THE PLECTIC CONJECTURE OVER LOCAL FIELDS

SIYAN DANIEL LI-HUERTA

ABSTRACT. Using a mixed-characteristic incarnation of fusion, we prove
an analog of Nekovar—Scholl’s plectic conjecture for local Shimura va-
rieties. We apply this to obtain results on the plectic conjecture for
(global) Shimura varieties after restricting to a decomposition group.
Along the way, we prove a p-adic uniformization theorem for the basic
locus of abelian type Shimura varieties at hyperspecial level, which is of
independent interest.
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INTRODUCTION

The plectic conjecture was formulated by Nekovai—Scholl [18] as part of
their program for constructing Euler systems beyond the rank 1 case. We
begin by stating the conjecture for ¢-adic cohomology. Consider a Shimura
datum (G, X), and suppose that G is the Weil restriction Rp/q H of a con-
nected reductive group H over a totally real field F' of degree d. Then the
action of the absolute Galois group I'g on conjugacy classes of cocharacters

of G@ extends to an action of the plectic Galois group I‘%l/e(a = Autr(Fo0Q).
Write F%Q for the stabilizer of the inverse Hodge cocharacter [u] in F%l%,
and note that the reflex field E is characterized by I'e = I'g N Fgff}@. For

any compact open subgroup K of G(Ay), write Shy (G, X) for the minimal
compactification of the Shimura variety Shx (G, X) at level K over E.
1
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Conjecture ([I8, Conjecture 6.1][[). The complez TH(Shg (G, X)g Qy) canon-
ically lifts from an object of D*(I'g,Qy) to an object of Db(FEg}Q,@Z).

Note that F%l/ef@ is a much larger profinite group than I'gp. For example,

when F' is Galois over Q, the restriction of I'g C—>FI;7(C@ >~ T4 xSy to Iy

equals a conjugate of the diagonal embedding I'p — F”fm.

We proved a function field analog of the plectic conjecture in [I7]. In
light of this, the plectic conjecture can be viewed as a shadow of multiple-
leg phenomena over number fields. For instance, our proof in the function
field setting crucially used fusion in a moduli space of shtukas with d legs.
Given Yun—Zhang’s formula [29] on interpreting the d-th derivative of an L-
function in terms of cycles on precisely such a moduli space, this perspective
helps explain the conjectural relation with rank d Euler systems in [I§].

Currently, the plectic conjecture is wide open. The goal of this paper is to
prove a version of the plectic conjecture after restricting to decomposition
groups. For this, we use a mixed-characteristic incarnation of fusion in an
essential way.

To state our results, we need some notation. Fix a prime p # ¢, and write
F,, for the étale Q,-algebra F' ®g Qp. The choice of an embedding Q — Q,

lets us realize the plectic decomposition group rplee . AutFp(F®Q@p) as a

FP/QP ’
plec . (1] - . plec
closed subgroup of I';; Q" Write T’ Fo/Qy for the stabilizer of [u] in T’ Fy/Qp and
note that the closure FE, of E in Q) is characterized by I'g, = I'g, N 1—\1;16/0@ .
P p

Our first result concerns the basic locus Shy (G, X )% in the rigid analyti-
fication Shy (G, X )3 of Shg (G, X) over E,. Fix an isomorphism C 5 C,.

Theorem A. Suppose that p # 2 and (G, X) is of abelian type. Let KP be a
compact open subgroup of G(A’}), and let K, be a hyperspecial compact open

subgroup of G(Qp). Then the complex RT.(Shy, r» (G, X)(bcp,@g) canonically
lifts from an object of D*(T'g,,Qy) to an object of Db(I’Effp]/Qp,@g).

Our next result applies in certain ramified cases, when Shy (G, X )?En ad-

mits a p-adic uniformization by the Drinfeld tower. (For what this means,
see . In particular, it implies that Shx (G, X) is projective over E.) Here,
we obtain a result for all of Shx (G, X).

Theorem B. Suppose that Shi (G, X)j%n admits a p-adic uniformization by

the Drinfeld tower as in . Let KP be a compact open subgroup of G(A’}),
and let K, be a mazimal compact open subgroup of G(Qp). Then the complex

'In [18], this conjecture was stated only for compact Shimura varieties, so it instead
used RT'(Shx (G, X)g, Q). For general Shimura varieties, the right replacement seems to
be TH(Sh (G, X)g, Q).
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RT(ShK(G,X)@p,@g) canonically lifts from an object of D*(T'g,, Q) to an

object of Db(l“%}/@p,@g).

