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1 Ideals and Varieties
1.1 Aug 29, 2019

[I am grateful to Anmol, whose notes I am copying from.]

Our professor’s name is Karola Mészáros. Her website is here, and her email is karola@math.cornell.edu.
Our TA is Avery St. Dizier.

In linear algebra, we studied solutions to a set of linear equations. For example, we may have the two
equations (in three variables (x, y, z)) {

x− y + z + 2 = 0

x− 2y + z − 6 = 0

and ask for tuples (x, y, z) satisfying both equations. Hopefully we all remember an algorithm that allows
us to decide whether there are solutions (check the rank of a matrix), and how to describe the set of solutions
(free variables, ...), and so on.

We’re interested in studying systems of polynomial equations. For example, we may have the two equa-
tions (in three variables (x, y, z)) {

x2 + y2 − 1 = 0

2x+ y2 − 3z = 0

and, as before, ask for tuples (x, y, z) satisfying both equations. Can we find an algorithm that allows us to
decide whether there are solutions? Can we describe the set of solutions?

As in linear algebra, we have to specify whether we are solving our equations for real numbers (x, y, z),
or for complex numbers (x, y, z), or perhaps even for rational numbers (x, y, z), and so on. These are all
examples of fields, and we will usually denote fields by k. (It may be useful to read a bit about fields, but if
you’re uncomfortable with them, just think k = R,C,Q.)

We understand how to solve systems of linear equations, from linear algebra. We also understand how
to solve “systems” of one polynomial equation, at least over C:

Theorem 1.1.1 (Fundamental Theorem of Algebra). Any nonconstant polynomial

f = anx
n + an−1x

n−1 + · · ·+ a0 = 0,

with ai ∈ C, has a root.

Let’s make some definitions precise.

Definition 1.1.2.

1. A monomial in x1, . . . , xn is a product
xα1
1 . . . xαn

n ,

whereαi ∈ Z≥0 are nonnegative integers andxi are variables. We writex to denote the tuple (x1, . . . , xn)
and α to denote the tuple (α1, . . . , αn) ∈ Zn≥0. Then we abbreviate

xα = xα1
1 . . . xαn

n

and say that xα has total degree |α| =
∑
αi.

2. A polynomial in x1, . . . , xn over a field k is a finite linear combination of monomials with coefficients
in a field k. We write

p(x1, . . . , xn) =
∑
α∈A

aαx
α,

where A ⊂ Zn≥0 is a finite subset of the set of n-tuples of nonnegative integers.
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3. The set of polynomials innvariables is written k[x1, . . . , xn], and it’s called the polynomial ring in n-variables.
[It is a ring, which has a specific definition, but that won’t be important for us.] Importantly, the sum
and product of two polynomials is again a polynomial.

4. When aα 6= 0, then aαxα is called a term of p.
5. For a field k and n ∈ Z≥0, the n-dimensional affine space over k is denoted

kn = {(a1, . . . , an) : ai ∈ k for all i ∈ {1, . . . , n}}.

We call k1 the affine line and k2 the affine plane. [We also use [n] to denote the set {1, . . . , n}.] 4

Note that a polynomial
f =

∑
α

aαx
α ∈ k[x1, . . . , xn]

gives rise to a function kn → k, which we also call f . This function f : kn → k sends (a1, . . . , an) to
f(a1, . . . , an) [i.e., plug ai in for xi in the formula defining f ].

In light of this discussion, it is ambiguous what we mean when we ask “is f = 0?”, since we may be
asking whether f = 0 as a polynomial, meaning that all the coefficients are zero, or whether f is the zero
function, meaning that the polynomial vanishes on kn.

Let us describe a field k that has two elements. This field is denoted F2, and the two elements of F2 are
0 and 1. Then we define

0 + 0 = 1 + 1 = 0, 0 · 0 = 1 · 0 = 0 · 1 = 0,

0 + 1 = 1 + 0 = 1, 1 · 1 = 1.

Let us return to the discussion above (about f = 0). It is not too hard to check that the polynomial
f = x2 + x ∈ F2[x] is zero as a function. However, it is not zero as a polynomial. [This is really sad!]

Thankfully, this issue does not arise when k is infinite.

Proposition 1.1.3. If k is an infinite field, and f ∈ k[x1, . . . , xn], then

f is the zero polynomial ⇐⇒ f : kn → k is the zero function.

Proof. The forward direction is trivial.

The backward direction asks us to show that if f(a) = 0 for all a = (a1, . . . , an) ∈ kn, then f is the zero
polynomial. The proof is by induction on the number of variables n. Let us assume, for now, the following
fact (we’ll prove it at some point!)

Theorem 1.1.4. Every nonzero polynomial f ∈ k[x] of degree m has at most m distinct roots.

Now the base case of the induction is that if f ∈ k[x] such that f(a) = 0 for all a ∈ k then f is the zero
polynomial. This follows from Theorem 1.1.4 above, because if a polynomial has infinite roots then it is the
zero polynomial. (Here we are using that k is infinite!)

The inductive hypothesis says that for f ∈ k[x1, . . . , xn], then if f(a1, . . . , an−1) = 0 for all (a1, . . . , an−1) ∈
kn−1 then f(x1, . . . , xn−1) is the zero polynomial.

With this hypothesis, we need to show that if f ∈ k[x1, . . . , xn] and f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈
kn, then f is the zero polynomial. Let us write

f(x1, . . . , xn) =

N∑
i=0

gi(x1, . . . , xn−1)xin,

4



where gi ∈ k[x1, . . . , xn−1]. Our goal is to show that each gi is the zero polynomial, because this would
imply that f is the zero polynomial.

To show that the gi are zero polynomials, let us fix any (a1, . . . , an−1) ∈ kn−1. Let us consider the
univariate polynomial f(a1, . . . , an−1, xn) ∈ k[xn]. Then f(a1, . . . , an−1, xn) = 0 has infinitely many solu-
tions xn ∈ k, so Theorem 1.1.4 implies f(a1, . . . , an−1, xn) is the zero polynomial in k[xn]. This means that
gi(a1, . . . , an−1) = 0 for all i.

Since this argument holds for every (a1, . . . , an−1) ∈ kn−1, the polynomial gi(x1, . . . , xn−1) has infinitely
many roots (we showed gi(a1, . . . , an−1) = 0 for any choice of (a1, . . . , an−1), after all.)

The inductive hypothesis implies that gi is the zero polynomial, and hence the coefficients of f are all
zero, and hence f is the zero polynomial.
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1.2 Sept 3, 2019

[I am grateful to Anmol, whose notes I am copying from.]

[We’re going to have two prelims in this course. The first one will happen on October 10, and the second
will happen on November 21.]

Let’s talk about affine varieties today. This is a familiar concept, but with a different name.

Let k be a field, and let f1, . . . , fs ∈ k[x1, . . . , xn]. We write

V(f1, . . . , fs)
def
= {(a1, . . . , an) ∈ kn : fi(a1, . . . , an) = 0 for all i ∈ [s]}.

Example 1.2.1. Examples include:

• V(x2 + y2 − 1), which geometrically corresponds to the unit circle,

• The graph of a function y = f(x), which algebraically corresponds to V(y − f(x)), and

• V(xz, yz), which geometrically corresponds to the xy-plane along with the z-axis. 4

Let’s prove some basic properties of affine varieties.

Lemma 1.2.2. If V,W ⊆ kn are affine varieties, then so are V ∩W and V ∪W .

Proof. Let V = V(f1, . . . , fs) and W = V(g1, . . . , gt). We have

V ∩W = V(f1, . . . , fs, g1, . . . , gt).

This is not too hard to prove. We claim that

V ∪W = V(figj : i ∈ [s], j ∈ [t]).

To prove these two sets are equal, we should show that both inclusions V ∪W ⊆ V(figj : i ∈ [s], j ∈ [t]) and
V ∪W ⊇ V(figj : i ∈ [s], j ∈ [t]) hold.

To show V ∪W ⊆ V(figj : i ∈ [s], j ∈ [t]), we take a ∈ V and note that fi(a) = 0 for all i ∈ [s] implies
figj(a) = 0 for all i ∈ [s], j ∈ [t]. We can run a similar argument for a ∈ W , and it shows that a ∈ V ∪W
implies a ∈ V(figj : i ∈ [s], j ∈ [t]). In other words, we’ve shown V ∪W ⊆ V(figj : i ∈ [s], j ∈ [t]).

To show V ∪W ⊇ V(figj : i ∈ [s], j ∈ [t]). Let’s take an a ∈ V(figj : i ∈ [s], j ∈ [t]); if a ∈ V , then we are
done. So let us suppose a 6∈ V ; we need to show that it’s in W . If a 6∈ V , then there exists i0 ∈ [s] such that
fi0(a) 6= 0. However, fi0gj(a) = 0 for all j ∈ [t], so gj(a) = 0 for all j ∈ [t], and hence a ∈W and a ∈ V ∪W .
In other words, we’ve shown V(figj : i ∈ [s], j ∈ [t]) ⊆ V ∪W .

Note that an infinite union of varieties is not always a variety. While it is true that an infinite intersection
of varieties is always a variety, this is a fairly deep theorem that we can’t prove yet.

Once we have a variety, there are two big questions we could ask: is V(f1, . . . , fs) nonempty, and if so,
is V(f1, . . . , fs) finite or infinite?

Let us also talk about ideals.

Definition 1.2.3. We say I ⊆ k[x1, . . . , xn] is an ideal if

(1) 0 ∈ I ,
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(2) f, g ∈ I =⇒ f + g ∈ I , and
(3) f ∈ I, h ∈ k[x1, . . . , xn] implies hf ∈ I .

4

These conditions in I imply that if f1, . . . , fs ∈ I then
∑s
i=1 hifi ∈ I for every hi ∈ k[x1, . . . , xn].

Definition 1.2.4. Let f1, . . . , fs ∈ k[x]. We say

〈f1, . . . , fs〉
def
=

{ s∑
i=1

hifi : hi ∈ k[x1, . . . , xn]

}
is the ideal generated by f1, . . . , fs. (We should prove that it actually is an ideal, but this will be left as an
exercise.) The set {f1, . . . , fs} is called a basis for the ideal. 4

The ideal description problem asks whether every ideal has a finite basis. The answer is yes, and this is
called Hilbert’s basis theorem. We’ll prove this theorem later.

Example 1.2.5. In the univariate case, so k[x], the ideal

〈x〉 = {h(x)x : h(x) ∈ k[x]}

consists of the zero polynomial, along with the polynomials in k[x] without a constant term. 4

An ideal is finitely generated if there exist f1, . . . , fs ∈ k[x] such that I = 〈f1, . . . , fs〉. Of course, we call
f1, . . . , fs a basis for I .

Proposition 1.2.6. If {f1, . . . , fs} and {g1, . . . , gt} are two bases of an ideal I ⊆ k[x], then V(f1, . . . , fs) =
V(g1, . . . , gt).

Proof. This will be left as an exercise; as a starting point, begin with the observation that 〈f1, . . . , fs〉 =
〈g1, . . . , gt〉.

The moral of the Proposition 1.2.6 is that affine varieties are determined by ideals, rather than the func-
tions f1, . . . , fs.

Definition 1.2.7. Let V ⊆ kn be an affine variety. We define

I(V )
def
= {f ∈ k[x1, . . . , xn] : f(a) = 0 for all a ∈ V }.

This is called the ideal of V . 4

This naming begs the following lemma:

Lemma 1.2.8. Let V ⊆ kn be an affine variety. Then I(V ) is an ideal of k[x1, . . . , xn].

Proof. It’s straightforward to check that I(V ) satisfies the three conditions required of an ideal:

(1) We have 0 ∈ I(V ) since it vanishes on V ,
(2) If f(a) = g(a) = 0 for all a ∈ V , then (f + g)(a) = 0 as well. Thus f + g ∈ I(V ).
(3) If f(a) = 0 for all a ∈ V , then hf(a) = 0 for any h ∈ k[x1, . . . , xn]. Thus hf ∈ I(V ).
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Recall Proposition 1.1.3 from last lecture, which stated that if k is an infinite field, then f ∈ k[x1, . . . , xn]
being the zero polynomial is equivalent to f being the zero function kn → k. This proposition is really the
statement that I(kn) = {0}. (We answered the question, “Which polynomials take all of kn to zero?”)

Let f1, . . . , fs ∈ k[x1, . . . , xn]. We have functions V and I, and in particular the composite map

〈f1, . . . , fs〉 V(〈f1, . . . , fs〉) I(V(f1, . . . , fs))

sends an ideal 〈f1, . . . , fs〉 to another ideal I(V(f1, . . . , fs)). It’s natural to wonder what the relationship
between 〈f1, . . . , fs〉 and I(V(〈f1, . . . , fs〉)) is (if you’re ambitious, you might hope that they’re equal).

Lemma 1.2.9. We have
〈f1, . . . , fs〉 ⊆ I(V(f1, . . . , fs)).

Equality isn’t always true. (See Example 1.2.10 for an example.)

Proof. Let f ∈ 〈f1, . . . , fs〉, so that f =
∑s
i=1 hifi for some hi ∈ k[x]. Note that fi(a) = 0 for all a ∈

V(f1, . . . , fs), by definition of a variety, so
∑s
i=1 hifi(a) = 0 for all a ∈ V(f1, . . . , fs). Since this means that

f vanishes on V(f1, . . . , fs), this means that f ∈ I(V(f1, . . . , fs)).

Example 1.2.10. Consider k[x, y] and let f1(x, y) = x2 and let f2(x, y) = y2. Then we have V(x2, y2) =
{(0, 0)}. Thus I(V(x2, y2)) = I({(0, 0)}) = 〈x, y〉. It’s not too hard to show that 〈x2, y2〉 6= 〈x, y〉. 4

Let us end with a proposition that we’ll prove in the homework.

Proposition 1.2.11 (cf. HW 2). Let V and W be affine varieties in kn. Then

(1) We have V ⊆W ⇐⇒ I(V ) ⊇ I(W ), and
(2) We have V = W ⇐⇒ I(V ) = I(W ).

The exact relation between 〈f1, . . . , fs〉 and I(V(f1, . . . , fs)) is described by the nullstellensatz, which
will be a central theorem in this class.

As a reminder, we want to answer the ideal description problem, which asks whether every ideal I ⊆
k[x1, . . . , xn] can be written as 〈f1, . . . fs〉, and there is the ideal membership problem, which asks for an
algorithm to decide whether or not f ∈ 〈f1, . . . , fs〉.
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1.3 Sept 5, 2019

[I am grateful to Anmol, whose notes I am copying from.]

We are studying polynomials in k[x], and in particular we want to build toward a division algorithm in
k[x]. This division algorithm will answer the question of finite generation of ideals (at least in k[x]), and will
also solve ideal membership.

Definition 1.3.1. Let f ∈ k[x] be a nonzero polynomial, so

f(x) = cmx
m + cm−1x

m−1 + · · ·+ c0,

where ci ∈ k and cm 6= 0.

1. We define m to be the degree of f , and denote it deg(f).
2. We define cmxm to be the leading term of f , and denote it LT(f).
3. We define xm to be the leading monomial of f , and denote it LM(f).
4. We define cm to be the leading coefficient of f , and denote it LC(f). 4

In particular, LT(f) = LC(f) · LM(f).

Note that if f, g ∈ k[x] are nonzero, then LT(f) divides LT(g) if and only if deg(f) ≤ deg(g).

Proposition 1.3.2 (The division algorithm in k[x]). Let k be a field, and let g be a nonzero polynomial in k[x]. Then
for all f ∈ k[x] we can write f = qg + r, where q, r ∈ k[x] and either r = 0 or deg(r) < deg(g). Furthermore, q and
r is are unique.

Proof. Here is an algorithm to find q and r:

Input f, g
Output q, r
q := 0, r := f
WHILE(r 6= 0 and LT(g) divides LT(r)) DO

q := q + LT(r)
LT(g)

r := r − LT(r)
LT(g) · g

RETURN q, r.

See Example 1.3.3 for an example of this algorithm at work.

We have three tasks in front of us:

(1) We have to show that the algorithm terminates,
(2) That the final q and r have the desired properties, and
(3) That they are unique.

Note that at each step, the equation f = qg + r holds. Then, when r = 0 or LT(g) doesn’t divide LT(r),
we terminate. The latter means that deg(g) > deg(r), and so if we terminate, the output q and r have the
desired properties. This takes care of the second task.

To see that the algorithm terminates, we just observe that the degree of r always gets lowered in the
WHILE loop, since we’ve set

r := r − LT(r)

LT(g)
(LT(g) + lower order terms),

the leading term of r dies and the degree goes down. This takes care of the first task.
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We need to show the uniqueness of q and r. Suppose that

f = qg + r = q2g2 + r2,

with deg(r),deg(r2) < deg(g). If r− r2 = 0 then r = r2 and hence q = q2 and we’d be done, so let us assume
0 6= r − r2. Rearranging the above equation gives

r − r2 = (q2 − q)g,

and in particular
deg(g) > deg(r − r2) = deg(q − q2) + deg(g) ≥ deg(g).

This is a contradiction!

Example 1.3.3. Let us take f = x3 + 2x2 + x+ 1 and g = 2x+ 1.

We initiate q = 0 and r = x3 + 2x2 + x+ 1, and in the first iteration of the while loop we replace q with
q + x3

2x and r with r − x3

2x (2x + 1), so q = 1
2x

2 and r = 3
2x

2 + x + 1. Note that deg(r) has decreased, in this
case from 3 to 2, and that f = qg + r still holds, since

x3 + 2x2 + x+ 1 =

(
1

2
x2(2x+ 1) +

3

2
x2 + x+ 1

)
.

In the second iteration of the while loop, we replace q with q + 3x2

4x and replace r with r − 3x2

4x (2x + 1), so
q = 1

2x
2 + 3

4x and r = 1
4x + 1. Note that deg(r) has decreased, in this case from 2 to 1, and that f = qg + r

still holds, since
x3 + 2x2 + x+ 1 =

((
1

2
x2 +

3

4
x

)
(2x+ 1) +

1

4
x+ 1

)
.

Finally, we replace q with q + 1
8 and r with r − 1

8 (2x + 1), so that q = 1
2x

2 + 3
4x + 1

8 and r = 7
8 . Note that

deg(r) has decreased, in this case from 1 to 0, and that f = qg + r still holds, since

x3 + 2x2 + x+ 1 =

((
1

2
x2 +

3

4
x+

1

8

)
(2x+ 1) +

7

8

)
. 4

Corollary 1.3.4 (cf. Theorem 1.1.4). If k is a field and f ∈ k[x] is a nonzero polynomial, then f has at most deg(f)
distinct roots.

Proof. The proof is by induction on m = deg(f). For m = 0, then f is a nonzero constant and has no roots.

The hypothesis states that for all f of degree (at most) m− 1, then f has at most deg(f) distinct roots.

Let us assume deg(f) = m. If f has no roots in k, then of course we are done. So suppose a ∈ k is a root
of f , so that f(a) = 0. Then the division algorithm for q = x − a says that f = q(x − a) + r where r = 0 or
deg(r) < deg(x− a) = 1. Hence r must be a constant. However, f(a) = q(a− a) + r = 0, which means that
r = 0.

This means that f = q(x − a). Note that deg(q) = m − 1, since deg(f) = deg(q) + deg(x − a). Now, if
b 6= a is also a root of f , we have q(b) = 0. Since there are at most m− 1 roots of q, there are at most m roots
of f .

Corollary 1.3.5. If k is a field then every ideal of k[x] can be written as 〈f〉 for some f ∈ k[x]. Moreover, f is unique
up to multiplication by a nonzero constant.

Proof. Let I ⊆ k[x]. If I = {0} then I = 〈0〉. Otherwise, let us pick a nonzero f ∈ I of minimal degree.

Our claim is that I = 〈f〉. It’s obvious that 〈f〉 ⊆ I , since f ∈ I [cf. HW 2]. We want to show that I ⊆ 〈f〉.
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For all g ∈ I , we have g = qf + r where r = 0 or deg(r) < deg(f). Since I is an ideal, f ∈ I implies qf ∈ I
and hence g − qf = r ∈ I . If r 6= 0 then deg(r) < deg(f), which is a contradiction (recall we picked f to be
of minimal degree). Hence r = 0. This means that g = qf ∈ 〈f〉, and shows that I ⊆ 〈f〉.

To show uniqueness, let us suppose 〈f〉 = 〈g〉. Since f ∈ 〈g〉, this means that f = hg for some h ∈ k[x]. In
particular, deg(f) = deg(h)+deg(g) ≥ deg(g). Similarly, g ∈ 〈f〉 implies deg(g) ≥ deg(f), so deg(f) = deg(g),
and in particular deg(h) = 0 which means h is a nonzero constant.

Definition 1.3.6. An ideal generated by one element is called a principal ideal. Since every ideal of k[x] is
principal (Corollary 1.3.5), we say k[x] is a principal ideal domain. 4

Suppose I = 〈x4 − 1, x6 − 1〉. Corollary 1.3.5 asserts that I = 〈f〉. Who is f?

Definition 1.3.7. A greatest common divisor of f, g ∈ k[x] is a polynomial h ∈ k[x] such that

(1) h divides both f and g, and
(2) If p ∈ k[x] also divides both f and g, then p divides h.

4

Proposition 1.3.8. Let f, g ∈ k[x]. Then

(1) gcd(f, g) exists and is unique up to multiplication by a nonzero constant,
(2) 〈gcd(f, g)〉 = 〈f, g〉, and
(3) There’s an algorithm to find gcd(f, g).

Proof. Since k[x] is a PID, then 〈f, g〉 = 〈h〉 for some h ∈ k[x]. We claim that h is a gcd of f and g; this would
prove part (2) of the proposition. Checking the two conditions required of a greatest common divisor, we
see that:

(1) Necessarily, h divides f and g since f, g ∈ 〈h〉.
(2) If p ∈ k[x] and p divides g and g, then f = cp and g = dp for some c, d ∈ k[x]. Since h ∈ 〈f, g〉 there exist

a, b ∈ k[x] so that h = af + bg = (ac)p+ (bd)p = (ac+ bd)p. Since ac+ bd ∈ k[x], this implies p divides h.

Since Corollary 1.3.5 says that h is unique up to multiplication by a nonzero constant, this proves part
(1) of the proposition.

The proof of part (3) of the proposition will come next lecture.

11



2 Division Algorithm in k[x1, . . . , xn]

2.4 Sept 10, 2019

[I am grateful to Anmol, whose notes I am copying from.]

Let us prove part (3) of Proposition 1.3.8 from last time. Let’s begin with the basic idea of the algorithm
before giving the pseudocode. [Sometimes this is called the “Euclidean algorithm”.]

Proof. The crucial observation is that if we write f = qg + r as in the division algorithm, then gcd(f, g) =
gcd(f − qg, g) = gcd(g, r). Repeating, we use the division algorithm to write g = q2r + r2, and hence
gcd(g, r) = gcd(r, r2), and so on. We note that if r = 0, then gcd(g, 0) = g, and if r 6= 0 then we just repeat.
The algorithm terminates when r = 0, at which point we know that we got gcd(f, g). Let’s write down the
pseudocode; see Example 2.4.1 for an explicit example of the algorithm at work.

Input f, g
Output gcd(f, g)
h := f
s := g
WHILE s 6= 0 DO

rem := remainder(h, s)
h := s
s := rem

Example 2.4.1. Let us compute the gcd of x4 − 1 and x6 − 1. We have

〈x4 − 1, x6 − 1〉 = 〈x6 − 1, x4 − 1〉 = 〈x4 − 1, x21〉 = 〈x2 − 1〉,

where the first equality is just switching the order of the generators so that the degree of the first one is bigger
than that of the second, and the second equality is x6 − 1 = x2(x4 − 1) + (x2 − 1), and the third equality is
x4 − 1 = (x2 + 1)(x2 − 1) + 0. [I guess one should write 〈x2 − 1, 0〉, but this is equal to 〈x2 − 1〉.] 4

Definition 2.4.2. The greatest common divisor of f1, . . . , fs ∈ k[x] is a polynomial h ∈ k[x] such that

1. h divides f1, . . . , fs,
2. If p divides f1, . . . , fs,then p divides h.

We write h = gcd(f1, . . . , fs). 4

Proposition 2.4.3. Let f1, . . . , fs ∈ k[x] be polynomials. (Assume s ≥ 2.)

(1) Then gcd(f1, . . . , fs) exists and is unique up to multiplication by a nonzero constant,
(2) 〈gcd(f1, . . . , fs)〉 = 〈f1, . . . , fs〉,
(3) For s ≥ 3 we have gcd(f1, . . . , fs) = gcd(f1, gcd(f2, . . . , fs)), and
(4) There exists an algorithm to compute gcd(f1, . . . , fs).

This follows from the s = 2 case (Proposition 1.3.8). The first three parts of 2.4.3 also hold when we have
(countably) infinitely many polynomials f1, f2, . . . , but our algorithm no longer works. [I don’t think there
exists an algorithm that is guaranteed to terminate in finite time.]

Note that Proposition 2.4.3 solves the ideal membership problem: for f1, . . . , fs ∈ k[x], deciding whether
f ∈ 〈f1, . . . , fs〉 boils down to computing gcd(f1, . . . , fs) and checking whether the division algorithm for
f = q gcd(f1, . . . , fs) + r yields r = 0.

Warning. This won’t go through in k[x1, . . . , xn]. We are really using the PID-ness of k[x] here.
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Example 2.4.4. We can write

xy2 − x = y(xy − 1) + 0(y2 − 1) + (−x+ y) and xy2 − x = 0(xy − 1) + x(y2 − 1) + 0.

It’s not clear from the first equation whether or not xy2 − x ∈ 〈xy − 1, y2 − 1〉, although it is clear from the
second equation that it is. 4

We will later show (Theorem 2.5.5) that given f, f1, . . . , fs ∈ k[x1, . . . , xn], we will be able to write

f =

s∑
i=1

qifi + r,

where either r = 0 or “ deg ”(r)“ < ”“ deg ”(fi). (I use quotes because these haven’t been defined for mul-
tivariate polynomials!) But even in the univariate case, we cannot guarantee a unique remainder! (As an
exercise, find an example of this in the univariate case – there, deg and < really are defined!)

Let us discuss orderings of monomials in k[x1, . . . , xn]. The idea is to axiomatize (and hence generalize)
the notion of degree, and with it to axiomatize (and hence generalize) the idea of “ > ”.

