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Abstract

We prove the plectic conjecture of Nekovář–Scholl [22] over global function fields Q.
For example, when the cocharacter is defined over Q and the structure group is a
Weil restriction from a geometric degree d separable extension F/Q, consider the
complex computing ℓ-adic intersection cohomology with compact support of the as-
sociated moduli space of shtukas over QI . We endow this with the structure of a
complex of (Weil(F )d ⋊ Sd)

I -modules, which extends its structure as a complex of
Weil(Q)I -modules constructed by Arinkin–Gaitsgory–Kazhdan–Raskin–Rozenblyum–
Varshavsky. We show that the action of (Weil(F )d ⋊ Sd)

I commutes with the Hecke
action, and we give a moduli-theoretic description of the action of Frobenius elements
in Weil(F )d×I .
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Introduction

The plectic conjecture of Nekovář–Scholl [22] predicts extra symmetries in the cohomology of
Shimura varieties when the structure group G is a Weil restriction. In the ℓ-adic realization,
the case of trivial coefficients is formulated as follows. Suppose that G is the Weil restriction
RF/QH of a connected reductive group H over a number field F . We have the plectic Galois

group Γplec
F/Q := AutF (F ⊗Q Q), which naturally admits a continuous injective homomorphism

from the absolute Galois group ΓQ of Q. The plectic Galois group acts on the set of conjugacy

classes of cocharacters of GQ, and we can form the stabilizer Γ
[µ]
F/Q of the Hodge cocharacter [µ]

in Γplec
F/Q. Note that the reflex field E is characterized by ΓE = ΓQ ∩ Γ

[µ]
F/Q. For sufficiently large

level N , write ShN for the minimal compactification of our Shimura variety at level N over E.

Conjecture [22, Conjecture 6.1]. The intersection cohomology complex of ShN with coefficients

in Qℓ canonically lifts from an object of Db(ΓE ,Qℓ) to an object of Db(Γ
[µ]
F/Q,Qℓ) via the map

ΓE ↪→ Γ
[µ]
F/Q.
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At the time of writing, the plectic conjecture in the number field setting is wide open. The
goal of this paper is to prove the plectic conjecture in the function field setting. More precisely,
we prove that an analogous phenomenon holds for the moduli space of shtukas, which is an equi-
characteristic analogue of Shimura varieties. However, moduli spaces of shtukas admit richer
variants than their number field counterparts: namely, the ability to have multiple legs. This
already plays a crucial role in applications to the Langlands program [20, 26], and it also plays
a crucial role in this paper.

To state our results, we need some notation. Let Q be a global field of positive character-
istic, write k = Fq for its constant field, and assume that ℓ ∤ q. Henceforth let F be a degree
d separable extension of Q with the same constant field, let H be a connected reductive group
over F , and write G for the Weil restriction RF/QH. Let I be a finite set, and let ω = (ωi)i∈I
be an I-tuple of conjugacy classes of cocharacters of GQ such that each ωi is defined over Q.1

Write X for the geometrically connected smooth proper curve over k associated with Q, and
write QI for the generic point of XI . For any finite closed subscheme N of X, we get a mod-
uli space of shtukas ShtG,N,I,ω |QI

at level N over QI .
2 Work of Xue [25, Proposition 6.0.10]

yields a natural Weil(Q)I -action on the intersection cohomology groups with compact support
of ShtG,N,I,ω |QI

, and forthcoming work of Arinkin–Gaitsgory–Kazhdan–Raskin–Rozenblyum–
Varshavsky enhances this Weil(Q)I -action to the level of complexes.

We now turn to the plectic group in our setting. Since the ωi are defined over Q, they
are stabilized by all of Γplec

F/Q. By fixing extensions of the d different Q-embeddings F ↪→ Q to

automorphisms of Q over Q, we can identify Γplec
F/Q with the semidirect product ΓdQ⋊Sd, whereSd

denotes the d-th symmetric group. Applying similar observations (which hold for any topological
group with an index d open subgroup [7, p. 7]) to the Weil group yields a continuous injective
homomorphism Weil(Q) ↪→Weil(F )d ⋊Sd.

Theorem A. The complex of intersection cohomology with compact support of ShtG,N,I,ω |QI

with coefficients in Qℓ canonically lifts from an object of Db(Weil(Q)I ,Qℓ) to an object of
Db((Weil(F )d ⋊Sd)

I ,Qℓ) via the I-fold product of the map Weil(Q) ↪→Weil(F )d ⋊Sd.

Because shtukas can have multiple legs, powers of I appear in Theorem A. However, even
when I is a singleton (which mirrors the plectic conjecture in the number field setting), the proof
of Theorem A still crucially uses the ability to have multiple legs.

Remark. For ω not necessarily defined over Q, our methods prove a similar result for the intersec-
tion cohomology with compact support of a union of the plectic Galois translates of ShtG,N,I,ω. In
fact, all our results apply in this level of generality. See Theorem 5.8, Theorem 5.9, and Theorem
5.12.

The (Weil(F )d ⋊ Sd)
I -action we construct enjoys the following compatibility. Write HG,N

for the Hecke algebra of G at level N , which acts naturally on ShtG,N,I,ω |QI
via finite étale

correspondences and hence on its intersection cohomology groups with compact support.

Theorem B. The action of (Weil(F )d⋊Sd)
I from Theorem A on the level of cohomology groups

commutes with the action of HG,N .

1We can always enlarge Q such that the ωi are defined over Q. This is analogous to the number field setting, since
the field of definition of [µ] is precisely the field over which our Shimura variety lives.
2Strictly speaking, we need to choose a parahoric group scheme over X with generic fiber G. We also need to
choose an ordered partition of I, in order to define partial Frobenius morphisms. However, we will ignore these
issues for the rest of the introduction.
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We can also describe the action of Frobenius elements in (Weil(F )d⋊Sd)
I in terms of partial

Frobenius morphisms, as conjectured in [22, Remark 6.7]. Now F/Q corresponds to a finite mor-
phism m : Y →X, where Y is also geometrically connected over k. Let k′ be a degree r extension
of k, and let x = (xi)i∈I be a k

′-point of XI such that each xi splits completely in Y , i.e. m−1(xi)
is a disjoint union of k′-points (yh,i)

d
h=1. For xi lying in a certain dense open subscheme U ∖N

of X, a smoothness result of Xue [25, Theorem 6.0.12] identifies the intersection cohomology
groups with compact support of ShtG,I,ω |QI

and the intersection cohomology groups with com-
pact support of ShtG,I,ω |x. Write y for the k′-point (yh,i)(h,i)∈d×I of Y d×I . Diagrams (▷) and (◁)
below will enable us to identify ShtG,I,ω |x and ShtH,d×I,ω |y up to universal homeomorphism.

We now introduce partial Frobenii. Write V and M for the preimages of U and N in Y . For
any (h, i) in d× I, we have a commutative square

ShtH,d×I,ω |(V ∖M)d×I

Fr(h,i)
//

p
��

ShtH,d×I,ω |(V ∖M)d×I

p
��

(V ∖M)d×I
Frob(h,i)

// (V ∖M)d×I ,

where Frob(h,i) equals absolute q-Frobenius on the (h, i)-th factor and the identity on the other
factors. Therefore Fr(h,i) induces a Frob(h,i)-semilinear endomorphism F(h,i) of the relative inter-

section cohomology with compact support of ShtH,d×I,ω |(V ∖M)d×I over (V ∖M)d×I . As Frobr(h,i)
fixes y, we obtain an action of F r(h,i) on the intersection cohomology groups with compact support

of ShtH,d×I,ω |y.
On the other hand, we also have Frobenius elements in Weil groups. Namely, the k′-point

yh,i of Y yields a geometric qr-Frobenius element γyh,i in Weil(F ), which acts on the intersection

cohomology groups with compact support of ShtG,I,ω |QI
via the (h, i)-th factor of Weil(F )d×I

in Theorem A.

Theorem C. Under these identifications, the action of γyh,i equals the action of F r(h,i).

Let us now discuss the proofs of our theorems. For simplicity, assume that H is split, take
N = ∅, and suppose that F is everywhere unramified over Q.3 Thus m : Y →X is étale.

We begin by observing that G-bundles on X are naturally equivalent to H-bundles on Y .
Moreover, this equivalence is compatible with replacing X by the punctured curve X∖x, as long
as Y is replaced by Y ∖m−1(x). We use this to show the existence of a Cartesian square

ShtG,I,ω //

p

��

Sht
(d)
H,I,ω

p

��

XI (m−1)I
// (DivdY )

I ,

(▷)

where DivdY denotes the space of degree d divisors of Y , and Sht
(d)
H,I,ω denotes a symmetrized

variant of the moduli space of shtukas that keeps track of an I-tuple of divisors of Y , instead of
just points of Y . We make important use of this symmetrized variant, so we study it thoroughly
in §3. Diagram (▷) provides one incarnation of the conjectured plectic diagram from [22, (1.3)].
Becausem is étale, the image of the closed immersionm−1 : X→DivdY lies in the open subscheme
Divd,◦Y of étale divisors.

3We treat the general case in the body of the paper, and this simplified case already illustrates the main ideas.
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We can relate Sht
(d)
H,I,ω to a usual, unsymmetrized moduli space of shtukas as follows. By

viewing DivdY as the scheme-theoretic quotient of Y d by Sd, we get a commutative square

Sht
(d)
H,I,ω

p

��

ShtH,d×I,ωoo

p

��

(DivdY )
I Y d×Iαoo

(◁)

that is Cartesian up to universal homeomorphism, where we use G = RF/QH to view each

ωi as a d-tuple of conjugacy classes of cocharacters of HF . Note that SI
d acts naturally on

the right-hand side. Now Arinkin–Gaitsgory–Kazhdan–Raskin–Rozenblyum–Varshavsky’s result
endows the complex of intersection cohomology with compact support of ShtH,d×I,ω |Fd×I

with
the structure of a complex of Weil(F )d×I -modules, and theSI

d-action intertwines the Weil(F )d×I -
action by permutation. We use this to obtain the structure of a complex of Weil(F )d×I ⋊SI

d =
(Weil(F )d ⋊Sd)

I -modules.

By applying proper base change to Diagrams (▷) and (◁), Xue’s smoothness result [25,
Theorem 4.2.3] identifies the complexes of intersection cohomology with compact support of
ShtG,I,ω |QI

and intersection cohomology with compact support of ShtH,d×I,ω |Fd×I
. Under this

identification, we check that the action of Weil(Q)I agrees with the action of its image in
(Weil(F )d ⋊ Sd)

I , which completes the proof of Theorem A. From here, we deduce Theorem

B by generalizing Hecke correspondences to Sht
(d)
H,I,ω and showing that they are compatible with

Diagrams (▷) and (◁). Finally, we obtain Theorem C using the fact that the Weil(F )d×I -action
on the intersection cohomology groups with compact support of ShtH,d×I,ω |Fd×I

is constructed
by applying Drinfeld’s lemma to the F(h,i). Now Drinfeld’s lemma does not immediately apply,

as these cohomology groups are not finite-dimensional over Qℓ, but we use results of Xue to
circumvent this. Note that even when I is a singleton, d× I usually is not, so Drinfeld’s lemma
and therefore multiple-leg phenomena play a crucial role in this paper.

Remarks.

(1) We use forthcoming work of Arinkin–Gaitsgory–Kazhdan–Raskin–Rozenblyum–Varshavsky
for two reasons: to obtain results for general U and N , and to obtain results on the level of
complexes. If we only want Theorem A when U ∖N = X, then we only need existing results
from [4]. If we only want Theorem A on the level of cohomology groups, then we only need
results of Xue [25, Proposition 6.0.10] instead.

(2) We require that F has the same constant field as Q in order for [25] and [4] to apply to
the moduli of shtukas over Y . Without this hypothesis, Y d×I may be disconnected, so its
local systems are no longer dictated by representations of a single group. However, we expect
some version of [25] and [4] to apply even without this hypothesis. Consequently, this would
remove this hypothesis from Theorem A, Theorem B, and Theorem C.

(3) Our strategy also applies to moduli spaces of local shtukas as in [13]. In particular, we expect
a proof of the plectic conjecture for local Shimura varieties on the level of complexes, which
should yield applications to (global) Shimura varieties via uniformization. We hope to report
on this soon.

Tamiozzo considered a variant of Diagram (▷) in his thesis, though he did not proceed further.
After completing an earlier version of this paper, the author was informed that X. Zhu proposed
a similar strategy for proving Theorem A, but only on the level of cohomology groups.
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Outline

In §1, we collect facts on the moduli space of G-bundles, as well as certain relative variants
thereof. In §2, we introduce symmetrized versions of the Hecke stack and the Beilinson–Drinfeld
Grassmannian, and we also recall the Beauville-Laszlo theorem and the geometric Satake cor-
respondence. In §3, we use the preceding material to define and study symmetrized versions of
the moduli space of shtukas, which are the main characters of this paper. We also recall Xue’s
smoothness result here. In §4, we discuss partial Frobenius morphisms, their relation to mon-
odromy, and how they arise in the moduli space of shtukas. We also state the anticipated result of
Arinkin–Gaitsgory–Kazhdan–Raskin–Rozenblyum–Varshavsky here. Finally, in §5 we assemble
everything and prove Theorem A, Theorem B, and Theorem C. We conclude by elaborating on
a moduli-theoretic interpretation of Theorem C.

Notation

Unless otherwise specified, all fiber products and thus Cartesian powers are taken over k. We de-
note base changes with subscripts, possibly also with vertical restriction bars. For any connected
algebraic stack X over k, we always suppress base points and write π1(X ) for the associated étale
fundamental group. By a G-bundle, we always mean a principal homogeneous space for G.

We view all derived categories as ∞-categories, and we interpret all operations on them
∞-categorically. For any locally profinite group W , write Db

c(W,Qℓ) for the bounded derived
category of continuous finite-dimensional representations of W over Qℓ, write D(W,Qℓ) for its
ind-completion, and write Db(W,Qℓ) ⊆ D(W,Qℓ) for the full subcategory of bounded objects.
Finally, for any ∞-category C with an action by a discrete group H, we write CBH for the
∞-category of H-equivariant objects in C.
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swering countless questions about [4]. The author would also like to thank Robert Cass and
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1. Moduli spaces of bundles

In this section, we collect facts on the moduli space of G-bundles on X, as it plays a central role
in our discussion. We begin by fixing notation for our group schemes G of interest over X, which
serve as integral models for our structure group over Q. Then, we define the moduli space of
G-bundles on X with level structure, as well as certain relative variants which will be useful in
§2. We conclude by introducing Weil restrictions and how they affect BunG, which is crucial for
the results of this paper.