We deduce Theorem A and Theorem B from the following analogous
result for local Shimura varieties. Let (G,b, ) be a local Shimura datum
over Qp, and suppose that G is the Weil restriction Rp/q H of a connected
reductive group H over a finite extension F' of Q,. Form Weil group versions

W}[f/](@p - Wl{i%p of the plectic Galois groups from before, and note that the

reflex field E is characterized by Wg = Wg, N W}f)@p.

open subgroup K of G(Q,), write /\?lG’b% k for the associated local Shimura
variety at level K. Recall that /\;lgb%;( has an action of Jb((@p)

For any compact

Theorem C. The complex ch(/\;lG,b,u,K,Cp,@g) lifts canonically from an
object of D*(Jy(Q,) x Wg, Q) to an object of D*(J,(Q,) x Wl[#/}(@p,@g).

Remarks.

(1) Our methods apply more generally to the intersection homology com-
plexes of moduli spaces of local shtukas over any nonarchimedean local
field. See Theorem

(2) Theorem A, Theorem B, and Theorem C also hold with integral coeffi-
cients. More precisely, we can replace Q, with the ring of integers A of
a finite extension of Q containing ,/q. See Theorem Theorem
and Corollary [4.8]

Let us sketch the proof of Theorem C. For simplicity, assume that p is

defined over Q,, which implies that Wl[ﬂ/](@p = W}?%p. Write d for [F: Q).

How can we canonically construct an action of W;l/eé = Wg x G4 on the
p

level of complexes? According to an adaption of Nekovar—Scholl’s vision [I8],
(1.3)] to local Shimura varieties, we want to find a Cartesian plectic diagram

> o « A yplec ”
MG,b,,LL,K » MG,b,/},,K
I

| L

Spa(@p N u(Spa(@p)plecn7

where Q,-sheaves on “(Spa Qp)plec” yield representations of ng/‘gp over Q.
After passing to Scholze’s category of diamonds [24], our proof begins

along these lines. Namely, we introduce a twisted diagonal morphism

m~': SpdQ,/ g, —+(Spd F/¢r)? /S,

as well as a symmetrized version Shtg)b .k —(Spd F/$p)?/S4 of the moduli

space of mixed-characteristic shtukas. Then, we use these to construct a

2In the body of the paper, we will use the notation G, instead of the usual J.
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Cartesian diagram

d
ShtG7bnu'7K Shtg{,)b7u7K

| J

Spd @y /6, " (Spd F/or)/S,,

where Shtgy, , x is the Weil descent of qu% k- This diagram says that

Shtg s,k is obtained from restricting Shtg?h WK along a (twisted) diagonal
morphism, so we regard it as a mixed-characteristic incarnation of fusion.

We want to apply the plectic diagram to a “relative IC sheaf” on Shtgj)b K

over (Spd F/¢r)%/Sy, except there is no general theory of IC sheaves for
diamonds yet. To circumvent this, we define the desired sheaf by hand, and
then we use results of Fargues—Scholze [5] to prove that it is well-behaved.

Another problem is that not all Qg -sheaves on (Spd F'/¢r)%/S4 yield
representations of WP Gver Q. In order to prove that our sheaf (really,

F/Qp
complex) does, we construct another Cartesian diagram

(d) d
ShtH’b%K ——Shthp 0 i

J |

(Spd F/dr)? /&g +—— (Spd F/op)".

Here, ue is a d-tuple of conjugacy classes of cocharacters of Hz derived
52

from p, and Sht%ll,b,u.,K —(Spd F'/¢r)? is the usual moduli space of mixed-
characteristic shtukas with d legs for H over F. Using Fargues—Scholze’s
smoothness result for the intersection homology of Sht‘lif,b,u-, x B, Propo-
sition IX.3.2], along with the fact that the image of m ™! lies in the locus
where (Spd F'/¢r)%/S, agrees with the stacky quotient [(Spd F'/¢r)?/S4],
we conclude the proof of Theorem C.

Remark. To prove Theorem A and Theorem B, we also need a generalization
of Theorem C to finite étale Q,-algebras F'. See Remark [4.10]

With Theorem C in hand, let us return to the global context and sketch
the proofs of Theorem A and Theorem B. Both proofs appeal to p-adic
uniformization theorems for the basic locus of Shx (G, X). In the situation
of Theorem B, the basic locus consists of all of Shx (G, X), and the relevant
theorem is due to Rapoport—Zink [22] and Varshavsky [27]. In the situation
of Theorem A, we prove the following result.