Definition 2.4.5. A total order on Zn≥0, denoted >, is a rule so that for every α 6= β ∈ Zn≥0, we have

either α > β or β > α,

and furthermore for α, β, γ ∈ Zn≥0, we have

α > β and β > γ =⇒ α > γ.

Sometimes we use the symbol <, e.g. α < β, to mean β > α. 4

An example of a total order, for n = 1, is the “usual” >. [Somewhat annoyingly, the ≥ in Zn≥0 is the
“usual” >, but the monomial ordering > is just some rule satisfying some conditions...]

Definition 2.4.6. A monomial ordering > on k[x1, . . . , xn] is a total order on Zn≥0 with two additional con-
ditions:

(1) If α > β and γ ∈ Zn≥0, then α+ γ > β + γ, and
(2) > is a well-ordering on Zn≥0: every nonempty subset A ⊆ Zn≥0 has a smallest element with respect to

>. 4

Given a monomial ordering on Zn≥0, and two monomials xα and xβ of k[x1, . . . , xn], we sometimes write
xα > xβ when α > β. We also may write α ≥ β (or xα ≥ xβ) to mean α > β or α = β.

Lemma 2.4.7. An order relation > on Zn≥0 is a well ordering if and only if any sequence α(1) > α(2) > α(3) > . . .
of elements in Zn≥0 terminates.

Proof. The contrapositive of this statement is that> is not a well ordering if and only if there exists an infinite
strictly decreasing sequence in Zn≥0. Let’s prove this (equivalent) statement instead.

To prove the forward direction, we assume that > is not a well ordering, so that there is a nonempty
subset S ⊆ Zn≥0 which has no smallest element. Then pick any α(1) ∈ S; since it’s not the smallest element
there exists an α(2) ∈ S such that α(1) > α(2). But now there exists an α(3) ∈ S such that α(2) > α(3).
Since S has no smallest element we can keep finding smaller elements and get our infinite strictly decreasing
sequence.

Conversely, if α(1) > α(2) > α(3) > . . . , then S = {α(1), α(2), . . . } has no least element.
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In general, there are many monomial ideals. However, there are three that are commonly used:

Definition 2.4.8. The lexicographic order, denoted >lex, is a monomial order defined by

α >lex β if the leftmost nonzero element in α− β ∈ Zn≥0 is positive. 4

For example, we have x2y >lex xy
4, since (2, 1) − (1, 4) = (1,−3). Note that we have implicitly ordered

x > y here. (If we had instead chosen y > x, then y4x >lex yx
2, since (4, 1)− (1, 2) = (3,−1); however, when

we write variables x, y, z then we mean x > y > z unless stated otherwise, and similarly when we write
x1, . . . , xn then we mean x1 > · · · > xn unless stated otherwise.)

Definition 2.4.9. The graded lexicographic order, denoted >grlex, is a monomial order defined by

α >grlex β if |α| > |β| or |α| = |β| and α >lex β.

[Some people write this as >deglex. In particular, I think this is what the programming software sage uses.]
4

Definition 2.4.10. The graded reverse lexicographic order, denoted>grevlex, is a monomial order defined by

α >grevlex β if |α| > |β| or |α| = |β| and the rightmost nonzero entry of α− β is negative.

Importantly, this is not the same as saying |α| = |β| and α <lex β. [Some people write this as >degrevlex. In
particular, I think this is what the programming software sage uses.] 4
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2.5 Sept 12, 2019

Recently, we have been thinking about multivariate polynomials

f =
∑
α

aαx
α ∈ k[x] = k[x1, . . . , xn].

Let us fix a monomial order, which we denote by >. We begin with some definitions which will be useful
later.

Definition 2.5.1 (see Example 2.5.2). We have

1. The multidegree of f , denoted multidegree(f) (or sometimes multideg(f)) is defined to be

max>{α ∈ Zn≥0 : aα 6= 0},

where max> is the maximum element as dictated by >.
2. The leading coefficient of f , denoted LC(f), is defined to be

amultideg(f) ∈ k.

3. The leading monomial of f , denoted LM(f), is defined to be xmultideg(f).
4. The leading term of f , denoted LT(f), is defined to be LT(f) = LC(f)LM(f). 4

Example 2.5.2. Let f = ix2y + πy4 ∈ C[x, y], and let our monomial ordering be >lex. In this case, the
multidegree of f is (2, 1), because (2, 1) >lex (0, 4). The leading coefficient is i, the leading monomial is x2y,
and the leading term is ix2y. [Everything would be different if we picked, for example, our monomial to be
>grlex.] 4

The words in Definition 2.5.1 will be useful for us because of the following reason. Recall how we solved
the ideal membership problem for univariate polynomials: to decide whether f ∈ 〈f1, . . . , fs〉, we write

〈f1, . . . , fs〉 = 〈gcd(f1, . . . , fs)〉,

and showed f ∈ 〈h〉 if and only if f = ph for some p ∈ k[x]. To find such a p, we use the division algorithm
to write f = qh+ r and check that r = 0.

We would like to solve the ideal membership problem for multivariate polynomials. Unfortunately, the
crucial step of writing our ideal 〈f1, . . . , fs〉 = 〈h〉 as a principal ideal fails in general (in HW 2, we’ll see that
〈x, y〉 is not a principal ideal). Thus we would have to make some division algorithm that can “divide” f by
the tuple of polynomials (f1, . . . , fs).

When we try to do the naive thing (i.e., try to use the division algorithm to divide f by f1 and then by f2),
we would need to choose to “prefer” f1 over f2 (or vice versa). This choice will cause problems: as we will
see in Examples 2.5.3 and 2.5.4, the choice of ordering f1 over f2 (or vice versa) will change the remainder
that we get at the end (!).

We will soon build up to the notion of a Gröbner basis, which is designed to fix this issue. The basic idea
is the following: for an ideal 〈f1, . . . , fs〉, we will find polynomials g1, . . . , gt so that 〈g1, . . . , gt〉 = 〈f1, . . . , fs〉.
Importantly, the g1, . . . , gt will have special properties which make it so that the division algorithm gives
the same remainder no matter which ordering of g1, . . . , gt we choose.

Example 2.5.3. Let’s “divide” f = x2y + xy2 + y2 by f1 = xy − 1 and f2 = y2 − 1, and let us pick the
monomial ordering >lex. That is to say, we want to write f = q1f1 + q2f2 + r. To begin, we set q1, q2, r = 0.

Note that LT(f1) = xy divides LT(f) = x2y; in particular, LT(f)/LT(f1) = x, so we replace q1 by q1 + x
and replace f with f − xf1 = xy2 + x+ y2.
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The new leading term LT(f) = xy2 is still divisible by LT(f1), in particular with LT(f)/LT(f1) = y, so we
replace q1 by q1 + y and replace f with f − yf1 = x+ y2 + y.

Now the leading term LT(f) = x is no longer divisible by either of LT(f1) or LT(f2), so we replace r with
r + x and replace f with f − x = y2 + y.

Observe that LT(f1) = xy does not divide LT(f) = y2, but LT(f2) = y2 does. Since LT(f)/LT(f2) = 1, we
replace q2 by q2 + 1 and replace f with f − f2 = y + 1.

The leading term LT(f) = y is no longer divisible by either of LT(f1) or LT(f2), so we replace r with r+y
and replace f with f − y = 1.

Finally, the leading term LT(f) = 1 is still not divisible by either of LT(f1) or LT(f2), so we replace r with
r + 1 and replace f with f − 1 = 0.

Hence, the result is
f = (x+ y)f1 + f2 + (x+ y + 1).

4

To check whether f ∈ 〈f1, f2〉, the above example, we chose to “prefer” f1 over f2. Let’s see what happens
if we do it the other way around:

Example 2.5.4. Let’s “divide” f = x2y + xy2 + y2 by f1 = y2 − 1 and f2 = xy − 1, again with the monomial
ordering >lex. As before, we set q1, q2, r = 0.

We see that LT(f1) = y2 does not divide LT(f) = x2y, but LT(f2) = xy does. Since LT(f)/LT(f2) = x, we
replace q2 with q2 + x and replace f with f − xf2 = xy2 + x+ y.

Now LT(f1) = y2 does divide LT(f) = xy2, in particular with LT(f)/LT(f1) = x. Hence, we replace q1
with q1 + x, and replace f with f − xf1 = 2x+ y2.

Neither LT(f1) = y2 nor LT(f2) = xy divides LT(f) = 2x, so we replace r with r+ 2x and replace f with
f − 2x = y2.

Since LT(f1) = y2 divides LT(f) = y2, with LT(f)/LT(f1) = 1, we replace q1 with q1 + 1 and replace f
with f − f1 = 1.

Finally, LT(f) = 1 is not divisible by either of LT(f1) or LT(f2), so we replace r with r + 1 and replace f
with f − 1 = 0.

Hence, the result is
f = (x+ 1)f1 + xf2 + (2x+ 1).

Hence, the remainder is not unique! 4

Theorem 2.5.5 (Division algorithm in k[x1, . . . , xn]; cf. Proposition 1.3.2). Let > be a monomial order on Zn≥0,
and let F = (f1, . . . , fs) be an ordered s-tuple of polynomials in k[x1, . . . , xn]. Then every f ∈ k[x1, . . . , xn] can be
written as f = q1f1 + · · ·+ qnfn + r, where qi, r ∈ k[x1, . . . , xn], and either r = 0 or no term of r is divisible by any
of the LT(f1), . . . ,LT(fs). Furthermore, if qifi 6= 0, then multideg(f) ≥ multideg(qifi).

The algorithm is given by the following pseudocode:

Input f1, . . . , fs, f
Output q1, . . . , qs, r
q1 := 0; . . . ; qs := 0; r := 0
p := f
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WHILE p 6= 0 DO

i := 1
divisionoccurred := false

WHILE (i ≤ s AND divisionoccurred = false) DO

IF LT(fi) divides LT(p) THEN

qi := qi + LT(p)/LT(fi)
p := p− (LT(p)/LT(fi))fi
divisionoccurred := true

ELSE

i := i+ 1
IF divisionoccurred = false THEN

r := r + LT(p)
p := p− LT(p)

RETURN q1, . . . , qs, r.

The proof that this algorithm does what Theorem 2.5.5 asks for is the same as the univariate case. Let us
emphasize that if r = 0 then f ∈ 〈f1, . . . , fs〉, but even if f ∈ 〈f1, . . . , fs〉 it does not necessarily mean that
r = 0.

Let’s now think about “monomial ideals” in k[x1, . . . , xn]; understanding these will allow us to under-
stand ideals of k[x1, . . . , xn] in general.

Definition 2.5.6. An ideal I ⊆ k[x1, . . . , xn] is called a monomial ideal if there is a subset A ⊆ Zn≥0 (possibly
infinite) such that I is the set

I =

{∑
α∈A

hαx
α : hα ∈ k[x1, . . . , xn], only finitely many hα 6= 0

}
.

We write I = 〈xα : α ∈ A〉. 4

Example 2.5.7. Let I ⊆ k[x, y] be given by 〈x3y4, x2y, x2, x5y2〉. Note that I = 〈x2〉, as the picture below
“shows”:

(2, 0)

(2, 1)

(5, 2)

(3, 4)

4

Example 2.5.8. Let I ⊆ k[x, y] be given by 〈xy4, x2y, x2, x5y2〉. Then I is not a principal ideal, as the picture
below “shows”.
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(2, 0)

(2, 1)

(5, 2)

(1, 4)

4

Lemma 2.5.9. Let I = 〈xα : α ∈ A〉 be a monomial ideal. Then

xβ ∈ I ⇐⇒ xβ is divisible by xα for some α ∈ A.

Proof. The backward direction asks us to prove xβ is divisible by xα implies xβ ∈ I . This is clear from the
definitions.

The forwards direction asks us to prove that xβ ∈ I implies xβ is divisible by xα for some α ∈ A. Let us
write xβ as the finite sum

xβ =
∑
i

hix
α(i),

for some α(i) ∈ A and hi ∈ k[x1, . . . , xn]. Then

xβ =

s∑
i=1

(∑
j

cijx
β(i,j)

)
xα(i) =

∑
i,j

ci,jx
β(i,j)xα(i).

Note that this is an equality of polynomials. Since each term on the right hand side is divisible by some
xα(i), so is the left hand side. In other words, xβ is divisible by some xα(i).

Exercise-Lemma 2.5.10. Let I be a monomial ideal, and let f ∈ k[x1, . . . , xn]. The following are equivalent:

(1) f ∈ I
(2) Each term of f is in I
(3) f is a k-linear combination of monomials in I .

(The only nontrivial direction is (1) =⇒ (2), or alternatively (1) =⇒ (3).)
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2.6 Sep 17, 2019

We begin with recalling some Lemmas from last time:

Lemma 2.6.1 (cf. Lemma 2.5.9). Let I = 〈xα : α ∈ A〉 be a monomial ideal. Then

xβ ∈ I ⇐⇒ xβ is divisible by xα for some α ∈ A.

Lemma 2.6.2 (cf. Exercise-Lemma 2.5.10). Let I be a monomial ideal, and let f ∈ k[x1, . . . , xn]. The following are
equivalent:

(1) f ∈ I
(2) Each term of f is in I
(3) f is a k-linear combination of monomials in I .

It’s not too hard to show that Lemma 2.6.2 implies the following Corollary:

Corollary 2.6.3. Two monomial ideals are the same if and only if they contain the same monomials.

We now have enough lemmas to prove a big result:

Theorem 2.6.4 (Dickson’s Lemma). Let I = 〈xα : α ∈ A〉 ⊆ k[x1, . . . , xn] be a monomial ideal. Then I is finitely
generated by monomials, so

I = 〈xα(1), . . . ,xα(s)〉,
where α(1), . . . , α(s) ∈ A. In particular, it has a finite basis.

(We’ll basically be describing an algorithm to find it; see Example 2.6.5 for an explicit example of this
algorithm at work.)

Proof. We use induction onn, the number of variables. Forn = 1, we have a monomial ideal I = 〈xα1 : α ∈ A〉.
Pick the smallest element β ∈ A ⊆ Z≥0. Since β ≤ α for all α ∈ A, we have xβ1 |xα1 and I = 〈xβ1 〉, as desired.

Let us assume the inductive hypothesis for k[x1, . . . , xn−1], and use the variables x1, . . . , xn−1, y (just to
distinguish the “new” variable y = xn over the “inductive hypothesis” variables x1, . . . , xn−1.)

Take I ⊆ k[x1, . . . , xn−1, y], and define the ideal

J
def
= 〈xα : xαym ∈ I for some m ≥ 0〉.

Note here that x = (x1, . . . , xn−1) and α = (α1, . . . , αn−1) are vectors. Since J is a monomial ideal in
k[x1, . . . , xn−1], then J = 〈xα(1), . . . ,xα(s)〉 for some α(i) ∈ Zn−1≥0 . By definition, for all i ∈ [s] there is
mi ∈ Z≥0 so that xα(i)ymi ∈ I . Importantly, let us take mi to be the minimal such mi for which this is true.
(Again, see Example 2.6.5 for an explicit example of this at work.)

Let m = max(m1, . . . ,ms). For ` ∈ [0,m− 1] let us define an ideal J` ⊆ k[x1, . . . ,n−1 ] by

J` = 〈xβ : xβy` ∈ I〉.

[Unlike our definition for J , here the power of y is given to us.]

Our claim is that the set of monomials {xα(1)ym, . . . ,xα(s)ym} (“coming from J”), along with the sets
{xα`(1)y`, . . . ,xα`(s`)y`} (“coming from J`”) for each ` ∈ [0,m − 1], generate I . Indeed, every monomial in
I is divisible by a monomial in our list above, since if

xαyp ∈ I, then
{

if p ≥ m, it’s in the list from J

if p ≤ m− 1, it’s in the list from Jp.
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In particular, the monomials from the list above generate an ideal having the same monomials as I . By
Corollary 2.6.3, they are the same ideal.

We still need to show that these finite set of generators can be chosen from A. So far, we’ve only shown
that I = 〈xβ(1), . . . ,xβ(s′)〉 (with s′ possibly not equal to s). Note that since xβ(i) ∈ I = 〈xα : α ∈ A〉,
Lemma 2.6.1 implies that xβ(i) is divisible by xα for some α ∈ A. With this in mind, it’s easy (an exercise,
even!) to show that I = 〈xα(1), . . . ,xα(s)〉.

Example 2.6.5. Suppose n = 2 and our monomial ideal was I = 〈x2y5, x3y4, x4y2, x6y2〉. (Obligatory picture
below.)

(4, 2)

(3, 4)

(6, 2)

(2, 5)

Note in the above picture that points correspond to monomials inA, and we shade the cone because if xα ∈ I
then xβ ∈ I for every β that is “northeast” of α.

Our ideal J lives in the polynomial ring with n − 1 = 1 variable, and is equal to 〈x2, x3, x4, x6〉. By in-
duction, we have a finite subset generating it. Suppose we were “silly” and picked 〈x2, x3, x4〉 as generators.
(of course, we know k[x] is a PID, but this isn’t true in general, so...)

Thus, α(1) = 2, α(2) = 3, and α(3) = 4. Correspondingly, m1 = 5, m2 = 4, and m3 = 2. So we take
m = 5. Unravelling definitions, we see J0 = J1 = {0}, J2 = J3 = 〈x4〉, and J4 = 〈x3〉. Putting this all
together, we see that

{x2y5, x3y5, x4y5︸ ︷︷ ︸
“from J”

, x4y2︸︷︷︸
“from J2”

, x4y3︸︷︷︸
“from J3”

, x3y4︸︷︷︸
“from J4”

}

generate I . (Here’s another obligatory picture.)

4

Note that Theorem 2.6.4 answers the ideal description problem for monomial ideals. (!)

We’ll see (hopefully soon!) that any ideal of k[x1, . . . , xn] will be finitely generated. Let’s turn to the ideal
membership problem fist.
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Theorem 2.6.6 (Ideal membership for monomial ideals). Let I = 〈xα(1), . . . ,xα(s)〉 be a monomial ideal. Then,
f ∈ I if and only if the remainder of f on division by xα(1), . . . ,xα(s) is 0. [In particular, the division algorithm we
described last time will give a unique remainder, regardless of ordering. (!)]

Proof. The backward direction is trivial.

Let us take f ∈ I . By Lemmas 2.6.1 and 2.6.2, we see

f =
∑
i∈[s]
j∈[pi]

cijx
β(i,j)xα(i),

for cij ∈ k. In particular, every term of f is divisible by some xα(i). Recall our division algorithm theorem
(Theorem 2.5.5), which says that we can write

f =
∑

hix
α(i) + r,

where hi ∈ k[x] and r is such that r = 0 or no term of r is divisible by any of the leading terms of (in this
case) xα(i). These leading terms are just xα(i).

Rearranging the above equation we get

f −
∑

hix
α(i) = r,

and note that every term on the left side is divisible by some xα(i) (since f ∈ I). Hence every term on the
right hand side is also divisible by some xα(i), so we must be in the r = 0 case of the division algorithm.
(!)

Proposition 2.6.7. A monomial ideal I ⊆ k[x1, . . . , xn] has a basis {xα(1), . . . ,xα(s)} so that xα(i) does not divide
xα(j) for every i 6= j. Furthermore, such a basis is unique and is called the minimal basis of I .

Proof. We know by Dickson’s lemma (Theorem 2.6.4) that I has a finite basis consisting of monomials. If one
monomial in this basis divides the other, then we can remove the “other” and still have a basis. Repeating
this, we get a basis with the desired properties.

Let us show uniqueness of this basis. Assume that {xα(1), . . . ,xα(s)} and {xβ(1), . . . ,xβ(t)} are two min-
imal bases. Note that xα(1) ∈ 〈xβ(1), . . . ,xβ(t)〉 implies xα(1) is divisible by xβ(i) for some i ∈ [t]. Now
xβ(i) ∈ I = 〈xα(1), . . . ,xα(s)〉 implies xβ(i) is divisible by xα(j) for some j ∈ [s]. Since the {xα(1), . . . ,xα(s)}
basis was minimal, we have j = 1 and β(i) = α(1). Removing these two from our bases, we repeat the above
argument, and conclude that

{xα(1), . . . ,xα(s)} ⊆ {xβ(1), . . . ,xβ(t)}.
We can also interchange the role of α and β in the proof above, and this gives the other inclusion.

We now have a very satisfactory picture of monomial ideals. They have a unique minimal basis and we
basically know how to find them. Furthermore, we can solve the ideal membership problem. Our next goals
are to solve the ideal description problem in general, and to solve the ideal membership problem in general.

To recap, we have the following. In k[x], we were in a PID, so every ideal is generated by a single element.
Furthermore, dividing by a single polynomial gives a unique remainder.

In a monomial ideal, we have finite generation and that dividing by multiple monomials, regardless of
order, gives a unique remainder.

Our goal is to find good generators for I = 〈f1, . . . , fs〉 ⊆ k[x1, . . . , xn], call them {g1, . . . , gt}, so that
dividing by these good generators in any order gives a unique remainder.
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We’ll see that the case of monomial ideals paves the way for the general case.

To get to our goal, we begin with a key definition.

Definition 2.6.8. Let I ⊆ k[x1, . . . , xn] be an ideal that is not {0}. Fix a monomial ordering >. Denote by
LT(I) the set of leading terms of nonzero elements in I , that is,

LT(I) = {cxα : there exists f ∈ I \ {0} such that LT(f) = cxα}.

Denote by 〈LT(I)〉 the ideal of k[x1, . . . , xn] generated by the elements in LT(I). It should be clear that this
is a monomial ideal. 4

Note that if I = 〈f1, . . . , fs〉, then

〈LT(f1), . . . ,LT(fs)〉 ⊆ 〈LT(I)〉.

They need not be equal! (See Example 2.6.9 below.)

Example 2.6.9. Let I = 〈x3 − 2xy, x2y − 2y2 + x〉 and let our monomial order be >grlex. Then, although we
have

〈x3, x2y〉 ⊆ 〈LT(I)〉,

note that x(x3 − 2xy)− y(x2y − 2y2 + x) = x2 ∈ LT(I). Hence x2 ∈ 〈LT(I)〉, and the inclusion is strict.

[Arthur also came up with a nice example: I = 〈x+ 1, x− 1〉 does the trick.] 4
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2.7 Sep 19, 2019

Last time, we defined 〈LT(I)〉 (Definition 2.6.8) and saw examples where, for I = 〈f1, . . . , fs〉, we have
the strict inclusion 〈LT(f1), . . . ,LT(fs)〉 ( 〈LT(I)〉 (Example 2.6.9).

Proposition 2.7.1. Let I ⊆ k[x1, . . . , xn] be an ideal, and suppose I 6= {0}. Then:

(1) 〈LT(I)〉 is a monomial ideal, and
(2) There are g1, . . . , gt ∈ I such that 〈LT(I)〉 = 〈LT(g1), . . . ,LT(gt)〉.

Proof. We will prove just part (2). (Part (1) follows from the definition of monomial ideals and 〈LT(I)〉.)

In light of the fact that 〈LT(I)〉 is a monomial ideal, Dickson’s Lemma (Theorem 2.6.4) applies and says
that

〈LT(I)〉 = 〈LM(g1), . . . ,LM(gt)〉

for some gi ∈ I . [It will be crucial for us that gi ∈ I , and this follows because Dickson says we can pick our
finite set of generators from the generating set A = LM(I).]

The result follows from the observation that

〈LM(g1), . . . ,LM(gt)〉 = 〈LT(g1), . . . ,LT(gt)〉.

As we have said before, understanding monomial ideals paves the way for the general case. Here is an
example of that:

Theorem 2.7.2 (Hilbert Basis Theorem; cf. Theorem 2.6.4). Every ideal of k[x1, . . . , xn] is finitely generated.

(This answers the ideal description problem in general.)

Proof. If I = {0} = 〈0〉, we are done. So let us consider a nonzero ideal I ⊆ k[x1, . . . , xn], and let us pick a
monomial order>. Proposition 2.7.1 says that there exists g1, . . . , gt ∈ I so that 〈LT(I)〉 = 〈LT(g1), . . . ,LT(gt)〉.

Our claim is that in fact, I = 〈g1, . . . , gt〉.

To see this, let us first note that I ⊇ 〈g1, . . . , gt〉 follows from g1, . . . , gt ∈ I . Thus, we need to show
I ⊆ 〈g1, . . . , gt〉. Take f ∈ I , and use the division algorithm (Theorem 2.5.5) to divide f by the (ordered tuple
of) polynomials (g1, . . . , gt) with respect to the monomial ordering >. The division algorithm guarantees
quotients (q1, . . . , qt) and a remainder r so that

f = q1g1 + · · ·+ qtgt + r,

so that r = 0 or no term of r is divisible by any leading term LT(gi), i ∈ [t]. (Note that if r = 0, then
f ∈ 〈g1, . . . , gt〉, and we are done.)

Assume r 6= 0, so no term of r is divisible by any leading term LT(gi). Note that

r = f − q1g1 − q2g2 − · · · − qtgt ∈ I,

since f, g1, . . . , gt ∈ I by assumption. Hence LT(r) ∈ 〈LT(I)〉 = 〈LT(g1), . . . ,LT(gt)〉. Since 〈LT(I)〉 is a
monomial ideal, Lemma 2.5.9 says that the monomial LT(r) is divisible by one of the monomials LT(gi),
contradictory to our assumptions on r. Hence, r = 0, and f ∈ 〈g1, . . . , gt〉. This proves our claim that
I = 〈g1, . . . , gt〉. In particular, I is finitely generated.
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Definition 2.7.3. Fix a monomial order > on k[x1, . . . , xn]. A finite subset G = {g1, . . . , gt} of the elements
from the ideal I ⊆ k[x1, . . . , xn] is a Gröbner basis of I if 〈LT(g1), . . . ,LT(gt)〉 = 〈LT(I)〉.

Sometimes, Gröbner basis is abbreviated to “G.b.”. 4

Example 2.6.9 shows that not all bases are Gröbner bases.

Definition 2.7.4. An ascending chain of ideals is a sequence of ideals

I1 ⊆ I2 ⊆ I3 ⊆ . . . . 4

Consider the increasing chain of ideals in k[x1, . . . , xn] given by

〈x1〉 ⊆ 〈x1, x2〉 ⊆ · · · ⊆ 〈x1, . . . , xn〉.