1.1

We use parahoric group schemes over X, since their corresponding Hecke stacks and Beilinson–
Drinfeld affine Grassmannians in §2 enjoy nice properness properties. Let us recall their definition.
Let k be a finite field of cardinality q, and let X be a connected smooth proper curve over k.
Write Q for the function field of X, fix an algebraic closure Q of Q, and write ΓQ := Gal(Q/Q)
for the absolute Galois group of Q with respect to Q. For any closed point x of X, write Ox for
the completion of the local ring OX,x, and write Qx for its fraction field.
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Definition. We call a smooth affine group scheme G over X parahoric if it has geometrically
connected fibers, its generic fiber GQ is reductive, and for every closed point x of X, the group
scheme GOx over Ox is parahoric in the sense of [10, 5.2.6].

Let G be a parahoric group scheme over X. Then there exists a nonempty open subscheme U
of X such that GU is reductive over U [12, Exp. XIX 2.6]. Let Q̃ be a finite Galois extension of
Q such that the ∗-action on a based root datum of GQ factors through Gal(Q̃/Q), and let Q̂ be

a finite separable extension of Q̃ such that G
Q̂
is split. Write f : X̂→X for the finite generically

étale morphism corresponding to Q̂/Q, where X̂ is a connected smooth proper curve over k.
Write Û for the inverse image f−1(U). After shrinking U , we may assume that G

Û
is split and

f |
Û
is étale.

Let T be a maximal subtorus of GQ, and let B be a Borel subgroup of G
Q̂

containing T
Q̂
.

After shrinking U , we may assume that T extends to a split subtorus of G
Û
over Û and B extends

to a Borel subgroup of G
Û
over Û . Let ℓ be a prime not dividing q, and write (Ĝ, T̂ , B̂) for the

based dual group over Qℓ associated with the based root datum of (G
Q̂
, T

Q̂
, B). Write LG for

the semidirect product Ĝ(Qℓ)⋊Gal(Q̃/Q).

1.2 Remark. Any connected reductive group GQ over Q arises as the generic fiber of a parahoric
group scheme as follows. By spreading out GQ to a smooth affine group scheme over some
nonempty open subscheme U of X, applying [12, Exp. XIX 2.6] and [11, Proposition 3.1.12],
and shrinking U if necessary, we obtain a reductive group scheme GU over U with geometrically
connected fibers whose generic fiber is isomorphic to GQ. For the finitely many x in X ∖ U ,
there exists a parahoric group scheme GOx over Ox whose generic fiber is isomorphic to GQx [10,
5.1.9]. Gluing the GOx with GU via fpqc descent yields a parahoric group scheme over X whose
generic fiber is isomorphic to GQ.

1.3

We now introduce a general, relative variant of the moduli space of G-bundles on X with level
structure. Let T be a scheme over k, and let D be a T -relative effective Cartier divisor of X×T .

Definition. Write BunG,D for the prestack over T whose S-points parametrize data consisting
of

i) a G× S-bundle G on X × S,
ii) an isomorphism ψ : G|D

∼→(G× S)|D of (G× S)|D-bundles.
When T = k and D = ∅, we shorten this to BunG. For T -relative effective Cartier divisors D1

and D2 of X × T such that D1 ⊆ D2, pulling back ψ yields a morphism BunG,D2→BunG,D1 .

Now BunG is a smooth algebraic stack over k [17, Proposition 1], and note that BunG,∅ =
BunG×T . In general, the Weil restriction RD/T ((G × T )|D) has a left action on BunG,D via
composition with ψ, and we see that this exhibits the morphism BunG,D→BunG×T as an
RD/T ((G × T )|D)-bundle. Since RD/T ((G × T )|D) is a smooth affine group scheme over T , we
see that BunG,D is a smooth algebraic stack over T .

1.4

In this subsection, we relax our properness assumption on X to separatedness. Let us establish
notation on the space of divisors of X. Let d be a non-negative integer, and write DivdX for the
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presheaf over k whose S-points parametrize S-relative effective Cartier divisors of X × S with
degree d. Also, write X(d) for the scheme-theoretic quotient of Xd by the permutation action of
the symmetric group Sd. Since X is a smooth curve over k, the morphism α : Xd→DivdX that
sends (xh)

d
h=1 7→

∑d
h=1 Γxh induces an isomorphism X(d) ∼→DivdX , where Γxh denotes the graph

of xh [5, Exp. XVII 6.3.9].

Write Divd,◦X for the subpresheaf of DivdX whose S-points parametrize S-relative effective

Cartier divisors of X × S that are étale over S. We see that the preimage α−1(Divd,◦X ) consists

of the complement of all diagonals in X, so Divd,◦X is an open subscheme of DivdX .

1.5

In §2, we will apply the relative variant of Definition 1.3 to the following setup. Let I be a finite
set. The summation morphism (DivdX)

I→Divd#IX corresponds to a (DivdX)
I -relative effective

Cartier divisor of X × (DivdX)
I with degree d#I, which we denote by Γ∑

i∈I Di
. For any non-

negative integer n, write Γ∑
i∈I nDi

for the (DivdX)
I -relative effective Cartier divisor nΓ∑

i∈I Di
of

X × (DivdX)
I , and write GΓ∑

i∈I nDi
for the Weil restriction

RΓ∑
i∈I nDi

/(DivdX)I (G×X Γ∑
i∈I nDi

).

Note that G∑
i∈I nDi

is a smooth affine group scheme over (DivdX)
I . For any n1 ⩽ n2, we can pull

back the counit of the base change-Weil restriction adjunction

G∑
i∈I n2Di

×(DivdX)I Γ
∑

i∈I n2Di

= RΓ∑
i∈I n2Di

/(DivdX)I (G×X Γ∑
i∈I n2Di

)×(DivdX)I Γ
∑
n2Di
→G×X Γ∑

i∈I n2Di

along Γ∑
i∈I n1Di

→Γ∑
i∈I n2Di

to obtain a morphism

G∑
i∈I n2Di

×(DivdX)I Γ
∑

i∈I n1Di
→G×X Γ∑

i∈I n1Di
,

which induces a morphism G∑
i∈I n2Di

→G∑
i∈I n1Di

by adjunction. Write G∑
i∈I ∞Di

for the

resulting inverse limit lim←−nG
∑

i∈I nDi
, which is an affine group scheme over (DivdX)

I .

1.6

We conclude by introducing our Weil restrictions. Let m : Y →X be a finite generically étale
morphism, where Y is a connected smooth proper curve over k. Write F for the function field of
Y , and let H be a parahoric group scheme over Y . Applying the discussion in 1.1 to H over Y
yields an open subscheme V of Y , a finite Galois extension F̃ of F , a finite separable extension
F̂ of F̃ , a maximal subtorus A of HF , and a Borel subgroup C of H

F̂
. After shrinking V , we

may assume that m−1(m(V )) = V and m|V is étale. Write U for m(V ).

Form theWeil restriction RY/X H. Its generic fiber is the connected reductive group RF/Q(HF )
over Q, and for all closed points x of X, we have

(RY/X H)Ox = R(Y×XOx)/Ox
(HY×XOx) =

∏
y∈m−1(x)

ROy/Ox
(HOy).

Now [19, Fact F.1] shows that this is parahoric in the sense of [10, 5.2.6]. Thus we may take our
parahoric group scheme G to be RY/X H in this subsection.

The restriction GU equals RV/U (HV ), and because HV is reductive over V and m|V is finite
étale, we see that GU is reductive over U . As the ∗-action of ΓQ on a based root datum of GQ is
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induced from the ∗-action of ΓF on a based root datum of HF , after enlarging F̃ we may choose
Q̃ = F̃ . Then we may take Q̂ = F̂ . Furthermore, we may choose T = RF/QA. The natural
commutative square

G
F̂

∼ //
∏
ιHF̂

T
F̂

∼ //
?�

OO

∏
ιAF̂ ,
?�

OO

where ι runs over HomQ(F, F̂ ), indicates that we may take B =
∏
ιC. Because V̂ is étale over

U , we see that T
F̂
and B

F̂
extend over V̂ .

1.7

Maintain the notation of 1.6, and let R be a scheme overX. Note that R(Y×XR)/R(H×XR) = GR.
Write ε : GY×XR→H ×X R for the counit of the base change-Weil restriction adjunction, which
is a morphism of group schemes over Y ×X R. For any H ×X R-bundle H on Y ×X R, the Weil
restriction R(Y×XR)/RH is a GR-bundle on R, as Weil restriction commutes with products. For
any GR-bundle G on R, the pullback Y ×X G is a GY×XR-bundle on Y ×X R, so we can form
the pushforward H ×X R-bundle ε∗(Y ×X G).

Since m is a finite morphism of connected curves, [8, lemma 3.3] shows that this yields an
equivalence of categories between GR-bundles on R and H ×X R-bundles on Y ×X R. Let N be
a finite closed subscheme of X, and write M for m−1(N). By applying this to R = X × S and
R = N × S, we get an isomorphism c : BunG,N

∼→BunH,M .

2. Hecke stacks and Beilinson–Drinfeld affine Grassmannians

In this section, we introduce symmetrized Hecke stacks and Beilinson–Drinfeld affine Grass-
mannians. Instead of parameterizing G-bundles on X, points on X, and isomorphisms between
these G-bundles away from said points, these symmetrized versions more generally parametrize
divisors on X, along with the other data. This divisorial version appears naturally when taking
preimages of points under m : Y →X.

Our symmetrized Hecke stacks and Beilinson–Drinfeld affine Grassmannians enjoy many of
the same properties and structures as in the unsymmetrized special case. We start by defining
them, including convolution versions thereof, which will be invaluable in §4. Next, using the
Beauville–Laszlo theorem, we study their relation to each other as well as their relative position
stratifications. Finally, we recall the geometric Satake correspondence, which describes equivariant
perverse sheaves on (usual, unsymmetrized) Beilinson–Drinfeld affine Grassmannians in terms
of representations of the dual group.

2.1

First, we introduce a symmetrized, convolution version of the Hecke stack. Let I1, . . . , Ik be an
ordered partition of I, and let N be a finite closed subscheme of X.

Definition. Write Hck
(d)(I1,...,Ik)
G,N,I for the prestack over k whose S-points parametrize data con-

sisting of

i) for all i in I, a point Di of DivdX∖N (S),
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ii) for all 0 ⩽ j ⩽ k, an object (Gj , ψj) of BunG,N (S),
iii) for all 1 ⩽ j ⩽ k, an isomorphism

ϕj : Gj−1|X×S∖
∑

i∈Ij
Di

∼→Gj |X×S∖
∑

i∈Ij
Di

such that ψj ◦ ϕj |N×S = ψj−1.

When d = 1, we omit it from our notation, and when N = ∅, we omit it from our notation.
For finite closed subschemes N1 and N2 of X such that N1 ⊆ N2, pulling back the ψj yields a

morphism Hck
(d)(I1,...,Ik)
G,N2,I

→Hck
(d)(I1,...,Ik)
G,N1,I

.

For any 0 ⩽ j ⩽ k, write pj : Hck
(d)(I1,...,Ik)
G,N,I →BunG,N for the morphism sending the above

data to (Gj , ψj). We also have a morphism

p : Hck
(d)(I1,...,Ik)
G,N,I →(DivdX∖N )

I

that sends the above data to (Di)i∈I . And if I1, . . . , Ik refines another ordered partition I ′1, . . . , I
′
k′

of I, we get a morphism

π
(I1,...,Ik)
(I′1,...,I

′
k′ )

: Hck
(d)(I1,...,Ik)
G,N,I →Hck

(d)(I′1,...,I
′
k′ )

G,N,I

by preserving i), preserving (G0, ψ0), and for all 1 ⩽ j′ ⩽ k′, taking ϕj′ to be the composition of
ϕj over 1 ⩽ j ⩽ k with Ij ⊆ I ′j′ .

Because the Di are disjoint from N × S, for any 0 ⩽ j ⩽ k we see that the commutative
square

Hck
(d)(I1,...,Ik)
G,N,I

//

(pj ,p)

��

Hck
(d)(I1,...,Ik)
G,I

(pj ,p)

��

BunG,N ×(DivdX∖N )
I // BunG×(DivdX)

I

is Cartesian. Therefore 1.3 shows that Hck
(d)(I1,...,Ik)
G,N,I →Hck

(d)(I1,...,Ik)
G,I |(DivdX∖N )I is an RN/k(GN )-

bundle. As the morphism

(pk, p) : Hck
(d)(I1,...,Ik)
G,I →BunG×(DivdX)

I

is ind-projective [1, Proposition 3.12]4, so we see that Hck
(d)(I1,...,Ik)
G,I and hence more generally

Hck
(d)(I1,...,Ik)
G,N,I is an ind-algebraic stack over k.

2.2

We define similar versions of the Beilinson–Drinfeld affine Grassmannian.

Definition. Write Gr
(d)(I1,...,Ik)
G,I for the presheaf over k whose S-points parametrize data con-

sisting of

i) an object ((Di)i∈I , (Gj)kj=0, (ϕj)
k
j=1) of Hck

(d)(I1,...,Ik)
G,I (S),

ii) an isomorphism θ : Gk
∼→G× S of G× S-bundles.

4In [1], only the d = 1 case is considered. However, the proof of the key step [1, Proposition 3.7] is phrased entirely
in terms of relative effective Cartier divisors, so it works for any d. Also, [1] uses p0 instead of pk, but this makes
no difference.

9
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When d = 1, we omit it from our notation. We have a morphism

p : Gr
(d)(I1,...,Ik)
G,I →(DivdX)

I

as in 2.1. If I1, . . . , Ik refines another ordered partition I ′1, . . . , I
′
k′ of I, we also get a morphism

π
(I1,...,Ik)
(I′1,...,I

′
k′ )

: Gr
(d)(I1,...,Ik)
G,I →Gr

(d)(I′1,...,I
′
k′ )

G,I as in 2.1.

Since Gr
(d)(I1,...,Ik)
G,I is defined via a Cartesian square

Gr
(d)(I1,...,Ik)
G,I

//

��

Hck
(d)(I1,...,Ik)
G,I

pk

��

Spec k
G // BunG,

we see from 2.1 that p : Gr
(d)(I1,...,Ik)
G,I →(DivdX)

I is ind-projective.

