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The cotangent bundle of any closed manifold Nn is a symplectic manifold T ∗N , which is
exact and of contact type at infinity. It comes with a trivialization of its bicanonical bundle
K2

T∗N (the complex line bundle representing −2 times the first Chern class), unique up to
homotopy. Its symplectic cohomology SH∗(T ∗N) is therefore a Z-graded module over an
arbitrarily chosen coefficient ring K. Here, we use the canonical orientations from [3] to
determine the signs in the differential, and the trivialization of the bicanonical bundle to
fix the grading for non-contractible loops [11]. The literature contains the claim (see for
instance my own [12]) that

(1) SH∗(T ∗N) ∼= Hn−∗(LN ; oN ⊗Z K),

where oN is the orientation local system, or rather its pullback by the base point map
LN → N . If 2 = 0 ∈ K, so that oN ⊗Z K is trivial, there are several different proofs of
the isomorphism in the literature, see [13, 10, 1]. It may seem natural to assume that for
general K the signs work out as indicated in (1) (twisting by oN is required in order to have
a natural candidate on the right hand side for the unit element 1 ∈ SH0(T ∗N), namely the
class [N ] of constant loops).

However, recent work of Kragh [6] suggests a different formula:

(2) SH∗(T ∗N) ∼= Hn−∗(LN ; oN ⊗Z ηN ⊗Z K),

where ηN → LN is another local system, which represents the image of the second Stiefel-
Whitney class w2(TN) under the transgression map H2(N ;Z/2) → H1(LN ;Z/2). Since ηN
is trivial on constant loops, the right hand side of (2) still contains a natural class corre-
sponding to the unit in symplectic cohomology. However, that class is no longer necessarily
nontrivial.

Example 1. Consider the case of an N such that w2(TN)|π2(N) ̸= 0. Suppose that 2 is
invertible in K. Look at the based loop space homology with coefficients in ηN , more precisely

(3) H∗(ΩN ; ηN |ΩN ⊗Z K).

Since ηN is nontrivial on the component of contractible loops, the class of the base point in
this group vanishes. But on the other hand, the whole group is an associative graded ring
under a twisted version of the Pontryagin product (this works because ηN comes from an
abelian gerbe on N), and the base point is the unit. Hence (3) would then vanish altogether.
In view of the base point spectral sequence, this implies the vanishing of the right hand side
of (2).

This note computes the following example:
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Theorem 2. SH∗(T ∗CP 2) vanishes if K is a field of characteristic ̸= 2.

This contradicts (1) but agrees with (2), as shown in Example 1 above. By design, our
computation leading to Theorem 2 is entirely independent of the existing proofs of (1).
Instead, it relies on Lefschetz fibrations of the type considered in [5, 4], and computational
techniques from [8, 7, 2, ?].

Remark 3. One can introduce twisted versions of symplectic cohomology with respect to
any class α ∈ H2(N ;Z/2), denoted by SH∗(T ∗N ;α), by taking twisted coefficients in the
associated local system over LN . Equivalently, as pointed out to me by Kragh, this amounts
to choosing a different coherent orientation of the moduli spaces in Floer theory. Hence, even
if (2) is the correct formula, it seems that ordinary loop space homology can be recovered
by choosing α = w2(TN). However, the difference between the two expressions (2) and
(1) is still meaningful, because of Viterbo functoriality [14]. Namely, suppose that (2) is
correct, and let N be as in Example 1. By combining the computation above with a standard
Viterbo functoriality argument, it follows that there is no closed exact L ⊂ T ∗N such that
w2(L)|π2(L) = 0. This resembles the use of Novikov-twisted symplectic cohomology in [9].

Remark 4. The formula (2) is also natural from the point of the open-closed string rela-
tionship, as pointed out to me by Abouzaid. In the case when N is Pin, one has a natural
open-closed string map SH∗(T ∗N) → HF ∗(N,N) ∼= H∗(N ;K), which maps the unit ele-
ment to the unit, hence shows that SH∗(T ∗N) must be nonzero. More generally, one expects
to have maps SH∗(T ∗N ;w2(TN)) → H∗(N ;K), since the zero-section becomes as object of
the Fukaya category formed with respect to the background class w2(TN) ∈ H2(T ∗N ;Z/2).
This agrees with the idea that the twisted version of symplectic cohomology with α = w2(TN),
and not the untwisted version, should agree with ordinary loop space homology.