Pick an f ∈ k[x1, . . . , xn], and suppose f(0) = 0. Then f ∈ 〈x1, . . . , xn〉, and hence 〈f, x1, . . . , xn〉 =
〈x1, . . . , xn〉. Suppose instead that f(0) 6= 0. Then 〈f, x1, . . . , xn〉 = k[x1, . . . , xn] is the whole ideal. Putting
all this together, we’ve shown that an ascending chain of ideals

〈x1〉 ⊆ 〈x1, x2〉 ⊆ · · · ⊆ 〈x1, . . . , xn〉 ⊆ In+1 ⊆ In+2 ⊆ In+3 ⊆ . . .

necessarily “stabilizes”, that is, there exists an integer N so that IN = IN+1 = IN+2 = . . . .

Theorem 2.7.5 (Ascending chain condition). Let I1 ⊆ I2 ⊆ . . . be an ascending chain of ideals of k[x1, . . . , xn].
Then there exists an integer N ≥ 1 such that IN = IN+1 = IN+2 = . . . .

Proof. We claim that

I =

∞⋃
i=1

Ii

is an ideal. Indeed, the three conditions required of an ideal is that:

(1) 0 ∈ I , since 0 ∈ Ii for each i,
(2) if f, g ∈ I , then there exist i, j so that f ∈ Ii and g ∈ Ij . Without loss of generality, we can assume i ≤ j;

the inclusion Ii ⊆ Ij means that f ∈ Ij , and since Ij is an ideal we have f + g ∈ Ij , so f + g ∈ I .
(3) If f ∈ I and h ∈ k[x1, . . . , xn], then there exists i so that f ∈ Ii; since Ii is an ideal hf ∈ Ii and hence

hf ∈ I .

Since I is an ideal, Theorem 2.7.2 says that I is finitely generated, so I = 〈f1, . . . , fs〉. Let us take integers
ji so that fi ∈ Iji , and let N = maxi{ji : i ∈ [s]}. Then fi ∈ IN for each i ∈ [s], and we have

I = 〈f1, . . . , fs〉 ⊆ IN ⊆ IN+1 ⊆ IN+2 ⊆ · · · ⊆ I.

This means each inclusion above is an equality.

Let’s talk about varieties again. Recall that, for f1, . . . , fs ∈ k[x1, . . . , xn], we have

V(f1, . . . , fs) = {(a1, . . . , an) ∈ kn : fi(a1, . . . , an) = 0 for all i ∈ [s]}.

Proposition 2.7.6. If I = 〈f1, . . . , fs〉 then V(f1, . . . , fs) = V(I).

Proof. For a ∈ V(I), we have f(a) = 0 for all f ∈ I ; this implies fi(a) = 0 for every i ∈ [s], and it follows
that a ∈ V(f1, . . . , fs).
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Conversely, let a ∈ V(f1, . . . , fs) and let f ∈ I . Then

f =

s∑
i=1

hifi for some hi ∈ k[x1, . . . , xn],

and hence f(a) =
∑
i hifi(a) = 0. This implies a ∈ V(I).

Let’s prove some properties about Gröbner bases.

Proposition 2.7.7. Let I ⊆ k[x1, . . . , xn] be an ideal, and let G = {g1, . . . , gt} be a Gröbner basis with respect
to a fixed monomial ordering >. Given f ∈ k[x1, . . . , xn], there is a unique r ∈ k[x1, . . . , xn] with the following
properties:

(1) No term of r is divisible by any of LT(g1), . . . ,LT(gt).
(2) There is g ∈ I so that f = g + r.

In particular, r is the remainder of f upon division by G (in any order!).

Proof. The existence is just the division algorithm (Theorem 2.5.5).

Let us prove uniqueness. Suppose f = g + r = g2 + r2. Then note that r − r2 = g2 − g ∈ I , so if r 6= r2
then

LT(r − r2) ∈ 〈LT(I)〉 = 〈LT(g1), . . . ,LT(gt)〉,

which implies LT(r − r2) is divisible by some monomial LT(gi) (like earlier, this is Lemma 2.5.9). This
contradicts property (1), since no terms of r or r2 can be divisible by any of LT(gi). It follows that r = r2,
and hence g = g2.

Corollary 2.7.8. Let G = {g1, . . . , gt} be a Gröbner basis for an ideal I ⊆ k[x1, . . . , xn]. Then f ∈ I if and only if
the remainder upon division of f by G is zero.

Proof. If r = 0 then certainly f ∈ I , since G is a basis for I . Conversely, if f ∈ I , then f = f + 0, and (f, 0)
satisfies the two properties required of (g, r) in Proposition 2.7.7. The uniqueness of r in Proposition 2.7.7
says that 0 = r must be the remainder of f upon division by G.

We want to know how to tell if {f1, . . . , fs} is a Gröbner basis for I . Equivalently, we want to understand
when

〈LT(f1), . . . ,LT(fs)〉 ( 〈LT(I)〉.

Definition 2.7.9. Let f, g ∈ k[x1, . . . , xn] be nonzero polynomials, and let α = multideg(f) and β =
multideg(g). Also denote by γi = maxi(αi, βi), and by γ = (γ1, . . . , γn). We define

1. The least common multiple of LM(f) and LM(g) is defined to bexγ , and is denoted lcm(LM(f),LM(g)).
2. The S-polynomial of f and g is defined to be

xγ

LT(f)
f − xγ

LT(g)
g,

and is denoted S(f, g). 4

Example 2.7.10. Let f = x+1 and g = x−1, and let I = 〈f, g〉. Then S(f, g) = 2. Note that 2 = LT(S(f, g)) ∈
〈LT(I)〉, whereas 2 6∈ 〈LT(f),LT(g)〉 = 〈x〉. 4

Exercise: (HW) We have multideg(S(f, g)) < γ, where γ = lcm(LM(f),LM(g)).
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2.8 Sep 24, 2019

Let us recall Definition 2.7.9 again:

Definition 2.8.1. Let f, g ∈ k[x1, . . . , xn] be nonzero polynomials, and let α = multideg(f) and β =
multideg(g). Also denote by γi = maxi(αi, βi), and by γ = (γ1, . . . , γn). We define

1. The least common multiple of LM(f) and LM(g) is defined to bexγ , and is denoted lcm(LM(f),LM(g)).
2. The S-polynomial of f and g is defined to be

xγ

LT(f)
f − xγ

LT(g)
g,

and is denoted S(f, g). 4

We’ll be using the following innocent-looking lemma a lot today:

Lemma 2.8.2. Let p1, . . . , ps ∈ k[x1, . . . , xn] be polynomials, all of the same multidegree multideg(pi) = δ ∈ Zn≥0
for each i ∈ [s]. Then if

multideg
( s∑
i=1

pi

)
< δ,

then
∑s
i=1 pi can be written as a k-linear combination of S(pi, pj). Moreover, each S(pi, pj) has multidegree strictly

less than δ.

Proof. We denote by di
def
= LC(pi), so that LT(pi) = dix

δ . Since multideg(
∑
pi) < δ, the coefficient of xδ in∑

pi is zero, that is, we have
s∑
i=1

di = 0.

Since S(pi, pj) = 1
di
pi − 1

dj
pj , we write

s−1∑
i=1

diS(pi, pj) =

s−1∑
i=1

di

(
1

di
pi −

1

ds
ps

)

=
s−1∑
i=1

pi −
ps
ds

(d1 + · · ·+ ds−1︸ ︷︷ ︸
=−ds

)

=

s−1∑
i=1

pi + ps =

s∑
i=1

pi,

as desired. The fact that multideg(S(pi, pj)) < δ follows from the observation that the leading terms of pi
and pj will cancel.

We now have two big theorems back to back.

Theorem 2.8.3 (Buchberger’s Criterion). Let I ⊆ k[x1, . . . , xn] be an ideal. Then, a basis G = {y1, . . . , yt} is a
Gröbner basis of I if and only if the remainder of S(gi, gj) upon division by G (in any order) is zero.

Proof. For the forwards direction, we note that ifG is a Gröbner basis, then since S(gi, gj) ∈ I we must have
S(gi, gj)

G
= 0. [Recall the notation f

G, which denotes the remainder of f upon division by the Gröbner
basis G in any order.]
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Hence we need to prove the backwards direction. For each f ∈ I with f 6= 0; we want to show that
LT(f) ∈ 〈LT(g1), . . . ,LT(gt)〉. Since G is a basis of I , we can express f as

f =

t∑
i=1

higi, hi ∈ k[x1, . . . , xn].

In particular, we have
multideg(f) ≤ max

i∈[t]
{multideg(higi) : higi 6= 0}.

Let us pick a way of writing f as f =
∑
higi so that

δ
def
= max

i∈[t]
{multideg(higi) : higi 6= 0}

is minimal among all ways of writing f =
∑
higi. (This minimality will be crucial later. Intuitively, we’re

trying to minimize cancellations among leading terms of the gi’s.)

Note that we have multideg(f) ≤ δ. Furthermore, if multideg(f) = δ, then multideg(f) = multideg(higi)
for some i ∈ [t]. Then LT(f) is divisible by LT(gi), and LT(f) ∈ 〈LT(g1), . . . ,LT(gt)〉. In other words, if
multideg(f) = δ for each f ∈ I , then G is a Gröbner basis.

Let us use the fact that S(gi, gj)
G

= 0 for all i 6= j to show that indeed multideg(f) = δ for all f ∈ I .
Suppose instead that there exists f so that multideg(f) < δ. We have an expression

f =

t∑
i=1

higi =
∑
i∈[t]

mdeg(higi)=δ

higi +
∑
i∈[t]

mdeg(higi)<δ

higi

=
∑
i∈[t]

mdeg(higi)=δ

LT(hi)gi +
∑
i∈[t]

mdeg(higi)=δ

(hi − LT(hi))gi +
∑
i∈[t]

mdeg(higi)<δ

higi;

here we use mdeg in the summation to mean multideg. Rearranging the terms in the above equation, we
get ∑

i∈[t]
mdeg(higi)=δ

LT(hi)gi = f −
∑
i∈[t]

mdeg(higi)=δ

(hi − LT(hi))gi −
∑
i∈[t]

mdeg(higi)<δ

higi, (1)

where each term in the right hand side consists of terms whose multidegrees are strictly less than δ.

The goal is to express the left side of Equation (1) using only multiples of gi with multidegree strictly
less than δ.

Let us denote, for each i ∈ [t] with multideg(higi) = δ by

pi
def
= LT(hi)gi.

Each pi has the same multidegree δ, and yet the sum of the pi is the right hand side of Equation (1), all of
whose terms have multidegree strictly less than δ. We are allowed to apply Lemma 2.8.2 [there are inconse-
quential indexing issues, but never mind those] to obtain an expression∑

i∈[t]
mdeg(higi)=δ

LT(hi)gi =
∑
i,j∈[t]
i 6=j

ci,jS(pi, pj). (2)

In our homework we will check that S(pi, pj) = xδ−γi,jS(gi, gj), where γi,j = lcm(LM(gi),LM(gj)).
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Since S(gi, gj)
G

= 0, the division algorithm (Theorem 2.5.5) gives

S(gi, gj) =

t∑
`=1

Aij` g`,

where (crucially!) multideg(Aij` g`) ≤ multideg(S(gi, gj)).

In particular, we can write, for every i, j ∈ [t] with i 6= j,

ci,jS(pi, pj) = ci,j

t∑
`=1

xδ−γijAij` g`;

every term on the right hand side has degree at most S(pi, pj) < δ. In light of equation (2), we can express∑
i∈[t]

mdeg(higi)=δ

LT(hi)gi

as a sum
∑
h′igi where each h′igi has multidegree strictly less than δ. This achieves our goal.

Theorem 2.8.4 (Buchberger’s Algorithm). Let I = 〈f1, . . . , fs〉 be an ideal, with I 6= {0}. A Gröbner basis can be
computed using the following algorithm.

Input: F = (f1, . . . , fs)
Output: a Gröbner basis G = (g1, . . . , gt) for I, with F ⊆ G
G := F
REPEAT

G′ := G
FOR each pair {p, q}, p 6= q in G′ DO

r := S(p, q)
G′

IF r 6= 0 THEN G := G ∪ {r}
UNTIL G = G′

RETURN G

Let’s prove that this works.

Proof. Let G = {g1, . . . , gt}, and define 〈G〉 = 〈g1, . . . , gt〉, as well as 〈LT(G)〉 = 〈LT(g1), . . . ,LT(gt)〉. By
induction, observe that at each step, we have G ⊆ I : it’s true at the first step (when G = F ), and enlarging
G consists of adding S(p, q)

G′

with p, q ∈ I (hence S(p, q) ∈ I , and hence S(p, q)
G′

∈ I too). Also observe
that G is always a basis for I , since G ⊇ F .

If the algorithm terminates, then G′ = G. This means that S(p, q)G
′

= 0 for all p, q ∈ G′, which means
that G′ = G is a Gröbner basis by Buchberger’s Criterion (Theorem 2.8.3).

It is left to show that the algorithm terminates. To see this, observe that 〈LT(G′)〉 ⊆ 〈LT(G)〉. We claim
that if G 6= G′, then 〈LT(G′)〉 ( 〈LT(G)〉. This will show that the algorithm terminates, by the ascending
chain condition (Theorem 2.7.5). [(!)]

Indeed, suppose 0 6= r = S(p, q)
G′

was adjoined to G. Since r is a remainder obtained by the division
algorithm, LT(r) is not divisible by any leading term of any element in G′. In particular, we have LT(r) 6∈
〈LT(gi)〉. Yet r ∈ G, so LT(r) ∈ 〈LT(G)〉.
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2.9 Sep 26, 2019

Recall from last class the Buchberger criterion, Theorem 2.8.3:

Theorem 2.9.1 (Buchberger’s Criterion). Let I ⊆ k[x1, . . . , xn] be an ideal. Then, a basis G = {y1, . . . , yt} is a
Gröbner basis of I if and only if the remainder of S(gi, gj) upon division by G (in any order) is zero.

We saw how to use this to construct a Gröbner basis (Theorem 2.8.4). Today we’re going to prove some
theoretical properties about these bases. We begin with

Lemma 2.9.2. LetG be a Gröbner basis of an ideal I ⊆ k[x1, . . . , xn]. Let p ∈ G be such that LT(p) ∈ 〈LT(G\{p})〉.
Then G \ {p} is a Gröbner basis of I .

Proof. Since 〈LT(G)〉 = 〈LT(I)〉, and LT(p) ∈ 〈LT(G \ {p})〉, then 〈LT(G)〉 = 〈LT(G)〉 = 〈LT(G \ {p})〉, so if
G \ {p} is a basis then it is a Gröbner basis.

To see thatG \ {p} is a basis, we refer to the proof of Hilbert’s Basis Theorem (see Theorem 2.7.2), where
we showed that if 〈LT(I)〉 = 〈LT(G \ {p})〉, then I = 〈G \ {p}〉.

Notice that we can scale elements of a Gröbner basis by scalars in k, so we can ask for our generators gi
to have leading coefficient 1.

Definition 2.9.3. A Gröbner basis G of an ideal I is called a minimal Gröbner basis if LC(gi) = 1 and there
doesn’t exist p ∈ G such that LT(p) ∈ 〈LT(G \ {p})〉. 4

We leave the following observation as an exercise:

Observation 2.9.4. Given a minimal Gröbner basis G, note that LT(G) is the (unique!) minimal basis for
〈LT(I)〉. (See Proposition 2.6.7.) 4

Definition 2.9.5. A reduced Gröbner basis G for an ideal I ⊆ k[x1, . . . , xn] is a Gröbner basis such that

1. For all p ∈ G, we have LC(p) = 1, and
2. For all p ∈ G, no monomial of p is in 〈LT(G \ {p})〉. 4

Theorem 2.9.6. Let I 6= {0} be an ideal in k[x1, . . . , xn]. Then for a given monomial order>, I has a unique reduced
Gröbner basis.

Proof. Note that all minimal Gröbner bases have the same leading term. With this in mind, let G denote a
minimal Gröbner basis for I . We say f ∈ G is fully reduced for G if no monomial of f is in 〈LT(G \ {f})〉.
(We want to produce a basis where each element is fully reduced.)

Note that if f ∈ G is fully reduced with respect to G, then it is fully reduced with respect to any other
minimal Gröbner basis (since all the minimal bases have the same ideal of leading terms.)

Given f ∈ G, we define f2 = f
G\{f}, with the set G \ {f} ordered however you like. Set

G2 = (G \ {f}) ∪ {f2},

that is, let us replace f with f2 in G. We claim that G2 is a minimal Gröbner basis for I .

Indeed, since LT(f) is not divisible by any of LT(G \ {f}) (by assumption thatGwas a minimal Gröbner
basis), the term LT(f) goes into the remainder upon division of f by G \ {f}; hence LT(f) = LT(f2). This
implies that 〈LT(G2)〉 = 〈LT(G)〉, and G2 ⊆ I . This means that G2 is a Gröbner basis, and furthermore G2

is minimal. Furthermore, f2 is fully reduced with respect to G2.

29



In light of the observation that an element f ∈ G is fully reduced with respect to G if and only if it is
fully reduced with respect to any other minimal Gröbner basis, we can repeat this process to every element
of G to replace each gi ∈ G with a fully reduced version. Note that we do not have to revisit any already-
fully-reduced element.

Let’s prove the uniqueness of reduced Gröbner bases. SupposeG and G̃ are reduced Gröbner bases for I
with respect to a fixed monomial order. SinceG, G̃ are both minimal Gröbner bases, we have LT(G) = LT(G̃)

[there is no 〈·〉; see Observation 2.9.4]. In particular, or g ∈ G, there exists g̃ ∈ G̃ so that LT(g) = LT(g̃). We
claim that g = g̃ (uniqueness follows).

Consider g − g̃ ∈ I . Since G is a Gröbner basis, we have g − g̃G = 0, but LT(g) = LT(g̃) implies all terms
of g − g̃ only has terms of multidegree strictly less than LT(g). Furthermore, by condition (2) of reduced
Gröbner bases, no terms of g− g̃ are divisible by any elements of LT(G\{g}). Since none of the terms can be
divisible by LT(g) either (they all have multidegree less than LT(g)), we see that no term of g− g̃ is divisible
by any element of LT(G); hence g − g̃ = g − g̃G = 0.

Theorem 2.9.6 gives rise to the ideal equality algorithm: to tell if 〈f1, . . . , fs〉 = 〈g1, . . . , gt〉, we fix a
monomial order, compute the reduced Gröbner bases of the two sets of generators, and check if the resulting
reduced Gröbner bases are equal.

We’ll omit some of the next proofs; they’re not too hard and will be optional HW. (In particular, they’re
variations of Buchberger’s Criterion, and we’ve already seen all of the relevant ideas).

In the next few lectures, we’ll start seeing some results about the Nullstellensatz (Chapter 4 in the book)
which will use these specific variations of Buchberger’s Criterion.

Definition 2.9.7. Fix a monomial order and let G = {g1, . . . , gt} ⊆ k[x1, . . . , xn]. Given f ∈ k[x1, . . . , xn] we
say that f reduces to 0 modulo G, denoted f →G 0, if f has a standard representation

f = A1g1 + · · ·+Atgt,

such that whenever Aigi 6= 0 we have multideg(f) ≥ multideg(Aigi). 4

With this language, we’ll “say a few things – nothing that we wouldn’t be able to prove on an exam, for
example.”

Theorem 2.9.8. A basisG = {g1, . . . , gt} for an ideal I ⊆ k[x1, . . . , xn] is a Gröbner bases if and only ifS(gi, gj)→G

0 for all i 6= j.

Proof. Optional HW.

Definition 2.9.9. Given nonzero polynomials F = (f1, . . . , fs), we say that

S(fi, fj) =

s∑
`=1

A`f`

is a least common multiple representation (sometimes LCM rep) if

lcm(LM(fi),LM(fj)) > LM(A`f`)

whenever A`f` 6= 0. 4

Proposition 2.9.10. Every standard representation is a LCM representation. The converse doesn’t hold.
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Proof. For any S-polynomial, we have LM(S(fi, fj)) < lcm(LM(fi),LM(fj)). If we have a standard repre-
sentation

S(fi, fj) =

s∑
`=1

A`f`

then by definition we have LM(S(fi, fj)) ≥ LM(A`f`) whenever A`f` 6= 0. Chaining these two inequalities
we get

lcm(fi, fj) > LM(S(fi, fj)) ≥ LM(A`, f`).

That the converse doesn’t hold will be in the HW.

Theorem 2.9.11. A basis G = {g1, . . . , g`} for an ideal I ⊆ k[x1, . . . , xn] is a Gröbner basis if and only if for all
i 6= j, S(gi, gj) has an LCM representation.

Proof. Optional HW.

(This is less obvious than Theorem 2.9.8 above.)
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3 Nullstellensatz

[Although this is chapter 3 in my notes, this is chapter 4 in the book.]

3.10 Oct 1, 2019

Let’s restart and continue, in the following sense: we’ll continue what we’ve been talking about in Sec-
tion 2, but we’ll also recall our original setup from long ago in Section 1. Recall that for a variety V ⊆ kn we
defined

I(V )
def
= {f ∈ k[x] : f(a) = 0 for all a ∈ V }.

Now I gives a map

I : {Varieties} → {Ideals}
V 7→ I(V ).

We also defined
V(I)

def
= {a ∈ kn : f(a) = 0 for all f ∈ I}

giving a map

V : {Ideals} → {Varieties}
I 7→ V(I).

We asked ourselves what the relationship between I and I(V(I)) is; we saw Lemma 1.2.9 and Exam-
ple 1.2.10. Consider also the univariate ideals 〈x〉, 〈x2〉, 〈x3〉, · · · ⊆ C[x]. They all give the same variety,

V(〈x〉) = V(〈x2〉) = V(〈x3〉) = · · · = {0}.

Suppose our field is not algebraically closed, e.g. take k = R. Then the ideals 〈1〉, 〈1 + x2〉, and 〈1 + x2 + x4〉
all give the same variety, namely

V(〈1〉) = V(〈1 + x2〉) = V(〈1 + x2 + x4〉) = ∅.

This might reasonably be called “bad behavior” of the function V. The weak Nullstellensatz says that when
k is algebraically closed, this behavior does not occur. Let’s first state it for the univariate polynomial ring
k[x], with k algebraically closed.

Lemma 3.10.1 (Weak Nullstellensatz for k[x]). If k is an algebraically closed field, and I ⊆ k[x] is such that
V(I) = ∅, then I = 〈1〉 = k[x].

Proof. Recall that k[x] is a PID. So I = 〈f〉 for f ∈ k[x]. Now recall

V(I) = V(〈f〉) = {a ∈ k : f(a) = 0}

is nonempty whenever f is nonconstant, by definition of algebraically closed. Hence f would need to be
constant, and 1 ∈ I . This implies I = k[x].

Theorem 3.10.2 (Weak Nullstellensatz for k[x1, . . . , xn]). If k is an algebraically closed field, and I ⊆ k[x1, . . . , xn]
is such that V(I) = ∅, then I = 〈1〉 = k[x1, . . . , xn].
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Proof. We’ll prove the equivalent statement that if I ( k[x1, . . . , xn], then V(I) 6= ∅. Let us pick a ∈ k and
f ∈ k[x1, . . . , xn]. We define f ∈ k[x1, . . . , xn−1] by

f
def
= f(x1, . . . , xn−1, a).

Also define
Ixn=a

def
= {f : f ∈ I} ⊆ k[x1, . . . , xn−1].

We’ll show in a homework set that Ixn=a is an ideal.

Here’s the central claim to the proof.

Claim 1. If k is an algebraically closed field, and I ( k[x1, . . . , xn], then there exists a ∈ k so that
Ixn=a ( k[x1, . . . , xn−1].

Let’s first see why Claim 1 implies the Nullstellensatz, and then prove Claim 1. Indeed, assuming claim
1, there exist a1, . . . , an ∈ k so that

(. . . (((Ixn=an)xn−1=an−1
)xn−2=an−2

) . . . )x1=a1 . ( k.

Since the only ideals of a field k are {0} and k itself (exercise, if you don’t see it!), the above ideal must be
the zero ideal. This says that for all f ∈ I , we have f(a1, . . . , an) = 0. In particular, (a1, . . . , an) ∈ V(I)
and hence V(I) 6= ∅. This accomplishes what we said we wanted to accomplish in the first sentence of this
proof, that is, we’ve shown that V(I) 6= ∅.

Let’s prove Claim 1. There are two cases, which we will consider separately:

• Case (1) concerns the case where I ∩ k[xn] 6= {0}, and

• Case (2) concerns the case where I ∩ k[xn] = {0}.

Let’s tackle Case (1) first. If there exists f ∈ I nonconstant that only depends on xn, then

f = c

r∏
i=1

(xn − bi)mi ,

with c, b1, . . . , br ∈ k. [Note that here we are using algebraically-closed-ness of k!] We’ll use later the obser-
vation that

r∏
i=1

(xn − bi)mi = c−1f ∈ I,

so keep this in mind.

If Ixn=bi 6= k[x1, . . . , xn−1] for any i ∈ [r], we’ve proven our claim, so let us suppose otherwise. We have
r many ideals Ixn=b1 , . . . , Ixn=br , all equal to k[x1, . . . , xr−1]. We’ll obtain a contradiction in the following
way:

Note that 1 ∈ Ixn=bi for all i ∈ [r] if and only if there exists Bi ∈ I so that Bi(x1, . . . , xn−1, bi) = 1 for all
i ∈ [r]. Observe that

Bi(x1, . . . , xn−1, bi) = Bi(x1, . . . , xn−1, xn − (xn − bi)),
and also [here’s a tricky part]

Bi(x1, . . . , xn − (xn − bi)) = Bi(x1, . . . , xn) +Ai(x1, . . . , xn)(x− bi)

for some Ai(x1, . . . , xn) ∈ k[x1, . . . , xn], by the binomial theorem: for every b`n term in Bi(x1, . . . , xn−1, bi),
the binomial theorem says we can expand

(xn − (xn − bi))` = x`n +

(
`

1

)
x`−1n (−(xn − bi)) +

(
`

2

)
x`−2n (−(xn − bi))2 +

(
`

3

)
x`−3n (−(xn − bi))3 + . . .
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and we can collect all the terms involving an xn − bi to get Ai(x1, . . . , xn), and the remaining term is the x`n
term “replaces” the b`i term in Bi(x1, . . . , bi). So the resulting polynomial is Bi(x1, . . . , xn).