2.3

Our symmetrized objects are related to the unsymmetrized special case as follows. Write [d] for
the finite set {1, . . . , d}, and for any finite set J , write d× J for [d]× J . We see that the squares

Hck
(d)(I1,...,Ik)
G,N,I

p

��

Hck
(d×I1,...,d×Ik)
G,N,d×I

αoo

p

��

(DivdX∖N )
I (X ∖N)d×I

αoo

Gr
(d)(I1,...,Ik)
G,I

p

��

Gr
(d×I1,...,d×Ik)
G,d×I

αoo

p

��

(DivdX)
I Xd×Iαoo

are Cartesian, where the α send (xh,i)h∈[d],i∈I to (
∑d

h=1 Γxh,i)i∈I and preserve all other data.
Since the bottom arrows are finite surjective, we see that the top arrows are finite surjective as
well. In addition, if I1, . . . , Ik refines another ordered partition I ′1, . . . , I

′
k′ of I, we see that the

squares

Hck
(d)(I1,...,Ik)
G,N,I

π
(I1,...,Ik)

(I′1,...,I
′
k′

)
��

Hck
(d×I1,...,d×Ik)
G,N,d×I

αoo

π
(I1,...,Ik)

(I′1,...,I
′
k′

)
��

Hck
(d)(I′1,...,I

′
k′ )

G,N,I Hck
(d×I′1,...,d×I′k′ )
G,N,d×I

αoo

Gr
(d)(I1,...,Ik)
G,I

π
(I1,...,Ik)

(I′1,...,I
′
k′

)
��

Gr
(d×I1,...,d×Ik)
G,d×I

αoo

π
(I1,...,Ik)

(I′1,...,I
′
k′

)
��

Gr
(d)(I′1,...,I

′
k′ )

G,I Gr
(d×I′1,...,d×I′k′ )
G,d×I

αoo

are also Cartesian.

In all the above squares, note that SI
d has a right action on the right-hand sides via permuting

the (xh,i)h∈[d],i∈I . With respect to this action, the α are invariant and the right arrows are
equivariant.

2.4

We now recall the Beauville–Laszlo theorem. Let S be a scheme over k, and let D be an S-relative
effective Cartier divisor of X×S. For any non-negative integer n, the S-relative effective Cartier
divisor nD of X×S is finite flat over S, so its structure sheaf OnD yields a finite flat OS-algebra.
For any n1 ⩽ n2, we obtain a morphism On2D→On1D. Write O∧

D for the resulting inverse limit
lim←−nOnD, and write (X × S)∧D for its relative spectrum Spec

S
O∧
D. The contravariance of Spec

S

provides a closed immersion nD→(X × S)∧D. By working locally and reducing to affines, we

10
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obtain a natural morphism i : (X × S)∧D→X × S that preserves the closed subschemes nD [6,
Proposition 2.12.6].

Write Vect(X × S) for the category of vector bundles on X × S. Observe that we have an
exact tensor functor

Vect(X × S)→

(V1,V2, φ)
V1 is a vector bundle on X × S ∖D,
V2 is a vector bundle on (X × S)∧D, and
θ : V1|(X×S)∧D∖D

∼→V2|(X×S)∧D∖D


given by V 7→ (V|X×S∖D,V|(X×S)∧D , id).

Theorem [6, Theorem 2.12.1]. This yields an equivalence of categories.

More generally, the Tannakian description of G-bundles [9, Theorem 4.8] implies that an
analogous equivalence of categories holds if we replace “vector bundle” everywhere with “G-
bundle.”

2.5

Using the Beauville–Laszlo theorem, we get the following reinterpretation of the Beilinson–

Drinfeld affine Grassmannian. By pulling back, we see that an S-point of Gr
(d)(I1,...,Ik)
G,I yields

data consisting of

i) for all i in I, a point Di of DivdX(S),

ii) for all 0 ⩽ j ⩽ k, a G|(X×S)∧∑
i∈I Di

-bundle Gj on (X × S)∧∑
i∈I Di

,

iii) for all 1 ⩽ j ⩽ k, an isomorphism

ϕj : Gj−1|(X×S)∧∑
i∈I Di

∖
∑

i∈Ij
Di

∼→Gj |(X×S)∧∑
i∈I Di

∖
∑

i∈Ij
Di
,

iv) an isomorphism θ : Gk
∼→G|(X×S)∧∑

i∈I Di
of G|(X×S)∧∑

i∈I Di
-bundles.

The Beauville–Laszlo theorem enables us to use iii) and iv) to glue ii) with the trivial bundle on

X × S ∖
∑

i∈I Di. Hence conversely Gr
(d)(I1,...,Ik)
G,I (S) parametrizes precisely the above data.

Write (DivdX)
I
◦ ⊆ (DivdX)

I for the subsheaf of (Di)i∈I such that the Di are pairwise disjoint.
As the preimage of (DivdX)

I
◦ in Xd×I consists of the complement of certain diagonals, we see that

(DivdX)
I
◦ is an open subscheme of (DivdX)

I . The above description of Gr
(d)(I1,...,Ik)
G,I indicates that

we have a natural isomorphism

Gr
(d)(I1,...,Ik)
G,I |(DivdX)I◦

∼→
(∏
i∈I

Gr
(d)(i)
G,i

)∣∣∣
(DivdX)I◦

.

2.6

The above enables us to decompose the Beilinson–Drinfeld affine Grassmannian according to our
ordered partition I1, . . . , Ik as follows. Recall the affine group scheme G∑

i∈I ∞Di
over (DivdX)

I

from 1.5. The description of Gr
(d)(I1,...,Ik)
G,I given in 2.5 shows that it has a left action of G∑

i∈I ∞Di

via composition with θ. This description further indicates that S-points of the stack-theoretic

quotient Gr
(d)(I1,...,Ik)
G,I /G∑

i∈I ∞Di
parametrize data consisting of

i) for all i in I, a point Di of DivdX(S),

ii) for all 0 ⩽ j ⩽ k, a G|(X×S)∧∑
i∈I Di

-bundle Gj on (X × S)∧∑
i∈I Di

,

11
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iii) for all 1 ⩽ j ⩽ k, an isomorphism

ϕj : Gj−1|(X×S)∧∑
i∈I Di

∖
∑

i∈Ij
Di

∼→Gj |(X×S)∧∑
i∈I Di

∖
∑

i∈Ij
Di
.

In particular, we have a morphism

κ : Gr
(d)(I1,...,Ik)
G,I /G∑

i∈I ∞Di

→(Gr
(d)(I1)
G,I1

/G∑
i∈I1

∞Di
)× · · · × (Gr

(d)(Ik)
G,Ik

/G∑
i∈Ik

∞Di
)

that sends the above to (((Di)i∈I1 , (Gj)1j=0, ϕ1), . . . , ((Di)i∈Ik , (Gj)kj=k−1, ϕk)).

2.7

We now explain how the Hecke stack combines the moduli space of G-bundles with the Beilinson–
Drinfeld affine Grassmannian. Let n be a non-negative integer. Applying Definition 1.3 to T =
(DivdX)

I and D = Γ∑
i∈I nDi

yields a smooth algebraic stack BunG,Γ∑
i∈I nDi

over (DivdX)
I . As

noted in 1.3, it is a G∑
i∈I nDi

-bundle over BunG×(DivdX)
I , and the G∑

i∈I nDi
-action is even

defined over (DivdX)
I . Write BunG,Γ∑

i∈I ∞Di
for the limit lim←−nBunG,Γ∑

i∈I nDi
, which consequently

inherits a left action of G∑
i∈I ∞Di

.

Consider the stack-theoretic quotient

(Gr
(d)(I1,...,Ik)
G,I ×(DivdX)I BunG,Γ∑

i∈I ∞Di
)/G∑

i∈I ∞Di
,

and write A for the prestack over k whose S-points parametrize data consisting of

i) an object ((Di)i∈I , (Gj)kj=0, (ϕj)
k
j=1) of Hck

(d)(I1,...,Ik)
G,I (S),

ii) an isomorphism θ : Gk|(X×S)∧∑
i∈I Di

∼→G|(X×S)∧∑
i∈I Di

of G|(X×S)∧∑
i∈I Di

-bundles.

Note that G∑
i∈I ∞Di

has a left action on A via composition with θ. We see that this exhibits

the natural morphism A→Hck
(d)(I1,...,Ik)
G,I as a G∑

i∈I ∞Di
-bundle. We also have a morphism

A→Gr
(d)(I1,...,Ik)
G,I ×(DivdX)I BunG,Γ∑

i∈I ∞Di

given by pulling back ((Di)i∈I , (Gj)kj=0, (ϕj)
k
j=1), considering Gk in BunG(S), and taking θ for

the trivialization. The Beauville–Laszlo theorem implies that this is a G∑
i∈I ∞Di

-equivariant
isomorphism.

Therefore quotienting by G∑
i∈I ∞Di

induces an isomorphism

Hck
(d)(I1,...,Ik)
G,I

∼→(Gr
(d)(I1,...,Ik)
G,I ×(DivdX)I BunG,Γ∑

i∈I ∞Di
)/G∑

i∈I ∞Di
.

Under this identification, write δ : Hck
(d)(I1,...,Ik)
G,I →Gr

(d)(I1,...,Ik)
G,I /G∑

i∈I ∞Di
for projection onto

the first factor.

2.8

We turn to the fibers of the Beilinson–Drinfeld affine Grassmannian. Let x be a closed point of

X, and write ∗ for the singleton set. The description of Gr
(∗)
G,∗ given in 2.5 shows that Gr

(∗)
G,∗ |x is

naturally isomorphic to the affine Grassmannian of GOx over κ(x) in the sense of [27, (1.2.1)].
Recall that this equals the fpqc sheaf quotient L(GOx)/L

+(GOx), where L(GOx) denotes the
loop group of GOx over κ(x), and L+(GOx) denotes the positive loop group of GOx over κ(x)

[27, Proposition 1.3.6]. We see from 2.2 that Gr
(∗)
G,∗ |x is an ind-projective scheme over κ(x).

12
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2.9

Now we describe the relative position stratification on unsymmetrized affine Grassmannians.
Write X+

• (T ) for the set of dominant coweights of G with respect to T and B, and let x be a
closed point of U . Because GOx is reductive, we see that GQx is quasi-split and splits over an
unramified extension of Qx.

Let ω be in X+
• (T ), viewed as a dominant coweight of GQx . Writing κ(x)ω for the residue

field of the field of definition of ω, we see that ω yields a closed affine Schubert variety Gr′x,ω ⊆
Gr

(∗)
G,∗ |x ×x Specκ(x)ω as in [27, p. 83]. The union of the Gal(κ(x)ω/κ(x))-translates of Gr′x,ω

descends to a closed subvariety Grx,ω ⊆ Gr
(∗)
G,∗ |x. Recall that Gr′x,ω and hence Grx,ω is projective

[27, Proposition 2.1.5 (1)].

Write Gr
(∗)
G,∗,ω |U ⊆ Gr

(∗)
G,∗ |U for the scheme-theoretic closure of

⋃
xGrx,ω in Gr

(∗)
G,∗ |U , where x

runs over closed points of U . More generally, for ω = (ωi)i∈I in X+
• (T )I , write Gr

(I1,...,Ik)
G,I,ω |UI ⊆

Gr
(I1,...,Ik)
G,I |UI for the scheme-theoretic closure of(∏

i∈I
Gr

(i)
G,i,ωi

|U
)∣∣∣
UI
◦
⊆ Gr

(I1,...,Ik)
G,I |UI

◦

in Gr
(I1,...,Ik)
G,I |UI , where we use 2.5 to view the left-hand side as a closed ind-subscheme of the

right-hand side. From the projectivity of the Grx,ω and the globalization procedure of [23, Remark

4.3], we see that Gr
(I1,...,Ik)
G,I,ω |UI is projective over U I . Note that Gr

(I1,...,Ik)
G,I,ω |UI depends only on

the ΓIQ-orbit of ω.

2.10

By bootstrapping from 2.9, we define relative position stratifications on symmetrized Beilinson–
Drinfeld affine Grassmannians as follows. View elements of SI

d as bijections d × I ∼→ d × I that
preserve the I-factor. Let Ω be a finite SI

d-stable and Γd×IQ -stable subset of X+
• (T )d×I , and write

Gr
(d×I1,...,d×Ik)
G,d×I,Ω |Ud×I for the union

Gr
(d×I1,...,d×Ik)
G,d×I,Ω |Ud×I :=

⋃
ω∈Ω

Gr
(d×I1,...,d×Ik)
G,d×I,ω |Ud×I ⊆ Gr

(d×I1,...,d×Ik)
G,d×I |Ud×I .

Note that Gr
(d×I1,...,d×Ik)
G,d×I,Ω |Ud×I is projective over Ud×I . As Ω is stable under SI

d, we see that

Gr
(d×I1,...,d×Ik)
G,d×I,Ω |Ud×I is also stable under SI

d. Therefore, writing Gr
(d)(I1,...,Ik)
G,I,Ω |(DivdU )I for the

scheme-theoretic image of Gr
(d×I1,...,d×Ik)
G,d×I,Ω |Ud×I under the morphism

α : Gr
(d×I1,...,d×Ik)
G,d×I |Ud×I →Gr

(d)(I1,...,Ik)
G,I |(DivdU )I

obtained from 2.3 via restriction, we see that Gr
(d)(I1,...,Ik)
G,I,Ω |(DivdU )I is schematic and proper over

(DivdU )
I . Moreover, the closed subset of Gr

(d×I1,...,d×Ik)
G,d×I |Ud×I underlying α−1(Gr

(d)(I1,...,Ik)
G,I,Ω |(DivdU )I )

is precisely Gr
(d×I1,...,d×Ik)
G,d×I,Ω |Ud×I . If I1, . . . , Ik refines another ordered partition I ′1, . . . , I

′
k′ of I, we

see that π
(I1,...,Ik)
(I′1,...,I

′
k′ )

sends Gr
(d)(I1,...,Ik)
G,I,Ω |(DivdU )I to Gr

(d)(I′1,...,I
′
k′ )

G,I,Ω |(DivdU )I .