Theorem D. Suppose that p # 2 and (G, X) is of abelian type. Let KP
be a compact open subgroup of G(AZ;), and let K}, be a hyperspecial compact
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open subgroup of G(Qp). We have an isomorphism
G QNG b, x GA)/EP) = Sbi, 1 (G, X)°

of formal schemes over @EU that is compatible with the Weil descent datum
and varying KP.

Here, 931(;71,7%1) denotes the associated integral local Shimura variety over

Op, as in [20, Theorem 2.5.4], Shi, ke (G, X)" denotes the completion of
the integral canonical model Sk, k»(G, X)»_~asin [12, (3.4.14)] along the

basic locus as in [26, p. 16], and G’ denotes the canonical inner form of G
over Q associated with (G, X) as in [7, Proposition 3.1].

Remark. 1f (G, X) is of Hodge type, then G is never of the form Ry, H
unless ' = Q. To see this, note that the Q-split rank of Zg = Rp/q Zn
equals the F-split rank of Zp, while the R-split rank of Zs equals the sum
of the R-split ranks of Zy for all embeddings F'— R. In particular, this is
at least d times the F-split rank of Zg. But the Q- and R-split ranks of Zg
coincide when (G, X) is of Hodge type, which forces d = 1.

Consequently, when considering the plectic conjecture as stated, we must
work beyond the Hodge type case. Alternatively, one could instead formulate
a modification of the plectic conjecture along the lines of [16], which includes
some Hodge type cases, although we do not pursue this here.

We prove Theorem D by developing a theory of connected components for
basic p-adic uniformization at hyperspecial level. This involves interweaving
work of Kisin [13] over the special fiber with results of Pappas—Rapoport
[20]. We then apply this theory to deduce Theorem D from Kim’s results
[10] in the Hodge type case, concluding the proof of Theorem A.

Outline. In §1] we recall facts about the Fargues—Fontaine curve, as well as
introduce the twisted diagonal morphism. In we construct symmetrized
Satake sheaves and prove that they are well-behaved. In we introduce
symmetrized moduli space of local shtukas. In we construct the plectic
diagram and prove Theorem C. In we apply our results to Shimura
varieties and prove Theorem A and Theorem B. Finally, in Appendix [A] we
prove Theorem D.

Acknowledgements. The author thanks Mark Kisin for his advice about
Shimura varieties and their connected components. The author would also
like to thank David Hansen and Michael Rapoport for helpful discussions.

1. FARGUES—FONTAINE CURVES

In this section, we begin by recalling some facts about the (relative)
Fargues—Fontaine curve. Next, we introduce a twisted diagonal morphism
for divisors on the Fargues—Fontaine curve, which is essential for our main
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results. Finally, we recall the moduli of bundles on the Fargues—Fontaine
curve and describe how it behaves under Weil restriction.

We freely use definitions from perfectoid geometry as in [24] and [5].
Unless otherwise specified, we work on the v-site of affinoid perfectoid spaces
over F;. Note that this is equivalent to considering v-stacks over Spd F,,.

1.1. Let @ be a nonarchimedean local field, and fix an algebraic closure Q
of Q. Choose a uniformizer m of @, and write F, for Og/m. For any affinoid
perfectoid space S = Spa(R, R") over F, with pseudouniformizer w, write
Ys o for the sousperfectoid adic space

SpaWo, (R) \ {n[w] = 0}

[5, Proposition II.1.1]. We get a morphism Ygs g — Spa Q, where Q denotes
Wo, (Fy)[2]. Fix an embedding Q — Q over Q. Write ¢ = ¢q for the auto-
morphism of Yg ¢ induced by the lift of g-Frobenius on We,, (RT), and finally
write Xg ¢ for the quotient Yg o/ ©”, which has a morphism X 5,0 — Spa@.

1.2. Write ¢ : Spd Q — Spd Q for the geometric ¢-Frobenius automorphism
over SpdF,. Note that ¢ acts freely by [5, Proposition I1.1.16] and [5]

Proposition I1.1.18]. In particular, the sheaf-theoretic quotient Spd Q/ »r
coincides with the stack-theoretic quotient. Note that we have a morphism
Spd Q/¢” —[*/Wq)] corresponding to the Wq-bundle Spd Q — Spd Q /¢~
Recall that S-points of Spd Q /" correspond bijectively to relative Cartier
divisors of Xg g with degree 1. Write Divb for Spd Q /¢%, and more gener-
ally, write Divé for the sheaf-theoretic quotient (Divb)d /S4. Then S-points

of Divé indeed correspond bijectively to relative Cartier divisors of Xg ¢
with degree d [5, Proposition I1.3.6].