Chaining all these equalities together we get

1 = Bi(x1, . . . , xn−1, bi) = Bi(x1, . . . , xn) +Ai(x1, . . . , xn)(xn − bi),

for every i ∈ [r]. Let’s raise everything to the mith power and multiply everything together, to get

1 =

r∏
i=1

1mi =

r∏
i=1

((
Bi(x1, . . . , xn) +Ai(x1, . . . , xn)(xn − bi)

)mi
)
, (3)

and expand in the following way. We will write the right hand side as

1 = B(x1, . . . , xn)︸ ︷︷ ︸
“everything else”

+

( r∏
i=1

(Ai(x1, . . . , xn))mi

) r∏
i=1

(xn − bi)mi

︸ ︷︷ ︸
c−1f∈I

;

the summand on the right is obtained from always taking the Ai(x1, . . . , xn)(x− bi) term in the product in
Equation (3); observe that it is in I . The summand on the left is the “everything else”, namely, those terms
that are obtained from taking some Bi(x1, . . . , xn) in the product in Equation (3). Since Bi(x1, . . . , xn) ∈ I ,
the whole B(x1, . . . , xn) ∈ I as well.

Finally, we’ve written 1 as a sum of two elements of I . This means that 1 ∈ I , contrary to our assumption
that I ( k[x1, . . . , xn] from the very first sentence of this proof. This proves that in case (1) we always have
some i ∈ [r] so that Ixn=bi 6= k[x1, . . . , xn−1].

Let’s tackle Case (2) now. In this case, we have I ∩ k[xn] = {0}. Let us take a Gröbner basis G =
{g1, . . . , gt} for I with respect to the lex order, with x1 > · · · > xn. We write x = (x1, . . . , xn−1) for the first
n− 1 variables and α(i) = (α(i)1, . . . , α(i)n−1) ∈ Zn−1≥0 for the exponent vector so that gi ∈ G can be written

gi = xα(i)ci(xn) +

(∑
(monomials <lex xα(i)) · (polynomials in k[xn])

)
. (4)

Note that this isn’t quite the same as pulling out the leading term of gi; it’s as if we’re pulling out the leading
term among the monomials in the first n− 1 variables. For example, if n = 3 and

g = 2x31x2x
4
3 − 11x31x2x3 + x31x3 + 3x21x

7
2 + x1x2x

13
3 + x1,

then we’d write

g = x31x2(2x43 − 11x3) +

(
(x31) · (x3) + (x21x

7
2) · (3) + (x1x2) · (x133 ) + (x1) · (1)

)
,

so α = (3, 1) and c(x3) = 2x43 − 11x3.

Let’s return to the proof of Case (2); we’ve written gi as in Equation (4). Note that in this equation, we
necessarily have ci(xn) 6= 0 as a polynomial.

Let us pick a ∈ k such that ci(a) 6= 0 for all i ∈ [t]. The existence of this will be left as an exercise. [At the
very least, one would need to prove that algebraically closed fields are infinite. This follows from observing,
for example, that algebraically closed fields should contain all the roots of unity.]

Let us consider the polynomials

gi(x1, . . . , xn−1)
def
= gi(x1, . . . , xn−1, a) ∈ k[x1, . . . , xn−1].
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We claim that gi form a basis of Ixn=a. This is not terribly difficult and will be left as an exercise.

Let us substitute xn = a into Equation (4), and take the leading terms of both sides. We arrive at

LT(gi) = ci(a)xα(i)

where ci(a) 6= 0 by assumption on a. Observe also that xα(i) 6= 1 because then gi ∈ I ∩ k[xn] = {0}, which
is a contradiction. Hence LT(gi) is nonconstant for all i. For time reasons, let us show the following claim
next lecture:

Claim 2. The set {gi} is a Gröbner basis for Ixn=a.

Note that since none of the LT(gi) = 1, we have 1 6∈ LT(Ixn=a) = 〈LT(g1), . . . ,LT(gt)〉, by Lemma 2.5.9.
Then if 1 ∈ Ixn=a, then 1 ∈ LT(Ixn=a), so that’s impossible. Hence Ixn=a 6= k[x1, . . . , xn−1], which proves in
Case (2), the conclusion of Claim 1 is always satisfied.
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3.11 Oct 3, 2019

[Reminder: There’s a prelim in a week! It’ll happen in class, on October 10. The emphasis will be on
Chapters 1 and 2, although it might touch on Chapter 4. We should definitely know why all of the algorithms
introduced in this class work (i.e., why they terminate, and so on.)]

Let’s recall where we left off last time.

Theorem 3.11.1 (The Weak Nullstellensatz, cf. Theorem 3.10.2). Let k be an algebraically closed field, and let
I ⊆ k[x1, . . . , xn] be an ideal. Then V(I) = ∅ implies that I = 〈1〉.

Proof. We were partway through the proof last time. For f ∈ k[x1, . . . , xn] and a ∈ k, we set

f
def
= f(x1, . . . , xn−1, a) and Ixn=a

def
= {f : f ∈ I}.

We also took a Gröbner basis {g1, . . . , gt} for I with respect to the lexicographic order >lex with x1 > x2 >
· · · > xn, and we had:

Claim 2. The polynomials gi is a Gröbner basis for Ixn=a.

The basis part is an easy exercise, and the Gröbner part will be proven. In order to prove this, we had
written

gi = xα(i)ci(xn) +

(∑
(monomials <lex xα(i)) · (polynomials in k[xn])

)
. (5)

We picked a ∈ k to be so that ci(a) 6= 0 for all i ∈ [t], and left the existence of such an a as an exercise. We
observed that LT(gi) = ci(a)xα(i).

Let us now recall Theorem 2.9.11, which says that a basis G = {gi} is a Gröbner basis if and only if each
S(gi, gj) has an LCM representation with the {gi}; recall that an LCM representation is an expression

S(gi, gj) =

t∑
`=1

A`g`

such that lcm(LM(gi),LM(gj)) > LM(A`g`). (Just in case, see Definition 2.7.9 for the definition of S-
polynomial.)

Let’s prove Claim 2 now. We want to produce LCM representatives for S(gi, gj) for all i 6= j. Let us
define the polynomials

Sij(x1, . . . , xn)
def
= cj(xn)

xγij

xα(i)
gi − ci(xn)

xγij

xα(j)
gj ,

where γij = lcm(xα(i),xα(j)). (As a reminder, note that α(i) is an (n− 1) tuple, and x = (x1, . . . , xn−1).)

Here we make the crucial claim that xγij > LM(Sij). To see this, observe that in light of Equation (5),
the (x1, . . . , xn−1) part of any monomial appearing in Sij has exponent vector strictly less than γij . (This
is similar to what we did in the homework.) Then, lex has the nice property that if (α1, . . . , αn−1) >lex
(β1, . . . , βn−1), then (α1, . . . , αn) >lex (β1, . . . , βn) for any αn and βn.

Thus
Sij = Sij(x1, . . . , xn−1, a) = cj(a)

xγij

xα(i)
gi − ci(a)

xγij

xα(j)
gj = ci(a)cj(a)S(gi, gj).

Now Sij ∈ I , and G a Gröbner basis for I , implies that we can take an LCM representation

Sij =

t∑
`=1

A`g`,
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where LM(Sij) ≥ LM(A`g`) whenever A`g` 6= 0. “Barring” both sides we get

ci(a)cj(a)S(gi, gj) = Sij =

t∑
`=1

A`g`,

with the leading monomial of the left hand side being xγij . In light of the chain of inequalities

xγij > LM(Sij) ≥ LM(A`g`) ≥ LM(A`g`),

we see that we have obtained an LCM representation for S(gi, gj). This shows that gi form a Gröbner basis
for Ixn=a.

The Weak Nullstellensatz (Theorem 3.11.1) says that any system of polynomial equations which gener-
ates an ideal strictly smaller than C[x1, . . . , xn] has a common zero in Cn.

We can thus answer the question of when polynomials over algebraically closed fields have a common
solution. For example, take k = C, and let f1, . . . , fs ∈ C[x1, . . . , xn]. Then f1, . . . , fs = 0 fail to have a
common solution if and only if V(f1, . . . , fs) = ∅, if and only if 〈f1, . . . , fs〉 = C[x1, . . . , xn], if and only if
1 ∈ 〈f1, . . . , fs〉. To answer the question of when 1 ∈ I is in some ideal, we have the following claim:

Proposition 3.11.2. The set {1} is the only reduced Gröbner basis of 〈1〉 = I , for any monomial order.

Proof. Suppose {g1, . . . , gt} is a Gröbner basis for I . Then, since 1 ∈ I we have 1 ∈ LT(I) = 〈LT(g1), . . . ,LT(gt)〉.
By Lemma 2.5.9, 1 is divisible by some LT(gi), so LT(gi) must be constant. This means that every other LT(gj),
when j 6= i, is also divisible by LT(gi). Thus we remove these gj from our Gröbner basis when we construct
a reduced Gröbner basis.

Furthermore, if LT(gi) is constant, then so is gi, because we’ve proven in HW 4 that 0 ∈ Zn≥0 must be
the minimal element of any monomial ordering. Also, because elements of a reduced Gröbner basis have
leading coefficient 1, it follows that gi = 1 is the constant 1 function.

Let us recall we had two ideals 〈x〉 and 〈x2〉, such that V(〈x〉) = V(〈x2〉) = {0}. More generally, if
f ∈ k[x1, . . . , xn], then V(〈f〉) = V(〈fr〉) for any r ≥ 1, essentially because for any α ∈ k, we have α = 0 if
and only if αr = 0.

Theorem 3.11.3 (Hilbert Nullstellensatz). Let k be algebraically closed. If f, f1, . . . , fs ∈ k[x1, . . . , xn], then

f ∈ I(V(f1, . . . , fs)) if and only if fm ∈ 〈f1, . . . , fs〉 for some m ≥ 1.

This theorem underpins the dictionary between algebra and geometry, which we’ll see bits of in this
course. Take a class in algebraic geometry to learn more!

Proof. The backwards direction is not terribly difficult. (We’ll also see essentially a proof of this when we
try to prove the other direction.)

Let’s take f ∈ I(V(f1, . . . , fs)); our goal is to show that fm ∈ 〈f1, . . . , fs〉 for some m ≥ 1. The statement
f ∈ I(V(f1, . . . , fs)) means that f vanishes on the set of common zeros of f1, . . . , fs. We proceed with the
following trick, which will allow us to deduce the theorem from the Weak Nullstellensatz (Theorem 3.10.2).

Consider
Ĩ = 〈f1, . . . , fs, 1− yf〉 ⊆ k[x1, . . . , xn, y]. (6)

Note that the fi are considered as elements of k[x1, . . . , xn, y]. Our claim is that V(Ĩ) = ∅.

Indeed, let us consider a point (a1, . . . , an, an+1) ∈ kn+1. We want to show it is not in V(Ĩ). There
are two cases: in the first case, we have (a1, . . . , an) ∈ V(f1, . . . , fs) ⊆ kn, and in the second, we have
(a1, . . . , an) 6∈ V(f1, . . . , fs) ⊆ kn.

37

http://pi.math.cornell.edu/~ls823/6670sp19.pdf


In the first case, we have f1(a1, . . . , an) = · · · = fs(a1, . . . , an) = 0. Since f vanishes on V(f1, . . . , fs) too,
we have f(a1, . . . , an) = 0 as well. Then the polynomial 1 − yf , evaluated at the point (a1, . . . , an, an+1), is
equal to

(1− yf)(a1, . . . , an, an+1) = 1− an+1 f(a1, . . . , an)︸ ︷︷ ︸
=0

= 1 6= 0,

so (a1, . . . , an+1) 6∈ V(f1, . . . , fs, 1− yf), since 1− yf does not vanish on that point.

In the second case, we have fi(a1, . . . , an) 6= 0 for some i. Then, thinking of fi ∈ k[x1, . . . , xn, y], we still
have fi(a1, . . . , an, an+1) 6= 0, hence (a1, . . . , an, an+1) 6∈ V(Ĩ) either.

Thus we have proven V(Ĩ) = ∅. The Weak Nullstellensatz (Theorem 3.10.2) implies 1 ∈ Ĩ . This means
that there exists p1, . . . , ps, q ∈ k[x1, . . . , xn, y] such that

1 =

( s∑
i=1

pifi

)
+ q(x1, . . . , xn, y)(1− yf).

Let us set y = 1/f . Because we’re (only temporarily!) going outside of the world of polynomials with this
substitution, this step is a little shady; to make everything rigorous we should say that our computations
will be done in the field of rational functions. But allow us to shove this under the rug.

We get the expression

1 =

s∑
i=1

pi(x1, . . . , xn,
1
f ) · fi(x1, . . . , xn)

where the right hand side is a ratio of polynomials. Let us clear denominators, by multiplying both sides by
fm until the pi(x1, . . . , xn, 1f ) become polynomials; for some m ≥ 1, we get

fm =

s∑
i=1

Aifi,

as desired.

Definition 3.11.4. Let I ⊆ k[x1, . . . , xn] be an ideal. Define the radical of I as
√
I

def
= {f : fm ∈ I for some m ≥ 1.} 4

Observe that I ⊆
√
I , where the equality isn’t always true.
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4 Practice Prelim

4.12 Oct 8, 2019

We discussed a “practice prelim” today. Prof Mészáros also gave a teaser problem for us to think about
if we were done early. I’ll give my solutions, although it’s much easier to do this when I can cite theorems
at will! Without further ado:

Problem 1.

(a) Let V ⊆ kn be an affine variety. Define I(V ).
(b) Prove that I(V ) is an ideal.
(c) For affine varieties V,W ⊆ kn, prove V ⊆W ⇐⇒ I(V ) ⊆ I(W ).
(d) Let f1, . . . , fs ∈ k[x1, . . . , xn]. What is the relationship between 〈f1, . . . , fs〉 and I(V(〈f1, . . . , fs〉))?

Problem 2. Choose the lexicographic order with x >lex y on k[x, y]. Let f1 = x3y − xy2 + 1 and f2 =
x2y2 − y3 − 1. Let I = 〈f1, f2〉. Show that {f1, f2} is not a Gröbner basis.

Problem 3. State and prove Buchberger’s algorithm.

Problem 4.

(a) State what it means for f = 0 ∈ k[x1, . . . , xn] and for f : kn → k to be the zero function.
(b) k = F2?
(c) Let k be an infinite field. Prove f = 0 as a polynomial if and only if it’s 0 as a function.

Teaser. Let G = (V,E) be a finite graph (so V = {v1, . . . , vn} is a set of vertices, and E = {{vi, vj} ⊆ V }
is a set of edges). Reduce the task of deciding whether G has an m-coloring to the Nullstellensatz.

Proof of Problem 1. For part a), see Definition 1.2.7.

For part b), see Lemma 1.2.8.

For part c), see Proposition 1.2.11.

For part d), see Lemma 1.2.9 and Example 1.2.10.

Proof of Problem 2. By Buchberger’s Criterion (Theorem 2.8.3) it suffices to check whether or not S(f1, f2)
gives remainder 0 upon division by {f1, f2}. Observe S(f1, f2) = x+ y and neither term is divisible by x3y
or x2y2, both terms x and y go into the remainder. Thus it’s not a Gröbner basis.

Proof of Problem 3. See Theorem 2.8.4.

Proof of Problem 4. For part a), the zero polynomial of k[x1, . . . , xn] is the polynomial whose coefficients are
all zero. A polynomial f ∈ k[x1, . . . , xn] gives rise to a function f : kn → k given by sending a ∈ kn to
f(a) ∈ k; it is the zero function if f(a) = 0 for all a ∈ kn.

For part b), consider x2 + x ∈ F2[x].

For part c), see Proposition 1.1.3.

[I feel like I’m writing an article for nlab.]
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Proof of Teaser. [Proof is intentionally left terse.]

We set V (G) = [n]. For each i ∈ [n], define fi
def
= xmi −1 [got this idea from Isaac]. For each e = {i, j} ∈ E,

define
fe

def
=

∏
`1,`2∈[m]
`1 6=`2

(xi − xj − e2πi`1/m + e2πi`2/m).

[The insight is that fe has finite degree, now that f1, . . . , fn have been defined.] Define

I
def
= 〈fi, fe : i ∈ [n], e ∈ E〉 ⊆ C[x1, . . . , xn].

Observe that p = (p1, . . . , pn) ∈ V(I) if and only if

pj = e2πi`j/m for some `j ∈ [m]︸ ︷︷ ︸
fj=0

, with `i 6= `j for each {i, j} ∈ E︸ ︷︷ ︸
f{i,j}=0

.

This is true if and only if j 7→ `j is an m-coloring. Thus, the problem reduces to computing a reduced
Gröbner basis for I ; see Proposition 3.11.2.
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5 Nullstellensatz

5.13 Oct 17, 2019

[We got our prelims back today.]

Let’s talk for a bit about the teaser problem posed in the practice prelim.

Let G = (V,E) be a finite graph. This means that V (sometimes denoted V (G)) is a set of vertices
V = {1, . . . ,m} and E (sometimes denoted E(G)) is a set of edges E = {{i, j} : i, j ∈ V }. (Not every pair of
vertices i, j must form an edge of G.)

An n-coloring of G is an assignment f : V (G) → [n] so that f(u) 6= f(v) if {u, v} ∈ E(G). We want to
decide (algorithmically) whether G has an n-coloring.

In order to answer this question, let us recall the Weak Nullstellensatz:

Theorem 5.13.1 (The Weak Nullstellensatz, cf. Theorems 3.10.2 and 3.11.1). Let k be an algebraically closed field
and let I ⊆ k[x1, . . . , xn] be an ideal satisfying V(I) = ∅. Then I = k[x1, . . . , xn] = 〈1〉.

This theorem gives a solution to the consistency problem, which asks us to decide whether there exists
a solution to f1 = · · · = fs = 0, in light of Proposition 3.11.2.

Let’s get back to coloring. If you’re interested in related problems, you may be interested in this paper
of Lovász, and this paper of De Loera et al, among others.

We will apply Theorem 5.13.1 to this problem. We’ll be considering ideals of k[x1, . . . , xm]; recall that
m = |V (G)|. The idea is to define “vertex polynomials” fv for each i ∈ V (G) and “edge polynomials” eij for
each e ∈ E(G). The fv will encode the colors given to v, while the fe ascertain that adjacent vertices do not
get the same color. For clarity of notation we’ll denote, for i, j ∈ V (G),

vi(x1, . . . , xm)
def
= fi(x1, . . . , xm) and eij(x1, . . . , xm)

def
= fe(x1, . . . , xm), where e = {i, j} ∈ E(G).

Pick n distinct elements α1, . . . , αn of k. For concreteness, we’ll pick k = C = {a + bi : a, b ∈ R} and
αj = e2πij/n the nth roots of unity. [Sorry, I know I used i to mean an element of V (G), but we need it here
to denote i =

√
−1...] Let us define

vj =

n∏
k=1

(xj − αk) = xnj − 1

and

ejk =
vj − vk
xj − xk

=

n−1∑
`=0

x`jx
n−1−`
k ,

where the second equality in both equations above is our concrete special case but in general any αk will do
and ejk will be defined from vj and vk as displayed above. The n colors basically correspond to the n many
αj .

Observe that, for every i ∈ [m], we have

vi(x) = 0 if and only if xi = αj for some j ∈ [n].

Furthermore (this needs a little proof!), observe also that if x satisfies vj(x) = 0 for every j ∈ [m], then

ejk(x) = 0 if and only if xj = αj′ and xk = αk′ for some j′ 6= k′ ∈ [n].

Thus we have proven
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Theorem 5.13.2. The graph G is m-colorable if and only if {vi, eij : i ∈ V (G), {i, j} ∈ E(G)} have a common root
x. The coloring is given in the following way. If x = (αi1 , . . . , αim) is a solution, then f : V (G) → [n] given by
v 7→ iv is a coloring.

Okay, let’s recall also Hilbert’s Nullstellensatz:

Theorem 5.13.3 (Hilbert Nullstellensatz, cf. Theorem 3.11.3). Let k be algebraically closed. Then if f1, . . . , fs ∈
k[x1, . . . , xn], then

f ∈ I(V(f1, . . . , fs)) if and only if fm ∈ 〈f1, . . . , fs〉
for some m ∈ Z≥1.

Definition 5.13.4. An ideal I is radical if fm ∈ I for m ≥ 1 implies f ∈ I . 4

Corollary 5.13.5. For any variety V , the ideal I(V ) is radical.

Exercise: The ideal I is radical if and only if I =
√
I .

Lemma 5.13.6. If I is an ideal, then
√
I is also an ideal. Moreover,

√
I is a radical ideal.

Proof. Observe, of course, that 0 ∈
√
I . We need to check that if f, g ∈

√
I then f + g ∈

√
I , and that if

f ∈
√
I and h ∈ k[x1, . . . , xn], then hf ∈

√
I .

Let’s begin with our first task. If f, g ∈
√
I , then there exist m, ` ≥ 1 so that fm, g` ∈ I . We want to show

that f + g ∈
√
I , that is, that there exists an integerM so that (f + g)M ∈ I . Our claim is thatM = m+ `− 1

works: observe that

(f + g)m+`−1 =

m+`−1∑
i=0

(
m+ `− 1

i

)
f igm+`−1−i,

and note that every term in the sum either has i ≥ m orm+ `− 1− i ≥ `: this is because if instead i ≤ m− 1
and m + ` − 1 − i ≤ ` − 1, then adding these two inequalities gives m + ` − 1 ≤ m + ` − 2, which is a
contradiction. Since every term in the sum either has i ≥ m or m + ` − 1 − i ≥ `, each term is divisible
by either fm or g`; in either case, each term is in I , hence (f + g)m+`−1 ∈ I as well. We have shown that
f + g ∈

√
I .

The second task is less painful: let us take f ∈
√
I and h ∈ k[x1, . . . , xn]. Since f ∈

√
I there existsm ≥ 1

so that fm ∈ I ; but now hmfm = (hf)m ∈ I since I is an ideal, so we have shown hf ∈
√
I .

We’ll leave the “moreover” part as an exercise. [If you’ve done the previous exercise, which asks you to
show I is radical if and only if I =

√
I , then this “moreover” part of the theorem equivalently asks you to

show that
√
I =

√√
I .]

The following theorem has some very nice consequences, some of which we’ll see in the near future. (As
a teaser: we’ll see exactly in what way I and V are inverses to each other.)

Theorem 5.13.7 (Strong Nullstellensatz). Let k be an algebraically closed field. If I is an ideal of k[x1, . . . , xn],
then

I(V(I)) =
√
I.

Proof. Let us take generators 〈f1, . . . , fs〉 = I . By the Hilbert Nullstellensatz (Theorem 5.13.3) and the defi-
nition of the radical of an ideal, we have

f ∈ I(V(I)) = I(V(f1, . . . , fs)) ⇐⇒ fm ∈ 〈f1, . . . , fs〉 ⇐⇒ f ∈
√
〈f1, . . . , fs〉 =

√
I.

(The first equality is Proposition 2.7.6.)
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5.14 Oct 22, 2019

Last time we ended with the Strong Nullstellensatz:

Theorem 5.14.1 (Strong Nullstellensatz; cf. Theorem 5.13.7). Let k be an algebraically closed field. If I ⊆
k[x1, . . . , xn] is an ideal, then

I(V(I)) =
√
I.

As hinted before, we have some very nice consequences:

Theorem 5.14.2 (The Ideal-Variety Correspondence). Let k be an arbitrary field.

1. The maps

{affine varieties} I−→ {ideals}

{ideals} V−→ {affine varieties}

are inclusion reversing:

V1 ⊆ V2 =⇒ I(V1) ⊇ I(V2)

I1 ⊆ I2 =⇒ V(I1) ⊇ V(I2).

2. For any affine variety V , V(I(V )) = V . For any ideal I , V(
√
I) = V(I).

3. For k algebraically closed, the image of I is the subset {radical ideals} ⊆ {ideals}. Then

{affine varieties} I−→ {radical ideals}

{radical ideals} V−→ {affine varieties}

are inclusion reversing bijections, which are inverses of each other.

Proof. We’ve seen part (1) in various homeworks, lectures, and exams.

Let’s prove part (2). Let V = V(f1, . . . , fs) ⊆ kn. To prove V(I(V )) ⊇ V , observe that every f ∈ I(V )
vanishes on V . To prove V(I(V )) ⊆ V , note that f1, . . . , fs ∈ I(V ) implies 〈f1, . . . , fs〉 ⊆ I(V ). Part (1) of the
theorem implies

V = V(〈f1, . . . , fs〉) ⊇ V(I(V )).

That V(
√
I) = V(I) will be left as an exercise.

For part (3), we know that I(V ) is radical for any variety V . We also know, from (2), that V(I(V )) = V , so
we just need I(V(I)) = I for radical ideals I . This follows from the Strong Nullstellensatz (Theorem 5.14.1),
which says that I(V(I)) =

√
I . On the HW, we’ll prove that when I is a radical ideal, I =

√
I . Note that we

use algebraic closedness of k because we appealed to the Nullstellensatz.

The ideal-variety correspondence (Theorem 5.14.2) leads to natural questions:

1. Radical Generation: Is there an algorithm, which when given I , produces a basis for
√
I?

2. Is there an algorithm to decide if I is radical?
3. Radical membership: Given f ∈ k[x1, . . . , xn] and I = 〈f1, . . . , fs〉, is there an algorithm to determine

if f ∈
√
I?

Proposition 5.14.3 (Radical membership). Let k be an algebraically closed field, and let I = 〈f1, . . . , fs〉 ⊆
k[x1, . . . , xn]. Then,

f ∈
√
I ⇐⇒ 1 ∈ Ĩ = 〈f1, . . . , fs, 1− yf〉 ⊆ k[x1, . . . , xn, y].
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You may recall Ĩ from the proof of Hilbert Nullstellensatz (see Equation (6)). [If you’re interested, this
proof is called the Rabinowitz trick. As Qiaochu notes, the “trick” is quite natural in the language of com-
mutative algebra. We use that localization with respect to f is trivial iff f is nilpotent. Incidentally, this also
proves the above proposition.]