13
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2.11

It will be useful to index relative position bounds with representations. Write X•
+(T̂ ) for the

set of dominant weights of Ĝ with respect to T̂ and B̂. Recall that RepQℓ
(ĜI) is semisimple,

and every irreducible object of RepQℓ
(ĜI) can be uniquely written as ⊠i∈IWi, where the Wi

are irreducible objects of RepQℓ
Ĝ. Now Wi is isomorphic to the Weyl module of a uniquely

determined ωi in X
•
+(T̂ ) = X+

• (T ), so altogether we see that isomorphism classes of objects in

RepQℓ
(ĜI) correspond to finite multisets of elements in X+

• (T )I .

For any W in RepQℓ
((LG)d×I), write Ω(W ) for the finite subset of X+

• (T )d×I underlying the

multiset corresponding to W |
Ĝ
. Then the Gal(Q̃/Q)-action of LG shows that Ω is Γd×IQ -stable.

If Ω(W ) is also SI
d-stable, write

Gr
(d)(I1,...,Ik)
G,I,W |DivdU

:= Gr
(d)(I1,...,Ik)
G,I,Ω(W ) |DivdU

.

Observe that Ω(W ) is always stable under SI
d in the d = 1 setting.

2.12

Finally, we recall the geometric Satake correspondence. Let ζ : I→ J be a map of finite sets, and
suppose J1, . . . , Jk is an ordered partition of J such that Ij = ζ−1(Jj) for all 1 ⩽ j ⩽ k. Now ζ
induces morphisms ζ∗ : (LG)J→(LG)I and ∆ζ : U

J→U I . We also write ∆ζ for its base change

Gr
(I1,...,Ik)
G,I |UI ×UI UJ→Gr

(I1,...,Ik)
G,I |UI . Observe that we may identify Gr

(I1,...,Ik)
G,I |UI ×UI UJ with

Gr
(J1,...,Jk)
G,J |UJ .

Write P
(I1,...,Ik)
G,I for the category ofG∑

i∈I ∞Di
-equivariant perverseQℓ-sheaves on Gr

(I1,...,Ik)
G,I |UI

in the sense of [14, Sect. A.2], with degree shifts normalized relative to U I .

Theorem [20, Theorem 12.16]5. We have a functor

RepQℓ
((LG)I)→P

(I1,...,Ik)
G,I denoted by W 7→ S

(I1,...,Ik)
I,W .

This functor is fully faithful, and for all W in RepQℓ
((LG)I), it satisfies the following properties:

a) The perverse sheaf S
(I1,...,Ik)
I,W is supported on Gr

(I1,...,Ik)
G,I,W |UI .

b) If I1, . . . , Ik refines another ordered partition I ′1, . . . , I
′
k′ of I, we get a natural isomorphism

(Rπ
(I1,...,Ik)
(I′1,...,I

′
k′ )

)!(S
(I1,...,Ik)
I,W )

∼→S
(I′1,...,I

′
k′ )

I,W .

c) If W = W1 ⊠ · · · ⊠ Wk, where the Wj are objects in RepQℓ
((LG)Ij ), we have a natural

isomorphism

S
(I1,...,Ik)
I,W

∼→κ∗(S
(I1)
I1,W1

⊠ · · ·⊠S
(Ik)
Ik,Wk

).

d) We have a natural isomorphism

∆∗
ζ(S

(I1,...,Ik)
I,W )

∼→S
(J1,...,Jk)
J,W◦ζ∗ .

5In [20], the field Q̃ is taken such that Gal(Q̃/Q) equals the image of ΓQ under the ∗-action, and they consider

coefficients in a finite extension of Qℓ. However, everything works for larger Q̃ as well, and extending coefficients
to Qℓ is harmless.
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e) We naturally recover W as the graded derived pushforward⊕
p∈Z

(Rpp!S
(I1,...,Ik)
I,W )(p2),

where (p2) denotes the half-integral Tate twist given by our choice of q1/2.

2.13

We conclude by explicitly describing the functor from Theorem 2.12 in certain cases. Let ω be
in X+

• (T ). Write Wω for the Weyl module corresponding to ω, and write WΓQ·ω for the direct
sum

⊕
ω′ Wω′ , where ω′ runs over the ΓQ-orbit of ω. Because the ∗-action of ΓQ preserves the

based dual group (Ĝ, T̂ , B̂), we see that it naturally endows WΓQ·ω with the structure of a

finite-dimensional algebraic representation of LG over Qℓ. Note that WΓQ·ω depends only on the
ΓQ-orbit of ω.

The globalization procedure of [27, p. 139] and Theorem 2.12.e) show that the complex

S
(∗)
∗,WΓQ·ω

equals the intersection complex of Gr
(∗)
G,∗,ω |U , with degree shifts normalized relative to

U . More generally, for ω in X+
• (T )I , write WΓI

Q·ω for the exterior tensor product ⊠i∈IWΓQ·ωi .

We see from Theorem 2.12.c) that S
(I1,...,Ik)
I,W

ΓI
Q

·ω
equals the intersection complex of Gr

(I1,...,Ik)
G,I,ω |UI ,

with degree shifts normalized relative to U I .

3. Moduli spaces of shtukas

Essentially all of §1 and §2 holds for any perfect field k. In contrast, we have Frobenius morphisms
when working over a finite field k, and in this section we use these Frobenius morphisms to
define symmetrized moduli spaces of shtukas. These are equi-characteristic analogues of Shimura
varieties and their integral models. However, moduli spaces of shtukas admit richer variants
than their number field counterparts: namely, the ability to have multiple legs, indexed by the
finite set I. In the unsymmetrized special case, this phenomenon already plays a crucial role in
applications to the Langlands program [20, 26], and it also plays a crucial role in this paper.

We start by defining our symmetrized moduli spaces of shtukas and explaining how they
inherit various structures from §1 and §2. In the usual, unsymmetrized case, we describe how
geometric Satake provides coefficient sheaves on the moduli spaces of shtukas, and we recall Xue’s
result [25] that their relative cohomology with compact support over (U ∖ N)I is ind-smooth.
Finally, we describe Hecke correspondences for our symmetrized moduli spaces of shtukas.

3.1

We begin with notation for relative position stratifications on Hecke stacks. For any finite SI
d-

stable and Γd×IQ -stable subset of X+
• (T )d×I , write

Hck
(d)(I1,...,Ik)
G,I,Ω |(DivdU )I := δ−1(Gr

(d)(I1,...,Ik)
G,I,Ω |(DivdU )I/G

∑
i∈I ∞Di

),

and write

Hck
(d)(I1,...,Ik)
G,N,I,Ω |(DivdU∖N )I ⊆ Hck

(d)(I1,...,Ik)
G,N,I |(DivdU∖N )I

15
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for the preimage of Hck
(d)(I1,...,Ik)
G,I,Ω |(DivdU∖N )I . Note that Hck

(d)(I1,...,Ik)
G,N,I,Ω |(DivdU∖N )I is a closed sub-

stack of Hck
(d)(I1,...,Ik)
G,N,I |(DivdU∖N )I .

Because Gr
(d)(I1,...,Ik)
G,I,Ω |(DivdU )I is schematic and proper over (DivdU )

I , we see that

Hck
(d)(I1,...,Ik)
G,N,I,Ω |(DivdU∖N )I

is schematic and proper over (DivdU∖N )
I × BunG,N . For any W in RepQℓ

((LG)d×I) with Ω(W )

stable under SI
d, write

Hck
(d)(I1,...,Ik)
G,N,I,W |(DivdU∖N )I := Hck

(d)(I1,...,Ik)
G,N,I,Ω(W ) |(DivdU∖N )I .

3.2

We have the following symmetrized version of the moduli space of shtukas. For any prestack X
over k, write FrobX or Frob for its absolute q-Frobenius endomorphism.

Definition. Write Sht
(d)(I1,...,Ik)
G,N,I for the stack over k defined by the Cartesian square

Sht
(d)(I1,...,Ik)
G,N,I

//

��

Hck
(d)(I1,...,Ik)
G,N,I

(p0,pk)

��

BunG,N
(id,Frob)

// BunG,N ×BunG,N

When d = 1, we omit it from our notation, and when N = ∅, we omit it from our nota-
tion. For finite closed subschemes N1 and N2 of X such that N1 ⊆ N2, we get a morphism

Sht
(d)(I1,...,Ik)
G,N2,I

→ Sht
(d)(I1,...,Ik)
G,N1,I

as in 2.1. We also have a morphism p : Sht
(d)(I1,...,Ik)
G,N,I →(DivdX∖N )

I

as in 2.1. And if I1, . . . , Ik refines another ordered partition I ′1, . . . , I
′
k′ of I, we get a morphism

π
(I1,...,Ik)
(I′1,...,I

′
k′ )

: Sht
(d)(I1,...,Ik)
G,N,I →Sht

(d)(I′1,...,I
′
k′ )

G,N,I as in 2.1.

If we replace Hck
(d)(I1,...,Ik)
G,N,I in the above square with

Hck
(d)(I1,...,Ik)
G,N,I,Ω |(DivdU∖N )I or Hck

(d)(I1,...,Ik)
G,N,I,W |(DivdU∖N )I ,

then we denote the resulting fiber product using

Sht
(d)(I1,...,Ik)
G,N,I,Ω |(DivdU∖N )I or Sht

(d)(I1,...,Ik)
G,N,I,W |(DivdU∖N )I , respectively.

We notate S-points of Sht
(d)(I1,...,Ik)
G,N,I using

((Di)i∈I , (G0, ψ0)
ϕ1
99K(G1, ψ1)

ϕ2
99K · · ·

ϕk−1
99K (Gk−1, ψk−1)

ϕk
99K(τG0, τψ0)),

where τ denotes the pullback (idX ×FrobS)
∗. We refer to this as a shtuka over S, and we call

(Di)i∈I its legs.

3.3

Let us consider level structure covers for moduli spaces of shtukas. Note that G(N) has a left

action on Sht
(d)(I1,...,Ik)
G,N,I via composition with the ψj . For finite closed subschemes N1 and N2 of

X such that N1 ⊆ N2, the morphism Sht
(d)(I1,...,Ik)
G,N2,I

→Sht
(d)(I1,...,Ik)
G,N1,I

is equivariant with respect
to the homomorphism G(N2)→G(N1).

16
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Proposition. This exhibits the morphism

Sht
(d)(I1,...,Ik)
G,N,I →Sht

(d)(I1,...,Ik)
G,I |(DivdX∖N )I

as a finite Galois morphism with Galois group G(N). In general, this implies that the morphism

Sht
(d)(I1,...,Ik)
G,N2,I

→ Sht
(d)(I1,...,Ik)
G,N1,I

|(DivdX∖N2
)I

is finite Galois with Galois group ker(G(N2)→G(N1)).

By pulling back, we obtain a similar statement for Sht
(d)(I1,...,Ik)
G,N,I,W |(DivdU∖N )I .

Proof. The equivariance of Sht
(d)(I1,...,Ik)
G,N2,I

→ Sht
(d)(I1,...,Ik)
G,N1,I

shows that the first statement implies
the second. As for the first statement, write B for the prestack over k whose S-points parametrize
a GN ×S-bundle G on N ×S along with an isomorphism ϕ : G ∼→ τG of GN ×S-bundles. Since N
is finite over k, [8, lemma 3.3] shows that GN×S-bundles on N×S are equivalent to RN/k(GN )S-
bundles on S. Because GN has geometrically connected fibers, we see that RN/k(GN ) does as well,
so applying [24, Lemma 3.3 b)] to the classifying stack ∗/RN/k(GN ) shows that B is naturally
isomorphic to the discrete stack (∗/RN/k(GN ))(k), which is ∗/G(N) by Lang’s lemma.

Consider the morphism Sht
(d)(I1,...,Ik)
G,I |(DivdX∖N )I →B given by

((Di)i∈I ,G0
ϕ1
99KG1

ϕ2
99K · · ·

ϕk−1
99K Gk−1

ϕk
99K τG0) 7→ (G0|N×S , (ϕk · · · ◦ ϕ1)|N×S).

Because the Di are disjoint from N × S, we see that the square

Sht
(d)(I1,...,Ik)
G,N,I

//

��

Sht
(d)(I1,...,Ik)
G,I |(DivdX∖N )I

��

Spec k
G(N)

// B

is Cartesian. As the bottom arrow is finite Galois with Galois group G(N), the top arrow is as
well.

3.4

Convolution morphisms between moduli spaces of shtukas inherit the following properties from

their Beilinson–Drinfeld affine Grassmannian counterparts. Write γ : Sht
(d)(I1,...,Ik)
G,N,I →Hck

(d)(I1,...,Ik)
G,N,I

for the projection morphism. If I1, . . . , Ik refines another ordered partition I ′1, . . . , I
′
k′ of I, we see

that the square

Sht
(d)(I1,...,Ik)
G,I,W |(DivdU )I

δ◦γ
//

π
(I1,...,Ik)

(I′1,...,I
′
k′

)
��

Gr
(d)(I1,...,Ik)
G,I,W |(DivdU )I/G

∑
i∈I ∞Di

π
(I1,...,Ik)

(I′1,...,I
′
k′

)
��

Sht
(d)(I′1,...,I

′
k′ )

G,I,W |(DivdU )I
δ◦γ
// Gr

(d)(I′1,...,I
′
k′ )

G,I,W |(DivdU )I/G
∑

i∈I ∞Di

17
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is Cartesian. Now 2.10 shows that the right arrow is schematic and proper, so the left arrow is
as well. In general, we have a Cartesian square

Sht
(d)(I1,...,Ik)
G,N,I,W |(DivdU∖N )I

//

π
(I1,...,Ik)

(I′1,...,I
′
k′

)
��

Sht
(d)(I1,...,Ik)
G,I,W |(DivdU∖N )I

π
(I1,...,Ik)

(I′1,...,I
′
k′

)
��

Sht
(d)(I′1,...,I

′
k′ )

G,N,I,W |(DivdU∖N )I
// Sht

(d)(I′1,...,I
′
k′ )

G,I,W |(DivdU∖N )I

,

which implies that the left arrow here is schematic and proper as well.

3.5

Moduli spaces of shtukas have the following basic geometric structure.

Proposition. The stack Sht
(d)(I1,...,Ik)
G,N,I,W |(DivdU∖N )I is a Deligne–Mumford stack locally of finite

type over (DivdU∖N )
I .

Proof. Since the π
(I1,...,Ik)
(I′1,...,I

′
k′ )

from 3.4 are of finite type, it suffices to consider k = 1. Furthermore,

Proposition 3.3 indicates that it suffices to consider N = ∅.