1.3. The following description of how the Fargues—Fontaine curve depends
on the base field plays a crucial role in defining our twisted diagonal mor-
phism, so we explain it in detail. Let F be a degree d finite separable
extension of (). Write Fy for the maximal unramified subextension of @ in
F, and write r for [Fp : Q).

Proposition. We have a natural Cartesian square

XS,F L> XS’Q

|

Spa F'—— Spa @

compatible with base change in S.
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Proof. Note that we have Cartesian squares

11, SpaF%]_[L Spa@%SpaQ

J |

Spa ' —— Spa Fy ——— SpaQ,

where ¢ runs over Homg (Fp, Q) Now the base change of ¢ : SpaQ — Spa Q
to ][], Spa @ is induced by the automorphism IL, Q05 IL, Q given by (a,), —
(¢(apy-15,)):, and we have a similar description for the base change of ¢ to
11, Spa F. After further base changing to Ys g, we get Cartesian squares

[ Ysr— 11, Ysq—Ysq

L]

Spa F' — Spa Fy —— Spa Q)

along with an analogous description of the base change of ¢ : Y5 — Yg g to
I, Ys r. From this, we see that ¢ cyclically permutes the r copies of Ys p,
with " acting on each copy as the automorphism induced by the lift of
absolute ¢"-Frobenius on Ys r. Hence quotienting the top row by ¢? yields
the desired Cartesian square. [l

1.4. To define our twisted diagonal morphism, we will need the following
v-stack version of |23, Theorem (5.1)]. Write [d] for the finite set {1,...,d}.

Lemma. Let Z be a v-stack. Then the prestack whose S-points parametrize
finite étale morphisms T — S of degree d along with a morphism T — Z is
naturally isomorphic to the stack-theoretic quotient [Z9]&].

Proof. Any such T'— S is étale-locally isomorphic to [d] g on the target.

As the v-topology is subcanonical [24, Theorem 8.7], this yields an &g4-
bundle Iso([d],T") on S, and the morphism T'— Z induces an & 4-equivariant

morphism @(@, T)— 7%
Conversely, let M be an G4-bundle on S equipped with an & -equivariant
morphism M — Z%. Then M x%¢ [d] is v-locally isomorphic to [d] g over S,

so it is finite étale of degree d [24, Proposition 9.7]. Postcomposing M — z4
with projections yields a morphism M X [d] — Z, and the &4-equivariance

of M — Z% indicates that this induces a morphism M x4 [d] — Z. O

1.5.  Maintain the notation of Write (Divk)%° C (Divk)? for the com-
plement of all diagonals in (Div})¢, which is an open subsheaf since Divi is
separated [5, Proposition 11.1.21]. Now &, acts freely on (Div})%°, so the
sheaf-theoretic quotient Div?go = (Divk)%°/&, coincides with the stack-
theoretic quotient. Finally, write e for [F' : Fp].

We now define our twisted diagonal morphism for divisors, which is es-
sential for our main results.
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Proposition. We have a natural closed embedding

m~1: Divég —[(Divk)4/64).

-1
Its image lies in Div%o, and the composition Divb "o [(Divk)?/&4] — Divé
sends a relative Cartier divisor D on Xgq to its preimage m~1(D) under
m: XS,F —>X5"Q.

By abuse of notation, we also write m~! for Divb —[(Divi)?/6 4] — Dive.

Proof. Now [24, Lemma 15.6] indicates that Spd F— Spd Q is finite étale
of degree e, so quotienting by appropriate powers of ¢ yields a finite étale
morphism m : Div}p — Divclg of degree d. By Lemma we get a morphism

as desired via sending S — Divb to the data given by the Cartesian square

T —— Divk

|k

|
S‘)DIVQ

Unraveling the identifications in [I.2] and the proof of Proposition [I.3] yields
-1
our description of Div}g "L [(Divk)?/&4] — Divk. From here, the fact that

m is finite étale shows that the image of m™! lies in Div%". Therefore m™!

is injective, and as its target and source are proper [5, Proposition I1.1.21],
m ™! is also proper and hence a closed embedding. O
1.6. Let us recall some facts about bundles on the Fargues—Fontaine curve.
Let G be a connected reductive group over ), and write Bung for the
Artin v-stack over SpdF, whose S-points parametrize G-bundles on Xg
[0, Theorem IV.1.19].

