(n) ∼= M̃⊗OO(1)⊗n, since M⊗SS(n) ∼= M(n).

Definition 5.19.4. We have
Γ∗(Y, M̃) :=

⊕
n∈Z

Γ(Y, M̃(n)).

This is a Γ∗(Y,OY (1))-module. 4

The main question is: we have maps
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M Γ∗(Y, M̃)

Md Γ(Y, M̃(d))

?

and we want to understand the relationship between M and Γ∗(Y, M̃). In particular, we want to know
whether the dashed arrow is an isomorphism (and if ever, then when). Also we had a correspondence
between quasicoherent sheaves on SpecR and modules over R, but for Y a Proj , is every quasicoherent
OY -module an M̃ or vise versa?

Lemma 5.19.5. The morphism PnR → SpecR is quasicompact, of finite type, and universally closed.

Proof. To get quasicompactness, note that PnR = ∪ni=0D+(xi) = ∪ni=0SpecR[x0

xi
, . . . , xnxi ]. Using that if

p ∈ ProjS then p 6⊇ S+, then p 3 xi for some i. Since R[x0

xi
, . . . , xnxi ] are finitely generated R-algebras, we

get finite type. We’ve seen that they’re separated in Lemma 5.18.8 [...right?]. Universally closed comes from
the valuative criterion.

Definition 5.19.6. A morphism f : X → S is proper if it is finite type, separated, and universally closed. 4

Remark 5.19.7. Usually, the easiest way to check this is by valuative criterion (Exist) and (Unique). 4

An important algebra lemma to prove is the following:

Lemma 5.19.8. The canonical maps R[x0, . . . , xn]d → Γ(PnR,O(d)) are isomorphisms for all d ∈ Z.

Proof. By the sheaf condition, we have

0 Γ(Pn,O(d))
⊕n

i=0 Γ(D+(xi),O(d))
⊕n

i,j=0 Γ(D+(xixj),O(d))
ϕ

We want to look at the kernel of

n⊕
i=0

(R[x0, . . . , xn]xi)d →
n⊕

i,j=0

(R[x0, . . . , xn]xixj )d.

Indeed, given (Fi/x
ni
i ) for i = 0, . . . , n with xi - Fi, with degFi − ni = d, note that we have

Fi
xnii
− Fj

x
nj
j

= 0, i.e., x
nj
j Fi = xnii Fj ,

which implies xj |Fj or nj = 0. But we assumed xi - Fi, thus, ni = 0 for all i. Hence, all the (Fi/x
ni
i )’s are

just polynomials Fi. So Fi − Fj = 0 for all i 6= j and now all the Fi = F for some F ∈ R[x0, . . . , xn]d.

Let’s talk about maps into PnR. The idea from topology is that we can think about the classifying space
P∞ = B(C×) and homotopy classes of maps X → P∞, denoted [X,P∞], is in correspondence with line
bundles on X.

Some key facts: on ProjS, suppose S is generated by degree 1 elements of R. Then:

• OProjS(1) is an invertible OProjS-module.

• OProjS(n) = OProjS(1)⊗n.

Example 5.19.9. Take Γ(Pn,O(1)) = R〈x1, . . . , xn〉, where {x1, . . . , xn} generate OPn(1) over OPn . 4

Definition 5.19.10. Let X be as scheme and L be an invertible OX -module (these are line bundles). Given
s ∈ Γ(X,L), we set Xs := {x ∈ X : sx 6∈ mxLx}. This is an open set. Given sections s0, . . . , sn ∈ Γ(X,L),
we say {x0, . . . , xn} generates L over X if X = ∪ni=0Xsi . 4

Observation 5.19.11. We have
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• Given F ∈ R[x0, . . . , xn]d for d > 0, if we think of F as a global section, then (PnR)F = D+(F ).

• If f : Y → X is a morphism of schemes, then

f−1(Xs) = Yf∗(s)

where f∗(s) ∈ Γ(Y, f∗L).

• Let ϕ : X → PnR be a morphism. Then we have L := ϕ∗OPn(1). This is an invertible sheaf on X and
si := ϕ∗(xi), for i = 0, . . . , n, are sections of Γ(X,L) that generate L over X.

4
Theorem 5.19.12. Given a scheme X over R, an invertible sheaf L on X, and n+ 1 many global sections
s0, . . . , sn of L which generate L over X, there exists a unique morphism

ϕ(L,s0,...,sn) : X → PnR
such that

(i) ϕ∗(L,s0,...,sn)(OPn(1)) = L, and

(ii) ϕ∗(xi) = si.

Proof. Let p ∈ X. Pick i such that p ∈ Xsi , and choose an affine open p ∈ U ⊆ Xsi with U = SpecA, where

A is an R-module. Then L|U ∼= M̃ where sj |U = mj ∈ M . Since U ⊆ XSi , we have M = A ·mi. Write
mj = fj ·mi for some unique fj ∈ A. Define SpecA = U → D+(xi) = SpecR[x0/xi, . . . ] ⊆ PnR to be the
map corresponding to the algebra map sending xj/xi → fj ∈ A.

Example 5.19.13. Let X = SpecB be some R-algebra, and let L = OX . Then s0, . . . , sn corresponds
to f0, . . . , fn ∈ B = Γ(X,OX) such that 〈f0, . . . , fn〉 = B. The theorem says that this gives a morphism
SpecB → PnR. Conceretely, we have maps

An+1
R \ V (x0, . . . , xn) D(xi)

PnR D+(xi)

π

⊆

Given f0, . . . , fn, since 〈f0, . . . , fn〉 = B, we get a morhpism SpecB → AnR that avoids V (x0, . . . , xn). Then
just apply π. 4
Example 5.19.14. Consider P1

k → Pnk , for k a field. Define L = OP1(d).

• When d < 0, this is not possible because Γ(P1,OP(d)) = 0.

• When d = 0, then we have s0, . . . , sn ∈ Γ(P,OP1) = k. We claim that ϕ(OP1 ,s0,...,sn) is constant, since
we have the commutative diagram

P1 Pn

Spec k

• When d > 0, then we have s0, . . . , sn corresponding to F0, . . . , Fn ∈ k[x0, . . . , xn]d with F0, . . . , Fn
with no common zeros in A2

k (except for (0, 0)). We have [x0 : xi] 7→ [F0, . . . , Fn]. On D+(x0) we have
fi = Fi/x

d
0 = F (1, xi/x0) ∈ k[xi/x0]. Thus

Spec k[xi/x0] An+1
k \ {0}

PnR
ϕ|D+(x0)

π

4
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6 (Affine) Algebraic Groups

6.20 Apr 9, 2019

[Harrison lectured today.]

Recall that we were talking about geometric quotients. Suppose G

�

X. A map π : X → Y is called a
projection if it is surjective and the fibers are exactly G-orbits (think of Y as “X/G”). The map should
be open, and it should satisfy π] : O(U) → O(π−1(U)) should factor through the invariants, that is, the
diagram commutes:

O(U) O(π−1(U))

O(π−1(U))G

∼=

Geometric quotients don’t always exist (we saw examples last time). On the other hand, categorical quotients
always exist. These are maps π : X → Y such that for Z ∈ C (where C might be AffSch, or just Sch [and
the quotient depends on the category you are taking quotients in]) with trivial G action, the map

X Y

Z
G−eq.

π

∃!

that is to say, Y is initial amongst (affine) schemes with trivial G-action and a map from X.

Example 6.20.1. We constructed these homogeneous spaces. Let X = G, and suppose H ⊆ G acts on X
by left/right multiplication. We claim thatX/H = G/H has a scheme-relation, and it is a geometric quotient.

There is a natural question here: is it a categorical quotient? This isn’t always going to work because
these homogeneous spaces aren’t always going to be schemes. But let’s see this concretely with an example.

Suppose C = AffSch. Suppose G = SL2 and H ⊆ G consist of upper triangular matrices. Then
H\G = {H-cosets}, which are in bijection to lines in C2. Explicitly, the bijection is given by

{H-cosets} ↔ lines in C2(= P1)

H ·
[
∗ ∗
a b

]
← [ ` =

[
a
b

]
4

Let’s go on an aside and talk about the functor of points. The Yoneda lemma says the following: suppose
C is a locally small category, so that HomC are sets. Define a functor hA = HomC (−, A) : C op → Set
sending X to Hom(X,A). The Yoneda lemma says that natural transformations from hA to F is F (A),
that is, if F = hB , then natural transformations from hA to hB is hB(A) = Hom(A,B). Actually,
h : C → Fun(C op,Set) given by A 7→ hA is fully faithful (sometimes called an “embedding”).

Now let X ∈ C = Sch. The functor of points of X is hX(−) = HomSch(−, X). Often, we just call
X(S) = hX(S) = HomSch(S,X) the “S-points of X”. Given a functor F : Schop → Set, when is F ' hX
for a scheme X? That is to say, when is F is represented by a scheme X? We should look for properties
that representable functors hX satisfy.

1. We have a sheaf condition.

The intuition is that if we cover S by some opens Ui, and we provide maps fi : Ui → X, we can glue to
a functionS → X (if they are equal on intersections).
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So fix an affine scheme S, and an (affine) open cover U = tUi → S. We get a truncated Cech diagram

U ×S U U S

∐
Ui × Uj

∐
Ui

and so the sheaf condition says

X(U ×S U) X(U) X(S)

should be a limit (this is just a rephrasing of the intuition above).

This condition is not enough. Namely, we can take F (S) to be a constant sheaf valued on two points.
The claim is that this is not representable (that this really is not representable will be left as an exercise).

2. We have an atlas.

There should be U and p : U → X which is an open cover (when X is a scheme). So, ask if there is U ,
and p : hU → F such that for any scheme S, the map F ×S hU → S is an open immersion, and F ×S hU is
representable by a scheme. This is hard to check in practice, but it’s certainly necessary.

So we generalize what it means to be an open cover. We’ll allow U → X that are not just disjoint
unions of open immersions, but étale map (we’ll black box this, but it’s the algebraic geometry analogue of
a covering space).