Proof. In the proof of the Hilbert Nullstellensatz (Theorem 5.13.3), we showed that 1 ∈ Ĩ means fm ∈ I

for some m ≥ 1, hence f ∈
√
I . [post prelim 2 addendum: note that algebraically closedness of k is not

necessary – that part of the proof of the Nullstellensatz didn’t need it.] Conversely, if f ∈
√
I , then fm ∈ I ,

and hence when thought of as an element of k[x1, . . . , xn, y] we have fm ∈ Ĩ . Also, 1− yf ∈ Ĩ , so

1 = ymfm + (1− ymfm) = ymfm︸ ︷︷ ︸
∈Ĩ

+ (1− yf)︸ ︷︷ ︸
∈Ĩ

(1 + yf + · · ·+ ym−1fm−1).

Hence 1 ∈ Ĩ .

Proposition 5.14.3 gives a solution to the radical membership problem: given f ∈ k[x1, . . . , xn] and
〈f1, . . . , fs〉 = I , we can compute the reduced Gröbner basis of 〈f1, . . . , fs, 1 − yf〉 ⊆ k[x1, . . . , xn, y] with
respect to any monomial ordering. This reduced Gröbner basis is {1} if and only if f ∈

√
I .

Let us also compute the radical of a principal ideal.

Definition 5.14.4. A nonconstant polynomial f ∈ k[x1, . . . , xn] is irreducible if when we write f = gh with
g, h ∈ k[x1, . . . , xn], then either g or h is constant. 4

Note that the notion of irreducibility depends on f and k, i.e., the polynomial x2 + 1 is irreducible as a
polynomial in R[x], but not irreducible as a polynomial in C[x]. We won’t prove the following fact. [Note
the resemblance to the fundamental theorem of arithmetic!]

Fact 5.14.5. A nonconstant polynomial f ∈ k[x1, . . . , xn] can be written as

f = cfa11 . . . farr ,

where f1, . . . , fr are distinct irreducible polynomials with leading coefficient 1, c is a nonzero constant in k, and
a1, . . . , ar are positive integers. This factorization is unique up to permuting the fi.

Proposition 5.14.6. Let f ∈ k[x1, . . . , xn], and let I = 〈f〉. If

f = cfa11 . . . farr

is the factorization of f into irreducibles, then √
〈f〉 = 〈f1 . . . fr〉.

(Notice that this is the product f1 · f2 · . . . · fr, i.e., there is only one generator.)

Proof. As usual we have two inclusions to verify. Let us begin by showing
√
I =

√
〈f〉 ⊇ 〈f1 . . . fr〉. Let

N > max(a1, . . . , an), and note that

(f1 . . . fr)
N =

1

c
fN−a11 . . . fN−arr f ∈ I,

so f1 . . . fr ∈
√
I To show that

√
I ⊆ 〈f1 . . . fr〉, we take g ∈

√
I , so that gm ∈ I for some m ≥ 1. Then

gm = hf for some h ∈ k[x1, . . . , xn]. In particular, f1, . . . , fr are irreducible factors of gm (there may be
more coming from h, but never mind those). Note that g has a factorization into irreducibles, by Fact 5.14.5.
Furthermore, gm also has a factorization into irreducibles, by Fact 5.14.5. Since a factorization for gm is
obtained by taking the factorization of g and raising it to the m, the uniqueness of Fact 5.14.5 says that this
is the unique factorization of gm. We said earlier that f1, . . . , fr are irreducible factors of gm; it follows that
f1, . . . , fr are also irreducible factors of g. Hence g ∈ 〈f1 . . . fs〉.
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Definition 5.14.7. Let f ∈ k[x1, . . . , xn]. A reduction of f is a polynomial fred such that

〈fred〉 =
√
〈f〉. 4

By Proposition 5.14.6, note that fred is unique up to multiplication by a scalar.

Definition 5.14.8 (cf. Definition 1.3.7). Let f, g ∈ k[x1, . . . , xn]. A greatest common divisor of f and g,
denoted gcd(f, g), is a polynomial h ∈ k[x1, . . . , xn] such that h divides f and g so that whenever p ∈
k[x1, . . . , xn] also divides both f and g, then p divides h. 4

Exercise: The polynomial gcd(f, g) exists and is unique up to multiplication by a nonzero constant.

Exercise-Proposition 5.14.9. Let I = 〈f〉 ⊆ C[x1, . . . , xn]. Then

√
I = 〈fred〉, and fred =

f

gcd(f, ∂f∂x1
, . . . , ∂f∂xn

)
.

Note that Exercise-Proposition 5.14.9 is not just a naive generalization of Euclidean Algorithm (which
worked for us in the univariate case), since it might “get stuck”, e.g. as it would do with xy and xz.

We’re going to talk about operations on ideals and see what they do in geometry. [Let me remark that
there are very natural algebraic operations that are mysterious/deep in geometry, and many natural geo-
metric operations that are mysterious/deep in algebra.]

Definition 5.14.10. Let I and J be ideals in k[x1, . . . , xn]. Then their sum is

I + J = {f + g : f ∈ I, g ∈ J}.

Their product is

IJ =

{ r∑
i=1

figi : fi ∈ I, gi ∈ J
}
.

Note that r ≥ 1 is arbitrary but finite. (Finiteness is crucial for various theorems to hold.) Their intersection
is

I ∩ J = {f : f ∈ I, f ∈ J}.

4

Proposition 5.14.11. Let I and J be ideals in k[x1, . . . , xn], then I + J , IJ , and I ∩ J are all ideals. Furthermore,
I + J is the smallest ideal containing both I and J , where smallest is in the sense of containment. If I = 〈f1, . . . , fs〉
and J = 〈g1, . . . , gt〉, then

I + J = 〈f1, . . . , fs, g1, . . . , gt〉, and IJ = 〈figj : i ∈ [s], j ∈ [t]〉.

Note that this implies every ideal is a finite sum of principal ideals, since 〈f1, . . . , fs〉 = 〈f1〉+ · · ·+ 〈fs〉.
Finding a basis for I ∩ J is a bit harder and will need more work.

Theorem 5.14.12. We have

1. V(I + J) = V(I) ∩V(J),
2. V(IJ) = V(I) ∪V(J), and
3. V(I ∩ J) = V(I) ∪V(J).
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Proof. The first two parts follow from combining Proposition 5.14.11 and (the proof of) Lemma 1.2.2.

The third part, as usual, follows from verifying the two inclusions: we have V(I ∩ J) ⊇ V(I) ∪ V(J)
because if a ∈ V(I), then f(a) = 0 for all f ∈ I , in particular for all f ∈ I ∩ J , hence a ∈ V(I ∩ J), and for
exactly the same reason if a ∈ V(J) then a ∈ V(I ∩ J) too. We also have V(I ∩ J) ⊆ V(I)∪V(J) because if
a ∈ V(I ∩ J) but a 6∈ V(I) and a 6∈ V(J), then we could find f ∈ I and g ∈ J so that f(a) 6= 0 and g(a) 6= 0;
then fg(a) 6= 0 too even though fg ∈ I ∩ J .

In light of Theorem 5.14.2, we like radical ideals. Note that the product of two radical ideals need not be
radical: take, for example, I = J = 〈x〉 (then IJ = 〈x2〉). However, the intersection of two radicals is radical,
and that’s why we want to do the hard work required to find a basis for I ∩ J . Specifically,

Proposition 5.14.13. Let I and J be ideals. We have
√
I ∩ J =

√
I ∩
√
J.

In particular, the intersection of two radical ideals is still radical.

Proof. If f ∈
√
I ∩ J , then fm ∈ I ∩ J , that is, fm ∈ I and fm ∈ J . Then f ∈

√
I and f ∈

√
J .

If f ∈
√
I ∩
√
J , then there exist m1,m2 ≥ 1 so that fm1 ∈ I and fm2 ∈ J . Then fm1+m2 ∈ I ∩ J , that is,

f ∈
√
I ∩ J .
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6 Some Elimination Theory

6.15 Oct 24, 2019

Last time we talked about operations of ideals: if I, J ⊆ k[x1, . . . , xn] are ideals, then we defined the
ideals I + J , IJ , and I ∩ J . Given bases for I and J , we described bases for I + J and IJ . We also showed
that given radical ideals I and J , the ideal I ∩ J is also radical. Thus it is of interest to find a basis for I ∩ J .

As a warmup, suppose I = 〈f〉 ⊆ Q[x, y] and J = 〈g〉 ⊆ Q[x, y] where

f = (x+ y)4(x2 + y)2(x− 5y) and g = (x+ y)(x2 + y)3(x+ 3y).

Then it’s not too hard to show that I ∩ J = 〈h〉, where

h = (x+ y)4(x2 + y)3(x− 5y)(x+ 3y).

One might reasonably want to call h a least common multiple of f and g. We’ll make this formal later.

Our goal today will be to describe an algorithm that will compute bases for I ∩ J . A crucial stepping
stone will be the following theorem:

Theorem 6.15.1. Let I and J be ideals of k[x1, . . . , xn] = k[x]. Then

I ∩ J = (tI + (1− t)J)︸ ︷︷ ︸
ideal of k[x, t]

∩k[x].

(See Definition 6.15.2.)

Definition 6.15.2. Let I be an ideal in k[x1, . . . , xn], and let f(t) ∈ k[t]. Then

f(t)I
def
= 〈f(t)h : h ∈ I〉.

It is an ideal of k[x1, . . . , xn, t]. 4

Note that the set {f(t)h : h ∈ I} is not an ideal of k[x1, . . . , xn, t], one really has to take the ideal generated
by it.

We’ll need some elimination theory today (this is chapter 3 in the book); after covering some basic results
we’ll be able to compute least common multiples and greatest common divisors of multivariate polynomials.

In elimination theory we want to solve polynomial equations f1 = · · · = fr = 0 in k[x1, . . . , xn]. The idea
is as follows: there is an elimination step, where we find polynomial consequences of f1 = · · · = fr = 0
which involve a proper subset of the initial variables, and there is the extension step, where our solutions of
the smaller system (called partial solutions of f1 = · · · = fr = 0) are extended to complete solutions of the
original solution. This is not always possible.

Example 6.15.3. We’ll see this example later, but suppose f1 = xy − 1 and f2 = xz − 1 in k[x, y, z]. A
polynomial consequence of f1 = f2 = 0 is zf1 − yf2 = z − y = 0, which involves only y and z. So this is an
elimination step.

An extension step consists of taking solutions of the smaller system (in this case z−y = 0) and extending it
to solutions of the original solution. The solutions of the smaller system z−y = 0 is precisely {(a, a) : a ∈ k}.
These can be extended to a solution (x, a, a) to f1 = f2 = 0 precisely when a 6= 0; in this case it extends to
( 1
a , a, a). 4

In the language of ideals, the following notion will prove to be important:
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Definition 6.15.4. Given I = 〈f1, . . . , fs〉 ⊆ k[x1, . . . , xn]. The `-th elimination ideal I` is the ideal in
k[x`+1, . . . , xn] defined by

I`
def
= I ∩ k[x`+1, . . . , xn]. 4

Thus I` consists of polynomial consequences of f1 = · · · = fs = 0 involving only x`+1, . . . , xn.

Bases of elimination ideals behave particularly nicely.

Theorem 6.15.5 (Elimination Theorem). Let I ⊆ k[x1 . . . , xn] be an ideal and let G be a Gröbner basis of I with
respect to lex order, with x1 > · · · > xn. Define, for every 0 ≤ ` ≤ n, the set

G`
def
= G ∩ k[x`+1, . . . , xn].

Then G` is a Gröbner basis of I`.

Proof. Fix an `. Note that G` ⊆ I`, hence 〈LT(G`)〉 ⊆ 〈LT(I`)〉. We should check that 〈LT(I`)〉 ⊆ 〈LT(G`)〉.

Indeed, let us take f ∈ I`, and let us show that LT(f) is divisible by LT(g) for some g ∈ G`; this suffices
because Lemma 2.5.9 would imply the containment. To show this, observe that f ∈ I so LT(f) is divisible by
LT(g) for some g ∈ G. Furthermore, since LT(f) only involves the variables x`+1, . . . , xn, we see that LT(g)
only involves the variables x`+1, . . . , xn too. Furthermore, every term of g is at most (in lex order) LT(g), so it
can only use the variables x`+1, . . . , xn. Thus g ∈ k[x`+1, . . . , xn]. Since g ∈ G as well, we obtain g ∈ G`.

Proof of Theorem 6.15.1. Let us note that tJ , (1− t)J , and hence tJ + (1− t)J , are ideals of k[x1 . . . , xn, t]. We
have an equality of sets, so we better prove the two inclusions.

To see that I ∩ J ⊆ (tI + (1 − t)J) ∩ k[x1, . . . , xn], let us take f ∈ I ∩ J . Then f ∈ I means tf ∈ tI , and
f ∈ J means (1− t)f ∈ (1− t)J . Hence

f = tf︸︷︷︸
∈tI

+ (1− t)f︸ ︷︷ ︸
∈(1−t)J

∈ tI + (1− t)J.

To see that I∩J ⊇ (tI+(1− t)J)∩k[x1, . . . , xn], let us take f(x) ∈ tI+(1− t)J ∩k[x1, . . . , xn]. By definition,
we have

f = g(x, t)︸ ︷︷ ︸
∈tI

+ h(x, t)︸ ︷︷ ︸
∈(1−t)J

. (7)

Note that every element of tI is divisible by t and every element of (1−t)J is divisible by (1−t). In particular,
g(x, 0) = 0 and h(x, 1) = 0; substituting t = 1 into the equality (7) gives

f(x) = g(x, 1) ∈ (tI)t=1,

where similar to the proof of the Weak Nullstellensatz (Theorem 5.13.1) the ideal (tI)t=1 consists of poly-
nomials of the form {g(x, 1) : g ∈ tI}. We’ll see (in Lemma 6.15.6) that (tI)t=1 = I , and this proves f ∈ I .
Similarly, substituting t = 0 into the equality (7) gives

f(x) = h(x, 0) ∈ ((1− t)J)t=0,

where again ((1 − t)J)t=0 consists of polynomials of the form {h(x, 1) : h ∈ (1 − t)J}. We’ll also see (in
Lemma 6.15.6) that ((1− t)J)t=0 = J , and this proves f ∈ J . This shows f ∈ I ∩ J , as desired.

Lemma 6.15.6. Let I = 〈p1(x), . . . , pr(x)〉 ⊆ k[x] be an ideal. Then

f(t)I = 〈f(t)p1(x), . . . , f(t)pr(x)〉.
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Proof. Chase definitions. [There are two containments...]

Theorem 6.15.1, Theorem 6.15.5, and Lemma 6.15.6 give an algorithm to compute a basis of the intersec-
tion of two ideals. If I = 〈f1, . . . , fr〉 and J = 〈g1, . . . , gs〉, then tI+(1− t)J = 〈tf1, . . . , tfr, (1− t)g1, . . . , (1−
t)gs〉 by Proposition 5.14.11. We compute a Gröbner basis for tI + (1 − t)J with respect to lex order with
t > x1 > · · · > xn, and take elements of G that do not contain t. Theorem 6.15.5 asserts that this forms a
Gröbner basis for I ∩ J .

Definition 6.15.7. Let f, g ∈ k[x1, . . . , xn]. A least common multiple for f and g, denoted lcm(f, g), is a
polynomial h so that f and g both divide h, and if f and g both divide p, then h divides p too. 4

Exercise-Proposition 6.15.8. We have:

1. The intersection of two principal ideals is again principal, and
2. If I = 〈f〉, J = 〈g〉, and I ∩ J = 〈h〉, then h is an lcm of f and g. (Hence, the lcm exists and is unique up to

multiplcation by a nonzero constant.)

Exercise-Lemma 6.15.9. For any two polynomials f, g ∈ k[x1, . . . , xn], we have

fg = gcd(f, g) · lcm(f, g).

Since we have an algorithm to compute the lcm, we obtain an algorithm to compute the gcd.

Let’s go back to the problem of solving f1 = · · · = fs = 0. Although we’ve seen this in Example 6.15.3,
let’s recast what we did there in today’s new language.

Example 6.15.10 (cf. Example 6.15.3). Let us consider xy− 1 = 0 and xz− 1 = 0. Then I1 = 〈y− z〉 ⊆ k[y, z].
In other words, V(I1) consists of the y = z line in yz-space. Not all solutions in V(I1) extend to a solution
in V(I) ⊆ k3, where k3 is now xyz-space. As it turns out, V(I) ∩ {yz-space} is V(I1) \ {(0, 0)}. 4
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6.16 Oct 29, 2019

We were thinking about Example 6.15.10, which I’ll reproduce below.

Example 6.16.1. Consider xy−1 = 0 and xz = 1 = 0. We computedV(I1) = {(a, a) : a ∈ k} ⊆ {yz-space} =
k2 ⊆ k3; that is, I1 ⊆ k[y, z]. The point in V(I1) which extend to a point in V(I) is the set {(a, a) : a ∈ k, a 6=
0}. 4

We’ll discuss today the question of extending a partial solution. A first question is: does the set of
“extendable” points always a variety? The answer is a resounding no: in Example 6.16.1 we already saw
that the extendable points form a “punctured line”. It’s not too hard to show that this is not a variety, for
example, we essentially did this on HW 2 (Exercise 1.2.8 in the book).

Theorem 6.16.2 (Extension Theorem). Let I = 〈f1, . . . , fs〉 ⊆ C[x1, . . . , xn] and let I1 be the first elimination of
I . Write, for each i ∈ [s],

fi = ci(x2, . . . , xn)xNi
1 + {terms with x1 having degree < Ni},

whereNi ≥ 0 and ci ∈ k[x2, . . . , xn] is nonzero. Suppose we have a solution (a2, . . . , an) ∈ V(I1). If (a2, . . . , an) 6∈
V(c1, . . . , cs), then there exist a ∈ C such that (a1, . . . , an) ∈ V(I).

In Example 6.16.1, we’d have f1 = xy−1 = xc1(y, z)−1, and f2 = xz−1 = xc2(y, z)−1, where c1(y, z) = y
and c2(y, z) = z. Then the Extension theorem asks us to consider V(c1, c2) = V(y, z) = {(0, 0)}. Thus it
guarantees that everything in {(a, a) : a ∈ k, a 6= 0} ⊆ V(I1) extends to a solution, and it says nothing about
(0, 0) ∈ V(I1) (it turns out (0, 0) doesn’t extend, but the Extension Theorem doesn’t know this).

Example 6.16.3 (Avery’s Example). Let f1 = −2z+ z2, f2 = 2y− z, and f3 = −z+ 2xz. We obtain c1(y, z) =
−2z + z2, c2 = 2y − z, and c3 = 2z. According to Maple (to Avery), this is a Gröbner basis with respect
to the x > y > z lex order. Then I1 = 〈f1, f2〉 and (0, 0) ∈ V(I1). Note also that (0, 0) ∈ V(c1, c2, c3), so
the Extension Theorem (Theorem 6.16.2) doesn’t know anything. In this case, (0, 0, 0) ∈ V(I), so it does
extend. 4

Example 6.16.4. Consider the system of equations

f1 = x2 + y2 + z2 − 1

f2 = xyz − 1

A Gröbner basis with respect to x > y > z lex is given by

g1 = y4z2 + y2z4 − y2z2 + 1

g2 = x+ y3z + yz3 − yz.

The elimination ideals are I1 = I ∩C[y, z] = 〈g1〉, and I2 = I ∩C[z] = {0}. Now I2 = {0}means V(I2) = C.
So c ∈ C is a partial solution.

We’ll show in HW that I2 is the first elimination ideal of I1, that is, I2 = (I1)1.

When does (c) ∈ V(I2) = {z-space} = C1 extends to a point (a, b, c) ∈ V(I) ⊆ {xyz-space} = C3? Well,
let us apply the Extension Theorem (Theorem 6.16.2) from I2 = (I1)1 to I1. The coefficient of y4 in g1 is z2
(that is, c1(z) = z2). Thus the Extension Theorem (Theorem 6.16.2) guarantees the extension of (c) to (b, c)
if c 6= 0.

The next step is going fro I1 to I . Now, c1(y, z) = 1 and c2(y, z) = yz Since now V(c1, c2) = ∅, the
Extension Theorem (Theorem 6.16.2) guarantees every solution (b, c) extends to (a, b, c). 4

Let us highlight that c1(y, z) = 1 automatically allowed the Extension Theorem (Theorem 6.16.2) to
always extend. More precisely:
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Corollary 6.16.5. Let I = 〈f1, . . . , fs〉 ⊆ C[x1, . . . , xn], and assume some fi is of the form

fi = cix
Ni
1 + {terms with x1 having degree < Ni},

where ci ∈ C is nonzero and Ni > 0. If I1 is the first elimination ideal of I and (a2, . . . , an) ∈ V(I1), then there is
a1 ∈ C such that (a1, . . . , an) ∈ V(I).

We come to a crucial algebra-geometry relationship [See my remark just above Definition 5.14.10]. Es-
sentially, elimination of variables corresponds to projections of varieties into lower dimensional subspaces.
Let’s make this precise.

To eliminate the first ` variables, let’s consider the projection map

π` : Cn → Cn−`

(a1, . . . , an) 7→ (a`+1, . . . , an).

Thus for every V ⊆ Cn, we have π`(V ) ⊆ Cn−`.

Lemma 6.16.6. Let I` be the `th elimination ideal for I = 〈f1, . . . , fs〉 ⊆ C[x1, . . . , xn]. As subsets ofCn−`, we have

π`(V(I)) ⊆ V(I`).

Proof. Let f ∈ I` ⊆ I . If (a1, . . . , an) = a ∈ V(I), then f(a) = 0 since f ∈ I . But f only uses the variables
x`+1, . . . , xn, so it makes sense to just plug in π`(a) = (a`+1, . . . , an) into f , now thought of as an element in
C[x`+1, . . . , xn]. In particular, f(π`(a)) = 0, that is, f ∈ V(I`). Thus f vanishes on π`(V(I)).

Note that π`(V(I)) is the set of extendable partial solutions to f1 = · · · = fs = 0 (here I = 〈f1, . . . , fs).
We’ve seen, e.g. in Example 6.16.1 that equality in Lemma 6.16.6 does not always hold, and that π`(V(I))
does not have to be a variety.

Theorem 6.16.7 (Closure Theorem). Let V = V(f1, . . . , fs) ⊆ Cn, and let I` be the `th elimination ideal of
〈f1, . . . , fs〉. Then V(I`) is the smallest affine variety containing π`(V ).

Corollary 6.16.8. Let I = 〈f1, . . . , fs〉 ⊆ C[x1, . . . , xn], and assume some fi is of the form

fi = cix
Ni
1 + {terms with x1 having degree < Ni},

where ci ∈ C is nonzero and Ni > 0. Then π1(V ) = V(I1).

Proof. Combine Corollary 6.16.5 and Theorem 6.16.7.

For any set S ⊆ kn (think S = π`(V )), we define

I(S)
def
= {f ∈ k[x] : f(a) = 0 for all a ∈ S}.

We leave as an exercise to show that I(S) is a radical ideal. By Theorem 5.14.2, we see that V(I(S)) is an
affine variety.

Proposition 6.16.9. The smallest variety containing S ⊆ kn is V(I(S)).

Proof. We want to show that if W ⊆ kn is a variety satisfying S ⊆ W , then V(I(S)) ⊆ W as well. To
see this, note that the order-reverisng-ness of I() says that S ⊆ W implies I(W ) ⊆ I(S); furthermore, the
order-reversing-ness of V says that V(I(S)) ⊆ V(I(W )). Since W is already a variety, Theorem 5.14.2 says
V(I(W )) = W .
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Definition 6.16.10. The Zariski closure of S ⊆ kn is the smallest affine variety containing S. We denote it
by S; by Proposition 6.16.9, we we have S = V(I(S)). 4

Proposition 6.16.11. Let S, T ⊆ kn. We have:

(1) I(S) = I(S),
(2) S ⊆ T implies S ⊆ T , and
(3) S ∪ T = S ∪ T .

Proof. To prove part (1), observe first that since S ⊆ S we have I(S) ⊇ I(S), so it suffices to prove the other
inclusion. Let us take f ∈ I(S). Then S ⊆ V(f); since V(f) is an affine variety then (by definition of Zariski
closure!) we have S ⊆ V(f) as well. Thus S ⊆ V(f), and now f ∈ I(S). This proves the other inclusion.

We’ll leave the other two parts as an exercise.
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6.17 Oct 31, 2019

Let us recall the Closure Theorem (Theorem 6.16.7) from last lecture; note that the “Closure Theorem”
in the textbook, Theorem 3.2.3, has two parts and this is just part 1 of that theorem. [Part 2 in your book
is secretly Theorem 4.7.7 in your book, which is a special case of one of my favorite theorems (Chevalley’s
Theorem), but read that at your own risk.]

Theorem 6.17.1 ((Part 1 of) Closure Theorem, cf. Theorem 6.16.7). Assume k is an algebraically closed field. Let
V = V(f1, . . . , fs) ⊆ kn. Define the projection map

π` : kn → kn−`

(a1, . . . , an) 7→ (a`+1, . . . , an).

If I` is the `th elimination ideal, i.e. I` = 〈f1, . . . , fs〉 ∩ k[x`+1, . . . , xn], then π`(V ) = V(I`).

(Recall Definition 6.16.10, where we said S was V(I(S)); we proved in Proposition 6.16.9 that this is the
smallest affine variety containing S.)

Proof. We have to show two sets V(I(π`(V ))) and V(I`) are equal, so let us prove the two inclusions.

We’ve shown π`(V(I)) ⊆ V(I`); this was Lemma 6.16.6. Since V(I(π`(V ))) is the smallest variety con-
taining π`(V ), and V(I`) is some variety containing π`(V ), we obtain V(I(π`(V ))) ⊆ V(I`).

Conversely, we shall show I(π`(V )) ⊆
√
I`. This suffies, since we would get (by inclusion-reversingness

of V) that V(I(π`(V ))) ⊇ V(
√
I`); the ideal-variety correspondence (specifically, part 2 of Theorem 5.14.2)

says that V(
√
I`) = V(I`), giving us the desired inclusion.

Let’s see why I(π`(V )) ⊆
√
I`. Take f ∈ I(π`(V )), so f(a`+1, . . . , an) = 0 for all a = (a1, . . . , an) ∈ V .