For any b in B(G), write Gy, for the associated connected reductive group
over () as in [22 proposition (1.12)]@ write &, for the associated G-bundle
on Xg ¢ as in [5l, p. 89], and write G} for the v-sheaf Aut(&). We have a
natural morphism G(Q) — éb, which is an isomorphism if and only if b is
basic [b, Proposition II1.5.1].

The map B(G) — | Bung | given by b +— & is bijective [5, Theorem I11.2.2],
and its inverse is continuous for the order topology on B(G) by [5, Theorem
I11.2.3] and [5, Theorem II1.2.7]. For any b in B(G), the resulting locally
closed substack of Bung is naturally isomorphic to [*/ éb] [5, Proposition
I11.5.3].

Remark. The map B(G) — | Bung | is even a homeomorphism [28, Theorem
1.1], but we will not need this.

3While [22] only treats p-adic @, the proof immediately adapts to any Q. Also, we use
the notation G} instead of the usual J, to emphasize its dependence on G.
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1.7.  When you change the base field, G-bundles change as follows. Main-
tain the notation of Let H be a connected reductive group over F', and
take G to be the Weil restriction Rp/g H. Let U be an adic space over Xg g,
and assume that the fiber product m_l(U) =U X Xg.0 X, F is also an adic
space. Proposition [I.3]implies that Gy is naturally isomorphic to the Weil
restriction R,,,—1 )0 (Hu)-

Proposition. The groupoid of G-bundles on U is naturally equivalent to
the groupoid of H-bundles on m~1(U).

Proof. Let G be a G-bundle on U, and write € : Gp,-1(y) = Hp,-1(p) for the
counit of the base change-Weil restriction adjunction. Now ¢ is a morphism
of group adic spaces over m~!(U), so we can form the H-bundle ex(Gm-117))
on m~Y(U).

Conversely, let H be an H-bundle on m~!(U). Since Weil restrictions
preserve finite products, we see that R,,-1),y H is a G-bundle on U. [

1.8. Corollary. We have a natural isomorphism c : Bung — Buny compat-
ible with the bijection B(G) = B(H) from [14, 1.10].

Proof. Apply Proposition to U = Xg,, using the fact that the equiv-
alence commutes with base change in S. Now Proposition [I.7] geometrizes
Shapiro’s lemma, which is precisely how B(G) = B(H) is constructed, so
compatibility with this bijection follows. O

2. SYMMETRIZED SATAKE SHEAVES

To prove our main results, we need to generalize the IC sheaves appearing
in Fargues—Scholze’s geometric Satake correspondence to the symmetrized
setting. We call these Satake sheaves. As there is no general theory of IC
sheaves yet for diamonds, we must construct symmetrized Satake sheaves
by hand. This is our goal for this section.

To this end, we introduce symmetrized local Hecke stacks and Beilinson—
Drinfeld affine Grassmannians. (Conveniently, we also use them in §3| to
define symmetrized moduli spaces of local shtukas.) We then consider sym-
metrized affine Schubert cells, whose basic properties we prove by boot-
strapping from work of Scholze-Weinstein. Finally, we define symmetrized
Satake sheaves and use work of Fargues—Scholze to prove that they are well-
behaved.

2.1.  For any relative Cartier divisor D on Xg g, write By (D) for the ring
of global sections of the completion of Ox , along D, and write Byr (D) its

the punctured version as in [B, p. 190]. Let I be a finite set.
Definition. Write Hck(Gd) ! for the small v-stack over Spd F,, whose S-points
parametrize data consisting of

A [14], Kottwitz only considers p-adic ). However, everything works for general Q.
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i) for all 7 in I, a point D; of (Dide)(S),
ii) two G-bundles £ and £’ on Spec Bi (3o, Di),
iii) an isomorphism o : &|gpec Bar(X;e; Ds) = E'lspec Bar(X;e; Di) of G-bundles.

Write f : Hckgl)[%(Dide)I for the morphism sending the above data to

(D;)icr- When d =1 or [ is a singleton, we omit it from our notation.

2.2. Definition. Write Gr(g)l for the small v-sheaf over Spdﬁq whose S-

points parametrize data consisting of
i) for all ¢ in I, a point D; of (DinQ)(S),
ii) a G-bundle £ on Xg,
iii) an isomorphism « : gl‘Xs,Q\Ziez D, — 5/|XS,Q\Z¢Q p, of G-bundles that
is meromorphic along >, ; D;.