Definition 6.20.2. An algebraic space is a functor F : Schop → Set which satisfy 1. and 2. above for étale
covers. Furthermore, the diagonal ∆: F → F × F is representable. 4

For a morphism to be representable, the functor S1 7→ X(S1) ×(X×X)(S′) Mor(S′, S) should be repre-
sentable. The point is that we want a presentation of X, that is, we want schemes

U ×X U U X

and if ∆ is representable then U ×X U = (U × U)×X×X ∆ is a scheme.

Hence an algebraic space is “étale locally” a scheme. Think about X as a “classifying space” and hX as
a “classifying functor” of the moduli problem.

Example 6.20.3. Suppose X = A1, and hA1(S) = Mor(S,A1) = O(S).

Suppose X = Gm. Then hGm(S) = Mor(S,Gm) = O(S)X .

SupposeX = P1. Then hP1(S) = Mor(S,P1) = {line bundles on S plus globally generated sections on S}
4

Stacks try to classify F (S) = {G-torsors on S}/ '. F has to be a sheaf, but torsors are locally trivial, so

F (X) = lim
∏

F (Ui)⇒ F (Ui ∩ Uj).

Since F (Ui) is a point for small enough Ui, we see also that F (X) is also a point. The solution to this is to
replace sets with groupoids (there is a lot of work in making this precise). We can define the quotient stack
X/G(S) to be the set of

P X

S

G-eq

G-tor
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The idea is we are resolving S by P which has a free and transitive G action mapping out of this “resolution”.
We can ask: if G

�

X freely and properly, is there a categorical quotient? The answer is yes in stacks (we
take X/G), and even in algebraic spaces (we can still take X/G), but it depends on representability for
schemes.

Let’s talk about reductive groups. Let G be an affine algebraic group over a field k (at some point we’ll
insist that k = C, but not yet)

Definition 6.20.4. The algebraic groupG is reductive if every smooth connected unipotent normal subgroup
of G×k k̄ is trivial. This happens to be equivalent to G having no normal subgroups isomorphic to Ga,k̄ 4

Definition 6.20.5. A group H is unipotent if it is isomorphic to a closed subgroup of the strictly triangular
matrices 

1 ∗ . . . ∗
0 1 . . . ∗
...

...
. . .

...
0 0 . . . 1


4

Definition 6.20.6. The group G is linearly reductive if every rational representation of V is isomorphic to⊕
Vi irred

Vi,

that is, every representation is completely reductible. 4

Example 6.20.7. The group Ga is not reductive, as Ga ↪→ GL2 given by

x 7→
[
1 x
0 1

]
∈ GL2 = GL(k2) = V

shows (details left as exercise).

Also Ga is not linearly reductive because V is 2-dimensional, and all irreducibles of abelian groups are

1-dimensional, and we can check that V cannot be decomposed (since for generic x, the matrix

[
1 x
0 1

]
will

not be diagonalizable). 4

Theorem 6.20.8. Suppose char k = 0. Then G is linearly reductive if and only if it is reductive.

Example 6.20.9. Suppose char k = p. Then for G = Cp = Z/pZ, and V = F2
p = k2, we have

σn 7→
[
1 n
0 1

]
.

4

The proof of Theorem 6.20.8 can be found in more generality in Milne’s book Algebraic Groups, where
it is Theorem 22.42 in the published version [which we can access] and 22.138 in the free online version.

Proof of Theorem 6.20.8 for k = C. The strategy is to construct the Reynolds operator, which is a splitting
of the inclusion of G-invariants:

V G V

RV
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The following is a fact: G(C) is a C-Lie group, and has a compact real form K ⊆ G(C) that is dense in
the Zariski topology.

Recall that for finite groups,

RV (x) =
1

|G|
∑
g∈G

g · x.

For compact groups, we can pick a Haar measure

RV (x) =
1

µ(K)

∫
K

g · x dµ(g).

Assume we have a splitting, say U ∈ Irr(G) and U ⊆ V . We want to split off all representations isomorphic
to U . What we do is use the adjunction property on RV⊗U∗ : V ⊗ U∗ → (V ⊗ U∗)G to get ϕ as below:

V (V ⊗ U∗)G ⊗ U =
⊕
U

ϕ

ψ

We claim that ψ, given by evaluation on (U∗⊗U), is a splitting, and that ψ is injective. This will be left as
an exercise. We’ll omit the proof of the converse.

Examples include GLn,SLn,Sp2n,On, but we’ll focus on the first two.

Theorem 6.20.10. Suppose G is reductive and acts on X = SpecA. Then

(i) AG is finitely generated

(ii) X//G := SpecAG is the categorical quotient in AffSch

(iii) The fibers of π : X → X//G contain a unique closed orbit.

Proof. To check (i), we define RX : A = O(X) → O(XG) = AG. We claim that RX is AH -linear, and we
can cehck that RV is natural with respect to G-equivariant morphisms, that is,

V W

V G WG

RV

G-eq

RW

commutes.

Now, note that if z ∈ AG, µz(f) = zf is a G-morphism. So z ·RV (f) = RV (zf).

We’ll continue this proof next time.
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6.21 Apr 11, 2019

Let’s restate what we were proving.

Theorem 6.21.1. Suppose G is reductive (over C = k) and acts on X = SpecA. Then

(i) AG is a finitely generated algebra over k

(ii) X//G := SpecAG is the categorical quotient in AffSch

(iii) The fibers of π : X → X//G contain a unique closed orbit.

Proof. There is a correspondence

{ideals in O(X)G}� {saturated G-closed ideals in O(X)}
I 7→ O(X) · I

I ∩ O(X)G ← [ I

in particular the backwards map is the Reynolds operator. Indeed, if I ⊆ OG is an ideal, then I · O(X) is
G-stable because I is G-invariant, and I∩O(X)G = (I ·O(X))G = RX(I ·O(X)) = I ·RX(O(X)) = I ·O(X)G.

The point is that ideals in O(X)G corresponds to closed subschemes of X//G, and saturated G-closed
ideals in O(X) corresponds to saturated G-closed subschemes.

We claim that AG is noetherian. If I ⊆ AG is an ideal, then I = RX(I · O(X)), and since O(X) is
noetherian we are done.

Next, choose an embedding X ↪→ V where V is a finite dimensional G-representation. It suffices to show
that O(V )G are finitely generated. So we choose an embedding

O(V ) =
⊕

n≥0 SymnV ∗

O(V )G =
⊕

n≥0(SymnV ∗)G

Choose homogenous generators of O(V )G to get a chain of sets S1 ⊆ S2 ⊆ S3 ⊆ . . . of generators in degree
at most d, where Sd is finite. Then 〈S1〉 ⊆ 〈S2〉 ⊆ . . . terminates at d, and we can take Sd to be our set of
generators.

The quotient is almost never geometric.

Example 6.21.2. Let t · (x1, . . . , xn) = (tx1, . . . , txn), with θ(x) = k[x1, . . . , xn], and the weight of xi = −1.
We have θ(x)G = k and An = X → X//G = pt is not geometric. 4

Example 6.21.3. Let t · (x, y) = (tx, t−1y) with θ(x) = k[x, y] with the weight of x = 1 and y = −1. We
have θ(X)G = k[xy] ' A1 so π : A2 → A1 is not geometric. 4

Proposition 6.21.4. If the action of G on X is proper (that is, X × G → X × X, so orbits are closed),
then π : X → X//G is geometric.

Let’s talk about G-equivariant sheaves on X.

Definition 6.21.5. A G-equivariant structure on a quasicoherent sheaf F on a scheme X is an isomorphism

αF : a∗F
'−→ p∗F where

G×X X

a

p
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is given by a(g, x) = g · x and p(g, x) = x. These maps satisfy

G×G×X G×X

(m×1)

(1×a)

giving (m× 1)∗αF = (1× a)∗αF and

X G×Xe×1

giving (e× 1)∗αF = idF . 4

The idea is that if E is a locally free sheaf on X, think of E as a sheaf of sections of E. The claim is that
a G-equivariant structure on E is the same as having for every (gx) an identification Ex ' EG·x. Indeed, fix
g ∈ G and consider

X G×X X

x (g, x)

ig

a

p

induces

a∗gF F'
i∗gαF

Example 6.21.6. Let X = Spec k = ∗. A G-equivariant sheaf on X is a rational G-representation. 4

Example 6.21.7. If X = G and G acts by left multiplication, then a G-equivariant sheaf on X is determined
by its fiber at any point (in particular, maybe at e ∈ G). The idea is that given the fiber Ee at the identity,
we have a unique identification via a∗g with Eg. This says that QCohG(G) = QCoh(pt). 4

Example 6.21.8. Let X = SpecA and G

�

X. Then A is a G-representation. This means that we have
QCohG(X) = A−ModRep(G) with g · (a ·m) = (g · a) · (g ·m). 4

Example 6.21.9. If G

�X transitively, choose x ∈ X. Then we get an equivalence

QCohG(X) ' Rep(Stab(G, x)).

4

We’ll leave the details of these examples as exercises.

Example 6.21.10 (SL2-equivariant sheaves on P1). Think of P1 as lines in C2 (with the standard SL2-
representation). We have a transitive action, and the stabilizer of the base point x = Span {(1, 0)} is

B =

[
∗ ∗
0 ∗

]
which gives

P1 ' G/B
g · (1, 0)← [ gB

This says QCohG(G/B) ' Rep(B). This means that B is a Borel subgroup and a solvable group. This
says that

U =

[
1 ∗
0 1

]
' Ga B H ' Gm 3

[
z

z−1

]
normal
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We claim that Irr(U) are all trivial. This means that Irr(B) = Irr(H) = Irr(Gm) = Z. Let’s prove this. V
be a rational Ga-representation, with dimension 1. We get maps

V k[x]⊗ V k[x]⊗ k[y]⊗ V

v (
∑
aix

i)⊗ v (
∑
aix

i)(
∑
aig

i)v

(
∑
aix

i)⊗ v
∑
ai(x+ y)iv

ρ 1
ρ

so that ∑
aiajx

iyi =
∑(

i+ j

i

)
ai+jx

iyj .