Because BunG is algebraic, we see that (id,Frob) : BunG→BunG×BunG is of finite type.

Hence its base change Sht
(d)(I)
G,I,W |(DivdU )I →Hck

(d)(I)
G,I,W |(DivdU )I is as well. Now Hck

(d)(I)
G,I,W |(DivdU )I is

schematic and proper over (DivdU )
I × BunG, which itself is an algebraic stack locally of finite

type over (DivdU )
I , so altogether Sht

(d)(I)
G,I,W |(DivdU )I is also an algebraic stack locally of finite type

over (DivdU )
I .

To see that Sht
(d)(I)
G,I,W |(DivdU )I is Deligne–Mumford, it suffices to check that its relative diagonal

morphism over (DivdU )
I is unramified. As Sht

(d)(I)
G,I,W |(DivdU )I is algebraic, this relative diagonal is

already of finite type, so we just need to show that it is formally unramified. The latter follows
from the argument on [1, p. 26–27].

3.6

Now, we describe our coefficient sheaves in the usual, unsymmetrized case. Write ϵ for the
composite morphism

Sht
(d)(I1,...,Ik)
G,N,I

// Sht
(d)(I1,...,Ik)
G,I

δ◦γ
// Gr

(d)(I1,...,Ik)
G,I /G∑

i∈I ∞Di
.

In the d = 1 setting, write F
(I1,...,Ik)
N,I,W for the pullback ϵ∗(S

(I1,...,Ik)
I,W ), which Theorem 2.12.a)

enables us to view as a constructible complex of Qℓ-sheaves on Sht
(I1,...,Ik)
G,N,I,W |(U∖N)I . Applying

proper base change to 3.4 and Theorem 2.12.b) shows that Rp!(F
(I1,...,Ik)
N,I,W ) is independent up to

isomorphism of the ordered partition I1, . . . , Ik, so we denote this ind-(constructible complex of
Qℓ-sheaves) on (U ∖ N)I by HN,I,W . For any integer p, write H p

N,I,W for its p-th cohomology,

which is an ind-constructible Qℓ-sheaf on (U ∖N)I .

3.7

To state Xue’s result, we recall the definition of ind-smoothness. Briefly, let X be any normal
connected noetherian scheme over k. Recall that we say an ind-constructible Qℓ-sheaf M on

18
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X is ind-smooth if M is isomorphic to a directed colimit of smooth Qℓ-sheaves on X. This is
equivalent to requiring that, for any geometric points x and y of X and étale path y ⇝ x, the
resulting specialization map Mx→My is an isomorphism [25, Lemma 1.1.5].

Theorem [25, Theorem 6.0.12]6. Assume that X is geometrically connected over k. Then the
ind-constructible Qℓ-sheaf H p

N,I,W on (U ∖N)I is ind-smooth.

In particular, for any geometric points x and y of (U ∖ N)I and étale path y ⇝ x, the
specialization morphism HN,I,W,x→HN,I,W,y in the derived category is an isomorphism.

Remark. Even without the geometrically connected assumption on X, we expect some form of
Theorem 3.7 to hold.

3.8

Our symmetrized objects are related to the unsymmetrized special case as follows. Recall the
Cartesian squares from 2.3. By pulling back along γ, we get analogous Cartesian squares

Sht
(d)(I1,...,Ik)
G,N,I

π
(I1,...,Ik)

(I′1,...,I
′
k′

)
��

Sht
(d×I1,...,d×Ik)
G,N,d×I

αoo

π
(I1,...,Ik)

(I′1,...,I
′
k′

)
��

Sht
(d)(I′1,...,I

′
k′ )

G,N,I

p

��

Sht
(d×I′1,...,d×I′k′ )
G,N,d×I

αoo

p

��

(DivdX∖N )
I (X ∖N)d×I

αoo

for any ordered partition I ′1, . . . , I
′
k′ of I refined by I1, . . . , Ik.

Let Ω be a finite SI
d-stable subset of X+

• (T )d×I . We see from 2.10 that the above diagram
restricts to commutative squares

Sht
(d)(I1,...,Ik)
G,N,I,Ω |(DivdU∖N )I

π
(I1,...,Ik)

(I′1,...,I
′
k′

)
��

Sht
(d×I1,...,d×Ik)
G,N,d×I,Ω |(U∖N)d×I

αoo

π
(I1,...,Ik)

(I′1,...,I
′
k′

)

��

Sht
(d)(I′1,...,I

′
k′ )

G,N,I,Ω |(DivdU∖N )I

p

��

Sht
(d×I′1,...,d×I′k′ )
G,N,d×I,Ω |(U∖N)d×I

αoo

p

��

(DivdU∖N )
I (U ∖N)d×I

αoo

that are Cartesian up to universal homeomorphism. As in 2.3, we see that SI
d has a right action

on the right-hand sides for which the α are invariant and the right arrows are equivariant.

6Now [20] and [25] consider relative intersection cohomology of Sht
(I1,...,Ik)
G,N,I,W |(U∖N)I/Ξ instead of

Sht
(I1,...,Ik)
G,N,I,W |(U∖N)I , where Ξ is a discrete subgroup of Z(Q)\Z(AQ) such that Z(Q)\Z(AQ)/Ξ is compact, Z

is the center of GQ, and the action of Z(AQ) is given via twisting. However, the key ingredients [25, Lemma 6.0.6]

and [25, Lemma 6.0.7] are proven via geometry on Sht
(I1,...,Ik)
G,N,I,W |(U∖N)I , so they and hence [25, Theorem 6.0.12]

continue to hold for the latter’s relative intersection cohomology. Indeed, this version of [25, Theorem 6.0.12] is
already crucially used in [4, Theorem 3.2.3].
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3.9

We conclude by describing Hecke correspondences in our setup. First, we define the adelic action
at infinite level. Write AQ for the adele ring of Q, and write OQ for the integral subring of AQ.
Write η(d)I for the inverse limit lim←−N (DivdX∖N )

I , and write Sht
(d)(I1,...,Ik)
G,∞,I for the inverse limit

lim←−
N

Sht
(d)(I1,...,Ik)
G,N,I |η(d)I ,

whereN runs through finite closed subschemes ofX. Write Sht
(d)(I1,...,Ik)
G,∞,I,W for the analogous inverse

limit. By Proposition 3.3, we see that Sht
(d)(I1,...,Ik)
G,∞,I is a pro-Galois cover of Sht

(d)(I1,...,Ik)
G,I |η(d)I

with Galois group G(OQ).

We extend the left G(OQ)-action to a left G(AQ)-action as follows. Note that the S-points of

Sht
(d)(I1,...,Ik)
G,∞,I parametrize data consisting of

i) for all i in I, a point Di of η(d)I(S),

ii) for all 0 ⩽ j ⩽ k − 1, a G× S-bundle Gj on X × S and an isomorphism

ψj : Gj |∐
x(X×S)∧x×S

∼→G×
∐
x(X × S)∧x×S

of G×
∐
x(X × S)∧x×S-bundles, where x runs over closed points of X,

iii) for all 1 ⩽ j ⩽ k, an isomorphism

ϕj : Gj−1|X×S∖
∑

i∈Ij
Di

∼→Gj |X×S∖
∑

i∈Ij
Di

such that ψj ◦ ϕ|∐
x(X×S)∧x×S

= ψj−1, where we set (Gk, ψk) = (τG0, τψ0).

Let g = (gx)x be an element of G(AQ). For every closed point x of X, we get an isomorphism

gx : G× ((X × S)∧x×S ∖ x× S) ∼→G× ((X × S)∧x×S ∖ x× S),

and for the cofinitely many x such that gx lies in G(Ox), this extends to an isomorphism over
(X × S)∧x×S . For the finitely many other x, the Beauville–Laszlo theorem enables us to use
gx ◦ ψj |(X×S)∧x×S∖x×S to glue Gj |(X∖x)×S with the trivial bundle on (X × S)∧x×S .

Apply this to each of the finitely many other x. This yields a G× S-bundle g · Gj on X × S
along with an isomorphism g · ψj as in ii) such that, for every closed point x of X, we have a
commutative square

Gj |(X×S)∧x×S∖x×S
∼ //

ψj |(X×S)∧
x×S

∖x×S

��

(g · Gj)|(X×S)∧x×S∖x×S

(g·ψj)|(X×S)∧
x×S

∖x×S

��

G× ((X × S)∧x×S ∖ x× S) gx
// G× ((X × S)∧x×S ∖ x× S).

This procedure is compatible with iii), and it yields a G(AQ)-action on Sht
(d)(I1,...,Ik)
G,∞,I . Since the

above square extends to isomorphisms over (X × S)∧x×S when gx lies in G(Ox), we see that this
indeed extends the G(OQ)-action. Finally, compatibility with iii) indicates that the G(AQ)-action
preserves Sht

(d)(I1,...,Ik)
G,∞,I,W .
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3.10

The adelic action satisfies the following compatibilities. If I1, . . . , Ik refines another ordered parti-

tion I ′1, . . . , I
′
k′ of I, the morphisms π

(I1,...,Ik)
(I′1,...,I

′
k′ )

pass to the inverse limit in 3.9 and yield a morphism

π
(I1,...,Ik)
(I′1,...,I

′
k′ )

: Sht
(d)(I1,...,Ik)
G,∞,I →Sht

(d)(I′1,...,I
′
k′ )

G,∞,I .

This commutes with the G(AQ)-action, and we see that it also restricts to a morphism

π
(I1,...,Ik)
(I′1,...,I

′
k′ )

: Sht
(d)(I1,...,Ik)
G,∞,I,W →Sht

(d)(I′1,...,I
′
k′ )

G,∞,I,W .

Similarly, the morphisms α pass to the inverse limit in 3.9 and yield a morphism

α : Sht
(d×I1,...,d×Ik)
G,∞,I → Sht

(d)(I1,...,Ik)
G,∞,I .

This commutes with the G(AQ)-action, and we see that it also restricts to a morphism

α : Sht
(d×I1,...,d×Ik)
G,∞,I,W → Sht

(d)(I1,...,Ik)
G,∞,I,W .

Note that the right SI
d-action on Sht

(d×I1,...,d×Ik)
G,∞,I and hence Sht

(d×I1,...,d×Ik)
G,∞,I,W commutes with the

G(AQ)-action.

3.11

From here, we obtain an action of the Hecke algebra by correspondences as follows. Write
KG,N for the subgroup ker(G(OQ)→G(N)) of G(OQ), and write HG,N for the ring of finitely-
supported Qℓ-valued functions on KG,N\G(AQ)/KG,N , where multiplication is given by convolu-
tion with respect to the Haar measure on G(AQ) for which KG,N has measure 1. For any closed
point x of X, write HG,x for the analogous ring of finitely-supported Qℓ-valued functions on
G(Ox)\G(Qx)/G(Ox). Recall that HG,N contains the restricted tensor product

⊗′
uHG,u, where

u runs over closed points of X ∖N .

Let g be in G(AQ). The G(AQ)-action from 3.9 yields a finite étale correspondence

Sht
(d)(I1,...,Ik)
G,∞,I /(KG,N ∩ g−1KG,Ng)

g

∼
//

��

Sht
(d)(I1,...,Ik)
G,∞,I /(gKG,Ng

−1 ∩KG,N )

��

Sht
(d)(I1,...,Ik)
G,N,I |η(d)I Sht

(d)(I1,...,Ik)
G,N,I |η(d)I ,

using the fact that Sht
(d)(I1,...,Ik)
G,∞,I /KG,N = Sht

(d)(I1,...,Ik)
G,N,I |η(d)I . By sending the indicator function

of KG,NgKG,N to the above correspondence, we obtain a ring homomorphism from HG,N to

the ring of Qℓ-valued finite étale correspondences on Sht
(d)(I1,...,Ik)
G,N,I |η(d)I over η(d)I . We similarly

obtain finite étale correspondences on Sht
(d)(I1,...,Ik)
G,N,I,W |η(d)I .

We see from 3.10 that our correspondences are compatible with π
(I1,...,Ik)
(I′1,...,I

′
k′ )

and α. In the d = 1

setting, proper base change shows that they induce an action of HG,N on HN,I,W |η(d)I .
3.12 Remark. Let N(g) be a finite set of closed points x of X containing those for which g does
not lie in G(Ox). Note that the construction in 3.9 more generally yields a left

(∏
x/∈N(g)G(Ox)

)
×(∏

x∈N(g)G(Qx)
)
-action on

lim←−
N

Sht
(d)(I1,...,Ik)
G,N,I |(DivdX∖N(g))

I ,
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where N runs through finite closed subschemes of X supported on N(g), that extends the left
G(OQ)-action. Therefore the construction in 3.11 naturally extends to a finite étale correspon-

dence on Sht
(d)(I1,...,Ik)
G,N,I |(DivdX∖(N∪N(g)))

I , which restricts to one on Sht
(d)(I1,...,Ik)
G,N,I,W |(DivdU∖(N∪N(g)))

I .

4. Partial Frobenii and derived categories

In positive characteristic algebraic geometry, forming fundamental groups rarely commutes with
taking products—even over an algebraically closed field. One can remedy this by asking for
additional structure: namely, partial Frobenius morphisms. Because we want to implement this
strategy in the derived category, we must resort to using ∞-categorical structures.

First, we define partial Frobenii and describe their action on derived categories of Qℓ-sheaves.
Next, we explain a monodromy interpretation of partial Frobenii, which generalizes the relation
between Weil sheaves and Weil groups. We then describe how partial Frobenii arise in the setting
of symmetrized moduli spaces of shtukas. In the usual, unsymmetrized case, we state an antici-
pated result of Arinkin–Gaitsgory–Kazhdan–Raskin–Rozenblyum–Varshavsky showing that their
relative cohomology complex satisfies a derived version of Drinfeld’s lemma. Finally, we use work
of Xue to relate the action of Frobenius elements in the Weil group with that of partial Frobenii
on our cohomology groups.

4.1

Let us start with notation on derived categories. For any algebraic stack X over k, write Shv(X )
for the derived category of Qℓ-sheaves on X as in [2, Sect. 1.1.1]. For any morphism f : X →Y
of algebraic stacks over k, we have functors Rf ! : Shv(Y)→ Shv(X ) and Rf∗ : Shv(X )→Shv(Y)
[2, Sects. 1.1.1–1.1.2], and by using the alternative description of Shv(X ) from [3, (C.1)], we
similarly obtain functors f∗ : Shv(Y)→Shv(X ) and Rf! : Shv(X )→Shv(Y). Moreover, these
constructions are functorial in f .