Although f ∈ k[x`+1, . . . , xn] we may consider it as an element of k[x1, . . . , xn]; observe that f(a) = 0 for
all a ∈ V . Hilbert’s Nullstellensatz (Theorem 5.13.3) says fN ∈ 〈f1, . . . , fs〉 for some N ≥ 1. But also
f ∈ k[x`+1, . . . , xn] ⊆ k[x1, . . . , xn] implies fN ∈ k[x`+1, . . . , xn] ⊆ k[x1, . . . , xn], too, and we arrive at
fN ∈ I`. In other words, f ∈

√
I`.

Understanding the set V(I`) \ π`(V ) is what part 2 of the closure theorem does for us, but part 1 is
satisfying enough for us. Let’s move on.

We’ve seen before (ages before; Example 1.2.1) that V(xz, yz) = V(z) ∪ V(x, y) is the union of the xy-
plane and the z-axis. Intuitively it should feel natural to “decompose” V(xz, yz) into the two subvarieties
V(z) and V(x, y), but that the xy-plane and z-axis should probably not be “decomposable” (at least, over
an infinite field like C). [thanks to whoever corrected me during lecture! i mistakenly assumed that lines
were always irreducible, even over finite fields.]

Definition 6.17.2. An affine variety V ⊆ kn is irreducible if whenever V = V1 ∪ V2, with V1, V2 also affine
varieties, then V1 = V or V2 = V . 4

Note that if an irreducible variety V is a finite union of affine varieties V = V1 ∪ · · · ∪Vn, then necessarily
some Vi = V , since you can write V = V1 ∪ (union the other Vi) and V1 = V or (union the other Vi) = V ; in
the latter case we write V = V2 ∪ . . . Vn and repeat.

Definition 6.17.3. An ideal I ⊆ k[x1, . . . , xn] is prime if, whenever f, g ∈ k[x] and fg ∈ I , we have f ∈ I or
g ∈ I . 4

For example, 〈x, y2〉 is not prime. Note that prime ideals are automatically radical.
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Proposition 6.17.4. Let V be an affine variety. Then V is irreducible if and only if I(V ) is prime.

[A principal ideal 〈f〉 is prime if and only if f is irreducible (Definition 5.14.4). So in this sense, irreducible
varieties in kn, or prime ideals in k[x], “generalize” the concept of irreducible elements f ∈ k[x].]

Proof. Let’s begin with the forward direction; suppose V is irreducible, and consider f, g ∈ k[x1, . . . , xn]
satisfying fg ∈ I(V ). Let us define

V1 = V ∩V(f)

V2 = V ∩V(g);

we leave as an exercise to show V = V1 ∪ V2. Since V is irreducible, either V1 = V or V2 = V . Let’s assume
V1 = V ; the case V2 = V is treated analogously. Since V = V1 = V ∩V(f), we obtain V ⊆ V(f). In other
words, f vanishes on all of V , that is, f ∈ I(V ). This shows I(V ) is prime.

Let’s do the backward direction now. Suppose I(V ) is prime, and let us write V = V1 ∪ V2 for some
affine varieties V1, V2. If V1 = V then we’d be done, so let us assume V1 6= V . We’d need to show that
V2 = V ; observe that it suffices to show I(V2) = I(V ) by the Ideal-Varieties correspondence (Theorem 5.14.2).
Furthermore, the inclusion-reversingness of I, along with V2 ⊆ V , give the inclusion I(V2) ⊇ I(V ), so we
should show I(V2) ⊆ I(V ).

Since V1 ( V , we have I(V1) ) I(V ). Thus we may pick f ∈ I(V1) \ I(V ). Take any g ∈ I(V2); our goal is
to show that g ∈ I(V ), since this would give the inclusion I(V2) ⊆ I(V ).

Since V = V1 ∪ V2, the polynomial fg vanishes on V (since on the V1 part, f = 0 and on the V2 part,
g = 0). By assumption, I(V ) is prime, so fg ∈ I(V ) implies either f ∈ I(V ) or g ∈ I(V ). But f was chosen
so that f 6∈ I(V ), so g ∈ I(V ). This proves what we wanted!

Proposition 6.17.5 (Descending Chain Condition, cf. (HW 5, Ex 2.5.13)). Any descending chain of varieties
V1 ⊇ V2 ⊇ . . . must stabilize.

Proof. Suppose V1 ⊇ V2 ⊇ . . . . The inclusion-reversingness of I implies that I(V1) ⊆ I(V2) ⊆ . . . ; by
Ascending Chain Condition (Theorem 2.7.5) we have anN so that I(VN ) = I(VN+1) = . . . . ThusV(I(VN )) =
V(I(VN+1)) = . . . ; since V(I(V )) = V for every affine variety V , we obtain the desired conclusion VN =
VN+1 = . . . .

Theorem 6.17.6. Let V ⊆ kn be an affine variety. Then we can write V as a finite union V = V1 ∪ · · · ∪ Vn of
irreducible affine varieties.

Proof. Assume for the sake of contradiction that V is an affine variety that can’t be written as a finite union of
irreducible affine varieties. Thus V itself is not irreducible, and we may write V = V1 ∪ V ′1 with V1 6= V and
V ′1 6= V . Furthermore, V1 or V ′1 also has the property of not being a finite union of irreducible affine varieties:
if they both had a finite decomposition into irreducible affines, then we’d get a finite decomposition of V
into irreducible affines. Let us assume without loss of generality that V1 is not a finite union. Then we can
write V1 = V2 ∪ V ′2 , with V2 6= V1 and V ′2 6= V1; by the same reason as above we may assume without loss of
generality that V2 also has no finite decomposition into irreducible affines, and keep continuing in this way.

We would thus get an infinite descending chain of varieties

V ) V1 ) V2 ) . . . ,

contradictory to Proposition 6.17.5.
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Definition 6.17.7. Let V ⊆ kn be an affine variety. A decomposition V = V1∪· · ·∪Vm into irreducible affine
varieties is called a minimal decomposition if Vi 6⊆ Vj for any 6= j. We call {Vi} the irreducible components
of V . 4

Calling {Vi} the irreducible components of V is justified by the following result.

Theorem 6.17.8. Let V ⊆ kn be an affine variety. Then V has a minimal decomposition, and this decomposition is
unique up to reordering.

Proof. We showed that V can be written as a finite union of irreducible varieties in Theorem 6.17.6. From
such a decomposition V = V1 ∪ · · · ∪ Vm, we may obtain a minimal decomposition by throwing out Vi
whenever there exists j ∈ [m] so that Vi ⊆ Vj .

It remains to show uniqueness, which is the main content of this theorem. Suppose we have two minimal
decompositions

V = V1 ∪ · · · ∪ Vm,
V = V ′1 ∪ · · · ∪ V ′` .

We obtain
Vi = Vi ∩ V = Vi ∩ (V ′1 ∪ · · · ∪ V ′` ) = (Vi ∩ V ′1) ∪ (Vi ∩ V ′2) ∪ · · · ∪ (Vi ∩ V ′` ).

We’ve proven that the intersection of two affine varieties before is another variety (e.g. see Theorem 5.14.12);
in particular for every j ∈ [`], the set Vi∩V ′j is an affine variety. Since Vi is irreducible, we obtain Vi = Vi∩V ′j
for some j; in other words, Vi ⊆ V ′j .

By the same argument as above, but applied to V ′j (i.e., consider the decomposition of V ′j into

V ′j = V ′j ∩ (V1 ∪ · · · ∪ Vm) = (V ′j ∩ V1) ∪ (V ′j ∩ V2) ∪ · · · ∪ (V ′j ∩ Vm)

and note that for some k we have V ′j = V ′j ∩ Vk) we obtain V ′j ⊆ Vk. In particular, we have the chain of
inclusions

Vi ⊆ V ′j ⊆ Vk.
But the {Vi} are minimal, so we can’t have Vi ⊆ Vk unless i = k and hence Vi = V ′j = Vk. Ripping out Vi and
V ′j from the decomposition, we obtain two more minimal decompositions for V \ Vi = V \ V ′j , by

V \ Vi =
⋃

k∈[m],k 6=i

VkV \ V ′j =
⋃

k∈[`],k 6=j

V ′k.

We can repeat this argument, pulling out one irreducible component at a time; we conclude that the two
minimal decompositions of V were the same up to reordering.

From the point of view of ideals, Theorem 6.17.8 says the following:

Theorem 6.17.9. Let k be algebraically closed. Then every radical ideal of k[x1, . . . , xn] can be written uniquely as a
finite intersection of prime ideals.

Proof. Apply the ideal-variety correspondence (Theorem 5.14.2) to Theorem 6.17.8, and use the fact that
V(I ∩ J) = V(I) ∪V(J) from Theorem 5.14.12.

Notice that since prime ideals are radical, intersections of prime ideals are also automatically radical.
There is a notion of primary ideal, which somehow capture “priminess” but are also non-radical, and it will
turn out that every ideal is an intersection of primary ideals. [I’ve noted before that principal prime ideals
〈f〉 correspond to “prime” (=irreducible) polynomials f in Defintinion 5.14.4. Primary ideals correspond to
“prime powers” fn, so you might imagine there will be some unique factorization stuff going on.]
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6.18 Nov 5, 2019

[Avery lectured today.]

[Sorry I’ve been dropping the ball a lot recently.]

Our main goal this week is to prove the Extension Theorem:

Theorem 6.18.1 (Extension Theorem, cf. Theorem 6.16.2). Let I = 〈f1, . . . , fs〉 ⊆ C[x1, . . . , xn]. Let I1 = I ∩
k[x2, . . . , xn]. Write, for each i,

fi = ci(x2, . . . , xn)xNi
1 + (terms of lower x1-degree),

with Ni ≥ 0 and ci � 0. If a = (a2, . . . , an) ∈ V(I1) \ V(c1, . . . , cs), then there exists a1 ∈ C so that
(a1, a2, . . . , an) ∈ V(I).

Here’s a false proof; hopefully, the failure of this proof will motivate the techniques we will develop to
fix it.

“Proof”. Let a = (a2, . . . , an) ∈ V(I1). Let us consider the set

J = {f(x1,a) : f ∈ I} ⊆ k[x1].

Note that the set J is an ideal of k[x1], since if f(x1), g(x1) ∈ J then f = f̃(x1,a) and g = g̃(x1,a) for some
f̃ , g̃ ∈ k[x1, . . . , xn]; then (f + g)(x1) = (f̃ + g̃)(x1,a) is of the form “take an element of I and evaluate it at
a”, since f̃ + g̃ ∈ I . Similarly, if h ∈ k[x1], we may consider h ∈ k[x1, . . . , xn] as a polynomial that doesn’t
depend on x2, . . . , xn, and now h(x1)f(x1) = h(x1,a) · f̃(x1,a) = (hf̃)(x1,a) and hf̃ ∈ I as well.

Great, so J is an ideal. Since a 6∈ V(c1, . . . , cs), there exists j so that cj(a) 6= 0, hence for this j we also
have fj(x1,a) 6= 0. Thus J is not the zero ideal.

Since J ⊆ k[x1], it is a principal ideal, generated by some g(x1,a); since J is nonzero g is also nonzero.
Now the univariate polynomial g(x1,a) has a root a1 ∈ C, and g(a1,a) = 0, hence every element of J van-
ishes at (a1,a). In particular, for every f ∈ I , we have f(a1,a) = 0, and now (a1,a) ∈ V(I).

Of course, the underlined part is shady because g might be a constant, i.e., J may be all of k[x1]. We want
to fix this by detecting when g has a root, i.e., when it has a nontrivial factor x− a1 for some a1 ∈ C.

Let’s talk about resultants. They are a wonderful algebraic device: given two polynomials

f(x) = a0x
` + · · ·+ a`

g(x) = b0x
m + · · ·+ bm,

the resultant res(f, g) (sometimes denoted resx(f, g) or res(f, g, x)) is a polynomial inZ[a0, . . . , a`, b0, . . . , bm];
when f(x), g(x) ∈ k[x] (i.e. we “plug in” values of a0, . . . , a`, b0, . . . , bm from k to get f and g), then res(f, g) =
0 if and only if f and g have a common root in an algebraic closure of k. Thus, resultants are a tool for de-
tecting common factors This is a mouthful, and in what follows, we’ll define/state/prove the assertions
above.

Lemma 6.18.2. Let f, g ∈ k[x] with deg f = ` and deg g = m. Then f and g have a common factor if and only if
there exist A,B ∈ k[x] so that:

1. A and B are nonzero,
2. degA ≤ m− 1 and detB ≤ `− 1, and
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3. Af +Bg = 0.

Proof. We have two directions to prove. Let us begin by assuming that f and g have a common factor h; we
may write f = f1h and g = g1h for f1, g1 ∈ k[x]. Then we have

fg1 = f
g

h
=
fg

h
=
f

h
g = f1g.

Then we may pick A = g1 and B = −f1, so that Af +Bg = fg1 − f1g = 0. Note that A and B are nonzero,
and degA = deg g − deg h ≤ m− 1 and degB = deg f − deg h ≤ `− 1.

Conversely, let us assume there existA andB so thatAf +Bg = 0, withA,B 6= 0 and degA ≤ m−1 and
degB ≤ ` − 1. Suppose for the sake of contradiction that f and g have no common factor, so gcd(f, g) = 1.
Then 1 ∈ 〈gcd(f, g)〉 = 〈f, g〉, so there exist Ã and B̃ so that Ãf + B̃g = 1. Since B 6= 0, we have

B = B(Ãf + B̃g) = ÃBf + B̃Bg = ÃBf − B̃Af = f(ÃB − B̃A);

here we used that Bg = −Af . Since B is nonzero, neither is ÃB − B̃A. Now we obtain degB = deg f +
deg(ÃB − B̃A) ≥ deg f = `, which is a contradiction to our assumption that degB ≤ `− 1.

Given that we eventually want to detect common factors, we’d probably be using Lemma 6.18.2 in the
backwards direction, i.e., we’d want to understand when there are A and B satisfying the conditions of
Lemma 6.18.2 and using the lemma to conclude that f and g have a common factor.

How does one possibly check when there are A and B doing this? Let’s begin with an example.

Example 6.18.3. Suppose

f(x) = 2x2 + 3x+ 1

g(x) = 7x2 + x+ 3.

Then, for A = u0x+ u1 and B = v0x+ v1, we have

A(x)f(x) +B(x)g(x) = (2u0 + 7v0)x3 + (3u0 + 2u1 + v0 + 7v1)x2 + (u0 + 3u1 + 3v0 + v1)x+ (u1 + 3v1) = 0.

When are there u0, u1, v0, v1 ∈ k satisfying this? Well, we’d need to solve the linear system of equations
given by 

2 0 7 0
3 2 1 7
1 3 3 1
0 1 0 3



u0
u1
v0
v1

 =


0
0
0
0

 .
Okay, when are there nontrivial (u0, u1, v0, v1) ∈ k4 satisfying this? Well, we’d take the determinant of the
matrix, and check whether it’s zero.

Note that everything here is if and only if; there are nontrivial solutions if and only if determinant is
zero, and there is a common factor if and only if there is a nontrivial solution to this system of equations, by
Lemma 6.18.2. 4

We can work out in general this will work out to be. For f = c0x
` + · · ·+ c` and g = d0x

m + · · ·+ dm, we
search for solutions to the linear system of equations described by the Sylvester matrix:

Definition 6.18.4. The Sylvester matrix is formed by taking the coefficients of f and g, arranging them into
a ` + 1 = deg f + 1 and m + 1 = deg g + 1 column vectors respectively, and then arranging them in a
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parallelogram fashionm = deg g and ` = deg f times respectively gives an (m+`)-by-(m+`) square matrix,
as below:

Syl(f, g, x)
def
=



c0 0 . . . 0 d0 0 . . . 0
c1 c0 . . . 0 d1 d0 . . . 0

c2 c1
. . . 0 d2 d1

. . . 0
...

...
. . . c0

...
...

. . . d0

c` c`−1 . . .
. . . dm dm−1 . . .

...

0 c`
. . .

... 0 dm
. . .

...
...

...
. . . c`−1

...
...

. . . dm−1
0 0 . . . c` 0 0 . . . dm


.

4

[The “shape” of the Sylvester matrix is a little misleading. I find it easier to argue geometrically about
the entries of the matrix by considering a slightly more extreme case, such as below:

Syl(small deg, big deg, x)
def
=

Here the entries which get coefficients are marked with a bullet; everything else is a zero. The two paral-
lelograms are always next to each other for two rows, which is more than what I always expect them to be;
equivalently, the parallelograms are always more-vertical/less-diagonal than what I expect them to be; both
of these are because a polynomial of degree d has d+ 1 coefficients.]

[I was today years old when I learn that rhombi have four equal side lengths. I’ve changed my wording
accordingly. Oops]

Definition 6.18.5. The resultant of two polynomials f, g ∈ k[x] is defined to be

res(f, g)
def
= det Syl(f, g, x). 4

Proposition 6.18.6. The polynomials f and g have a common factor if and only if res(f, g) = 0.

Proof. Let ` = deg f andm = deg g, and letPd denote the (d+1)-dimensional vector space of polynomials of
degree at most d. The Sylvester matrix Syl(f, g) is the matrix of the linear transformation ϕ : P`−1×Pm−1 →
P`+m−1 between (` + m)-dimensional vector spaces given by sending ϕ : (A,B) 7→ Af + Bg. The linear
transformation ϕ has a nontrivial kernel if and only if det Syl(f, g) = 0. But Lemma 6.18.2 says that ϕ has a
nontrivial kernel if and only if f and g have a common factor.
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Corollary 6.18.7. The polynomials f ∈ C[x] and g ∈ C[x] have a common root if and only if res(f, g) = 0.

Proof. SinceC is algebraically closed, the common factor will have a root. Conversely, f and g have a common
root r, then (x− r) is a common factor between f and g.

Here’s one typical application of Proposition 6.18.6.

Example 6.18.8. Let f = xy−1 and g = x2 + y2−4 be polynomials in C[x, y]. Think of f and g as univariate
polynomials in x, with coefficients not in C[y], but in the field of rational functions C(y). (The elements of
this field are rational functions, i.e., quotients of polynomials. We’ve seen them before, in our proof of the
Hilbert Nullstellensatz (cf. Theorem 5.13.3).)

Thus we consider f, g ∈ (C(y))[x]. Then, following Definition 6.18.5

res(f, g, x) = det

 y 0 1
−1 y 0
0 −1 y2 − 4

 = y4 − 4y2 + 1 ∈ C(y).

In fact we see that y4 − 4y2 + 1 ∈ C[y] (i.e. it’s an honest polynomial rather than a rational function); this is
not a coincidence. 4

Proposition 6.18.9. The resultant is an integer polynomial in the coefficients of f and g. In particular, if the coefficients
of f, g ∈ (C(y))[x] are polynomials in C[y] ⊆ C(y), then the resultant res(f, g) ∈ C(y) is actually an element of
C[y].

Proof. The resultant is the determinant of the Sylvester matrix, hence it is a polynomial in the entries of the
Sylvester matrix. The entries of these matrices are coefficients of f and g.

Proposition 6.18.10. Given f, g ∈ k[x], we can find A,B ∈ k[x] such that Af +Bg = res(f, g, x). In other words,
res(f, g) ∈ 〈f, g〉. We may pick A and B so that it is a polynomial in the coefficients of f and g.

(Note that res(f, g) doesn’t depend on x, so we’re really saying that res(f, g) is in the elimination ideal!)

(The application to keep in mind is when k = C(y) is a field of rational functions, but f and g really have
coefficients in C[y] ⊆ C(y). Then Proposition 6.18.10 states that A and B also live in C[y].)

Proof. We treat some easy cases first.

If res(f, g, x) = 0 then we may pick A = B = 0.

If f = c0 is a constant and g is a nonzero polynomial, then we compute

res(c0, g, x) = det


c0 0 . . . 0
0 c0 . . . 0

0 0
. . . 0

0 0 . . . c0

 = cm0

by definition. Thus we may pick A = cm−10 and B = 0.

We can do a similar argument when g = d0 is a constant polynomial.

So let’s assume f and g are both nonconstant, with deg f = ` and deg g = m, and that res(f, g) 6= 0. Let
us solve Af +Bg = 1 with degA ≤ m− 1 = deg g− 1 and degB ≤ `− 1 = deg f − 1; cf. Example 6.18.3. Let
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us denote the coefficients of A and B by

A = u0x
m−1 + · · ·+ um−1

B = v0x
`−1 + · · ·+ v`−1.

We are now trying to solve

Syl(f, g, x)



u0
...

um−1
v0
...

v`−1


=


0
...
0
1



The assumption res(f, g, x) 6= 0 means that the Sylvester matrix is invertible, hence there exists a unique
solution for (u0, . . . , um−1, v0, . . . , v`−1) ∈ km+`. This gives a solution Af +Bg = 1.

Cramer’s rule (see Aside 6.18.11 for a precise statement) says that the solution is of the form

ui =
det(something)

det(Syl(f, g, x))
; vi =

det(something)

det(Syl(f, g, x))
,

where all the somethings are matrices obtained from the Sylvester matrix and replacing a column with
(0, . . . , 0, 1). In particular, the entries of the somethings are either 0, 1, or coefficients of f and g, hence the
determinant is a polynomial in the coefficients of f and g.

Since det(Syl(f, g, x)) = res(f, g, x), we see that

res(f, g, x)A︸ ︷︷ ︸
poly in coeffs of f,g

f + res(f, g, x)B︸ ︷︷ ︸
poly in coeffs of f,g

g = res(f, g, x).

Aside 6.18.11 (Cramer’s Rule). Let A be an invertible n × n matrix, and fix b ∈ Rn. Then the unique solution to
Ax = b is given by

xi =
detAi
detA

for all i ∈ [n], where Ai is the matrix obtained by replacing the ith column of A by b.

For example, in the 2-by-2 case, the solution to[
a11 a12
a21 a22

] [
x1
x2

]
=

[
b1
b2

]
is given by

x1 =

det

[
b1 a12
b2 a22

]
det

[
a11 a12
a21 a22

] =
b1a22 − b2a12
a11a22 − a12a21

x2 =

det

[
a11 b1
a21 b2

]
det

[
a11 a12
a21 a22

] =
a11b2 − b1a12
a11a22 − a12a21

.
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6.19 Nov 7, 2019

[Avery lectured today.]

Recall from last class that we defined the Sylvester matrix Syl(f, g, x) (Definition 6.18.4) and the resultant
(Definition 6.18.5) det Syl(f, g, x). We proved Proposition 6.18.6, which said that f ∈ C[x] and g ∈ C[x] have
a common root if and only if res(f, g) = 0. The point is that we had a “proof” of the Extension Theorem
(see the underlined part of “proof” of Theorem 6.18.1) and needed to understand when polynomials were
nonconstant, and we’ll be doing that by understanding resultants.

We also proved Proposition 6.18.10, which is important:

Proposition 6.19.1. Let f, g ∈ k[x]. There are polynomialsA andB such thatAf +Bg = res(f, g, x). If deg f > 0
or deg g > 0, the coefficients of A and B are integer polynomials in the coefficients of A and B.

Let’s do a reality check. Let k = C in the proposition above. We have res(f, g, x) ∈ C. But Proposi-
tion 6.19.1 says that res(f, g, x) ∈ 〈f, g〉, so if f and g don’t have a common root then this is saying some
nonzero constant is in 〈f, g〉, hence that 〈f, g〉 = C[x]. But if f and g don’t have a common root, then its gcd
is 1, so everything is consistent.

Last time we considered (Example 6.18.8) the polynomials f = xy − 1 and g = x2 + y2 − 4 as univariate
polynomials in (C(y))[x]. We computed that its resultant was y4 − 4y2 + 1 ∈ C(y); this is indeed a constant
in our base field. In particular, f and g don’t have a common factor, so their gcd is 1. Note that (C(y))[x] is
a univariate polynomial ring over a field, hence we can still do the (extended!) Euclidean Algorithm to find
a solution to h1f + h2g = gcd(f, g) = 1 if we want. Avery did that for us, and asserted(

−y
y4 − 4y2 + 1

x+
1

y4 − 4y2 + 1︸ ︷︷ ︸
univariate polynomial; coefficients in C(y)

)
f +

(
y2

y4 − 4y2 + 1︸ ︷︷ ︸
constant in C(y)

)
g = 1.

Note that the coefficients of h1 and h2 are in C(y), but their denominators are precisely the resultant. This
is Cramer’s rule (Aside 6.18.11) at work.

In this sense one can think of resultants as a “denominator-free gcd”, in light of Proposition 6.19.1.

To Extension and Beyond Let f, g ∈ k[x1, . . . , xn]. Let us write

f = c0x
`
1 + · · ·+ c`

g = d0x
m
1 + · · ·+ xm,

so that ci, dj ∈ k[x2, . . . , xn]. We defined the resultant res(f, g, x) ∈ k(x2, . . . , xn), and proved that they
are polynomials in the variables c1, . . . , c`, d1, . . . , dm, which are themselves polynomials in the variables
x2, . . . , xn. It follows that res(f, g, x) ∈ k[x2, . . . , xn].

To prove the extension theorem, we need to know how resultants behave with respect to evaluation. In
other words, let us pick a = (a2, . . . , an) ∈ Cn−1; we want to know the relationship between

res(f, g, x1)(a) and res (f(x1,a), g(x1,a), x1).

Let’s see some examples.

Example 6.19.2. Set

f(x, y) = x2y + 3x− 1,

g(x, y) = 6x2 + y2 − 4.
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Then

res(f, g, x) = det


y 0 6 0
3 y 0 6
−1 3 y2 − 4 0
0 −1 0 y2 − 4

 ∈ C[y].

Let us plug in y = 0 into our univariate polynomial res(f, g, x) ∈ C[y]. We obtain

res(f, g, x)(0) = det


0 0 6 0
3 0 0 6
−1 3 −4 0
0 −1 0 −4

 = −180.

Let us, on the other hand, plug in y = 0 first and then take the resultant. We have

f(x, 0) = 3x− 1

g(x, 0) = 6x2 − 4.

Then

res(f(x, 0), g(x, 0), x) = det

 3 0 6
−1 3 0
0 −1 −4

 ,
which has determinant −30. 4

A lot of things changed between res(f, g, x)(0) and res(f(x, 0), g(x, 0), x). But actually, it’s not a complete
disaster. The Sylvester matrices

Syl(f, g, x)(0) =


0 0 6 0
3 0 0 6
−1 3 −4 0
0 −1 0 −4

 and Syl(f(x, 0), g(x, 0), x) =

 3 0 6
−1 3 0
0 −1 −4


are related by the fact that the smaller one is a minor of the bigger one (delete the first row and third column,
and see for yourself!). We’ll see that this is not a coincidence, and that it is really due to the fact that the
leading term x2y of f died upon setting y = 0. We also could have predicted that the resultant would change
by a factor of 6, because it is the leading term of of g(x, 0); indeed, if M is a matrix with only one nonzero
elementm1,3 in the first row, andM1,3 is the minor ofM obtained by deleting the first row and third column,
then detM = m1,3 detM1,3.