Hence we arrive at aiaj =
(
i+j
i

)
ai+j with a0 = 1. This gives an = an1/n!, which implies a1 = 0. 4

Here’s a weird thing. Take

b =

[
−x ∗ y

0 −x

]
,

and let B act by conjugation. Then we have

0

[
0 x
0 0

]
= V−2 b

[
x 0
0 −x

]
= V0 0

and we claim that this sequence does not split G-equivariantly. We have Birkhoff factorization: every vector
bundle on P1 splits into a sum of line bundles. We cover P1 with two affine opens U0 = k[t] and U∞ = k[t−1].
Then E |U0

k[t] ⊗ {e1, . . . , en} and E |U∞ = k[t−1] ⊗ {f1, . . . , fn}. To get gluing, find an A ∈ GLn(k[t, t−1])

with A : E0|Gm
'−→ E∞|Gm .

The sequence does not split G-equivariantly, but if we forget, then it does split. In particular, it splits into
O(−1)⊕O(1− 1). We’ll leave the details for an exercise, but let’s set it up a little. This is a G-equivariant
vector bundle V where the fiber at (1, 0) ↔ B ∈ G/B ∼= P1 is the B-representation b. So the fiber at
g · (1, 0) ↔ gB ∈ G/B is the gBg−1-representation gbg−1 ⊆ g. So we can take open charts U0 to be the
coordinate [

1 0
t 1

]
·
[
1
0

]
=

[
1
t

]
where t is a coordinate of U0 coming from A1 ↪→ SL2. For U∞ we can take[

s −1
1 −

]
·
[
1
0

]
=

[
s
1

]
.

The exercise is to write down a basis in each chart, find a gluing matrix, and reduce to the diagonal (Birkhoff).

72



7 Schemes

7.22 Apr 16, 2019

We were talking about projectivity. There was this Proj construction. They’re the correct setting to
phrase algebro-geometric questions in. Given a scheme X/S, if you have an invertible sheaf L (also called a
line bundle) with n+1 global sections s0, . . . , sn that generate L, then there is a unique morphism ϕ : X → PnS
such that ϕ∗(OPn(1)) = L and ϕ∗(xi) = si. We also saw examples of the importance of projectivity (for
example, some of Harrison’s lectures).

On the homework we did a problem about closed subschemes of PnR.

Proposition 7.22.1. Let Z ↪→ PnR be a closed subscheme. Then there exists a graded ideal I ⊆ R[x0, . . . , xn]
such that

1. Z = V+(I) as subsets of topological spaces.

2. Z ∼= Proj (R[x0, . . . , xn]/I)

3. The ideal sheaf I ⊆ OPnR of Z is Ĩ ⊆ ˜R[x0, . . . , xn] = OPn .

This will follow from

Proposition 7.22.2 ([H], II.5.15). Let F be a quasicoherent sheaf on PnR. Then F = M̃ for some graded
R[x0, . . . , xn]-module M . Indeed, we can take

M = Γ∗(PnR,F) =
⊕
d∈Z

Γ(PnR,F(d)).

Remark 7.22.3. Suppose ϕ : S1 → S2 is a homomorphism of graded rings. The map ProjS2 → ProjS1 is
only well defined as a morphism on an open set

U(ϕ) :=
⋃

f∈(S1)+

D+(ϕ(f))

where on D+(ϕ(f))→ D+(f) the map is given by Spec (S2)〈ϕ(f)〉 → Spec (S1)〈f〉 4

Remark 7.22.4. The open set U(ϕ) is equal to all of ProjS2 if and only if (S2)+ ⊆
√
ϕ((S1)+)S2. In

particular, if S1 � S2 then this holds. Here, ProjS2 ↪→ ProjS1 and this is a closed immersion. 4

Example 7.22.5. The map ϕ : C[X,Y, Z]→ C[X,Y ] given by Z 7→ 0 corresponds to the closed immersion
P1 ↪→ P2. 4

Example 7.22.6. Consider C[X,Y ]
ϕ
↪−→ C[X,Y, Z]. Then we get a map from

U(ϕ) = D+(X) ∪D+(Y ) ⊆ P2 = ProjC[X,Y, Z]

to ProjC[X,Y ] = P1. For example, on D+(X) we have C[Y/X] ↪→ C[Y/X,Z/X] corresponding to A2 → A1

given by projection onto the Y -axis. 4

Let’s prove that Proposition 7.22.2 implies Proposition 7.22.1.

Proof. We have a short exact sequence

0 I OPnR ι∗OZ 0
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where ι : Z ↪→ PnR is a closed immersion. By Proposition 7.22.2, since I is a quasicompact [quasicoherent...?]

sheaf of ideals, we have I = Ĩ for some ideal

I =
⊕
d∈Z

Γ(Pn, I(d)) ⊆
⊕
d∈Z

Γ(Pn,O(d)) = R[x0, . . . , xn].

The inclusion here comes by tensoring the short exact sequence with the invertible sheaf OPn(d) and taking Γ.

Since ι : Z ↪→ PnR is a closed immersion, we have I|D+(xj) = Ĩj for some ideal Ij ⊆ R[xi/xj ]. Then

Z ∩D+(xj) = SpecR[xi/xj ]/Ij . By definition of Ĩ, we have

Ij = I〈xj〉 =

{
f

xdj
, f ∈ I, deg f = d

}
.

Hence (R[x0, . . . , xn]/I)〈xi〉 = R[xi/xj ]/Ij . Hence D+(xj) ∩ Z = D+(x̄j) where x̄j is the image of xj in
R[x0, . . . , xn]/I. This means that on an affine cover we have an injective map from

Proj (R[x0, . . . , xn]) ⊇ Z ⊇ D+(xj ∩ Z)

to
Proj (R[x0, . . . , xn]/I) ⊇ D+(x̄j)

Thus Z ∼= Proj (R[x0, . . . , xn]/I).

Example 7.22.7. Consider P2
R = Proj k[X,Y, Z] and the ideals I1 = 〈X(X+Y+Z), Y (X+Y+Z), Z(X+Y+Z)〉

and I2 = 〈X + Y + Z〉. We claim that Proj (k[X,Y, Z]/I1) = Proj (k[X,Y, Z]/I2) as closed subschemes of
P2
k. We can check this on D+(X), D+(Y ), D+(Z); for example on D+(Z) we see that

(I1)〈Z〉 =

〈
X(X + Y + Z)

Z2
,
Y (X + Y + Z)

Z2
,
Z(X + Y + Z)

Z2

〉
= 〈x(x+y+1), y(x+y+1), x+y+1〉 = 〈x+y+1〉

whereas

(I2)〈Z〉 =

〈
X + Y + Z

Z
= 〈x+ y + 1〉 = (I1)〈Z〉

where x = X/Z and y = Y/Z. 4

Generally, I ⊆ k[x0, . . . , xn] homogenous defines the same closed subscheme as I · k[x0, . . . , xn]+.

Proof of Proposition 7.22.2. We want to show that if F is a PnR then

Γ+(PnR,F)〈x0〉
∼=−→ Γ(D+(x0),F),

where Γ+(PnR,F) = {s/xm0 : s ∈ Γ(Pn,F(d)})/ ∼.

For this, it suffices to show that

(a) Given s1, s2 ∈ Γ(PnR,F) such that s1|D+(x0) = s2|D+(x0) then there is N sufficiently large so that

xN0 s1 = xN0 s2 ∈ Γ(PnR,F(N)).

(b) Given s ∈ Γ(D+(x0),F), there exists d ≥ 0 and s̃ ∈ Γ(PnR,F(d)) such that s̃|D+(x0) = xd0s.

Let’s prove (a). It’s enough to show that if s ∈ Γ(Pn,F) and s|D+(x0) = 0 then 0 = xN0 s ∈ Γ(Pn,F(N)).

On each D+(xi), we have F|D+(xi)
∼= M̃i for some R[xj/xi]-module Mi. So s|D+(xi) = mi ∈ Mi. Note

that D+(x0) ∩D+(xi) = Spec (R[x0/xi, . . . , xn/xi, (x0/xi)
−1]) implies mi|D+(x0)∩D+(xi) = 0, which implies

(x0/xi)
Nimi = 0, or xNi0 mi/x

Ni
i = 0. So if we let N ≥ max{Ni} we get xN0 |D+(xj) =

xN0 mi
xNj

= 0.

Let’s prove (b). We have F|D+(xj) = M̃j for some R[xi/xj ]-module Mj . Then we have a diagram
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F|D+(x0) F|D+(x0xj) F|D+(xj)

M0 (M0)〈xj/x0〉
∼= (Mj)〈x0/xj〉 Mj

∼= ∼= ∼=

α

β

Then s corresponds to an element m0 ∈M0. Wrote α(m0) for the image of s|D+(x0xj) through this map. This

gives α(m0)·(x0/xj)
d = β(mj) for some of the mj ∈Mj and integer d. Choose sj = xdjmj ∈ Γ(D+(xj),F(d))

and s0 = xd0m0 ∈ Γ(D+(xj),F(d)) for d sufficiently large such that α(m0) · (x0/xj)
d = β(mj) for all j. If

the sj ’s glue to give s̃ ∈ Γ(D+(xj),F(d)) then we’re done. But we only know that sJ |D+(x0xj) = s0|D+(x0xj),
and we need si|D+(xixj) = s+|D+(xixj). But on D+(xixixj) we have

si|D+(x0xixj) − sj |D+(xixixj) = s0|D+(x0xixj) − s0|D+(x0xixj) = 0.

By part (a), multiply s0, . . . , sn by xd
′′

0 such that xd
′′

0 |D+(xixj)−xd
′′

0 sj |D+(xixj) = 0. Now take d = d′+d′′ ≥ d′, d′′.
This means that s̃|D+(xi) = xd

′′

0 si.

Now let F be quasicoherent on PnR, and assume R is noetherian (like in Hartshorne). Then Γ∗(PnR,F) is
an R[x0, . . . , xn]-module.