I thank Thomas Kragh for explaining his work to me. Obviously, this note is essentially
a minor remark on it. I also thank Mohammed Abouzaid for discussions regarding the
implications of Kragh’s work, and for correcting the initial version of this note, which was
mostly wrong (he is not responsible for the possible persistence of this fact).

Clean intersection and signs

We consider a particularly simple instance of Lagrangian clean intersection. Namely, suppose
that L0, L1 are Lagrangian submanifolds in a symplectic manifold M2n, n ≥ 2, intersecting
cleanly along a circle C = L0 ∩ L1

∼= S1. In this situation, the symplectic form gives a
nondegenerate pairing between the normal bundles ν0, ν1 of C inside the two submanifolds.
By choosing a metric on the first normal bundle, we translate the pairing into an isomorphism

(4) ν1 −→ ν∗0
∼= ν0

which is unique up to homotopy. Equivalently, suppose that we have a compatible almost
complex structure J and associated metric g on M . The restriction of this metric allows us
to see ν0 as a subbundle of TL0|C, and similarly for L1. One can arrange J in such a way
that J(ν0) = ν1, and this is the same isomorphism as defined before. Suppose now that L0

and L1 come with Pin structures. One can compare these locally near C by using (4) and
tubular neighbourhoods. The difference between them is given by an element of H1(C;Z/2),
which we think of as classifying a local Z-coefficient system ρC → C.
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An elementary example which is relevant for us is the affine quadric threefold

(5) M = {(x1, . . . , x4) ∈ C4 : x2
1 + x2

2 − x2
3 − x2

4 = 1}.

Take L0 = M ∩ (R2 × iR2), which is a three-sphere, and L1 = MR = M ∩ R4, which is a
plane bundle over the circle C = L0 ∩ L1 = S1 × {0}. Clearly

(6)
(ν0)(x1,x2,0,0) = {0} × iR2,

(ν1)(x1,x2,0,0) = {0} × R2.

As an abstract circle, C comes with a preferred Pin structure (the one that bounds a Pin
structure on a disc, which means that it is not compatible with an actual trivialization of
TC). Again abstractly, L0 comes with its unique Pin structure, which is compatible with
thinking of it as the boundary of the unit ball in R2 × iR2 ∼= R4. These two induce a Pin
structure on ν0, which then becomes a Pin structure on ν1 by applying (4). All these Pin
structures are compatible with the constant trivializations of (6). In particular, the Pin
structure on ν1 extends to one on the normal bundle of the disc D2 × {0} inside R4. (One
can substitute stable framings for Pin structures throughout this argument.)

Our desired application is to symplectic Lefschetz fibrations with real involutions. Namely,
let π : E → C be a symplectic Lefschetz fibration. A real involution is an involution ι of E
which reverses the sign of the symplectic form, and also satisfies π ◦ ι = π̄. In particular,
the restriction of π to the fixed locus ER of the involution is then automatically a Morse
function πR. The specific situation we’re interested in is the following one. First of all, E is
of real dimension 8. Next, ER is compact, and πR has a unique local maximum p1, as well
as another critical point p0 which has Morse index 2. Finally, there are no critical points of
πR in the level sets between πR(p0) and πR(p1).

Choose a point z ∈ R which is slightly larger than π(p0), and let M = π−1(z) be the fibre
at that point. By going left and right along the real line from z to p0 and p1, respectively,
we get two vanishing cycles L0, L1 ⊂ M . It is not hard to see that L1 = MR is just the fixed
point set of ι|M . On the other hand, after possibly adjusting the symplectic form slightly,
we can find local coordinates around p0 which reduce us to the situation considered above.
In particular, C = L0 ∩L1 is a circle in M , which bounds a small disc D0 ⊂ ER having p0 at
the center. Take the canonical Pin structures on C (as an abstract circle) and L0, use them
to construct a Pin structure on ν0, and transfer that to ν1 using (4). Note that ν1 is the
normal bundle of C ⊂ MR. Then, that Pin structure extends one on the normal bundle of
D0 ⊂ ER, by the previous purely local discussion. On the other hand, note that C bounds
another disc D1 ⊂ ER with center p1, obtained by flowing upwards along the gradient flow
of πR. Using the canonical Pin structures on C and L1, we can get another Pin structure on
ν1, which has the property that it extends to the normal bundle of D1 ⊂ ER. If these two
Pin structures agree, there is an induced Pin structure on the normal bundle of the sphere

(7) S = D0 ∪C D1 ⊂ ER.