Now let X1 and X2 be smooth quasicompact schemes over k. Then the external tensor product

Shv(X1)⊗ Shv(X2)→Shv(X1 ×k X2)

is fully faithful [15, Lemma A.2.6], where ⊗ denotes the Lurie tensor product over Qℓ [21, §4.8.1].

4.2

Products of spaces over k have the following Frobenius structures. Let I be a finite set, and
let X be a prestack over k. For any subset I1 of I, write FrobI1 : X I→X I for the product(∏

i∈I1 FrobX
)
×

(∏
i∈I∖I1 idX

)
. Note that FrobI1 and FrobI2 commute for any subsets I1 and

I2 of I, and for any partition I1, . . . , Ik of I, the composition of FrobIj for all 1 ⩽ j ⩽ k equals
the absolute q-Frobenius endomorphism of X .

Next, let ζ : I→ J be a map of finite sets, and let f : X →Y be a morphism of prestacks over
k. This induces a morphism f ζ : X J→YI , and if I1 = ζ−1(J1) for some subset J1 of J , we get a
commutative square

X J fζ
//

FrobJ1
��

YI

FrobI1
��

X J fζ
// YI .
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Now suppose X is an algebraic stack over k. Because FrobI1 and hence FrobI1,k are universal
homeomorphisms, we see that Frob∗

I1,k
yields an equivalence on categories of étale sheaves. By

applying this to subsets I1, . . . , Ik of I and using the functoriality of Shv, we obtain an action
of Zk on Shv(X I

k
). Finally, if f is a morphism of algebraic stacks over k, we obtain a functor

f ζ,∗
k

: Shv(YI
k
)→Shv(X J

k
) that is compatible with this action.

4.3

Next, we turn to a group-theoretic version of 4.2. Let X be a geometrically connected algebraic
stack over k. Since FrobI1,k is a universal homeomorphism, it induces an automorphism of π1(Xk)
as a topological group. By applying this to subsets I1, . . . , Ik of I, we obtain a continuous action
of Zk on π1(Xk). Write FWeilI1,...,IkI (X ) for the resulting semidirect product π1(Xk)⋊Zk. When
the Ij are precisely the singletons in I, we write FWeilI(X ) instead, noting that this recovers the
Weil group Weil(X ) when I itself is a singleton.

Let ζ : I→ J be a map of finite sets, let f : X →Y be a morphism of geometrically connected
algebraic stacks over k, and suppose that Ij = ζ−1(Jj) for some subsets J1, . . . , Jk of J . We see
from 4.2 that f∗

ζ,k
: π1(YJk )→π1(X Ik ) commutes with the Zk-action. This induces a continuous

homomorphism

FWeilJ1,...,JkJ (Y)→FWeilI1,...,IkI (X ).

In particular, by applying this to the inclusion of singletons in I and f = idX , we obtain a con-
tinuous homomorphism FWeilI(X )→Weil(X ) for each i in I. Together, they yield a continuous
homomorphism

FWeilI(X )→Weil(X )I ,

which is surjective because π1(X Ik )→π1(Xk)
I is surjective.

4.4

We now recall the monodromy interpretation of Frobenius–Weil groups, as well as Drinfeld’s
lemma. Let X be a geometrically connected algebraic stack over k. By restricting to π1(X Ik ) and
separately considering the action of Zk, we see that finite-dimensional continuous representations
of FWeilI1,...,IkI (X ) over Qℓ are equivalent to smooth Qℓ-sheaves on X Ik equipped with commuting
FrobIj ,k-semilinear automorphisms. The latter are called partial Frobenius morphisms. Moreover,

a similar equivalence holds for ind-smooth Qℓ-sheaves, and precomposing with the continuous
homomorphisms from 4.3 corresponds to pullback.

Now suppose X is a noetherian scheme. Then, as in the proof of [18, Theorem 5.6], we
see that [20, Lemme 8.11] and [18, Lemma 5.7] imply that any finite-dimensional continuous
representation of FWeilI(X ) over Qℓ factors through Weil(X )I via the continuous homomorphism
FWeilI(X )→Weil(X )I from 4.3.7

4.5

Partial Frobenii and Frobenius elements in the Weil group are related as follows. Maintain the
assumptions of 4.4, and suppose X is geometrically integral over k. Let ηI be a geometric generic

7Strictly speaking, [18, Lemma 5.7] applies over finite extensions of Qℓ, not Qℓ. But FWeilI(X ) is an extension

of a finitely-generated group by a compact group, so its finite-dimensional continuous representations over Qℓ are
defined over finite extensions of Qℓ.
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point of X I
k
. Let k′ be a finite extension of k with degree r, and let x = (xi)i∈I be a point of

X I(k′). Choose a geometric point x of X I
k
lying over x, as well as an étale path ηI ⇝ x.

Write pri : X I→X for projection onto the i-th factor. This induces an étale path pri(ηI)⇝ xi,
from which we naturally obtain a continuous homomorphism Weil(xi)→Weil(X ), where we form
Weil(xi) using absolute qr-Frobenius instead of absolute q-Frobenius as in 4.3. Write γxi for the
image of the generator of Z = Weil(xi) in Weil(X ).

Let M be a smooth Qℓ-sheaf on X Ik equipped with partial Frobenii

F i : Frob
∗
i,k

M
∼→M .

Now we have a specialization isomorphism M |x
∼→M |ηI . On the one hand, 4.4 endows M |ηI

with an action of Weil(X )I . On the other hand, we see that F i ◦Frob∗i,k(F i) ◦ · · · ◦Frob
r−1,∗
i,k

(F i)

restricts to an automorphism of M |x.

Proposition. Under the specialization isomorphism M |x
∼→M |ηI , this automorphism corre-

sponds to the action of γxi in the i-th entry of Weil(X )I .

Proof. By using 4.4 to pass to finite-dimensional continuous representations of Weil(X )I over
Qℓ, we obtain a surjection ⊠i∈IEi→M compatible with partial Frobenii, where the Ei are
Weil Qℓ-sheaves on X . Thus it suffices to prove the claim for ⊠i∈IEi. Now the identification
(⊠i∈IEi)|x =

⊗
i∈I(E|xi) is compatible with partial Frobenii, and (⊠i∈IEi)|ηI =

⊗
i∈I(E|pri(ηI))

is compatible with the Weil(X )I -action. So it suffices to prove the claim for Ei and I = {i}. But
Z = Weil(xi)→Weil(X ) sends the generator of Z to r times the generator of Z ⊆Weil(X ), and
by definition this image acts via F i ◦ Frob∗i,k(F i) ◦ · · · ◦ Frob

r−1,∗
i,k

(F i).

4.6

We now specialize to the setting of moduli spaces of shtukas. Consider the morphism Fr
(d)(I1,...,Ik)
I1,N,I

:

Sht
(d)(I1,...,Ik)
G,N,I → Sht

(d)(I2,...,Ik,I1)
G,N,I that sends

((Di)i∈I∖I1 , (Di)i∈I1 , (G0, ψ0)
ϕ1
99K(G1, ψ1)

ϕ2
99K · · ·

ϕk−1
99K (Gk−1, ψk−1)

ϕk
99K(τG0, τψ0))

to

((Di)i∈I∖I1 , (
τDi)i∈I1 , (G1, ψ1)

ϕ2
99K(G2, ψ2)

ϕ3
99K · · ·

ϕk
99K(τG0, τψ0)

τϕ1
99K(τG1, τψ1)).

Let Ω be a finite SI
d-stable and Γd×IQ -stable subset of X+

• (T )d×I . We see that Fr
(d)(I1,...,Ik)
I1,N,I

sends

Sht
(d)(I1,...,Ik)
G,N,I,Ω |(DivdU∖N )I to Sht

(d)(I2,...,Ik,I1)
G,N,I,Ω |(DivdU∖N )I .

Next, observe that the square

Sht
(d)(I1,...,Ik)
G,N,I

Fr
(d)(I1,...,Ik)

I1,N,I
//

p

��

Sht
(d)(I2,...,Ik,I1)
G,N,I

p

��

(DivdX∖N )
I

FrobI1 // (DivdX∖N )
I

commutes. Finally, note that the composition

Sht
(d)(I1,...,Ik)
G,N,I

Fr
(d)(I1,...,Ik)

I1,N,I
// · · ·

Fr
(d)(Ik,I1,...,Ik−1)

Ik,N,I
// Sht

(d)(I1,...,Ik)
G,N,I
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equals Frob : Sht
(d)(I1,...,Ik)
G,N,I → Sht

(d)(I1,...,Ik)
G,N,I . Since Frob is a universal homeomorphism, this shows

that Fr
(d)(I1,...,Ik)
I1,N,I

is a universal homeomorphism too.

4.7

Our Fr
(d)(I1,...,Ik)
I1,N,I

are compatible with other structures as follows. If I1, . . . , Ik refines another
ordered partition I ′1, . . . , I

′
k′ of I such that I ′1 = I1 ∪ · · · ∪ Ij , we obtain a commutative diagram

Sht
(d)(I1,...,Ik)
G,N,I

Fr
(d)(I1,...,Ik)

I1,N,I
//

π
(I1,...,Ik)

(I′1,...,I
′
k′

)
��

· · ·
Fr

(d)(Ij ,I1,...,Ij−1)

Ij ,N,I
// Sht

(d)(Ij+1,...,Ik,I1,...,Ij)
G,N,I

π
(I1,...,Ik)

(I′1,...,I
′
k′

)
��

Sht
(d)(I′1,...,I

′
k′ )

G,N,I

Fr
(d)(I′1,...,I

′
k′ )

I′1,N,I
// Sht

(d)(I′2,...,I
′
k′ )

G,N,I .

We also have a commutative square

Sht
(d)(I1,...,Ik)
G,N,I

Fr
(d)(I1,...,Ik)

I1,N,I
��

Sht
(d×I1,...,d×Ik)
G,N,d×I

αoo

Fr
(d×I1,...,d×Ik)

d×I1,N,d×I
��

Sht
(d)(I2,...,Ik,I1)
G,N,I Sht

(d×I2,...,d×Ik,d×I1)
G,N,d×I .

αoo

Finally, note that the Fr
(d)(I1,...,Ik)
I1,N,I

pass to the inverse limit in 3.9. The resulting morphism

Fr
(d)(I1,...,Ik)
I1,∞,I : Sht

(d)(I1,...,Ik)
G,∞,I →Sht

(d)(I2,...,Ik,I1)
G,∞,I evidently commutes with the G(AQ)-action, so we

see that Fr
(d)(I1,...,Ik)
I1,N,I

commutes with the finite étale correspondences from 3.11 and Remark 3.12.

4.8

In the usual, unsymmetrized case, we convert our Fr
(I1,...,Ik)
I1,N,I

into partial Frobenius morphisms

as follows. Let W be in RepQℓ
((LG)I). Then 4.6 and the proof of [20, Proposition 3.3]8 yield a

canonical isomorphism

Fr
(I1,...,Ik),∗
I1,N,I

F
(I2,...,Ik,I1)
N,I,W

∼→F
(I1,...,Ik)
N,I,W .

Since Fr
(I1,...,Ik)
I1,N,I

and FrobI1 are universal homeomorphisms, applying proper base change to the
commutative square from 4.6 and arguing as in [20, §4.3] yields an isomorphism

FI1 : Frob∗I1 HN,I,W
∼→HN,I,W

of ind-(constructible complexes of Qℓ-sheaves) on (U ∖N)I .

By 4.7, we see that FI1 is compatible with the independence of HN,I,W on the ordered
partition I1, . . . , Ik up to isomorphism. In particular, reordering the I1, . . . , Ik shows that

FI2 ◦ Frob∗I2(FI1) = FI1 ◦ Frob∗I1(FI2)

on H p
N,I,W . We can also use 4.7 to see that FI1 |η(1)I commutes with the action of HG,N on

HN,I,W |η(1)I .

8Now [20, Proposition 3.3] only treats the case of split G. However, it extends to the general case, which is already
implicitly used in [20, §12].
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4.9

We now present the anticipated result of Arinkin–Gaitsgory–Kazhdan–Raskin–Rozenblyum–
Varshavsky. By applying 4.2, we see that the fully faithful functor Shv((U∖N)k)

⊗I ↪→ Shv((U∖
N)I

k
) is equivariant for the action of ZI . In particular, we naturally have a fully faithful functor

(Shv((U ∖N)k)
⊗I)BZI

↪→ Shv((U ∖N)I
k
)BZI

.

Theorem. 9 Assume that X is geometrically connected over k. Then we have a functor

RepQℓ
((LG)I)→(Shv((U ∖N)k)

⊗I)BZI
denoted by W 7→ TN,I,W

satisfying the following properties:

a) for all W in RepQℓ
((LG)I), the image of TN,I,W in Shv((U ∖N)I

k
) is naturally isomorphic to

the pullback HN,I,W,k of HN,I,W to (U ∖N)I
k
, and the equivariance data corresponds to the

pullbacks F i of the Fi,

b) as I varies, there exist ∞-categorical coherences for TN,I,W in the sense of [4, Sect. 1.6].

Proof. When U ∖ N = X, take TN,I,− to be ShtTrI (−) as in [4, Sect. 4.1.1]. This has the
desired structure by [4, Sect. 4.5.3]. Part b) follows since the inclusion Shv((U ∖ N)k)

⊗I ↪→
Shv((U ∖N)I

k
) is compatible with changing I, and part a) follows from [4, Theorem 4.1.2] and

[4, Sect. 4.5.4]. The general case is forthcoming work of Arinkin–Gaitsgory–Kazhdan–Raskin–
Rozenblyum–Varshavsky.

Remark. Even without the geometrically connected assumption on X, we expect some form of
Theorem 4.9 to hold.

4.10

Maintain the assumptions of Theorem 4.9, which we will use to define symmetrized versions of
TN,I,W as follows. Note that 4.2 yields an action of SI

d on Shv((U ∖ N)d×I
k

) intertwining the

action of Zd×I , and observe that

Shv((U ∖N)k)
⊗(d×I) ↪→ Shv((U ∖N)d×I

k
)

is equivariant for this action, where Shv((U ∖N)k)
⊗(d×I) has the natural SI

d-action.