If we assume that F is coherent, is this module finitely generated? The answer is yes, sometimes: the
general setting for finiteness of H0 is given by:

• R is a noetherian ring

• S = SpecR

• π : X → S is proper

• F is a coherent OX -module (importantly, OX , along with invertible sheaves and more generally locally
free sheaves)

Then H0(X,F) is a finite R-module. In this setting you get to approximate functions, use Nakayama’s
lemma, etc.; otherwise, you need to compactify things, or approximate R with noetherian rings, etc.

We can’t prove this in this course, but the proof sketch via dévissage is as follows:

1. Use the cohomology and prove this for Hi(X,F) for all i > 0 (next semester).

2. Use Chow’s lemma, which allows us to reduce to the projective case.

3. Now for PnS → S, just show F = M̃ , and reduce to M = R[x0, . . . , xd]〈xd〉 and just compute the

cohomology of OPn(d) = ˜R[x0, . . . , xd].

We’ll see Chow’s lemma next time.
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7.23 Apr 18, 2019

Today we’ll talk about projective morphisms. It will be a little technical. We saw that projective
morphisms are always proper; a partial converse is given by Chow’s Lemma, which roughly states that a
proper morphism is not that far from being a projective morphism.

Theorem 7.23.1 (Chow’s Lemma). Let S be a noetherian scheme, and let f : X → S be finite type and
separated. Suppose we have a commutative diagram

π−1(U) X ′ PnS

U X S

π

Then:

• π is proper and surjective,

• X ′ ↪→ PnS is an immersion

• there exists some dense open U ⊆ X so that π−1(U)→ U is an isomorphism.

An important special case is the following classical case that Chow looked at. If X and S are reduced,
we can take X ′ to be reduced. Let X ′ → PnS be the closure of X ′ in PnS . Then we have

X ′ X ′ PnS

X S

open

π

closed

This is one reason why the constructible set stuff is so convenient.

Definition 7.23.2. We say a morphism of schemes X
f−→ S is projective (in the sense of Hartshorne) if

there exists a closed immersion X ↪→ PnS over S. 4

Remark 7.23.3. This is not the same as that in EGA. In EGA, a map f : X → S is projective if X is
isomorphic (as an S-scheme) to a closed subscheme of a projective bundle P(E) for some quasicoherent finite
type OS-module E . 4

Both these definitions are useful (and used in practice).

Lemma 7.23.4. We have

(a) Closed immersions are proper and projective

(b) Projective implies proper

(c) Compositions of projective (respectively proper) morphisms are projective (respectively proper)

(d) Base changes of projective (respectively proper) morphisms are projective (respectively proper)

(e) Fiber products of projective (respectively proper) morphisms are projective (respectively proper)

Proof. Part (a) should be clear. We also saw (b) in previous lectures (when we were doing the Proj construction).
Let’s prove part (c).

Let Y → X,X → S be projective morphisms. We have maps

Y X S

PnX PmS
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and by base change we get

PnX PnPmS

X PmS

where
PnPmS = PnZ ×Z (PmZ ×Z S) = (PnZ ×Z PmZ )×Z S

and PnZ ×Z PmZ is projective over SpecZ. We have

PnZ × PmZ → Pnm+n+m
Z

([x0 : · · · : xn], [y0 : · · · : ym]) 7→ [xiyj ]i,j

given by the Segre embedding. This gives a closed immersion

Y ↪→ PnX ↪→ (PnZ ×Z PmZ )×Z S ↪→ Pnm+n+m
Z ×Z S = Pnm+n+m

S .

Let’s prove part (d). Suppose X → Y is projective, so we have

X Y

PnY

and Y ′ → Y . Then we can take the fiber product to get

X ×Y Y ′ PnY ′ = PnY ×Y Y ′

X PnY

To prove part (e), if X → S and Y → S are projective, then so is X ×S Y → X by part (d). Then so is the
composition X ×S Y → X → S.

In the variety setting we had this diagram

X ′ X ′ PnS

X S

open

π

closed

with a map h : X ′ ↪→ PnS .

Lemma 7.23.5. Given maps

X Y

S

h

f g

where f is proper and g is separated, then h(X) is closed.

Proof. Indeed, we can take a section

X ×S Y

X Y

S

πX πY

h

f

h′

g
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given by h. Since g is separated we get πX : X ×S Y → X is also separated. Now h′(X) is closed, as it’s the
equalizer of

X ×S Y Y
πY

h◦πX

Since f is proper, πY is closed. and hence h(X) = πY ◦ h′(X) is also closed.

We’ll apply this observation to in the following setting. Let X be a proper variety and let k = k̄ be an
algebraically closed field. Then Γ(X,OX) = k̄. Moreover, if X → Spec k is proper,

Γ(X,OX) ∼= Mor(X, A1
k︸︷︷︸

∼=Ga

)

and we get

X A1
k P1

k

Spec k

Lemma 7.23.5 says that f(X) is closed in both A1
k and P1

k. Then f(X) must be a closed point of A1
k, and

hence Γ(X,OX) = k̄ = k. Note that if we assume X is proper over S, Chow’s lemma (Theorem 7.23.1)

implies π′ is proper, and hence so is X ′
π′−→ X → S. Lemma 7.23.5 says that X ′ → X ′ ↪→ PnS has closed

image. Then, since X,S is reduced, we have a closed immersion X ′ ↪→ PnS . Conversely, if X ′ = X, then X ′

is projective over S, so X ′ is proper over S, and hence for all T closed in X, we have f(T ) = f(π(π−1(T )))
is closed. This holds for any base change S′ → S and X ′S → XS . Thus X → S is proper.

Summary. Given f : X → S separated and finite type, then X → S is proper if and only if there exists
a projective X ′ → S with a surjective morphism X ′ → X over S.

Let’s prove Chow’s Lemma (Theorem 7.23.1). We recall the setup first.

We have S a noetherian scheme and f : X → S finite type and separated, along with a commutative
diagram

π−1(U) X ′ PnS

U X S

π

We need to show that π is proper and surjective, X ′ ↪→ PnS is an immersion and that there is a dense open

U ↪→ X such that π−1(U)
∼−→ U .

Proof of Theorem 7.23.1 for varieties. Suppose S = Spec k, with k = k̄ a field, and suppose X is a variety.
Write X = U1 ∪ · · · ∪ Uk where Ui = SpecAi ⊆ X; and let Ai = Spec k[xi,0, . . . , xi,ni ]/Ii. Let Zi be the
closure of Ui in Pni and consider the maps

Ani

Ui Pni

Zi

open

open

closed

ji

closed

Set U = U1 ∩ · · · ∩ Uk ⊆ X, which is dense and open. We have the map
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U Pn1 × · · · × Pnk

Z

open

j=(j1,...,jk)

closed

where Z denotes the closure of j(U). We have

U Z Z1 × · · · × Zk

Ui Zi

open

open
pi

pri

open

where the pri is proper because it’s the restriction of Pn1 × · · · × Pnk → Pni to a closed subshceme. This
means that pi is proper. Now let Vi = p−1

i (Ui). Let X ′ := p−1
1 (U1)∪ · · · ∪ p−1

k (Uk) = V1 ∪ · · · ∪ Vk. We want
to map X ′ to X.

We claim that pi|Vi∩Vj = pj |Vi∩Vj , and thus glue to a morphism π : X ′ → X. Indeed, since X is separated
and contains U as a dense open, the locally closed subscheme in Vi ∩ Vj where pi : Vi ∩ Vj → Vi ↪→ X and
pj : Vi ∩ Vj → Vj ↪→ X agree is closed, it agrees on all of Vi ∩ Vj . This proves the claim.

We also claim that π−1(Ui) = Vi. Indeed, consider the diagram

Vi π−1(Ui) ⊆ Z

Ui

pi|Vi π|π−1(Ui)

Since Z is separated, it follows that π|π−1(Ui) is separated. Then pi|Vi is proper, because it’s a base change
of a proper morphism to Ui. Thus the image of Vi is closed in π−1(Ui), and thus it must be equal because
it is dense (it contains U).

We also claim that π is proper. This is because X = U1 ∪ · · · ∪Un, and each restriction of |pi to π−1(Ui)
is now identified with pi|Vi , a proper map, and being proper is local on the base. It remains to show that
π−1(U)

∼−→ U . This follows from the argument applied to π−1(U) = V , that is,

U π−1(U)

U

id

This proves Chow’s Lemma for varieties.

Definition 7.23.6. A scheme X of finite type over a field k is said to be quasi-projective if X has an
immersion into Pnk for some N . 4

Lemma 7.23.7. A proper quasi-projective variety is projective.

Proof. We have

X Pnk

Spec k

proper

h

separated

implies h(X) is closed.

Corollary 7.23.8 (Chow’s Lemma for varieties). For all varieties X, there is a quasiprojective variety X

and a surjective morphism X ′
π−→ X which is an isomorphism over a nonempty open U ⊆ X. Moreover, X

is proper if and only if X ′ is projective.
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7.24 Apr 23, 2019

Today we’ll talk about applications of scheme theory to curves.

By a curve we mean a variety over a field k of dimension 1. Our varieties are irreducible. A basic fact is
the following. For varieties X, we have dimX = d if and only if for all x ∈ |X|, we have dimOX,x = d, if and
only if trdegkk(X) = d, where k(X) denotes the ring of rational functions, and trdeg denotes transcendence
degree.

Definition 7.24.1. Let S be an integral scheme. The function field k(S) := FracOS(U) for ∅ 6= U ⊆ S. We
have k(S) = OS,η for η generic point of S. 4

Definition 7.24.2. A morphism f : X → Y of varieties over k is said to be:

(a) dominant if f(X) is dense in Y , or equivalently if f(ηX) = ηY , or equivalently if f(X) contains a
nonempty open subset of Y . (This is why irreducibility is an important assumption)

(b) birational if it is dominant and furthermore OηY = k(Y ) → k(X) = OηX is an isomorphism, and

equivalently (by Chevalley) that there exists a nonempty U ⊆ Y open such that f−1(U)
∼−→ U .

4

Lemma 7.24.3. Suppose f : X → Y is a proper biraitonal morphism of curves. Assume that Y is regular
(that is, OY,y is regular for all y ∈ Y ). Then f is an isomorphism.