In particular, that sphere must have even selfintersection. Conversely, if S ⊂ ER has odd
selfintersection, the two Pin structures must be different, hence the local coefficient system
ρC → C will be nontrivial.

To conclude, we return to the general framework of two Lagrangian submanifolds L0, L1

intersecting cleanly along a circle. In addition to the Pin structures, assume that L0 and L1

are oriented, and that suitable exactness conditions hold, so that HF ∗(L0, L1) is defined as
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a Z/2-graded K-vector space, and can be computed from contributions which are local to C.
Then

(8) HF ∗(L0, L1) ∼= H∗+µ(C; ρC ⊗Z K),

where K is the coefficient ring, and µ ∈ Z/2 depends on the orientations. So, if K is a field of
characteristic ̸= 2, one finds that HF ∗(L0, L1) vanishes if ρC is nontrivial. Finally, note that
in the situation where the Lagrangian submanifolds are graded, (8) lifts to an isomorphism
of Z-graded groups.

The cotangent bundle of CP 2

T ∗CP 2 appears as the total space of a Lefschetz fibration with real structure, which can be
thought of as a complexification of the standard Morse function on CP 2. To obtain a concrete
description, let E ⊂ gl3(C) be the subset of matrices of rank 1 and trace 1, which means
that they are of the form a = v ⊗ w for two vectors with complex scalar product wv = 1.
This is a smooth subvariety, and if we equip it with the restriction of a suitable Kähler
form, it becomes symplectically isomorphic to T ∗CP 2. The real involution is ι(a) = a∗. One
identifies CP 2 ∼= ER by taking a unit vector v ∈ S5 to the matrix a = v⊗ v∗. The Lefschetz
fibration can be taken to be

(9) π(a) = a11 − a33.

This example was considered in detail in [5] from a related perspective, so we only sum-
marize the results. There is a basis of vanishing cycles (V0, V1, V2), which is such that each
intersection Vi ∩ Vj (i ̸= j) is clean and a circle. The argument from the previous section
applies to both V1 ∩ V2 and (after reversing the sign of π) V0 ∩ V1. In either case, the sphere
(7) is a generator of H2(CP 2;Z), hence has odd selfintersection. It follows that, if we choose
coefficients in a field K of characteristic ̸= 2, then

(10) HF ∗(V0, V1) = 0, HF ∗(V1, V2) = 0.

Note that we have not completely determined HF ∗(V0, V2), which could be either zero or
the cohomology of a circle.

Consider the Lefschetz thimbles ∆0,∆1,∆2 associated to our vanishing cycles, which are
noncompact Lagrangian submanifolds in E. We have the following general criterion, taken
from [7].

Lemma 5. Suppose that the wrapped Floer cohomology HW ∗(∆2,∆2) is nonzero. Let B be
the Fukaya category of the fibre M . Then, in D(B), the object V2 must be a direct summand
of a twisted complex

(11) Z = {hom(V1, V2)⊗ hom(V0, V1)⊗ V0
δC−−→ hom(V0, V2)⊗ V0 ⊕ hom(V1, V2)⊗ V1}.

Suppose that in our situation, the assumption of this Lemma were satisfied. Since V2 is
a nonzero object, we then know that HF ∗(V0, V2) must be nonzero, so it is isomorphic to
H∗(S1;K), and possibly after a shift, we have

(12) Z ∼= V0 ⊕ V0[−1].

But this splits as a direct sum only in the obvious way, so V2 would have to be isomorphic to
V0 up to a shift. That can’t be the case, since the generators of HF ∗(V0, V2) lie in adjacent
degrees, so we arrive at a contradiction, which shows that HW ∗(∆2,∆2) = 0.
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It is easy to see that any of the ∆k is Lagrangian isotopic to a cotangent fibre. Hence, the
vanishing of wrapped Floer cohomology implies that the symplectic cohomology must be
zero as well, by a very general result of [2].
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