We’ll make this argument precise after seeing what goes wrong with a more badly behaved example.

Example 6.19.3. This time, let

f = x2y + x− 1,

g = x2y + x+ y2 − 4.

Then

res(f, g, x) = det


y 0 y 0
1 y 1 y
−1 1 y2 − 4 1
0 −1 0 y2 − 4

 ∈ C[y]

Plugging in y = 0 into this univariate polynomial we obtain

res(f, g, x)(0) = det


0 0 0 0
1 0 1 0
−1 1 −4 1
0 −1 0 −4

 = 0,
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since there’s a row of zeros. Plugging in y = 0 first and taking the resultant, we obtain

f(x, 0) = x− 1,

g(x, 0) = x− 4.

We obtain
res(f(x, 0), g(x, 0), x) = det

[
1 1
−1 −4

]
,

which has determinant −3. 4

Instead of being predictably off by a factor of 6, we’re now (unpredictably?) off by, like, a factor of ∞.
Terrible!

Proposition 6.19.4. Let f, g ∈ k[x1, . . . , xn], and let degx1
(f) = ` and degx1

(g) = m. Let a ∈ kn−1, and suppose
that:

1. degx1
f(x1,a) = `, and

2. g(x1,a) 6= 0 and has degree p ≤ m.

Then if f = c0x
`
1 + · · ·+ c`, and g = d0x

m + · · ·+ dm, with ci, dj ∈ k[x2, . . . , xn], the equality

res(f, g, x1)(a) = c0(a)m−pres(f(x1,a), g(x1,a), x1)

holds.

Proof. Let h = res(f, g, x1). We have

h(a) = det



c0(a) 0 . . . 0 d0(a) 0 . . . 0
c1(a) c0(a) . . . 0 d1(a) d0(a) . . . 0

c2(a) c1(a)
. . . 0 d2(a) d1(a)

. . . 0
...

...
. . . c0(a)

...
...

. . . d0(a)

c`(a) c`−1(a) . . .
. . . dm(a) dm−1(a) . . .

...

0 c`(a)
. . .

... 0 dm(a)
. . .

...
...

...
. . . c`−1(a)

...
...

. . . dm−1(a)
0 0 . . . c`(a) 0 0 . . . dm(a)


. (8)

If p = m, that is, d0(a) really was the leading coefficient of g(x1,a), then the matrix in Equation (8) is actually
Syl(f(x1,a), g(x1,a), x1); thus we obtain h(a) = det Syl(f(x1,a), g(x1,a), x1) = res(f(x1,a), g(x1,a), x1), as
we wanted to prove.

In general, though, if p < m then the matrix in Equation (8) is not Syl(f(x1,a), g(x1,a), x1). It’s closely
related, though.

Let’s think geometrically about the entries of this matrix. Let’s assume `,m 6= 0 so that we actually have
“parallelograms” in the matrix in Equation (8). If g(x1,a) has degree p, that means that the coefficients
d0(a), . . . , dm−p−1(a) are all equal to zero, and dm−p(a) 6= 0. Also c0(a) 6= 0. So geometrically, we are in the
following situation, where grey bullets mean the entry is most definitely zero, red bullets mean the entry is
most definitely not zero, and black dots can be anything (and won’t really be relevant in this argument):
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Note that there are m − p grey bullets in each column of the right parallelogram. Also note that there is
only one nonzero element, in the first row. It’s equal to c0(a), so the determinant is c0(a) multiplied by the
minor obtained by removing the first row and column. As long the right parallelogram is greyed out, we
still only have one nonzero element, it’s still equal to c0(a), so we keep removing the first row and column
and multiplying the determinant by c0(a) until we’ve reached the first red bullet in the right parallelogram:

So we’ve taken m − p minors, taking care each time to remember to multiply the determinant of the re-
sulting matrix with c0(a), and arrived at the above matrix. Well, this resulting matrix is the Sylvester
matrix Syl(f(x1,a), g(x1,a), x1) [(!)]. So we’ve concluded that the determinant in Equation (8) is equal to
c0(a)m−pres(f(x1,a), g(x1,a), x1), which is exactly what we wanted to prove.

We only have some degenerate cases left to clean up; note that we assumed `,m 6= 0 to get the above
argument to work. But if ` = 0, so f = c0, we’ve already computed res(c0, g, x1) = cdeg g0 (see the proof of
Proposition 6.18.10),hence

res(f, g, x1)(a) = c0(a)m = c0(a)m−pc0(a)p = c0(a)m−pres(f(x1,a), g(x1,a), x1),

as desired. The case m = 0 can be treated analogously.
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Corollary 6.19.5. Let f, g be nonzero polynomials in C[x1, . . . , xn]; suppose degx1
(f) = ` or degx1

(g) = m. Let
a ∈ Cn−1. If res(f, g, x1) = 0, then f(a1,a) = g(a1,a) = 0 for some a1 ∈ C.

Proof. Let us assume without loss of generality that degx1
(f) = `, since the other case is completely analo-

gous. In this case, Proposition 6.19.4 says that

0 = res(f, g, x1)(a) = c0(a)m−degx1
(g(x1,a))︸ ︷︷ ︸

6=0

res(f(x1,a), g(x1,a), x1)︸ ︷︷ ︸
=0

.

We win.

We can now prove what we’ve set out to prove!

Theorem 6.19.6 (Extension Theorem, cf. Theorem 6.16.2 and 6.18.1). Let I = 〈f1, . . . , fs〉 ⊆ C[x1, . . . , xn] and
write

fi = ci(x2, . . . , xn)xNi
1 + (lower x1-degree terms)

for each i ∈ [s]. If a ∈ Cn−1 and a ∈ V(I1) \V(c1, . . . , cs) then (a1,a) ∈ V(I) for some a1 ∈ C.

Proof. We had a “proof” with a detail that needed fixing, which we reproduce below.

Let a = (a2, . . . , an) ∈ V(I1). Let us consider the set

J = {f(x1,a) : f ∈ I} ⊆ k[x1].

Note that the set J is an ideal of k[x1], since if f(x1), g(x1) ∈ J then f = f̃(x1,a) and g = g̃(x1,a) for some
f̃ , g̃ ∈ k[x1, . . . , xn]; then (f + g)(x1) = (f̃ + g̃)(x1,a) is of the form “take an element of I and evaluate it at
a”, since f̃ + g̃ ∈ I . Similarly, if h ∈ k[x1], we may consider h ∈ k[x1, . . . , xn] as a polynomial that doesn’t
depend on x2, . . . , xn, and now h(x1)f(x1) = h(x1,a) · f̃(x1,a) = (hf̃)(x1,a) and hf̃ ∈ I as well.

Great, so J is an ideal. Since a 6∈ V(c1, . . . , cs), there exists j so that cj(a) 6= 0, hence for this j we also
have fj(x1,a) 6= 0. Thus J is not the zero ideal.

Since J ⊆ k[x1], it is a principal ideal, generated by some g(x1,a); since J is nonzero g is also nonzero.
Now the univariate polynomial g(x1,a) has a root a1 ∈ C, and g(a1,a) = 0, hence every element of J van-
ishes at (a1,a). In particular, for every f ∈ I , we have f(a1,a) = 0, and now (a1,a) ∈ V(I).

We need to find a root a1 ∈ C of g(x1,a). Note that a 6∈ V(c1, . . . , cs), we have fj(x1,a) has degree Nj
for some j ∈ [s]. Thus, we may apply Proposition 6.19.1 to obtain

h = res(fj , g, x1) ∈ 〈fj , g, x1) ∩ C[x2, . . . , xn] ⊆ I1,

and plugging in a ∈ V(I1) says that h(a) = 0. On the other hand, Proposition 6.19.4 says that

0 = h(a) = (some constant) · res(fj(x1,a), g(x1,a), x1)︸ ︷︷ ︸
=0

and since the resultant is zero, Corollary 6.19.5 says that there is a1 that makes both fj and g vanish. In
particular, g is nonconstant!
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7 Invariant Theory of Finite Groups

7.20 Nov 12, 2019

[The second prelim is next Thursday. There will be more information on Thursday and a review session
next Tuesday. It will focus on things that were not on the previous prelim, but it’s important/useful to know
that material. She doesn’t intend us to know the proof of the Extension Theorem (Theorem 6.18.1), but we
should definitely know how to use it.]

We’ll be talking about the invariant theory of finite groups for the next little while. Although it is certainly
helpful to know the theory of finite groups, it is certainly not necessary. See the appendix of the textbook
for a formal definition, but we’ll work with concrete examples here.

The basic goal of invariant theory is to describe the polynomials that are invariant, or unchanged, when
we change variables according to permutations (or, as we’ll see exactly how later, according to finite groups
of matrices).

A first step towards this goal is understanding symmetric polynomials. For those familiar with the group
theoretic language, we are trying to understand invariants of the symmetric group [for which I’ll tentatively
reserve the notation Sn, although I don’t intend on using this much].

It turns out that symmetric polynomials arise naturally when studying roots of polynomials. As an
example:

Example 7.20.1. Let f(x) = x3 + bx2 + cx + d with b, c, d,∈ C. Since deg f = 3, there are three roots
α1, α2, α3 ∈ C of f , and we obtain

f(x) = (x− α1)(x− α2)(x− α3) = x3 − (α1 + α2 + α3)x2 + (α1α2 + α1α3 + α2α3)x− α1α2α3.

Thus the formulas

b = −(α1 + α2 + α3)

c = α1α2 + α1α3 + α2α3

d = −α1α2α3

pop out. These expressions for b, c, and d as polynomials in the roots αi are highly symmetric: if you
interchange any two variables, e.g. switch α1 ↔ α2 in the formula for c, we obtain α2α1 + α2α3 + α1α3,
but this is the same polynomial as α1α2 + α1α3 + α2α3. In this sense, the polynomial is invariant under the
switch α1 ↔ α2. 4

Definition 7.20.2. A polynomial f ∈ k[x1, . . . , xn] is symmetric if f(xi1 , . . . , xin) = f(x1, . . . , xn) for every
permutation (i1, . . . , in) of (1, . . . , n). (This is an equality of polynomials.) 4

In this language, our discussion in Example 7.20.1 says that the polynomial expressions for b, c, and d as
in the roots αi are symmetric polynomials.

Let f = x2 + y2 ∈ k[x, y, z]. Is f symmetric? (No, since y ↔ z turns x2 + y2 into x2 + z2, and these aren’t
equal.)

Let f = x2 + y2 + z2 ∈ k[x, y, z]. Is f symmetric? (Yes, no matter what permutation of the variables we
pick, we’ll always end up with the sum of the squares of the three variables.)

Observation 7.20.3. Note that if f is a monic degree d polynomial over an algebraically closed field, then as
in Example 7.20.1 we may write

f(x) = (x− α1) . . . (x− αd) = (x− αi1) . . . (x− αid)
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for any permutation (i1, . . . , id) of (1, . . . , d). Teasing out what this means for the polynomial expressions for
the coefficients of f in terms of roots of f will give us that the coefficients of f can be expressed as symmetric
polynomials in the roots. 4

Definition 7.20.4. The elementary symmetric polynomials are denoted σ1, . . . , σn ∈ k[x1, . . . , xn], and they
are defined, for every r ∈ [n], by

σr =
∑

1≤i1<···<ir≤n

xi1 . . . xir .

Thus, for example, σ1(x1, . . . , xn) = x1 + · · · + xn and σn(x1, . . . , xn) = x1x2 . . . xn. (As another example,
σ2(x1, x2, x3) = x1x2 + x1x3 + x2x3.) 4

Observation 7.20.5 (cf. Observation 7.20.3). If f is a monic degree d polynomial over an algebraically closed
field, then

f(x) = xn − σ1(α1, . . . , αn)xn−1 + σ2(α1, . . . , αn)xn−2 − . . . .
These are sometimes called Vieta’s formulas. 4

Observation 7.20.6. Let g(y1, . . . , yn) ∈ k[y1, . . . , yn] be any polynomial in n variables. The polynomial
g(σ1(x1, . . . , xn), . . . , σn(x1, . . . , xn)) ∈ k[x1, . . . , xn] obtained by replacing each yi with the ith elementary
symmetric polynomial in the xi’s is a symmetric polynomial. 4

A very key theorem is that every symmetric polynomial can be uniquely in this way. This theorem will
be like a golden standard for us.

Theorem 7.20.7 (Fundamental Theorem of Symmetric Polynomials). Every symmetric polynomial f ∈ k[x1, . . . , xn]
can be written uniquely as a polynomial in the elementary symmetric polynomials.

We’ll present a proof using Gröbner basis, although there are alternative (e.g. combinatorial) proofs of
this.

Proof. Let us fix the lex order with x1 > · · · > xn. Let f ∈ k[x1, . . . , xn] be a nonzero symmetric polynomial,
and let LT(f) = axα; recall here that x = (x1, . . . , xn) and α = (α1, . . . , αn) is an n-tuple of nonnegative
integers. Convince yourself that α1 ≥ · · · ≥ αn (this is because of lex order business – e.g. since xα is a
leading term we must have xα1

1 xα2
2 xα3

3 . . . xαn
n >lex x

α1
2 xα2

1 xα3
3 . . . xαn

n ; this implies α1 ≥ α2). Thus we may
define the polynomial

hα(x1, . . . , xn) = σ1(x1, . . . , xn)α1−α2σ2(x1, . . . , xn)α2−α3 . . . σnσn(x1, . . . , xn)αn .

Note that LT(σr) = x1 . . . xr, hence LT(hα) = LT(σ1)α1−α2LT(σ2)α2−α3 · · · = xα1
1 xα2

2 · · · = xα.

Thus we’ve constructed hα so that LM(f) = LM(hα). In particular, we may consider the symmetric
polynomial f − ahα, which is either zero (then we have written f has a polynomial in the elementary
symmetric polynomial) or satisfies multideg(f) > multideg(f − ahα). In case f − ahα is nonzero, we
may apply the same reasoning as above to find a1, h

α1 so that either (f − ahα) − a1h
α1 = 0 or satisfies

multideg(f − ahα) > multideg(f − ahα − a1hα1
1 ). Indeed, as long as we are nonzero we may repeat this

argument, successively obtaining polynomials of smaller multidegree. The well-orderedness of >lex guar-
antees that we must terminate after finitely many steps. This shows existence of g.

Let’s show uniqueness of g. Precisely, suppose that there are two polynomials g1, g2 ∈ k[y1, . . . , yn], so
that g1(σ1(x1, . . . , xn), . . . , σn(x1, . . . , xn)) = g2(σ1(x1, . . . , xn), . . . , σn(x1, . . . , xn)) ∈ k[x1, . . . , xn] as poly-
nomials. We want to show that g1 − g2 = 0 as polynomials in k[y1, . . . , yn] as well.

Let us write g1−g2 as a sum g1−g2 =
∑
β aβy

β . Then observe that (g1−g2)(σ1(x1, . . . , xn), . . . , σn(x1, . . . , xn))

is a sum of polynomials gβ
def
= aβσ1(x1, . . . , xn)β1 . . . σn(x1, . . . , xn)βn . We have

LT(gβ(σ1, . . . , σn)) = xβ1+···+βn

1 xβ2+···+βn

2 . . . xβn
n .
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We claim that the LT(gβ(σ1, . . . , σn)) have pairwise distinct leading terms. Indeed, the leading term has
exponent vector (β1+ · · ·+βn, β2+ · · ·+βn, . . . , βn). From this vector, we may recover the vector (β1, . . . , βn)
(just take pairwise differences), so the map β 7→ LT(gβ(σ1, . . . , σn)) is an injective map.

Among all β, let us pick the one with the largest LT(gβ(σ1, . . . , σn)). Then for every other γ, we have
LT(gβ(σ1, . . . , σn)) strictly greater than every term of gγ(σ1, . . . , σn). In other words, there is nothing to
cancel the leading term of gβ . If β 6= 0, this contradicts the assumption that (g1 − g2)(σ1, . . . , σn) is the zero
polynomial. It follows that g1 − g2 must be the zero polynomial in k[y1, . . . , yn].

Proposition 7.20.8. Fix a monomial order > in the ring k[x1, . . . , xn, y1, . . . , yn] so that every monomial involv-
ing any x variable is greater than any monomial in k[y1, . . . , yn]. Let G be a Gröbner basis for 〈σ1(x1, . . . , xn) −
y1, . . . , σn(x1, . . . , xn)− yn〉. Then

1. f is symmetric if and only if g def
= f

G is an element of k[y1, . . . , yn],
2. If f is symmetric then f = g(σ1, . . . , σn) is the unique polynomial guaranteed by Theorem 7.20.7.

We’ll see more of this next time!
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8 Practice Prelim 2

8.21 Nov 19, 2019

We discussed a “practice prelim” today. I’ll give my solutions, although it’s much easier to do this when
I can cite theorems at will! Without further ado:

Problem 1.

(a) Define elementary symmetric polynomials.
(b) State the fundamental theorem of symmetric polynomials.
(c) Is f = x3y + x3z + xy3 + xz3 + y3z + yz3 ∈ k[x, y, z] symmetric? If so, express it in terms of elementary

symmetric polynomials.

Problem 2. Let k be an arbitrary field. For f = xy− 1, g = x2y+ y2− 4 in k[x, y], let I = 〈f, g〉. What are
generators of I1 = I ∩ k[y]?

Problem 3. For any ideal I ⊆ k[x1, . . . , xn], prove that
√
I ⊆ I(V(I)).

Problem 4. State and prove Hilbert’s Nullstellensatz.

Problem 5. State an algorithm for gcd computation of two multivariate polynomials.

Problem 6.

(a) Define irreducible varieties and prime ideals.
(b) Prove that if I(V ) is prime, then the affine variety V is irreducible.

Proof of Problem 1. For part a., see Definition 7.20.4.

For part b., see Theorem 7.20.7.

For part c., it is symmetric; I feel that the least painful way of checking is f(x, y, z) = f(y, x, z) = f(y, z, x)
and then applying (HW 9, Ex 7.1.1). To write this as a polynomial in the elementary symmetric polynomials,
we use the proof of Theorem 7.20.7. We notice that

f − σ2
1σ2 has leading term − 2x2y2,

and that
f − σ2

1σ2 + σ2
2 has leading term − x2yz,

and that
f − σ2

1σ2 + σ2
2 + σ1σ3 = 0.

Proof of Problem 2. We use the Elimination Theorem (Theorem 6.15.5). We need to find a Gröbner basisG of
I with respect to lex order, with x > y, and then take the elements ofGwhich are in k[y]. Using Buchberger’s
algorithm (Theorem 2.8.4) we obtain a Gröbner basis G = {x + y2 − 4, y3 − 4y + 1} and hence I ∩ k[y] =
〈y3 − 4y + 1〉.

Proof of Problem 3. Let f ∈ k[x1, . . . , xn] be such that fN ∈ I (i.e., f ∈
√
I). Then let a ∈ V(I). We know

fN (a) = 0, since fN ∈ I . But then f(a) = 0. This holds for every a ∈ V(I); we’ve shown f vanishes on
V(I), i.e., f ∈ I(V(I)).
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Proof of Problem 4. Hilbert’s Nullstellensatz (Theorem 5.13.3) is the middle one (there are 3 Nullstellensatzes:
there’s the Weak (Theorem 5.13.1), the Hilbert (Theorem 5.13.3), and the Strong (Theorem 5.14.1)).

Proof of Problem 5. We have lcm(f, g) gcd(f, g) = fg, so it suffices to give an algorithm to compute lcm(f, g).
Now note that 〈f〉∩〈g〉 = 〈lcm(f, g)〉. But Theorem 6.15.1 says that 〈f〉∩〈g〉 = (t〈f〉+(1−t)〈g〉)∩k[x1, . . . , xn].
Thus, our algorithm is as follows:

• Compute a Gröbner basis for 〈tf, (1 − t)g〉 ⊆ k[t, x1, . . . , xn] with respect to lex order with t > x1 >
· · · > xn.

• There is necessarily exactly one element of this Gröbner basis that is in k[x1, . . . , xn]. This element is
lcm(f, g).

• Compute fg/ lcm(f, g).

Please excuse my lack of pseudocode. I guess I should learn that before the prelim...?

Proof of Problem 6. For part (a), see Definitions 6.17.2 and 6.17.3.

For part (b), see Proposition 6.17.4.
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9 Invariant Theory of Finite Groups

9.22 Nov 26, 2019

We stated
Proposition 9.22.1 (cf. Proposition 7.20.8). Fix a monomial order > in the ring k[x1, . . . , xn, y1, . . . , yn] so that
every monomial involving any x variable is greater than any monomial in k[y1, . . . , yn]. Let G be a Gröbner basis for
I = 〈σ1(x1, . . . , xn)− y1, . . . , σn(x1, . . . , xn)− yn〉. Then

1. f is symmetric if and only if g def
= f

G is an element of k[y1, . . . , yn],
2. If f is symmetric then f = g(σ1, . . . , σn) is the unique polynomial guaranteed by Theorem 7.20.7.

Proof. Say G = {g1, . . . , gt}, with gi 6= 0 for i ∈ [t]. If g = f
G, then we have

f =

t∑
i=1

Aigi + g, (9)

where no term of g is divisible by any LT(gi). Let’s begin by proving part 1 of the claim.

For the backwards direction, we suppose g = f
G is an element of k[y1, . . . , yn]. When we substitute

yi = σi for i ∈ [n] in Equation (9) we get

f =

t∑
i=1

Ai(x, σ)gi(x, σ) + g(σ);

here x = (x1, . . . , xn) and σ = (σ1, . . . , σn). Since gi ∈ I = 〈yi − σi〉, we have gi(x, σ) = 0, and we obtain
f = g(σ1, . . . , σn). We obtain that f is symmetric.

For the forwards direction, we suppose f is symmetric. The Fundamental Theorem of Symmetric Poly-
nomials (Theorem 7.20.7) says that there exists a unique polynomial g so that f = g(σ1, . . . , σn). We claim
that g = f

G.

Let us observe that

σα1
1 . . . σαn

n = (y1+(σ1−y1))α1 . . . (yn+(σn−yn))αn = yα1
1 . . . yαn

n +B1(x,y)(σ1−y1)+· · ·+Bn(x,y)(σn−yn)

forB1, . . . , Bn ∈ k[x,y]. Thus, we may “replace” each monomial σa of g(σ) with the monomial yα, with the
caveat that we introduce some multiples of σi − yi in the process. Specifically, we have

g(σ1, . . . , σn) = g(y1, . . . , yn) +

n∑
i=1

Ci(x,y)(σi − yi)

for Ci(x,y) ∈ k[x,y]. In particular, we get

f = g(σ1, . . . , σn) =
∑

Ci(x,y)(σi − yi)︸ ︷︷ ︸
∈I

+g(y1, . . . , yn).

To get to our claim that g = f
G, we need to show that no terms of g(y1, . . . , yn) are divisible by LT(gi), gi ∈ G.

Suppose that for some i ∈ [t], we had LT(gi) dividing some term of g. By assumption on the monomial
order >, we see that gi ∈ k[y1, . . . , yn] depends only on the y variables. We also have gi ∈ I = 〈yi − σi, so
substituting each yi with σi gives gi(σ1, . . . , σn) = 0. By the uniqueness part of the Fundamental Theorem
of Symmetric Polynomials (Theorem 7.20.7), we get that gi is the zero polynomial. This is a contradiction,
and we obtain g = f

G.
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9.23 Dec 3, 2019

Let’s state this proposition a third time.

Proposition 9.23.1 (cf. Propositions 7.20.8 and 9.22.1). Fix a monomial order> in the ring k[x1, . . . , xn, y1, . . . , yn]
so that every monomial involving any x variable is greater than any monomial in k[y1, . . . , yn]. Let G be a Gröbner
basis for I = 〈σ1(x1, . . . , xn)− y1, . . . , σn(x1, . . . , xn)− yn〉. Then

1. f is symmetric if and only if g def
= f

G is an element of k[y1, . . . , yn],
2. If f is symmetric then f = g(σ1, . . . , σn) is the unique polynomial guaranteed by Theorem 7.20.7.

Great.

Definition 9.23.2. Given variables u1, . . . , us, we define the homogeneous symmetric polynomials

hj(u1, . . . , us) =
∑
|α|=j

uα.

(These are not the elementary symmetric polynomials; for example h2(u1, u2) = u21 + u1u2 + u22.) 4

Proposition 9.23.3. Fix >lex on k[x1, . . . , xn, y1, . . . , yn] with x1 >lex · · · >lex xn >lex y1 >lex · · · >lex yn. Then,
for each j ∈ [n], the functions

gj
def
= hj(x1, . . . , xn) +

j∑
i=1

(−1)ihj−i(x1, . . . , xn)yi

form a Gröbner basis of 〈σi − yi〉.

Proof. Will be left as an exercise.

Definition 9.23.4. Given variables x1, . . . , xn, we define the power sums sj = xj1 + · · ·+ xjn ∈ k[x1, . . . , xn].
4

Theorem 9.23.5. If k is a field containing Q, then every elementary symmetric polynomial in k[x1, . . . , xn] can be
written as a polynomial in the power sums.

To see why we need k ⊇ Q, consider the example xy ∈ k[x, y]. Then the expression

xy =
(x+ y)2 − (x2 + y2)

2
=
s21 − s2

2

needs a 1
2 ∈ k. There are similar examples to see why we need the other 1

p ∈ k as well.

Let’s talk about finite matrix groups and rings of invariants.

Definition 9.23.6. The set GL(n, k) will denote the set of all invertible n×nmatrices with entries in the field
k. 4

Consider a matrix A ∈ GL(n, k). We can think of this as an invertible linear map LA : kn → kn given by
v 7→ Av. In general, any invertible linear map arises in this way (this is why we call GL the “general linear
group”).