Proof. Recall that if A is a noetherian local ring with dimension 1, then A is regular if and only if A is a
DVR. Pick x ∈ X. We have

OX,x OY,y

k(X) k(Y )

f∗

∼=

which implies that f∗ is an isomorphicm by definition of a valuation ring (maximal under inclusion).

Suppose x, x′ ∈ |X| such that f(x) = f(x′). Then OX,x = O)X,x′ = OY,f(x). We have maps

SpecOX,x

SpecOX,x′ X

SpecOY,f(x) Y

ιx

ιx′

f
s1

s2

Since OY,f(x)
∼= OX,x ∼= OX,x′ , we have sections s1 and s2. By composing with ιX and ιx′ we get two

morphisms

SpecOf(x) X
ιx◦s1

ιx′◦s2

By the valuative criterion of properness, we have ιx ◦ s1 = ιx′ ◦ s2 which ipmlies x = x′.

Since f is proper, we know that f(X) is closed in Y . Since it contains the generic point f(X) = Y .
Hence f is injective, surjective, and closed. We get fx : OX,x

∼−→ OY,f(x) so X ∼= Y .

Proposition 7.24.4. Any regular curve is quasiprojective.

Proof. Given a regular curve X, by Chow’s lemma (Theorem 7.23.1) we have π : X ′ → X proper and
birational and X ′ quasiprojective. Now we apply the previous Lemma 7.24.3.
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Lemma 7.24.5. If X is a regular curve and Y is a proper variety, any morphsim f : U → Y for nonempty
open U ⊆ X extends to a full morphism f : X → Y .

Proof. Let Z be the closure of ιU × f : U × U → X × Y . Then Z is a variety (we’re using Lemma 3.8.21
here) and U ⊆ Z is open and dense: we have

Z X × Y Y

X

∼

By Lemma 7.24.3 we have Z ∼= X, and we get an inverse X → Z. Now we compose with Z → Y .

Recall that an integral scheme S is normal if all affine open OS(U) are integrally closed in k̄(S) (that is,
these are normal domains).

Lemma 7.24.6. For any variety X, there exists a canonical morphism of varieties ν : Xν → X called the
normalalization of X, where ν is birational, finite, and Xν is a normal variety.

Proof. This follows from the existence of an integral closure: if A is a finitely generated domain over k, then
the integral closure Aint of A in FracA is a finite A-module.

Recall from homework that we showed finite morphisms are proper.

Example 7.24.7 (Classical cases of normalization). If we have a cuspidal singularity Spec k[x, y]/〈y2 − x3〉
or a nodal singularity Spec k[x, y]/〈y2 − x2(1− x)〉, as in

x

y

x

y

[The curve on the right is supposed to be connected/smooth with a single nodal singularity, and “any other
singularities are due to the author” - Jake]

respectively. In the respective function fields, we have (y/x)2−x = 0 and (y2/x)− (1−x) = 0, which implies
y/x is integral. We have

Exercise: Show that A[y/x] ⊆ k(C) is normal. These are precisely the normalizations. 4

Warning. The integral closure of a domain that is finitely generated over k in its fraction field is finite
over itself. This is not true for finitely generated algebras over k (with nilpotents, say). For example, for
k[x, ε]/〈ε2〉 in Frack[x, ε]/〈ε2〉 = k(x)[ε]/〈ε2〉, then the integral closure is not finitely generated because
(ε/xn)2 = 0.

Definition 7.24.8. For X and Y varieties over k, a rational map X 99K Y is an equivalence class of
morphisms f : U → Y where U ⊆ X is nonempty and open, and (f : U → Y ) ∼ (g : V → Y ) if there is a
nonempty open W ⊆ U, V such that f |W = g|W .

We say a rational map X 99K Y is dominant if for any representative f : U → Y , it is dominant in the usual
sense. (That this is well defined follows from Chevalley). 4
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Observation 7.24.9. Let X and Y be varities over k. If (f : U → Y ) ∼ (g : V → Y ) then f |U∩V = g|U∩V .
Since Y is separated, the set of points where the maps agree is closed in U ∩ V . Since U ∩ V is nonempty
and open, it is dense. Hence the maps f and g glue to give a morphism U ∩ V → Y . Hence, there’s some
maximal open where the rational map is defined as a morphism. 4

Henceforth, if f : X 99K Y is a rational map between varieites, take it with a chosen map.

Observation 7.24.10. Let f : X 99K Y and g : Y 99K Z with f dominant. Then we get its composition

U ∩ f−1(V ) U X

V Y

Z

⊆

f |U∩f−1(V )

f

⊆

g

⊆

Thus if R(X) denotes the set of rational maps X 99K A1
k, or equivalently the set of rational functions on X,

then
R(X) = colimU⊆XMorVar(U,A1

k) = colimU⊆XOX(U).

Compare this to the homework problem on varieties. 4

Proposition 7.24.11. The category of varieties with objects varieties over k and morphisms dominant
rational maps is antiequivalent to the category of finitely generated field extensions K ⊇ k with k-algebra
homomorphisms

X 7→ k(X)

ϕ : X 99K Y 7→ (ϕ∗ : k(Y )→ k(X))

Corollary 7.24.12. There is an anti-equivalence between the subcategory of regular (equivalently, normal)
projective curves with dominant (equivalently, non-constant) morphisms of varieties and the subcategory of
finitely field extensions K ⊇ k with trdegkK = 1 with k-algebra homomorphisms.

Remark 7.24.13. In the correspondence above, being finitely generated over k is crucial. If, say, K is not
finitely generated over k but trdegkK = 1, then the corresponding curve is a “Riemann surface with infinite
genus” (this is not a variety, but it’s a scheme). 4

Example 7.24.14. Consider Cn : yn = x(x− 1)(x− λ) over k. This is an n-sheeted branched cover of P1.
The genus of Cn is n− 1. We have a family of field extensions and corresponding curves

k(Cn) k(C2n) k(C4n) . . .

. . . C4n C2n Cn
y 7→y2 y 7→y2 y 7→y2

Then limk k(C2n) is not finitely generated but of transcendence degree 1 over k. This is not the function
field of an algebraic curve, but it’s a k-algebra, so a scheme over k. 4
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7.25 Apr 25, 2019

[I am grateful for Joseph’s and Jake’s notes, from which I copied.]
We’ll talk about divisors today.

The motivation comes from arithmetic. Let L/K be a finite field extension, and let OKand OL be their
rings of integers (these are by definition the integral closures of Z in the respective fields). Take a point
p ∈ SpecOK . Then we have primes q1, . . . , qr in SpecOL that lie over p, with qi 6= qj , that is to say, we
have

pOL = qe11 . . . qerr .

The ei are called the ramification degree. We can define fi = [k(qi) : k(p)], where k(qi) and k(p) are the
residue fields of OL,qi and OK,p. We have the degree formula

[L : K] =

r∑
i=1

eifi.

We have a map f : SpecOL → SpecOK [corresponding to OK ↪→ OL], and the preimage of a point
p ∈ SpecOK is precisely the qi lying over p.

The takeaway is that the degree of f over the generic point η of SpecOK is the same as that above p.
In general, we let A be a DVR, K = FracA, and L be a finite extension of K. We further assume that the
integral closure B of A in L is finite over A (this holds for “reasonable rings”, such as Japanese or Nagata
rings in EGA). Then mAB = me1a . . .merr , and

[L : K] =

r∑
i=1

ei[k(mi) : k(mA)].

Proof. Since B is a finite A module and is torsion-free (as an A-module), then B is free, and B ∼= A⊕n.
Thus, n = [L : K]. Since B is the integral closure of A in L, B is normal. Since B is finite over A, we have
dimB = dimA = 1. Hence B is a finite type algebra over a Neotherian ring, and so is Noetherian, and
hence a Dedekind domain. All local rings at closed points are DVRs, and mB = me11 . . .merr . Now

n = lengthA(B/mAB)

=
∑

lengthA(B/mie
eiB)

=
∑
i

eilengthA(B/miB)

=
∑
i

ei[k(mi) : k(mA)].

Definition 7.25.1. Let X be a Noetherian scheme. (More general machinery is developed in EGA, but we
follow Hartshorne’s treatment).

1. An effective Cartier divisor on X is a closed subscheme D ↪→ X so for all x ∈ D there is an affine open
SpecA 3 x, so D ∩ SpecA = SpecA/〈f〉 for f a nonzerodivisor f ∈ A. Equivalently, ID ⊆ OX the
ideal sheaf of D is an invertible sheaf of OX -modules.

2. A Weil divisor on X is a finite formal sum D =
∑
nZ [Z] with nZ ∈ Z and Z ⊆ X is a subscheme of

codimension 1.

3. A prime divisor Z ⊆ X is an irreducible, reduced closed subscheme such that dimOX,η = 1 where
η ∈ Z is the generic point of Z.

4
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The way to think about these discussion is the following: the effective Cartier divisor is the correct tech-
nical notion for general schemes, but in nice settings (eg. smooth algebraic varieties and especially curves,
over a field) the notion of effective Cartier divisor and Weil divisor agree. The question is: how do we pass
between Weil divisors and Cartier divisors?

Let D be an effective Cartier divisor, so that

[D] =
∑

ζ∈Z⊆X

lengthOX,ξ(OD,ξ)[Z]

where Z is a prime divisor and ξ ∈ D. Here ξ ∈ D if and only if {ξ} = Z ⊆ D; this works because if ξ ∈ D,
then OD,ξ = OX,ξ/〈f〉 for some non zerodivisor f ∈ OX,ξ, and thus dimOD,ξ = dimOX,ξ − 1 = 0.