Write f : Gr(Gd)I—>(DiVé)I for the morphism sending the above data to
(Di)ier-

By the Beauville-Lazslo theorem, Definition [2.2] agrees with the pullback
of [5, Definition V1.1.8] via (Divg)! — Dive,”" [B, p. 97]. Under this identi-

fication, the natural v-cover Gr(Gd)I —>’Hck(Gd)I restricts ii) (respectively iii))

to the formal neighborhood (respectively punctured formal neighborhood)

2.3. The symmetrized spaces are related to the unsymmetrized ones as
follows. Write d for [d] x I. We have Cartesian squares

Hckg)l —= ’Hcké“ and Gr(g)l —z GrdGXI

N N O

(Div))! +=— (Divk)?! (Div)! +=— (Divh) ™,

where the ¥ send (x4,)pe(q)ier t0 (Zi:l xp;)icr and preserve all other data.
Note that &) acts on the right-hand sides via permuting the (Th,i)neld)icTs
and the X are invariant with respect to this action.

2.4. We consider a symmetrized version of affine Schubert cells. Let T be
a maximal subtorus of G over @, and write X (T) for the set of dominant
cocharacters of Ty with respect to a fixed Borel subgroup B C G containing
T@‘ Identify X7 (T) with the set of conjugacy classes of cocharacters of GQ.

Let 61,...,0, be a partition of d x I refining the partition given by the
([d] x {i})ier, let pa,...,px be in X(T), and write E; for the field of
definition of p;. Write e = (kn,i)ne[qier for the element of XFH(T)™!
defined via setting p5,; = p; for all (h,4) in d;.

Definition.
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a) Write ’Hck‘gé .., for the substack of
k . .

whose S-points consist of ((w4,)nefa)icr, €, €’ @) such that, for all geo-
metric points 5 of S and (h,7) in d x I, the relative position of az at zp, ;5
is bounded by >,/ i1y ir, Where (h/, i) runs over elements of d x I that
satisfy xps 5 = xp ;5. Write HckdXI - HckdXI , for the substack where
the relative position of oz at x5 equals Z( Wit ) b it -

. (d)I . dx1 (d)I ko e #0;
b) Write Hcke, <, for the image of HckGX<H in Heky,”" x (Divi )T | DlijJ

under ¥, and write Hck(d)l CH k(G )< for the image of Hcdele..

Write Gr(Gd)é e (respectively Gr(G) ) for the preimage of Hck(G)< (respec-
tively ’Hckg)li) under

d)I k . &5 d)I k . 0,
Gre" X oy yr Ty Divyy” = Hek x s TT)-y Divg”

2.5. The following lemma enables us to check properness after passing to
certain v-covers on the source.

Lemma. Let f: Z' — Z be a morphism of v-stacks. Let 77 be a surjec-
tion that is representable in locally spatial diamonds, and write f 7' 7
for the base change of f to Z. If f is proper, then f is proper.

Proof. By [24], Proposition 10.11], we see that f is quasicompact and sepa-
rated. As for universally closed, let S — Z be a morphism from a perfectoid
space S, and consider ' = Z' x; §— 8. Now S := Z x5 S is a locally
spatial diamond with a surjective morphism S — S, so |S| — |S| is a quotient
map by [24, Proposition 11.18.(i)], [24, Lemma 12.11}, and [24, Lemma 2.5].
The same holds for the base change S — 8" of Z' — Z. Since fis universally
closed, we see that | S’ | —|S] is closed. This implies that || —]9] is closed,
as desired. O

2.6. Proposition. The morphisms ’Hck(Gd)iu. — ’Hckgl)l X (Divih )T H§:1 Divﬁfj

and Grg)gl e Grgj)l X (Divi)1 H?:l Div Ejj

morphism f : Grg)ém —>H§:1 DivEfj is proper, representable in spatial di-

amonds, and of finite dim. trg.

are closed embeddings, and the

Proof. By applying [24], Proposition 10.11.(i)] to the Cartesian square

d)I AT
Gr(G’)S e %Ck(G,)gu.