Definition 9.23.7. A finite subsetG ⊆ GL(n, k) is called a finite matrix group if it is nonempty and is closed
under matrix multiplication. We denote by |G| the size of G. (The finiteness guarantees that G contains an
identity and inverse.) 4
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Example 9.23.8. The symmetric group Sn is a finite matrix group. Indeed, associated to each permutation
is a permutation matrix; for example we have0 1 0

0 0 1
1 0 0

x1x2
x3

 =

x2x3
x1

 .
In general, the matrix sending (x1, . . . , xn)↔ (xσ(1), . . . , xσ(n)) is the matrix M = (Mij)i,j∈[n] with Mij = 1
if j = σ(i) and Mij = 0 otherwise. 4

Example 9.23.9. The cyclic groups are also finite matrix groups. For an integer m, we may take a matrix A
such that Am = I (and m is the minimal power of A so that Am = I). Then {I, A, . . . , Am−1} is a matrix
group. 4

Definition 9.23.10. Let G ⊆ GL(n, k) be a finite matrix group. A polynomial f ∈ k[x] is invariant under G
if f(x) = f(Ax) for all A ∈ G. The set is denoted k[x]G. 4

Example 9.23.11. The set k[x]Sn is the set of symmetric polynomials. Theorem 7.20.7 asserts that k[x]Sn =
k[σ1, . . . , σn], and furthermore that there is a unique expression for each symmetric polynomial f ∈ k[x]Sn .

4

We’ll state two results which are easy exercises.

Proposition 9.23.12. Let G ⊆ GL(n, k) be a finite matrix group. Then k[x]G is closed under addition and multipli-
cation of polynomials, and contains all the constant polynomials.

[in fancy language, this says k[x]G is a k-algebra.]

Proposition 9.23.13. Let G ⊆ GL(n, k) be a finite matrix group. Then f ∈ k[x]G if and only if the homogeneous
components of f are all in k[x]G.

(A polynomial f ∈ k[x] is homogeneous of total degree m if every term of f has total degree m. Every
polynomial can be written uniquely as a sum of homogeneous polynomials of different degrees; these are
the homogeneous components of f .)

Lemma 9.23.14. Let G ⊆ GL(n, k) be a finite matrix group. Suppose there exist A1, . . . , An ∈ G such that all
A ∈ G can be written as A = B1 . . . Bt for Bi ∈ {A1, . . . , Am} [in fancy language, G = 〈Ai〉 is generated by {Ai}].
Then

f ∈ k[x]G if and only if f(x) = f(A1x) = · · · = f(Amx).

(Note that for G = S3, A1 = (2, 1, 3), and A2 = (2, 3, 1), this result is Exercise 7.1.1 in HW 9.)

Proof. The forward direction is trivial, so let us prove the backwards direction. Specifically, our claim is that
if f is invariant underB1, B2, . . . , Bt, then it is invariant under their product. We prove this by induction on
t: for t = 1 this is obvious; assuming the result for t− 1 we see that

f(B1 . . . Btx) = f((B1 . . . Bt−1)Btx) = f(Btx) = f(x).

Example 9.23.15 (Klein four-group). Let’s consider the finite matrix group

V4
def
=

{[
±1 0
0 ±1

]}
⊆ GL(2, k).

[V stands for Vierergruppe, which means four-group.] Note that

A1 =

[
−1 0
0 1

]
and A2 =

[
1 0
0 −1

]
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generate the group V4. Thus Lemma 9.23.14 says

f ∈ k[x, y]V4 if and only if f(x, y) = f(−x, y) = f(x,−y).

If f =
∑
i,j ai,jx

iyj , the condition f(x, y) = f(−x, y) says that ai,j = (−1)iai,j , i.e., for i odd we have ai,j = 0.
Similarly f(x, y) = f(x,−y) says that ai,j = 0 for j odd. In other words, if ai,j 6= 0 then x and y both have an
even power. We have shown that f(x, y) can be uniquely written as f(x, y) = g(x2, y2) for some g ∈ k[x, y].
In other words,

k[x, y]V4 = k[x2, y2],

and every invariant in k[x, y]V4 can be written uniquely as a polynomial in the two homogeneous invariants
x2, y2. 4

Example 9.23.16 (Cyclic group). Let us consider the cyclic group

C2 =

{
±
[
1 0
0 1

]}
⊆ GL(2, k).

Now Lemma 9.23.14 says that

f ∈ k[x, y]C2 if and only if f(x, y) = f(−x,−y).

Then, for such an f ∈ k[x, y]C2 , we have∑
i,j

ai,jx
iyj = f(x, y) = f(−x,−y) =

∑
i,j

(−1)i+jai,jx
iyj ,

so we have ai,j = 0 when i+ j is odd.

In other words, f is invariant underC2 if and only if whenever the monomial xiyj appear with a nonzero
coefficient in f , then either i and j are both even, or i and j are both odd. In the first case, then xiyj =
(x2)m(y2)n for some m,n ∈ N, whereas in the second case we have xiyj = (x2)m(y2)nxy for some m,n ∈ N.
We thus have k[x, y]C2 = k[x2, xy, y2], and the generating set {x2, xy, y2} is minimal (in the sense that we
can’t get rid of any of them and get the entire k[x, y]C2 ring). Thus, k[x, y]C2 is generated by finitely many
elements (namely, x2, xy, y2), but the expressions for polynomials in k[x, y]C2 in terms of the generators are
not unique (since, for example, (xy)2 = (x2) · (y2)). 4

Thus we have two important questions.

Question 9.23.17 (Finite generation). Can we find finitely many invariants f1, . . . , fm such that every invariant is
a polynomial in the fi?

Question 9.23.18 (Uniqueness). In how many ways can we write an invariant in terms of the f1, . . . , fm?
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9.24 Dec 5, 2019

We want to zoom towards a second proof of the Fundamental Theorem of Symmetric Polynomials (The-
orem 7.20.7), leaving some loose ends along the way.

We’ve been thinking about generators for the ring of invariants k[x]G for a finite matrix group G. We’ve
been using the following notation a lot, so to be precise:

Definition 9.24.1. Given f1, . . . , fm ∈ k[x1, . . . , xn], let k[f1, . . . , fm] denote the subset of k[x1, . . . , xn] con-
sisting of polynomial expressions in these f ’s with coefficients in k. In other words, it is the set

k[f1, . . . , fm] = {g(f1(x), f2(x), . . . , fm(x)), where g ∈ k[y1, . . . , ym]} ⊆ k[x]. 4

Definition 9.24.2. LetG ⊆ GL(n, k) be a finite matrix group. The Reynolds operator ofG is a mapRG : k[x1, . . . , xn]→
k[x1, . . . , xn] sending f 7→ RG(f), where RG(f) is the polynomial

(RG(f))(x) =
1

|G|
∑
A∈G

f(Ax). 4

(Note that it’s important thatG is finite, because we want to divide by |G|.) [Also, when k has character-
istic p, there are some issues if p divides |G|, i.e., if k = F2 then we don’t want to take

G =

{[
1 0
0 1

]
,

[
0 1
1 0

]}
⊆ GL(n, k).

]

Here is why the Reynolds operator is important:

Proposition 9.24.3. We have:

1. For all f ∈ k[x], we have RG(f) ∈ k[x]G.
2. If f ∈ k[x]G, then RG(f) = f .

(So the Reynolds operator is like a “projection” onto the ring of invariants.)

Proof of Proposition 9.24.3. We’ll use the fact that for all B ∈ G, we have an equality of sets {A}A∈G =
{AB}A∈G. (In fancy language, this says right multiplication by B is a bijection from a group to itself, and
it’s because the inverse is given by right multiplication by B−1.)

Let’s prove Proposition 9.24.3. To prove (1), we need to show that for all B ∈ G, that (RG(f))(Bx) =
(RG(f))(x). Well,

(RG(f))(Bx) =
1

|G|
∑
A∈G

f(A(Bx)) =
1

|G|
∑
A∈G

f(Ax) = (RG(f))(x),

where the second equality is the {AB}A∈G = {A}A∈G fact that we assumed.

We also need to show that if f ∈ k[x]G then RG(f) = f . Well, for such an f , we have

(RG(f))(x) =
1

|G|
∑
A∈G

f(Ax) =
1

|G|
∑
A∈G

f(x) = f(x).

We now have the tools required to state the following Theorem, due to Emmy Noether:
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Theorem 9.24.4 (Noether). Let G ⊆ GL(n, k) be a finite matrix group. Let xβ1 , . . . ,xβn be the monomials of total
degree at most |G| in k[x]. Then

k[x]G = k[RG(xβ1), . . . , RG(xβn)].

This gives an answer to the Finite Generation question (Question 9.23.17).

Let’s talk about symmetric functions now. As a word of caution, the name “function” is a misnomer.
They’re not functions at all; in fact, they’re formal power series. (Basically, there will be (infinitely many!)
variables xi floating around, but these variables shouldn’t be thought of as “things for which we can plug
in an element of k” as with polynomials. The xi are just bookkeeping devices.)

It will take lots of time to build the theory rigorously, so please excuse a little bit of hand-waviness. From
now on, x = (x1, x2, x3, . . . ) will denote infinitely many indeterminates.

Definition 9.24.5. A homogeneous symmetric function of degree n over Q is a formal power series

f(x) =
∑
α

cαx
α,

where:

(a) α ranges over all α = (α1, α2, α3, . . . ) where each αi ∈ Z≥0 is a nonnegative integer and
∑
i αi = n.

(b) cα ∈ Q. [To define the homogeneous symmetric function of degree n over a field k, we change this
condition to cα ∈ k. The other two conditions stay the same.]

(c) For any bijection σ : N→ N, we have f(xσ(1), xσ(2), . . . ) = f(x1, x2, . . . ).

The set of homogeneous symmetric functions of degree n over Q is denoted ΛnQ. 4

[Pedantic: For technical reasons, it may be useful to note that condition (c) may be replaced with “for
any bijection σ : N→ N that is eventually constant, that f(xσ(1), xσ(2), . . . ) = f(x1, x2, . . . )”. (Very pedantic:
With this definition, the ring of homogeneous symmetric functions are the direct limit of k[x1, . . . , xn]Sn ↪→
k[x1, . . . , xn+1]Sn+1 given by f 7→ RSn+1

(f).)]

Note that if f ∈ ΛnQ and g ∈ ΛmQ then fg ∈ Λn+mQ .

Definition 9.24.6. A symmetric function over Q is an element of the vector space direct sum

ΛQ
def
= Λ0

Q ⊕ Λ1
Q ⊕ . . . .

In other words, an element f ∈ ΛQ is a sum f = f0 +f1 +f2 + . . . , with each fi ∈ ΛiQ, such that all but finitely
many of the fi are zero. 4

So a symmetric function has bounded “degree”, but may have infinitely many monomials.

A central theme of this business is to find various bases of the vector space Λnk , and to understand the
various transition matrices (=change-of-base matrices) between them.

Definition 9.24.7. A partition is a vector λ = (λ1, λ2, . . . , λm) ∈ Zm≥0 such that λ1 ≥ λ2 ≥ · · · ≥ λm. If
λ1 + · · ·+ λm = n, we say that λ is a partition of n, and we write λ ` n, and |λ| = n. 4

Example 9.24.8. The vector λ = (4, 2, 1, 1) is a partition of 8. The vector λ = (4, 2, 1, 1, 0, 0, 0, 0) is also a
partition of 8. We like to draw partitions by Young diagrams. In this case, the Young diagram of λ is
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(The (4, 2, 1, 1) correspond rows of length four, two, one, and one. They’re left justified. The partitions
(4, 2, 1, 1) and (4, 2, 1, 1, 0, 0, 0, 0) have the same Young diagram.) 4

We denote by Par(n) the set of partitions of size n. Thus

Par(1) = {(1)},
Par(2) = {(2), (1, 1)},
Par(3) = {(3), (2, 1), (1, 1, 1)}.

We denote by Par the set of all partitions, so

Par =
⋃
n≥1

Par(n).

Definition 9.24.9. There are two important partial orders on the set of partitions:

• Containment order: we say µ ⊆ λ if the Young diagram of µ is contained in the Young diagram of λ.
For example, µ = (2, 2, 1, 0) ⊆ (4, 2, 1, 1) = λ because

⊆

On the other hand, µ = (3, 2, 2, 0) and λ = (4, 2, 1, 1) are incomparable, because

6⊆ and 6⊆

• Domination order: we say µ ≤ λ if |µ| = |λ| and for every i we have µ1 + · · ·+ µi ≤ λ1 + · · ·+ λi. For
example, µ = (3, 2, 2, 1) ≤ (4, 2, 1, 1) = λ. On the other hand, µ = (3, 3, 2, 0) and λ = (4, 2, 1, 1) are
incomparable. 4

Here is a very awesome [but somewhat involved] exercise.

Exercise: Let λ = (λ1, . . . , λn) ` n. Let Pλ be the convex hull in Rn of points obtained from λ by
permuting the coordinates, that is, let Pλ = conv(Sn · λ). Show that for λ, µ ∈ Par(n), we have

µ ≤ λ if and only if Pµ ⊆ Pλ.

In fancy language, this is the statement that there exists an isomorphism of posets

(Par(n),≤) ∼= ({Pλ},⊆).

(Hint and solution)

Recall the central theme: we wanted to find bases for Λn and understand the various transition matrices
between them.

Definition 9.24.10 (Monomial symmetric functions). Given a partition λ ` n, define the symmetric function
mλ(x) ∈ Λn by

mλ(x) =
∑
α

xα,

where α ranges over distinct permutations of λ. 4
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Example 9.24.11. We have

m(0) = 1

m(1) =

∞∑
j=1

xi

m(2) =

∞∑
j=1

x2i

m(1,1) =
∑
i,j

xixj . 4

Here is a key observation.

Observation 9.24.12. Let
f =

∑
α

cαx
α ∈ Λn.

Let us consider α = (α1, α2, . . . ) and β = (β1, β2, . . . ), and let us sort α and β so that the components
are weakly decreasing; that is, let sort(α) = (ασ(1), ασ(2), . . . ) where ασ(1) ≥ ασ(2) ≥ . . . , and sort(β) =
(βτ(1), βτ(2), . . . ) where βτ(1) ≥ βτ(2) ≥ . . . . Suppose sort(α) = sort(β). Then cα = cβ . Furthermore, for any
α, sort(α) is a partition, and sort(α) ` n.

Since the coefficients cα only depend on the partition sort(α), we can write

f =
∑
α

csort(α)x
α =

∑
λ∈Par(n)

(
cλ

∑
α : sort(α)=λ

xα
)

=
∑

λ∈Par(n)

cλmλ(x). 4

We have observed that every f ∈ Λn can be written as a k-linear combination of the mλ(x). In other
words, we have observed that mλ is a basis of the vector space Λn. In particular, Λn is a vector space of
dimension #Par(n).

Definition 9.24.13 (Elementary symmetric functions). Given a partition λ ` n, define the elementary sym-
metric function eλ in the following way. For n ∈ Z≥0, let 1n denote the n-many-1’s vector, i.e. (1, 1, . . . , 1) ∈
Zn≥0.

en
def
= m1n

=
∑

1≤i1<···<in

xi1 . . . xin .

Then we define
eλ = e(λ1,λ2,... )

def
= eλ1

· eλ2
· . . . .

4

If A = (ai,j)i,j≥1 be a matrix with finitely many nonzero integer entries. Because only finitely many
entries are nonzero, we may define row and column sums

ri =
∑
j

ai,j and cj =
∑
i

ai,j

and the vectors row(A) = (r1, r2, . . . ) and col(A) = (c1, c2, . . . ).

Proposition 9.24.14. Let λ ` n and let (α1, α2, . . . ) be a weak composition of n. Write

eλ =
∑
α

Mλαx
α,

so that Mλα is the coefficient of xα in eλ. Then Mλα is equal to the number of (0, 1)-matrices (Ai,j)i,j≥1 so that
row(A) = λ and col(A) = µ.
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Note that since Mλα depends only on λ and sort(α) (as in Observation 9.24.12), i.e. since we have

eλ =
∑
µ`n

Mλµmµ,

this shows that the number of (0, 1)-matrices with col(A) = α depends only on sort(α) = µ.

Proof. Let’s think about the∞×∞matrix

X =


x1 x2 x3 . . .
x1 x2 x3 . . .
x1 x2 x3 . . .
...

...
...

. . .


and let’s consider eλ, where λ = (λ1, λ2, . . . ). So by definition

eλ = eλ1
· eλ2

· . . . .

To obtain a term of eλ, we choose terms of eλi
and multiply them together. This is the same as choosing λ1

distinct entries of the first row of X (i.e., the product of these λ1 entries is a term of eλ1
), and choosing λ2

distinct entries of the second row of X (i.e., the product of these λ2 entries is a term of eλ2 ), and so on.

Suppose we pick various entries of X , and the corresponding product of the entries we’ve chosen is xα.
We make the matrixA = (Ai,j)i,j≥1 whose entries are all zero, except when the ij-th entry ofX was picked,
in which case we set Ai,j = 1. Then by construction row(A) = λ and col(A) = α. Conversely, any matrix A
determines a term of eλ that is equal to xα.

79



9.25 Dec 10, 2019

We’re going to zoom through more stuff today. The goal is to excite you, and not to scare you. A very
nice reference for this is Chapter 7 of Stanley’s Enumerative Combinatorics, Volume 2.

Proposition 9.25.1. Let λ ` n be a partition. We may express the elementary symmetric function eλ (Defini-
tion 9.24.13) in terms of monomial symmetric functions (Definition 9.24.10) mµ as

eλ =
∑
µ`n

Mλµmµ,

where Mλν is the number of∞×∞ (0, 1)-matrices A = (aij)i,j≥1 with row vector row(A) = λ and col(A) = µ.

The numbers Mλµ has the following alternative combinatorial interpretation. Suppose we have n balls,
of which λi of them are lebeled i. Suppose we also have (infinitely many) boxes. Then Mλµ is the number
of ways of placing the balls into our boxes such that:

1. No box contains more than one ball with the same label
2. Box i contains exactly µi balls.

We’ll leave the proof of this as a nice combinatorial exercise.

Corollary 9.25.2. Let Mλµ be given as above, i.e., write

eλ =
∑
µ`n

Mλµmµ.

Then Mλµ = Mµλ

Proof. For a (0, 1)-matrix A = (aij)i,j≥1 with row vector row(A) = λ and col(A) = µ, the matrix AT is a
(0, 1)-matrix with row vector row(AT ) = µ and col(AT ) = λ.

Theorem 9.25.3. Let λ, µ ` n. Then Mλµ = 0 unless µ ≤ λt in dominance order, while Mλλt = 1. Hence
{eλ : λ ` n} is a basis of ΛnQ, and {eλ : λ ∈ Par} is a basis of ΛQ. Equivalently, the {e1, e2, . . . } are algebraically
independent and generate ΛQ = Q[e1, e2, . . . ].

(Here λt is the conjugate of λ: it is the partition whose Young diagram is the transpose of the Young
diagram of λ. As an example, if λ = (4, 3, 1, 1) then λt = (4, 2, 2, 1):

←→ .

Also, the generate in Theorem 9.25.3 is as aQ-algebra. One can interpret the ΛQ = Q[e1, e2, . . . ] as the infinite-
variable version of the fundamental theorem of symmetric polynomials (Theorem 7.20.7).)

Proof of Theorem 9.25.3. Let Mλµ = 0. There exists a (0, 1)-matrix A = (aij)i,j≥1 with row(A) = λ and
col(A) = µ. Let A′ be the matrix obtained from A by left-justifying all the 1’s. Thus the 1’s in the matrix A′
trace out the Young diagram for λ, i.e., we have row(A′) = λ and col(A′) = λt. On the other hand, because
we left justified the 1’s, the number of 1’s in the leftmost i columns of A′ is at least the number of 1’s in the
leftmost i columns of A. This is precisely the same as saying λt = col(A′) ≥ col(A) = µ in dominance order.

It turns out that the matrix A′ is the unique matrix with row sum λ and column sum λt, so Mλλt = 1.
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To attack the claim about {eλ : λ ` n} being a basis, we assume the following exercise:

Exercise: There is a total order <TO on Par(n) that is compatible with dominance order, so

λ1 <TO λ2 <TO · · · <TO λρ(n) with λi <dom λj implies λi <TO λj

such that the reverse conjugate order

(λρ(n))t <TO (λρ(n)−1)t <TO< · · · <TO (λ1)t

is also compatible with the dominance order. Then our result that Mλµ = 0 unless µ ≤ λt in dominance
order precisely says that the matrix M = (Mλµ) with rows ordered λ1 <TO λ2 <TO · · · <TO λρ(n) and
columns ordered (λ1)t >TO (λ2)t >TO · · · >TO (λρ(n))t is upper triangular with 1’s on the diagonal. ThusM
is invertible. Since

eλ =
∑
µ`n

Mλµmµ,

it follows that invertible map M maps the basis mλ of Λn to the set eλ. Thus eλ is a basis of Λn. It follows
that ΛQ = Q[e1, . . . , en].

There are various other bases for Λn other than mλ and eλ, which we’ll briefly talk about now:

Definition 9.25.4 (Complete homogeneous symmetric functions). The complete homogeneous symmetric functions
hλ are indexed by partitions λ = (λ1, λ2, . . . ) ` n. We first define, for n ∈ N,

hn
d
=
∑
λ`n

mλ.

Then as usual we set hλ = hλ1hλ2 . . . . 4

Theorem 9.25.5. The {hλ : λ ` n} form a basis of Λn. Thus the {hλ : λ ∈ Par} form a basis of Λ. Equivalently, the
{h1, h2, . . . } are algebraically independent and generate Λ = Q[h1, h2, . . . ].

We know, from Theorem 9.25.3 that Λ = Q[e1, . . . , en]. Note that to specify a map (a “ring homomor-
phism”) f : Λ→ Λ it is enough to specify the values of f(ei).

Let us define a map ω : Λ→ Λ by setting ω(en) = hn. (Thus ω(eλ) = hλ.)

Theorem 9.25.6. The map ω is an involution, that is, ω(hλ) = eλ. In other words, ω is an isomorphism Λ → Λ,
with inverse equal to ω.

We won’t prove Theorem 9.25.6, but this definitely proves Theorem 9.25.5, since ω is an automorphism.

Now another basis:

Definition 9.25.7 (Power sum symmetric functions). The power sum symmetric functions pλ are indexed
by partitions λ = (λ1, λ2, . . . ). As usual we first define, for n ∈ N,

pn = mn =
∑
i

xni .

Then as usual we set pλ = pλ1pλ2 . . . . 4

And, as usual, we have

Theorem 9.25.8. The {pλ : λ ` n} form a basis of Λn. Thus the {pλ : λ ∈ Par} form a basis of Λ. Equivalently, the
{p1, p2, . . . } are algebraically independent and generate Λ = Q[p1, p2, . . . ].
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We will now move towards a very exciting family of polynomials that come up in both combinatorics
and representation theory. First, some definitions:

Definition 9.25.9. Let λ ` n. Then a semistandard Young tableau T of shape λ is a filling of the Young dia-
gram of λ with positive integers such that the numbers on the rows are weakly increasing and the numbers
on the columns are strictly increasing. To a Young tableau we may wish to associate the monomial xT , where
the variable xi is raised to the number of times i appears in T . 4

Example 9.25.10. For example,

T =
1 1 10 13

2 4

5

11

is a semistandard Young tableau. In this case, the monomial xT is x21x2x4x5x10x11x13. 4

To get to our exciting family of polynomials we first do an example:

Let us fix λ = (2, 1) and restrict to x1, x2, x3. What are the semistandard Young tableau of shape λwhich
only use the numbers {1, 2, 3} to fill them up? Well, we have

1 1

2
and 1 1

3
and 1 2

2
and 1 2

3
and 1 3

2
and 1 3

3
and 2 2

3
and 2 3

3

so there are 8 of them. These correspond to the monomials

x21x2 and x21x3 and x1x
2
2 and x1x2x3 and x1x2x3 and x1x

2
3 and x22x3 and x2x

2
3

and when we add them up we get some polynomial which we’ll call s(2,1)(x1, x2, x3). To be explicit,

s(2,1)(x1, x2, x3) = x21x2 + x21x3 + x1x
2
2 + 2x1x2x3 + x1x

2
3 + x22x3 + x2x

2
3.

Notice, by the way, that the monomials appearing in s(2,1)(x1, x2, x3), are precisely the integer points of
the permutahedron P(2,1,0) = conv(Sn · (2, 1, 0)). [As they say, “Hm.”] For a picture, see below:

2

1 1

11

1 1

(1, 1, 1)

(2, 1, 0)

(1, 2, 0)

(0, 2, 1)(0,1,2)

(1, 0, 2)

(2, 0, 1)

There was some discussion to connections to particle physics (the eightfold way). Although we don’t un-
derstand anything, this (joint work of many superstars) might be relevant. [As they say, “Hm.”]

Definition 9.25.11. The Schur function is

sλ(x1, x2, . . . ) =
∑

T∈SSYT of shape λ

xT . 4
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The following is extremely deep and beyond the scope of this course:

Theorem 9.25.12. The Schur functions {sλ : λ ` n} form a basis of Λn.

We will end the course with:

Theorem 9.25.13. The Schur function sλ is a symmetric function.

Proof. It suffices to show that sλ is invariant under the switches xi ↔ xi+1 (this uses the fact that condition
(c) in Definition 9.24.5 can be replaced with “bijection that is eventually constant”). Specifically, for a weak
composition α = (α1, α2, . . . ) of n, let us define Tλ,α as the set of semistandard Young tableaux of shape λ
and αj many j’s in its filling. Define

α̃ = (α1, . . . , αi−1, αi+1, αi, αi+2, . . . )

the weak composition obtained fromα by switching the i and i+1-th coordinates. We want to find a bijection
showing |Tλ,α| = |Tλ,α̃|.

To do this, let us consider a semistandard Young tableau of shape λ and αj many j’s in its filling. We
want a way to turn this into a semistandard Young tableau of shape λ and αi+1 many i’s, αi many i + 1’s,
and αj many j’s for other j. Notice that the columns of a semistandard Young tableau are strictly increasing,
so there can only be at most one i and at most one i+ 1. If there are no i’s or i+ 1’s, or there is one i and one
i + 1, then we leave those columns alone. Let us focus on the columns for which exactly one of {i, i + 1} is
present. For these i’s and i + 1’s, we are free to replace i’s with i + 1’s or i + 1’s with i’s since the columns
are strictly increasing. It’s “readily” seen that this is a bijection (i.e., this will be left as an exercise). :)
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