Let’s talk about pulling back divisors. Unfortunately, this is not always possible, as in the picture below:

Q Q′

P

f

We cannot pull back the Weil divisor [P ] of the singular point P (since it should be f∗[P ] = 1
2 [Q] + 1

2 [Q′]).
However, you can pull back in the following setting:

Example 7.25.2. Let f : X → Y be a morphism of Noetherian schemes, and let D ↪→ Y be an effective
Cartier divisor; we [“have”?] f−1(D) as a fiber product:

f−1(D) D

X Y
f

Here f−1(D) is an effective Cartier divisor. An important special case is when f : X → Y is a dominant
morphism of varieties, since k(Y ) ↪→ k(X). Here f∗D = f−1(D). 4

Remark 7.25.3. Cartier divisors and invertible sheaves form a cohomology theory. Weil divisors form a
homology theory. Cohomology naturally pulls back. Homology naturally pushes forward, but doing the
reverse is tricky. 4

Lemma 7.25.4. Let Y be a regular (normal) curve. Any Weil divisor D on Y can be written uniquely as
D = [D1]− [D2] where Di ↪→ Y are effective Cartier divisors and D1 ∩D2 = ∅.

Proof. Let

D =
∑
y∈|Y |

ny[y] =
∑
ny>0
y∈|Y |

ny[y] +
∑
ny<0
y∈|Y |

ny[y]

and setting D1 =
∑
ny>0 ny[y] and D2 =

∑
ny<0 ny[y]. Note that each [y] is associated to an effective Cartier

divisor I(y). So ∑
ny[y]↔ I(y)⊗ny .
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Note that

I(y)x =

{
OY,x x 6= y

my x = y

Example 7.25.5. Let P1
k = Proj k[T0, T1] and let t = T0/T1. Consider the Weil divisor 3[t = 0] + 5[t = 17].

We get

Spec k[t]/〈(t− 17)5t3〉 Spec k[t] P1
C

closed open

and since the image set is closed (only true for curves!), the composition is a closed immersion. Hence D is

a closed subscheme of P1
k and so is a Cartier divisor. 4

Consider the special case of Weil divisors on curves. Let f : X → Y be a dominant (ie. non constant)
morphism of curves, and Y is regular. Given any Weil divisor D on Y , we have D = D1 − D2 by lemma.
We have f∗D = [f∗D1]− [f∗D2], where f∗Di are pullbacks of Cartier divisors.

Example 7.25.6. Consider the map

ProjC[S0, S1] = P1
C

ϕ−→ P1
C = ProjC[T0, T1]

T0 7→ S2
0

T1 7→ S2
1

On an affine open SpecC[t], ϕ corresponds to a finite morphism

SpecC[s] = A1
C

ϕ−→ A1
C = SpecC[t]

corresponding to a finite ring extension C[t] ↪→ C[s] given by t ↪→ s2. We have ϕ−1(SpecC[t]) = SpecC[s]
because C[s] is the integral closure of C[t] in C(s). For D as in the previous Example 7.25.5 we have

ϕ∗(D) = [ϕ−1D]

= [SpecC[s]/〈s6(s2 − 17)5〉]

= 6[s = 0] + 5[s =
√

17] + 5[s = −
√

17].

4

Definition 7.25.7. Given a Weil divisor D =
∑
x∈|X| nx[x] on a curve X, set

degD =
∑
x∈|X|

nx[k(x) : k].

4

The finiteness of [k(x) : k] is not obvious, for example over C it is Hilbert’s Nullstellensatz. We have

Lemma 7.25.8. Any nonconstant proper morphism between curves over a field k is finite. More generally,
any proper morphism with finite fibers is finite.

See Hartshorne for a proof.

Theorem 7.25.9. Let f : X → Y be a nonconstant (equivalently, dominant) morphism of projective regular
(equivalently, proper regular) curves over a field k. Let n = [k(X) : k(Y )] = deg f . Then for all y ∈ |Y |, we
have

deg(f∗[y]) = n · deg[y].

So by linearity, for all Weil divisors D on Y , we have

deg(f∗D) = n · degD.
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Proof. Let y ∈ |Y |, and choose an affine open neighborhood Y of y. By Lemma 7.25.8 we have f−1(SpecA) = SpecB
affine, and A→ B is finite. Since X is regular, B is integrally closed. Hence we have

Amy k(Y )

Bmy k(X)

with Bmy containing maximal ideals mx1 , . . . ,mxr .This gives myBmy = me1x1
. . .merxr . Then

deg(f∗[y]) = deg[f−1(y)]

= deg

( r∑
i=1

lengthOX,xi
(k(y)⊗OX,xi)[xi]

)

=

r∑
i=1

lengthBmxi

(
Bmxi

myBmxi

)
[k(xi) : k]

=

r∑
i=1

dimk(xi)

(
Bmxi

meixiBmxi

)
[k(x) : k(y)][k(y) : k]

=

r∑
i=1

ei[k(x) : k(y)][k(y) : k]

= [k(X) : k(Y )] · [k(y) : k]

= n · deg([y]).
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7.26 Apr 30, 2019

Today we will flesh out the correspondences

{divisors}

{line bundles} {invertible sheaves}

Let X be a noetherian scheme and L an invertible sheaf. Pick an s ∈ Γ(X,L).

Definition 7.26.1. We say s is a regular section if OX
·s−→ L is injective. 4

We let Z(s) := largest closed subscheme Z of X such that s|Z ≡ 0. In other words, this is kind of the
max of the {ι : Z ↪→ X such that 0 = ι∗s ∈ Γ(Z(s), ι∗L)}. The subtlety is in the schematic structure here.

Locally, if we choose a trivialization ϕU : LU ∼= OU , then ϕU (s) = f ∈ Γ(U,OX) and Z(s) ∩ U = Z(f).

Example 7.26.2. If U = SpecA, then Z ∩ U = SpecA/〈f〉. 4

Note that s regular implies that f is a nonzerodivisor. Hence s is a regular section if and only if Z(s) is
an effective Cartier divisor.

Example 7.26.3. If we know X is integral, then s is regular if and only if s 6= 0. 4

Lemma 7.26.4. Let X,L, s be as above, with s regular. Let D = Z(s). Then L ∼= I−1
D
∼= HomOX (ID,OX).

Proof. Equivalently, this is the statement that L ⊗OX ID ∼= OX . We see that L ⊗OX ID → OX . Then
locally, (s′, f) 7→ (fs′/s) is an isomorphism.

Conversely, if D ↪→ X is an effective Cartier divisor, we have

OX(D) := I−1
D
∼= HomOX (ID,OX)

is an invertible sheaf; this has a canonical section associated with D, denoted 1D, where Z(1D) = D.

Here’s a question: given D and D′, when is OX(D) ∼= OX(D′)?

Lemma 7.26.5. If X is integral, then OX(D) ∼= OX(D′) if and only if there is f ∈ k(X)∗ such that for all
SpecA ⊆ X affine open with D ∩ SpecA = SpecA/〈a〉 and D′ ∩ SpecA = SpecA/〈a′〉, then f = u · a/a′
with u ∈ A×.

Proof. If ϕ is an isomorphism OX(D)
∼=−→ OX(D′), then ϕ(1D) = f · 1D′ .

Definition 7.26.6. Let X be integral and Notherian, and let f ∈ k(X)∗. We have a Weil divisor

div(f) :=
∑

ξ∈Z⊆X

ordξ(f)[Z]

where ξ is a generic point in a prime divisor Z, and ordξ(f) := length(OX,ξ/〈a〉) − length(OX,ξ/〈b〉) and
a, b ∈ OX,ξ is such that f = a/b ∈ Frac(OX,ξ) = k(X). 4

We define the notation ClX := {Weil divisors on X}/{principal divisors on X}. Now we have

Lemma 7.26.7. On a regular curve X,

ClX
∼=−→ PicX = {line bundles}/ ∼

D 7→ OX(D1)⊗OX(D2)−1

where D = D1 −D2, for D1, D2 effective Cartier divisors.
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Proof. By Lemma 7.26.5, this map is well defined and injective. It remains to show surjectivity. There’s
some group structure also preserved but we won’t dwell too much on it.

Observation 7.26.8. Any L which has a nonzero section is isomorphic to OX(D1) for some effective divisor
D1. So it is enough to show that given an arbitrary L, there exists some D2 effective such that L(D2) has a
nonzero global section.

So pick a nonempty affine U ⊆ X such that Γ(U,L) 6= 0. Pick any nonzero section s ∈ Γ(U,L). Then
X \ U = {x1, . . . , xn} consists of finitely many closed points. Then for N sufficiently large, s extends to a
section of L⊗OX OX(N([x1] + · · ·+ [xr])) (for example, say s is a rational section of L⊗OX k(X); then any
N ≥ maxi∈[r]{ordxi(s)} works). 4

So here D1 corresponds to s and D2 corresponds to N([x1] + · · ·+ [xr]).

Lemma 7.26.9. On a nonsingular projective curve X, the degree of any principal divisor is 0.

Proof. Pick any f ∈ k(X)∗; we may assume f is finite over k: if not, it’s convention to set div(f).

We have a morphism f : X → P1 corresponding to the map k(t) ↪→ k(X) on the algebra side given by
t 7→ f . Here, note that div(f) = f∗([0]−[∞]), and deg(div(f)) = deg f∗([0])−deg∗([∞]) = deg f−deg f = 0.

As a consequence of this discussion, the degree of an invertible sheaf L on a regular projective curve is
well defined, so that if

L ∼= OX(D1)⊗OX(D2)−1

then
deg(L) := deg(D1)− deg(D2).

Example 7.26.10. We have PicP1
k
∼= Z with isomorphism given by degree. 4

Proof. Since PicX ∼= ClX, it is enough to show that every degree 0 Weil divisor is principal. There are two
cases:

• If k is algebraically closed, then any degree 0 divisor is of the form∑
i

ai[αi]−
∑
j

bj [βj ]

with ai, bj > 0 and
∑
i ai =

∑
j bj . By a linear change of coordinates we can assume without loss of

generality that [αi], [βj ] 6=∞, and now just take div(f) for

f =

∏
(t− αi)αi∏
(t− βj)βj

,

which is regular at ∞ because
∑
ai =

∑
bj .

• If k is not algebraically closed, then k(αi) ∼= k[t]/〈fi〉 for some f ∈ k[t] monic and irreducible (and
similarly k(β − j) ∼= k[t]/〈gj〉 for g ∈ k[t] monic and irreducible). Thend egree 0 means that∑

ai deg fi −
∑

bj deg gj = 0

and now we can take div(f) for

f =

∏
i f

ai
i∏

j g
bj
j

.