Let W be in RepQℓ
((LG)d×I), and suppose W ◦σ∗ =W for all σ in SI

d. Then Theorem 4.9.b)

gives an SI
d-equivariance structure on the object TN,d×I,W of (Shv((U ∖ N)k)

⊗(d×I))BZd×I
, so

we obtain an object of

((Shv((U ∖N)k)
⊗(d×I))BZd×I

)BSI
d = (Shv((U ∖N)k)

⊗(d×I))B(Zd×I⋊SI
d)

= ((Shv((U ∖N)k)
BZ)⊗(d×I))BSI

d ,

where we use [16, Proposition 2.5.7] to see that ⊗ commutes with taking equivariant objects.

By finite étale descent, we see that pullback yields a natural equivalence

Shv((U ∖N)d×I
k

/SI
d)

∼→Shv((U ∖N)d×I
k

)BSI
d ,

9While [4] only treats the case of split G, their methods adapt to the general case.
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where (U ∖N)d×I
k

/SI
d = ((U ∖N)d

k
/Sd)

I denotes the stack-theoretic quotient. Thus if we only

remember the action of ZI ×SI
d ⊆ Zd×I ⋊SI

d, then we obtain an object T
(d)
N,I,W of

Shv((U ∖N)d×I
k

)B(ZI×SI
d) = Shv(((U ∖N)d/Sd)

I
k
)BZI

.

Finally, since Sd preserves and acts freely on the open subscheme (U ∖ N)d◦ of (U ∖ N)d, we

can identify the stack-theoretic quotient ((U ∖N)d◦/Sd)
I with (Divd,◦U∖N )

I via 1.4. In particular,

restricting T
(d)
N,I,W to ((U ∖N)d◦,k/Sd)

I yields an object of

Shv((Divd,◦U∖N )
I
k
)BZI

.

4.11

From here, we obtain complexes of representations as follows. Write η for the generic point of
X, and note that taking fibers at η yields a functor

Shv((U ∖N)k)
BZ→D(Weil(η),Qℓ).

By taking (d×I)-th tensor powers and postcomposing with the exterior product, we get a functor

Shv((U ∖N)k)
BZ)⊗(d×I)→D(Weil(η)d×I ,Qℓ).

Finally, taking SI
d-equivariant objects gives us a functor

((Shv((U ∖N)k)
BZ)⊗(d×I))BSI

d→D(Weil(η)d×I ⋊SI
d,Qℓ).

4.12

We conclude by using work of Xue to bootstrap Proposition 4.5 to the ind-smooth Qℓ-sheaves
H p
N,I,W on (U ∖N)I . Assume that X is geometrically connected over k, and apply the notation

in 4.5 to X = U ∖ N . By projecting to (U ∖ N)I , we view ηI and x as geometric points of
(U ∖N)I .

We have a specialization isomorphism H p
N,I,W |x

∼→H p
N,I,W |ηI by Theorem 3.7. On the one

hand, Theorem 4.9.a) and Theorem 3.7 endow H p
N,I,W |ηI with an action of Weil(η)I , which one

can show factors through Weil(U ∖N)I [25, Proposition 6.0.13]. On the other hand, we see that
Fi ◦ Frob∗i (Fi) ◦ · · · ◦ Frob

r−1,∗
i (Fi) restricts to an automorphism of H p

N,I,W |x.

Proposition. Under the identification H p
N,I,W |x

∼→H p
N,I,W |ηI , this automorphism corresponds

to the action of γxi in the i-th entry of Weil(U ∖N)I .

Proof. Now [25, Lemma 6.0.9] and Theorem 3.7 show that H p
N,I,W is a union of ind-smooth Qℓ-

subsheaves M over (U∖N)I , where M |ηI is preserved by and finitely generated over
⊗

i∈I HG,ui
for some closed points ui of U ∖N , and the Fi restrict to isomorphisms on M . Hence it suffices
to prove the analogous claim for M .

Let m be a maximal ideal of
⊗

i∈I HG,ui . Since the HG,ui are finitely generated Qℓ-algebras,
we see that (M |ηI )/mn corresponds to a smooth Qℓ-sheaf on (U ∖ N)I equipped with partial
Frobenii. By base changing to (U ∖ N)k, Proposition 4.5 proves the analogous claim for this
smooth Qℓ-sheaf.

Because
⊗

i∈I HG,ui is noetherian, the map M |ηI →
⊕

m(M |ηI )∧m is injective, where m runs
over maximal ideals of

⊗
i∈I HG,ui , and (−)∧m denotes m-adic completion. We similarly obtain an

injection M |x ↪→
⊕

m(M |x)∧m. As the partial Frobenii and
⊗

i∈I HG,ui-actions commute, we see
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that these injections preserve the relevant structures. Thus the analogous claim for the sheaves
corresponding to the (M |ηI )/mn implies the claim for M , as desired.

5. The plectic conjecture

In this section, we prove our results on the plectic conjecture for (usual, unsymmetrized) moduli
spaces of shtukas. We begin by using the relationship between Weil restriction and BunG from
§1 to describe one incarnation of the conjectured plectic diagram from [22, (1.3)]. This relates
unsymmetrized shtukas for G to symmetrized shtukas for H. From here, we use the link between
symmetrized and unsymmetrized shtukas for H to prove Theorem A. Next, we use the Hecke
compatibility of this relation to prove Theorem B. We conclude by explicating our constructions
to prove Theorem C.

5.1

First, we describe the Hecke stack incarnation of the plectic diagram. Recall the notation of 1.7,
and write d for the degree ofm. Since Y and hence DivdY is proper, the morphismm−1 : X→DivdY
sending x 7→ m−1(Γx) is proper as well. As m−1 is also a monomorphism, we see that it is a

closed immersion. Because m is étale over U , we see that m−1 sends U to Divd,◦Y .

For any 0 ⩽ j0 ⩽ k, recall the morphisms pj0 and p from Definition 2.1.

Proposition. We have a natural Cartesian square

Hck
(I1,...,Ik)
G,N,I

//

(pj0 ,p)

��

Hck
(d)(I1,...,Ik)
H,M,I

(pj0 ,p)

��

BunG,N ×(X ∖N)I
c×(m−1)I

// BunH,M ×(DivdY ∖M )I .

Proof. An S-point of Hck
(I1,...,Ik)
G,N,I consists of

i) for all i in I, a point xi of (X ∖N)(S),

ii) for all 0 ⩽ j ⩽ k, an object (Gj , ψj) of BunG,N (S),
iii) for all 1 ⩽ j ⩽ k, an isomorphism

ϕj : Gj−1|X×S∖
∑

i∈Ij
Γxi

∼→Gj |X×S∖
∑

i∈Ij
Γxi

with ψj ◦ ϕj |N×S = ψj−1.

By using the isomorphism c and applying 1.7 to R = X × S ∖
∑

i∈Ij Γxi , we see that ii) and iii)

are equivalent to objects (Hj , ψ′
j) of BunH,M (S) along with isomorphisms

ϕ′j : Hj−1|Y×S∖
∑

i∈Ij
m−1(Γxi )

∼→Hj |Y×S∖
∑

i∈Ij
m−1(Γxi )

satisfying ψ′
j ◦ϕ′j |M×S = ψ′

j−1. Along with i), this is precisely the data parametrized by the fiber

product of Hck
(d)(I1,...,Ik)
H,M,I and BunG,N ×(X ∖N)I over the product BunH,M ×(DivdY ∖M )I .

5.2

We obtain the Beilinson–Drinfeld affine Grassmannian version of the plectic diagram as follows.
Take N = ∅ and j0 = k in Proposition 5.1. After pulling back along the k-point of BunG

∼→BunH
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corresponding to the trivial bundle, this yields a Cartesian square

Gr
(I1,...,Ik)
G,I

//

p

��

Gr
(d)(I1,...,Ik)
H,I

p

��

XI (m−1)I
// (DivdY )

I .

5.3

Next, we explain how the relative position stratification fits into the plectic diagram. Because
T = RF/QA, we see that X•(T ) is isomorphic as a ΓQ-module to

{φ : ΓQ→X•(A) | φ(xg) = g−1φ(x) for all g ∈ ΓF and x ∈ ΓQ},

whose ΓQ-action is given by inverse left multiplication. Under this identification, X•(T )
ΓQ cor-

responds to the subset of functions φ taking constant values in X•(A)
ΓF . As B =

∏
ιC, we see

that X+
• (T ) corresponds to the subset of functions φ that take values in X+

• (A). After choosing
representatives for ΓQ/ΓF in ΓQ and enumerating them, we may identify X•(T ) with X•(A)

d

and X+
• (T ) with X+

• (A)d.

Let Ω be a finite SI
d-stable and Γd×IF -stable subset of X+

• (A)d×I . In particular, Ω is also

ΓIQ-stable when viewed as a subset of X+
• (T )I . Hence we can form Gr

(d)(I1,...,Ik)
H,I,Ω |(DivdV )I and

Gr
(I1,...,Ik)
G,I,Ω |UI as in 2.10. Because (m−1)I is a locally closed immersion, we see that the Cartesian

square in 5.2 restricts to a Cartesian square

Gr
(I1,...,Ik)
G,I,Ω |UI

//

p

��

Gr
(d)(I1,...,Ik)
H,I,Ω |(DivdV )I

p

��

U I
(m−1)I

// (DivdV )
I .

Remark. Note that stability under Γd×IF is a condition that is independent of our choice of
representatives for ΓQ/ΓF in ΓQ. Similarly, stability under SI

d is a condition that is independent
of our enumeration of said representatives.

5.4

In the plectic setting, we work with the following relative position strata and corresponding
sheaves. First, suppose Ω equals

∏
i∈I Ωi, where the Ωi are finite Sd-stable and ΓdF -stable subsets

of X+
• (A)d. In particular, Ωi is a finite disjoint union of ΓdF -orbits O. Then we can formWO as in

2.13, and we write WΩ,i,H for the object
⊕

OWO of RepQℓ
((LH)d). Note that the Sd-stability of

Ωi implies that WΩ,i,H ◦ σ∗ =WΩ,i,H for all σ in Sd. Finally, write WΩ,H for the exterior tensor

product ⊠i∈IWΩ,i,H , and recall from 2.13 that S
(d×I1,...,d×Ik)
d×I,WΩ,H

equals the intersection complex of

Gr
(d×I1,...,d×Ik)
H,d×I,Ω |V d×I , with degree shifts normalized relative to V d×I .

By viewing Ωi as a subset ofX
+
• (T ) instead, we see that it is ΓQ-stable. FormWΩ,i,G andWΩ,G

as above. We analogously see that S
(I1,...,Ik)
I,WΩ,G

equals the intersection complex of Gr
(I1,...,Ik)
G,I,Ω |UI ,

with degree shifts normalized relative to U I .

More generally, let Ω be any finite subset of X+
• (A)d×I that is SI

d-stable and Γd×IF -stable.
Then Ω is a finite union of subsets of the form considered above, and we write WΩ,H and WΩ,G
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for the corresponding direct sum of algebraic representations over Qℓ. We see that the above
relation with intersection complexes continues to hold.

5.5

Finally, we arrive at the plectic diagram for moduli spaces of shtukas. By pulling back 5.1 along
γ, we get an analogous Cartesian square

Sht
(I1,...,Ik)
G,N,I

//

p

��

Sht
(d)(I1,...,Ik)
H,M,I

p

��

(X ∖N)I
(m−1)I

// (DivdY ∖M )I .

Moreover, further restricting to 5.3 via γ ◦ δ yields a Cartesian square

Sht
(I1,...,Ik)
G,N,I,Ω |(U∖N)I

//

p

��

Sht
(d)(I1,...,Ik)
H,M,I,Ω |(DivdV ∖M )I

p

��

(U ∖N)I
(m−1)I

// (DivdV ∖M )I .

If I1, . . . , Ik refines another ordered partition I ′1, . . . , I
′
k′ , of I, note that

Sht
(I1,...,Ik)
G,N,I

//

π
(I1,...,Ik)

(I′1,...,I
′
k′

)
��

Sht
(d)(I1,...,Ik)
H,M,I

π
(I1,...,Ik)

(I′1,...,I
′
k′

)
��

Sht
(I′1,...,I

′
k′ )

G,N,I
// Sht

(d)(I′1,...,I
′
k′ )

H,M,I

yields a commutative square. Also, we have a commutative square

Sht
(I1,...,Ik)
G,N,I

//

Fr
(I1,...,Ik)

I1,N,I
��

Sht
(d)(I1,...,Ik)
H,M,I

Fr
(d)(I1,...,Ik)

I1,M,I
��

Sht
(I2,...,Ik,I1)
G,N,I

// Sht
(d)(I2,...,Ik,I1)
H,M,I .

5.6

We now transfer 5.4 to moduli spaces of shtukas by using the morphism ϵ from 3.6. In the d = 1
setting, the proof of [20, Proposition 2.11]10 indicates that ϵ étale-locally induces an isomorphism

from Sht
(I1,...,Ik)
G,N,I |(U∖N)I to Gr

(I1,...,Ik)
G,I |(U∖N)I . Therefore F

(I1,...,Ik)
N,I,WΩ,G

= ϵ∗(S
(I1,...,Ik)
I,WΩ,G

) equals the

intersection complex of Sht
(I1,...,Ik)
G,N,I,Ω |(U∖N)I , with degree shifts normalized relative to (U ∖ N)I .

Applying this discussion to H shows that F
(d×I1,...,d×Ik)
M,d×I,WΩ,H

equals the intersection complex of

Sht
(d×I1,...,d×Ik)
H,M,d×I,Ω |(V ∖M)d×I , with degree shifts normalized relative to (V ∖M)d×I .

Write F
(d)(I1,...,Ik)
M,I,WΩ,H

for the intersection complex of Sht
(d)(I1,...,Ik)
H,M,I,Ω |(DivdV ∖M )I , with degree shifts

normalized relative to (DivdV ∖M )I . In the commutative squares from 5.5, note that the horizontal

10Now [20, Proposition 2.11] only treats the case of split G. However, it extends to the general case, which is
already implicitly used in [20, §12].
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arrows are locally closed immersions, up to universal homeomorphism. Hence we can identify

the pullback of F
(d)(I1,...,Ik)
M,I,WΩ,H

to Sht
(I1,...,Ik)
G,N,I,Ω |UI with F

(I1,...,Ik)
N,I,WΩ,G

. And because the commutative

squares from 3.8 are finite generically étale, we can similarly identify the pullback of F
(d)(I1,...,Ik)
M,I,WΩ,H

to Sht
(d×I1,...,d×Ik)
H,M,d×I,Ω |(V ∖M)d×I with F

(d×I1,...,d×Ik)
M,d×I,WΩ,H

.