J J

)T ko i 70 I b DivE
Gry * oiviyyr Ij=1 Divg” —— Mok % oivgyr L= PVE
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we see that it suffices to prove the statements about Grg)i e Note that the

(Div}gj)‘sﬂ' — Div Ejj are quasi-pro-étale covers [5, Proposition I1.3.6] and sep-

arated, so they are representable in locally spatial diamonds [24, Proposition
13.6]. From here, the Cartesian square

(d)1 = dxI
GrG:S)u" GrG7§/‘L'

I |

k . #0; X k . .
[T- Div ” < Hj=1(D1V}Ej)6]’

Lemmal[2.5] [24, Proposition 10.11.(0)], and [24, Proposition 13.4.(iv)] reduce
this to the analogous statements for GrdGXé e The latter follow from [25|

Proposition 20.5.4] by further pulling back to H?Zl(Spd Ej)‘sﬂ'. O
2.7. Corollary. The morphisms Hck(g)/i — Hck(Gd)SIM. and Gr(C?)qu — Grg)éu.

are open embeddings, and the morphism f : Grgi)li —>H§:1 Divﬁjj 18 com-

pactifiable, representable in locally spatial diamonds, and of finite dim. trg.

Proof. This follows from Proposition and the separatedness of Divy, . O

2.8. 'We now define Satake sheaves on our symmetrized local Hecke stacks.
Write j,, : Hckg):. %Hckgl)l X (Div)! H§:1 Divﬁfj for the locally closed
embedding, write 2p for the sum of all positive roots of G, and set d,, =
Zhe[dhel@p, fehi)- Let A be the ring of integers of a finite extension of Q

containing /q. Recall the perverse t-structure from [5, Definition VI.7.1],
and write ICELd.)I for the complex PHO(j,,1A[d,.]).

Proposition. Our ICELC?I 18 flat perverse and universally locally acyclic over

H?:l Diijj. Moreover, its pullback under ¥ is naturally isomorphic to

IszI, and the latter is isomorphic to the fusion product *peja)icr 1C,, ;-

Proof. By applying [24, Proposition 22.19] and [5, Proposition VI.7.4] to the
Cartesian square

(d)I z dxI
’HckG% HckGfu.
Jj#o J/juc

)1 ko o #6 % k .
HCk(G) X (Div)T IT;= Divp 7 «—— HdeGXI X (Divg)axT Hj:1(D1V115’j)5],
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we see that E*(IC,(ﬁ)I) = ICz.XI. Now [0, Corollary VI.7.6] and [5, Proposi-
tion IV.2.5] enable us to work v-locally on the base, so the Cartesian square

Hck(g{f. = Hek& T

I |

k . #E;X k . .
| Divp 7 Hj:1(D1V}Ej)6J

indicates that it suffices to prove the statements about IszI . After passing
to a further v-cover, we may assume that G is split over @, so the E; = Q.

Note that j,,1A[d,,] lies in ngﬁo(HcdeXI, A)P4. Using the notation and
results of [5, Proposition VI.7.4], this implies that the shifted constant term
CTg(ju.1Aldu.])[deg] lies in DéStO(Gr%XI,A). By specializing to the Witt
affine Grassmannian and comparing with Mirkovié—Vilonen cycles as in the
proof of [5, Proposition VI.7.5], we see that

CTp(ICL ) [deg] = H(CT(ju, 1 Ald,,])[deg])

is locally finite free over A, where the equality holds via [5, Proposition
VI1.7.4]. Thus [5, Proposition VI.6.4] shows that ICif] is universally locally
acyclic over (Divb)l , and [0, Proposition VI.7.7] shows it is flat perverse.
To identify ICz.XI with the fusion product, [5, Proposition VI.9.3] indicates
that it suffices to restrict to (Divb)d” . Here the proof of [5, Proposition
V1.9.4] shows that the fusion product equals the restriction of the exterior
tensor product, so the result follows from the Kiinneth formula. O

3. SYMMETRIZED MODULI SPACES OF LOCAL SHTUKAS

To form the plectic diagram in we need to generalize moduli spaces of
local shtukas to the symmetrized setting. We begin by defining them and
proving their basic properties. Next, we prove a smoothness theorem for
their homology by reducing to the unsymmetrized special case, where it is
a result of Fargues—Scholze.

At this point, we turn to the special case of local Shimura varieties. We
recall Scholze-Weinstein’s comparison with Rapoport—Zink spaces in the
(P)EL case, and we conclude by proving an analogous comparison with
Rapoport—Zink spaces at hyperspecial level in the unramified Hodge type
case. We use this comparison in Appendix [A]to prove p-adic uniformization
results for global Shimura varieties in the unramified abelian type case.