Example 7.26.11. Let X be nonsingular and projective over algebraically closed k, and suppose PicX ∼= Z.
Then X ∼= P1

k. 4
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Proof. Pick x1, x2 ∈ X closed points Then PicX ∼= Z means that [x1]− [x2] = div(f) for some f . Consider
f : X → P1

k. Note that f∗([0]) = [x1] implies that f is of degree 1. We have k(X) is a degree 1 extension of
k(P1). Since X is regular and projective, we have P1

k
∼= X.

Warning. In general, PicA1
R 6∼= Pic SpecR and PicP1

R 6∼= PicR × Z. But for “nice” R, for example if it
is regular in codimension 1, these isomorphisms do hold.

Motivation for next semester. Why is it natural to introduce cohomology in scheme theory?

A natural question that one can ask is the following. Suppose X is some scheme so that the reduced
scheme Xred is affine. Is X itself affine?

The answer is yes, but the proof is extremely tough. Even in the Noetherian case, the proof uses Serre’s
cohomological criterion for being affine: If X is affine, coherent sheaves over OX have no higher cohomology
because global sections allows you to recover your M̃ ; Serre proved the converse of this.

Here’s another question. Let X be a scheme over a field k. If Xred is projective, then is X projective?

The answer here is no (this is also proven via cohomology).
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7.27 May 2, 2019

Today we’ll talk about ample invertible sheaves. The motivation comes from the fact that very ample
line bundles have enough global sections to embed into some Pn. But from the point of view of sheaf theory,
it is more natural to study ample line bundles: roughly, an ample line bundle L is a line bundle where L⊗n
for some n ≥ 1 is very ample.

Definition 7.27.1 (EGA). [different from Hartshorne, as we’ll see below]

1. We say that an invertible sheaf L on X is ample if

(a) X is quasicompact

(b) for all x ∈ X, there is s ∈ Γ(X,L⊗n) for some n ≥ 1, so that

Xs = {x ∈ X : s generates LX as an OX,x-module}

is affine.

2. We say f : X → S is projective if there is

X P(E) = Proj S(Sym∗E)

S

where E is a quasicoherent OS-module of finite type (locally on S, E|SpecA = M̃ for M a finite type
A-module, then P(E)|SpecA = Proj (Sym∗AM)).

3. We say L is relatively ample if for all V ⊆ S open affine L|f−1(V ) is ample on f−1(V ).

4. We say L is relatively very ample if there exists an immersion

X P(E) = Proj S(Sym∗E)

S

ι

such that L ∼= ι∗OP(E)(1) for some quasicoherent sheaf E of finite type.

5. We say f : X → S is quasi-projective if f is of finite type and admits a relatively ample invertible
OX -module.

4

Contrast this with Hartshorne’s definitions (who most importantly assumes Noetherianity):

Definition 7.27.2. Let X be noetherian and let L be an invertible sheaf on X.

1. We say L is ample if for all coherent sheaves F on X, there is d0(F) such that F ⊗On L⊗d is globally
generated for all d ≥ d0

2. We say f : X → S is projective if there exists a closed immersion

X PnS

S
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3. We say f : X → S is quasiprojective if f factors

X X ′ S
open immersion projective as in (2)

4

Lemma 7.27.3. Let S = SpecR with R Noetherian, and let f : X → S is proper and L is an invertible sheaf
on X. Suppose for all F coherent, there is d(F) ∈ Z such that for all d ≥ d(F) we have H1(X,F⊗OXLd) = 0.
Then L is ample.

The converse is not true, for example OA2
C\{0} is ample, but has nonzero H1(A2

C \ {0},OA2
C\{0}).

Proof of Lemma 7.27.3. Pick a closed point x ∈ |X|. Then we have jx : {x} ↪→ X giving

0 Ix OX (jx)∗k(x) 0

and twisting by L⊗d gives

0 Ix ⊗ L⊗d L⊗d L⊗d ⊗ k(x) 0

and we have Γ(X,L⊗dk(x)) ∼= k(x), though this isomorphism is non-canonical.

By assumption, we can pick si ∈ Γ(X,L⊗i) for all i ∈ {d(Ix), 2d(Ix)− 1} with si(x) 6= 0. Then

Ux =

2d(Ix)−1⋂
i=d(Ix)

Xsi .

We see that for all x′ ∈ Ux and for all d ≥ d(Ix), there is s ∈ Γ(X,L⊗d) such that s(x′) 6= 0 (for example,
we can take s = smd(Ix) · sd−md(Ix)). Since X is quasicompact,

X = Ux1 ∪ · · · ∪ Uxt for xi ∈ |X|.

Then d0(OX) = maxi=1,...,t{d(Ixi)}. Hence for all d ≥ d0(OX), L⊗d is globally generated.

Since we have this for OX , for a general coherent sheaf, apply the same argument to

0 IxF F F ⊗OX k(x) 0

Lemma 7.27.4. Suppose X is Noetherian. Then if L is ample in the sense of Hartshorne (Defnition 7.27.2),
then L is ample in the sense of EGA (Definition 7.27.1).

Proof. Pick x ∈ X and an affine open U ⊆ X containing x. Let I be an ideal sheaf of X \ U . Since X is
Noetherian, I is coherent. By assumption, there is sufficiently large d and s ∈ Γ(X, I ⊗L⊗d) with s(x) 6= 0.
Then XS ⊆ U by construction, and we can check directly that it’s affine. Alternatively, we could have
assumed L|U ∼= OU , and then XS = D(f) where s↔ f ∈ Γ(U,OU ).

Lemma 7.27.5. Let X be Noetherian and L is ample in the sense of EGA (Definition 7.27.1). Then

X P(Γ∗(X,L))
open immersion

where Γ∗(X,L) =: ⊕d≥0Γ(X,L⊗d).

Proof. For all s ∈ Γ(X,L⊗d), we consider D+(s) = Spec (Γ∗(X,L)〈s〉) ⊆ P(Γ∗(X,L)). We want
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X P(Γ∗(X,L))

Xs D+(s)

Pick an s such thatXs is affine, and by assumption suchXs’s coverX. By construction, OX(Xs) = Γ∗(X,L)〈s〉.
Then ψs : Xs → D+(s), then all these agree on overlaps.

Proposition 7.27.6. If X is proper over S = SpecA, with A noetherian, and if we have an invertible line
bundle L on X such that for all coherent F on X, there exists d(F) such that for all d ≥ d(F), we have
H1(X,F ⊗ Ld) = 0, then X ∼= Proj (Γ∗(X,L)), and for d sufficiently large, this is just ψ∗O(d).

Proof. By the lemma above, ψ is an open immersion. We have

X Proj (Γ∗(X,L))

SpecA

ψ

proper π

Since we are separated, im (ψ) is closed implies Proj (Γ∗(X,L)) = ψ(X)
∐
Y . Suppose Y 6= ∅. Then

D+(s) ⊆ Y for some s. Then Xs = ∅ implies s is a nilpotent. So D+(s) = D+(sN ) = D+(0) = ∅, which is a
contradiction.

Remark 7.27.7. Each H0(X,Ld) is a finite A-module. But more importantly, Γ∗(X,L) is a finitely gener-
ated A-algebra. But note the importance of this last result, eg. C[x, y] is finitely generated in each degree,
but C[x, xy, xy2, xy3, . . . ] is not finitely generated). 4

Summary. Suppose we have f : X → S = SpecR which is proper, and R is noetherian. Let L be an
invertible sheaf on X, and consider the following three conditions for all coherent sheaves on X

(a) H1(X,F ⊗ Ln) = 0 for n sufficiently large

(b) F⊗Ln is globally generated for n sufficiently large (ample in the sense of Hartshorne (Definition 7.27.2))

(c) For all x ∈ X, there is s ∈ Γ(X,Ln), for some n ≥ 1 such that x ∈ Xs and Xs is affine (ie. ample in the
sense of EGA (Definition 7.27.1))

We showed that (a) implies (b) implies (c). In fact (c) implies (a), so these three are all equivalent, but this
is much more involved to show. We showed that in this case, we have X ∼= Proj (Γ∗(X,L)).

Proposition 7.27.8. If f : X → S = SpecR is proper, and R is Noetherian, and any of the (equivalent)
conditions (a), (b), (c), then Γ∗(X,L) is a finitely generated R-algebra.

Warning. If X is a quasicompact scheme with L an invertible sheaf on X such that (c) is true, then:

(i) X ⊆ Proj (Γ∗(X,L)) is an open immersion, and

(ii) L is an ample invertible sheaf in the sense of EGA.

However, here Γ∗(X,L) is not necessarily finitely generated. For example, one can take k to be a field,
X = Proj (k[u, v, z1, z2, z3, . . . ]/I) where I = 〈z2

i − u2i〉, and deg u = deg v = 1 and deg zi = i. Then:

1. X = D+(u) ∪D+(v)

2. OX(1) is an invertible sheaf on X, and OX(n) ∼= OX(1)⊗n

3. Γ(X,OX(n)) = (k[x, y, zi]/I)n is the degree n part of k[x, y, zi]/I

However, k[u, v, z1, z2, . . . ] is not finitely generated, and X → Spec k is not proper and not of finite type.
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Proof of Proposition 7.27.8. We first try to find a closed immersionX ↪→ PmS . To do this, choose s ∈ Γ(X,Ldi),
with i = 0, . . . , n such that

X =

n⋃
i=0

Xsi .

The quasicompactness of X says we can choose this finite cover. Since X/S is of finite type, write
Ai = R[ai1, . . . , aini/I with Ai = OX(Xi) ∼= Γ∗(X,L)〈xij〉. Choose sij ∈ Γ(X,Lejdi) such that s

ej
i aij

extends to a global section sij for j = 1, . . . , ni. Let N = lcmi,j(di, eijdi).

Consider ϕ : ϕLN : X → PmS defined by 〈sN/d00 , . . . , s
N/dn
n , sijs

N/di−eij
i , . . . 〉, where m := n+

∑
i ni. Since

Xsi = X
s
N/di
i

for i = 0, . . . , n cover X, we get that ϕ is a morphism. It remains to show that ϕ is a closed im-

mersion. Since X/S is proper, ϕ(X) is closed. Let PmS = Proj (R[Ti, Tij ]), and note that ϕ−1(D+(Ti)) = Xsi .
These cover X.