5.7

We leverage the link between symmetrized and unsymmetrized shtukas for H to get the following
relation on cohomology. Restricting the commutative square from 3.8 to (Divd,◦V ∖M )I yields a
Cartesian square

Sht
(d)(I1,...,Ik)
H,M,I,Ω |

(Divd,◦V ∖M )I

p
��

Sht
(d×I1,...,d×Ik)
H,M,d×I,Ω |((V ∖M)d◦)I

αoo

p

��

(Divd,◦V ∖M )I ((V ∖M)d◦)
I .

αoo

Henceforth, assume that Y is geometrically connected over k. Now proper base change and 5.6
show that

α∗Rp!(F
(d)(I1,...,Ik)
M,I,WΩ,H

|
(Divd,◦V ∖M )I

) = HM,d×I,WΩ,H
|((V ∖M)d◦)I

,

so Theorem 4.9.a) and 4.10 enable us to identify Rp!(F
(d)(I1,...,Ik)
M,I,WΩ,H

|
(Divd,◦V ∖M )I

)k with the image of

T
(d)
M,I,WΩ,H

|
(Divd,◦V ∖M )I

k

in Shv((Divd,◦V ∖M )I
k
). Repeating the arguments in 4.8 yields an isomorphism

F(d)I1 : Frob∗I1 Rp!(F
(d)(I2,...,Ik,I1)
M,I,WΩ,H

|
(Divd,◦V ∖M )I

)
∼→Rp!(F

(d)(I1,...,Ik)
M,I,WΩ,H

|
(Divd,◦V ∖M )I

),

and we see from Theorem 4.9.a) and 4.7 that, under our identification, the equivariance data of

T
(d)
M,I,WΩ,H

|
(Divd,◦V ∖M )I

k

corresponds to the pullbacks F (d)i of the F(d)i to (Divd,◦V ∖M )I
k
.

The comparison with T
(d)
M,I,WΩ,H

shows that Rp!(F
(d)(I2,...,Ik,I1)
M,I,WΩ,H

|
(Divd,◦V ∖M )I

) is independent up

to isomorphism of the ordered partition I1, . . . , Ik, so we denote this ind-(constructible complex of

Qℓ-sheaves) on (Divd,◦V ∖M )I by H
(d)
M,I,WΩ,H

. As its pullback under the finite étale α has ind-smooth

cohomology sheaves by Theorem 3.7, we see that H
(d)
M,I,WΩ,H

does as well.

5.8

From here, we obtain the following generalization of Theorem A.

Theorem. The complex of intersection cohomology with compact support of ShtG,N,I,Ω |QI

with coefficients in Qℓ canonically lifts from an object of Db(Weil(Q)I ,Qℓ) to an object of
Db((Weil(F )d ⋊Sd)

I ,Qℓ) via the I-fold product of the map Weil(Q) ↪→Weil(F )d ⋊Sd.

Proof. Choose a geometric generic point ηI of XI . Now our object of Db(Weil(Q)I ,Qℓ) is the
image of TN,I,WΩ,G

under the functor from 4.11, where we use the finite-dimensionality of

ShtG,N,I,Ω |(U∖N)I and Theorem 4.9.a) to see that the image lies in Db(Weil(Q)I ,Qℓ), and we use

5.6 and Theorem 3.7 to identify its underlying complex of Qℓ-vector spaces with HN,I,WΩ,G,ηI .

Choose a geometric generic point βd×I of Y
d×I . By projecting to (DivdY )

I , we view βd×I as a
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geometric generic point of (DivdY )
I . Proper base change and 5.6 show that

(m−1)I,∗H
(d)
M,I,WΩ,H

= HN,I,WΩ,G
,

so after choosing an étale path βd×I ⇝ (m−1)I(ηI), we obtain a specialization isomorphism

HN,I,WΩ,G,ηI
∼→H

(d)

M,I,WΩ,H ,βd×I
by 5.7.

But the pullback of H
(d)
M,I,WΩ,H

under α equals HM,d×I,WΩ,H
|((V ∖M)d◦)I

by 5.7, which identifies

H
(d)

M,I,WΩ,H ,βd×I
with HM,d×I,WΩ,H ,βd×I

. Theorem 3.7 allows us to view the latter as the image in

Db((Weil(F )d⋊Sd)
I ,Qℓ) of TM,d×I,WΩ,H

under the functor from 4.11. Finally, the commutative
diagram

((Shv((V ∖M)k)
BZ)⊗(d×I))BSI

d //

��

D((Weil(F )d ⋉Sd)
I ,Qℓ)

��

(Shv((U ∖N)k)
BZ)⊗I // D(Weil(Q)I ,Qℓ)

shows that restricting along the I-fold product of Weil(Q) ↪→Weil(F )d⋊Sd recovers our original
object of Db(Weil(Q)I ,Qℓ), as desired.

5.9

We prove the following generalization of Theorem B by using the Hecke compatibility of our
constructions.

Theorem. The action of (Weil(F )d⋊Sd)
I from Theorem 5.8 on the level of cohomology groups

commutes with the action of HG,N from 3.11.

Proof. Under the identification G(AQ) = H(AF ), we see that the compact open subgroup KG,N

corresponds to KH,M . This identifies HG,N with HH,M . For any g in G(AQ), write N(g) for the
finite set of closed points of X where g does not lie in G(Ox), and write M(g) for m−1(N(g)).

Remark 3.12 gives an associated finite étale correspondence on Sht
(I1,...,Ik)
G,N,I,Ω |(U∖(N∪N(g)))I over

(U ∖ (N ∪ N(g)))I . By viewing g as an element of H(AF ) instead, we obtain analogous corre-
spondences on

Sht
(d)(I1,...,Ik)
H,M,I,Ω |(DivdV ∖(M∪M(g)))

I and Sht
(d×I1,...,d×Ik)
H,M,d×I,Ω |(V ∖(M∪M(g)))d×I .

Because these correspondences are finite étale, their pullbacks preserve intersection complexes,

giving us a cohomological correspondence on F
(d)(I1,...,Ik)
M,I,WΩ,H

.

Restricting 5.5 to (DivdV ∖(M∪M(g)))
I yields a morphism

Sht
(I1,...,Ik)
G,N,I,Ω |(U∖(N∪N(g)))I →Sht

(d)(I1,...,Ik)
H,M,I,Ω |(DivdV ∖(M∪M(g)))

I .

Note that our correspondence on Sht
(I1,...,Ik)
G,N,I,Ω |(U∖(N∪N(g)))I is precisely the pullback of our cor-

respondence on Sht
(d)(I1,...,Ik)
H,M,I,Ω |(DivdV ∖(M∪M(g)))

I along the above morphism. Similarly, we see that

our correspondence on

Sht
(d×I1,...,d×Ik)
H,M,d×I,Ω |(V ∖(M∪M(g)))d×I

32



The plectic conjecture over function fields

is the pullback of our correspondence on Sht
(d)(I1,...,Ik)
H,M,I,Ω |(DivdV ∖(M∪M(g)))

I along α, up to universal

homeomorphism.

The proof of Theorem 5.8 constructs the (Weil(F )d ⋊Sd)
I -action on H p

N,I,WΩ,G
|ηI by iden-

tifying the latter with H p
M,d×I,WΩ,H

|βd×I
. The above shows that, under this identification, the

HG,N -action on H p
N,I,WΩ,G

|ηI coincides with the HG,N = HH,M -action on H p
M,d×I,WΩ,H

|βd×I
. From

here, the desired commutativity follows from 5.7, 4.7, and 3.10.

5.10

Before turning to Theorem C, we need some notation on the splitting behavior of points along
Y →X. Let k′ be a finite extension of k with degree r, and let x = (xi)i∈I be a point of
(U ∖N)I(k′) such that every xi splits completely in V ∖M , i.e. the inverse image m−1(xi) is a
disjoint union of d points (yh,i)

d
h=1 of (V ∖M)(k′).

Because (m−1)I is a monomorphism, we get a Cartesian square

x
(m−1)I

//

��

(m−1)I(x)

��

(U ∖N)I
(m−1)I

// (DivdV ∖M )I

whose top arrow is an isomorphism. Therefore restricting 5.5 to (m−1)I(x) yields an isomorphism

Sht
(I1,...,Ik)
G,N,I |x

∼→Sht
(d)(I1,...,Ik)
H,M,I |(m−1)I(x), and further restriction yields an isomorphism

Sht
(I1,...,Ik)
G,N,I,Ω |x

∼→ Sht
(d)(I1,...,Ik)
H,M,I,Ω |(m−1)I(x).

Since every xi splits completely in V ∖M , we see that the preimage of (m−1)I(x) under α equals

{(yσ(h,i))j∈[d],i∈I ∈ (V ∖M)d×I(k′) | σ ∈ SI
d},

where each (yσ(h,i))h∈[d],i∈I maps isomorphically to (m−1)I(x) under α. Write y for the point

(yh,i)h∈[d],i∈I of (V ∖M)d×I(k′) induced by our enumeration of the m−1(xi). Then pulling back

3.8 along (m−1)I(x)
∼← y yields an isomorphism Sht

(d)(I1,...,Ik)
H,M,I |(m−1)I(x)

∼←Sht
(d×I1,...,d×Ik)
H,M,d×I |y, and

further restriction yields a universal homeomorphism

Sht
(d)(I1,...,Ik)
H,M,I,Ω |(m−1)I(x)←Sht

(d×I1,...,d×Ik)
H,M,d×I,Ω |y.

5.11

From 5.10, we obtain the following implications for cohomology. Our zig-zag of universal home-
omorphisms

Sht
(I1,...,Ik)
G,N,I,Ω |x

∼→Sht
(d)(I1,...,Ik)
H,M,I,Ω |(m−1)I(x)←Sht

(d×I1,...,d×Ik)
H,M,d×I,Ω |y

allows us to identify the étale cohomology of the left and right terms.

Choose a geometric point x lying over x. Now F
(I1,...,Ik)
N,I,WΩ,G

restricts to the intersection complex

of Sht
(I1,...,Ik)
G,N,I,Ω |x, so proper base change indicates that H p

N,I,WΩ,G
|x is naturally isomorphic to the

p-th intersection cohomology group with compact support of Sht
(I1,...,Ik)
G,N,I,Ω |x with coefficients in

Qℓ. Analogous statements hold for Sht
(d)(I1,...,Ik)
H,M,I,Ω |(m−1)I(x) and Sht

(d×I1,...,d×Ik)
H,M,d×I,Ω |y, in a manner

compatible with the identifications induced by the above zig-zag.
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5.12

We now prove the following generalization of Theorem C. After choosing an étale path ηI ⇝ x,
Theorem 3.7 yields a specialization isomorphism

H p
N,I,WΩ,G

|x
∼→H p

N,I,WΩ,G
|ηI

Applying (m−1)I to ηI ⇝ x induces an étale path (m−1)I(ηI)⇝ (m−1)I(x), and composing this
with our étale path βd×I ⇝ (m−1)I(ηI) yields an étale path βd×I ⇝ (m−1)I(x). The isomorphism
(m−1)I(x)

∼← y enables us to view x as a geometric point y lying over y, so this amounts to an

étale path βd×I ⇝ α(y). Because α is étale at βd×I and y, this corresponds to an étale path

βd×I ⇝ y. Applying Theorem 3.7 again yields another specialization isomorphism

H p
M,d×I,WΩ,H

|y
∼→H p

M,d×I,WΩ,H
|βd×I

.

Let (h, i) be in d×I. From our étale path βd×I ⇝ y, we obtain an element γyh,i of Weil(V ∖M)

as in 4.5. Since Frobr(h,i) fixes y, we see that F(h,i) ◦Frob∗(h,i)(F(h,i))◦· · ·◦Frob
r−1,∗
(h,i) (F(h,i)) restricts

to an automorphism of H p
M,d×I,WΩ,H

|y.

Theorem. Under the identifications

H p
N,I,WΩ,G

|ηI
∼→H p

M,d×I,WΩ,H
|βd×I

∼←H p
M,d×I,WΩ,H

|y,

this automorphism corresponds to the action of γyh,i in the (h, i)-th entry of Weil(V ∖M)d×I .

Proof. The proof of Theorem 5.8 constructs the action of Weil(V ∖M)d×I on H p
N,I,WΩ,G

|ηI via

the isomorphism H p
N,I,WΩ,G

|ηI
∼→H p

M,d×I,WΩ,H
|βd×I

. So it suffices to see that this corresponds to

the action of γyh,i in the (h, i)-th entry of Weil(V ∖M)d×I on H p
M,d×I,WΩ,H

|βd×I
, which follows

immediately from Proposition 4.12.

5.13

When r = 1, the action from Theorem 5.12 has the following description in terms of the special
fiber of the moduli space of shtukas. First, recall from 3.6 that we can use any ordered partition
of d × I to compute H p

M,d×I,WΩ,H
. Let P be any ordered partition of d × I ∖ (h, i). Then F(h,i)

is induced by the morphism Fr
((h,i),P )
(h,i),M,d×I , so we see from 5.11 that its action on H p

M,d×I,WΩ,H
is

induced by the restriction

Fr
((h,i),P )
(h,i),M,d×I : Sht

((h,i),P )
H,M,d×I,Ω |y→Sht

(P,(h,i))
H,M,d×I,Ω |y.

5.14

The case of general r is more complicated for the following reason. We use Theorem 2.12.b)

to identify Rp!(F
((h,i),P )
M,d×I,WΩ,H

) with Rp!(F
(P,(h,i))
M,d×I,WΩ,H

), which is what enables us to iteratively

compose F(h,i). This identification does not seem to arise from an explicit cohomological corre-
spondence, so for general r and x this impedes us from similarly describing the action of

F(h,i) ◦ Frob∗(h,i)(F(h,i)) ◦ · · · ◦ Frob
r−1,∗
(h,i) (F(h,i))

on H p
M,d×I,WΩ,H

|y. However, when all the xi are disjoint, the yh,i will also be disjoint, so we can

use 2.5 to explicitly identify Sht
((h,i),P )
H,M,d×I,Ω |y with Sht

(P,(h,i))
H,M,d×I,Ω |y via pulling back along δ ◦ γ.
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Therefore we obtain a description of the action from Theorem 5.12 in terms of the special fiber
of the moduli space of shtukas in this case.
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