So on the algebra side we have

R

[
T0

Ti0
, . . . ,

Tn
Ti0

,
Tij
Ti0

]
→ OX(Xi0)

Ti0j
Ti0
7→

(si0j . . . s
N
i0
−ei0j

i0
)

s
N
i0
i0

=
si0j

s
ei0 j
i0

= ai0j

and so this is surjective, and hence ϕ is closed in
⋃n
i=0D+(Ti) and hence is an immersion. So there is a

closed immersion such that ι∗OPmS (1)
∼= L⊗N for some N > 0. Finally, we have

Γ∗(X,L) =
⊕
n≥0

Γ∗(X,Ln)

=
⊕
n≥0

( N⊕
ni=0

Γ(X,L⊗(ni+nN))

)

=
⊕
n≥0

( N−1⊕
ni=1

Γ(PmR , ι∗L⊗(ni+nN))

)

=
⊕
n≥0

( N−1⊕
ni=1

Γ(PmR , ι∗(Ln ⊗ ι∗OPmR (n)))

)

=
⊕
n≥0

( N−1⊕
ni=1

Γ(PmR , ι∗Ln ⊗OPmR (n))

)

=
⊕
n≥0

(
Γ

(
PmR , ι∗

( N−1⊕
ni=0

Lni
)
⊗OPmR (n)

))

So F = ι∗(⊕N−1
ni=0Lni) a coherent sheaf on PmR . But for all coherent sheaves on PmR with R noetherian, then

for all k ∈ Z, ⊕n≥kΓ(PmR ,F(n)) is a finite R[T0, . . . , Tm]-module.
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7.28 May 7, 2019

[There is a revision assignment. There will be more details either by email or on the website. You will
be able to redo old problems on homeworks and get credit. There is a pseudo-final. It will be a cumulative
homework assignment where there will be material from each section from Hartshorne. This will also be an
opportunity for extra credit. Again, there will be more details either by email or on the website. This will
be done individually.]

Why is algebraic geometry so interesting?

There’s a theory of moduli spaces.

One phenomenon that occurs in algebraic geometry that does not appear as much even in nearby fields
(eg. in complex analytic geometry) is that moduli spaces of algebrogeometric objects is also an algebro-
geometric object. Examples include classifying algebraic curves of genus g (ie. “Mg”), or 1-dimensional
subspaces of Rn (ie. PnR), or even finite sets. So the moduli space of compact Riemann surfaces (which are
indeed algebraic curves) are nice, whereas allowing for noncompact ones is not so nice.

The question is to classify means of to have some notion of “equivalence” for such objects. How do we
know what a “good” equivalence condition is?

Note also that in algebraic geometry, we also want to think of such objects in families, which usually
means flat maps X → B to some base B.

Now the goal is that after picking objects, equivalence relations, and a notion of family, then the set of
objects up to isomorphism is something nice (a variety, scheme, stack, etc.)

Example 7.28.1 (Quadruples of points in P1). We want to classify (p1, p2, p3, p4) distinct points in P1. A
family 4-tuples of points over a base B is a diagram

B × P1

B

π σ1

σ4

where the four sections are disjoint. So the moduli space of 4-tuples is

(P1 × P1 × P1 × P1) \ {diagonals of all n-tuples in the 4-tuple}

Then on points, Q = {(p1, p2, p3, p4)}. But what what about on families? For example, we have

{(p1, p2, p3, λp4) : λ ∈ k}

B = A1
k

Observe that Q has a universal family (ie. a tautological family)

Q× P1

Q

with σi(p1, . . . , p4) = pi. This is tautological. It is also universal, because for any family
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B × P1 Q× P1

B Q
ϕ

that is if we have section x 7→ (x, σi(x)) and ϕ : B′ → B then the pullback family along ϕ is x 7→ (x, σi(ϕ(x))),

and we have B
ϕ−→ Q given by b 7→ (σ1(b), . . . , σ4(b)). The existence of this universal family is what allows

our moduli to “vary in families”, any moduli space with such a universal family is a fine moduli space.
Another way of characterize is that families X → B correspond to homomorphisms ϕ : B → Q. 4

Unfortunately not everything has a fine moduli space. For example, GIT was invented because for many
G-invariant problems in algebraic geometry, if we wanted the moduli space to be a scheme, then it is impos-
sible to get a fine moduli space.

Here are first observations about moduli spaces.

Observation 7.28.2. We have that

• An object is just a family over B = {∗}. Hence we have a bijection between objects (up to isomorphism)
that we are classifying and our moduli space.

• The universal family is always tautological: if M is a moduli space, then x ∈ M corresponds to Cx
some object we are classifying. If ι : {x} ↪→M is the inclusion and π : U →M is some family over M ,
then ι∗U ∼= Cx for some family Cx → {∗}. On the other hand, ι∗U = π−1(x), and hence Cx = π−1(x)
always.

4

Example 7.28.3. We look at 4-tuples in P1 but up to projective equivalence, not isomorphism. Here pro-
jective equivalence means that p ∼ q whenever there is an automorphism of P1 mapping p to q (recall that
automorphisms of P1 are Möbius transformations z 7→ az+b

cz+d , and any three given points are mapped to any
tree given points by a unique automorphism).

Given a point p = (p1, p2, p3, p4), we have a quantity λ(p) ∈ P1 \ {0, 1,∞} called the cross-ratio defined
to be the image of p4 under the (unique) automorphism that sends p1 7→ 0, p2 7→ 1, p3 7→ ∞. Now p ∼ q if
and only if λ(p) = λ(q). Thus, we have a bijection

M0,4 := {(p1, p2, p3, p4)}/ ∼proj←→ P1 \ {0, 1,∞}.

Here M0,4 is the moduli space of genus 0 curves with 4 marked points.

Does there exist a universal form? The answer is yes: we have

M0,4 × P1

M0,4

σ1

σ4

given by σ1(p) = 0, σ2(p) = 1, σ3(p) = ∞, σ4(p) = p4. Note that the fiber over p is a quadruple with cross
ratio p (it’s trickier to show, but it’s true). 4

Example 7.28.4. Here are familliar examples of other fine moduli spaces:

• Pn (more generally Grassmannians)

• N, the moduli space of finite sets up to bijection.

4
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However, fine moduli spaces don’t always exist.

Example 7.28.5. Consider the moduli spaces of 1-dimensional vector spaces up to isomorphism. We expect
the moduli space to be a point. Now suppose we have a family of 1-dimensional spaces, that is to say, a
line bundle over a base B. There are two nonisomorphic line bundles on S1 (namely the trivial one and the
Möbius strip), and because M = {∗} these must induce the same map to M . 4

The underlying problem is that the objects of the moduli problem have nontrivial isomorphisms. In this
situation, a fine moduli space generally does not exist.

Historically, there are three methods to get a fine moduli space:

1. Modify the moduli problem to impose extra structure which kills the automorphisms (this is commonly
done in number theory, where you impose extra symmetries, so you might have an abelian variety and
impose that it maps a subgroup to a subgroup).

2. Maybe be okay without a universal family, and the bijection is enough (this is classic, so Riemann did
this and calculated eg. the dimension of the space)

3. Look at the moduli stack instead of the space.

Approach 1. Let us try approach 1 above to our problematic Example 7.28.5. For one dimensional
vector spaces up to isomorphism, we can fix the datum of 1 ∈ V . If an isomorphisms has to send 1 to 1,
then there are no nontrivial automorphisms. Families now are no longer line bundles; they are line bundles
with a nowhere vanishing section. Then the Möbius strip is no longer a family, for example. In fact, every
family over every base B is trivial, and {∗} is now a fine moduli space for our problem.

Usually, one might be able to fix datum that is natural to the object we are studying.

Approach 2. Now, moduli problems can be described as a contravariant functor

F : Sch→ Sets

B 7→ F (B) = families over B/ '
ϕ 7→ F (ϕ) = pullback map on families

and now a fine moduli space exists if and only if F is representable, so F ' hM = Hom(−,M). This
equivalence is given by Yoneda’s lemma: the isomorhpism U : hM → F can be viewed as an object in
F (M) = {families over M}/ ' (ie. it is the tautological family). Note that for all schemes B,

{families over B}/ '←→ {morphisms B →M}.

Definition 7.28.6. A coarse moduli space for F is a pair (M,V ) where M is a scheme and V : F → hM is
a natural transformation (not necessarily an isomorphism) such that (M,V ) is initial among all such pairs
and on sets V{∗} : F ({∗})→ Hom({∗},M) is a bijection. 4

Thus points of M are in bijection with objects we’re trying to classify.

Example 7.28.7. Recall the setup of Example 7.28.5. Now, {∗} is a coarse moduli space for 1-dimensional
vector spaces up to equivalence. 4

Approach 3. Harrison talked briefly about moduli stacks. An example of these (just a baby case) are
orbifolds, which are like manifolds but with local spaces looking like Rn/G for a finite group G.

For X a manifold and G a finite group, X/G can be viewed as a groupoid (a category with all morphisms
being isomorphisms). Then any orbifold can also be viewed as a groupoid by gluing the local pieces together.
Using this groupoid perspective, we can obtain a fine moduli space.

Example 7.28.8. Consider the category [X/G] where the objects correspond to elements of X and mor-
phisms correspond to elements of X × G. Given a scheme B, an orbifold morphism B → [X/G] is defined
such that they’re in bijection with pairs (p, φ) such that p : P → B is a principal G-bundle, whatever those
are, and φ : P → X is a G-equivariant map. 4
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Example 7.28.9. If we have [∗/G], then orbifold morphisms B → [∗/G] are in bijection to with principal G-
bundles over B, so [∗/G] is a classifying space (more precisely, a stack) for principal G-bundles. In particular,
the moduli stack of 1-dimensional vector spaces over C is just [∗/C∗], because a line bundle over B is the
same as a principal C∗-bundle, where we send L 7→ L \ {0-section}. 4
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