3.1. Let b be in B(G). We start by defining the unbounded version.

Definition. Write Shtgi)l for the small v-sheaf over Spd F, whose S-points

parametrize data consisting of
i) for all i in I, a point D; of (Div})(S),
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ii) an isomorphism o : & |x, 0~Y,er Di = & xs oY, D; of G-bundles that
is meromorphic along » ;. D;.
In other words, Sht(Gd)bI is defined by the Cartesian square

Sht{ry —— Gri’

|, |

x* ——— Bung,

where the right arrow sends ((D;)er, £, «) to £'. Hence Sht(Gd)bI has com-

)

muting actions of G(Q) and G(Q) via and composition with a. Write
f: Shtgl)bl —>(Divé)l for the morphism sending the above data to (D;)cr.

3.2. Next, we use Definition [2.4] to define the bounded version.

Definition. Write Shtg)l< " for the preimage of Grg)é e under

()T k . #H0; d)I k . F#5;
Sht(Sy % iy Ty Diviy” = Gr&' x a0 T Divy”
Note that Sht(Gd?b{S ..o 15 preserved under the actions of G(Q) and G3(Q). For
any compact open subgroup K of G(Q), write Sht(Gd)I< so K for the quotient

Shtg)bl<u. /K, and write fx : Shtg)l<u. K —)Hle Divﬁjj for the induced

morphism.

By Proposition [2.6] the morphism

a1 d)I k . #6;
Sht S hyiy — Sty X (ot yr [Ty DIV
is a closed embedding.

Remark. We consider Sht(Gd)bI <jie K OVET H;?:l Div Eaj instead of pulling back

J
to H?Zl(Spd Ej)‘sﬂ' because it naturally incorporates partial Frobenius mor-

phisms. For example, this yields a cleaner plectic diagram in Proposition
4.0l

3.3. Proposition. The morphism fx : Shtg)bl<u_ K —>H§:1 DivEfj 18 rep-

resentable in locally spatial diamonds.

Proof. Note that an S-point of Shtg)bl /K consists of

i) for all i in I, a point D; of Div$y(S),
ii) a G-bundle £ on Xg ¢ such that, for all geometric points 5 of S, the
fiber & is trivial,
iii) an isomorphism o : S‘XS,Q\ZiGI D, — 5b‘XS,Q\ZieI p, of G-bundles that
is meromorphic along >, ; D;,
iv) a K-bundle P on S whose pushforward along K — G(Q) equals the
G(Q)-bundle on S corresponding to & via -
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Because [x/G(Q)] — * and [x/K] —[*/G(Q)] are separated by [24, Proposi-

tion 10.11.(ii)], we see that fx is separated. As the (DiV}Ej)‘sﬂ‘ —>Div§jj are
quasi-pro-étale covers [B, Proposition I1.3.6], the Cartesian square

(I Py dx T
Sht Gy <pua i ¢ Sht Gy <pa i

)

lf}( JfK
k - O Py k . )
Ili= Dlvﬁjk A Hj:1(D1V11Ej)6J

and [24] Proposition 13.4.(iv)] show that it suffices to prove that the right
arrow is representable in locally spatial diamonds. But this follows from [25,
Theorem 23.1.4]E|, upon further applying [24, Proposition 13.4.(iv)]. O

3.4. Recall the following result of Fargues—Scholze for the homology of
Shté’bé#.,K. Write ’ICLd,)I for the object of Dl(Sht(Gd,)bI,gu.,KaA) obtained
from IC,Sd)I by first applying the double-dual embedding as in [5, p. 264]

and then pulling back to Sht&), -, -

Theorem. The object fKu(’IC/Ih) of Da([*/Gy(Q)] X [Licr Div};i,A) arises
via pullback from

Diis([#/Gp(@)], A) P Thies Wei C Da([/Gy(Q)] % [#/ITics W] A)-
Proof. Recall that [x/Gp(Q)] arises from quotienting fx by Gy(Q). View

the p; as dominant coweights of é, and recall that their associated Weyl
I/r\lodules V,,; naturally have a Wg,-action compatible with the W, -action on
G. Hence [5, Theorem VI.11.1] associates with V' = X;c;V,,, a flat perverse
sheaf on ”Hcké X (Divh)! [Licr Div}gi that is universally locally acyclic over
[Lics Div}Ei. Proposition indicates that this complex is precisely IC,,.
Thus the desired result is [5], Proposition 1X.3.2], except we opt to work over
[Licr Div}Ei rather than pulling back to [[;.; Spd E;. O
3.5.  We descend Theorem to the symmetrized setting as follows. Note
that H§:1 Ss, acts on Shthbe,gu.,K via permuting the (zp:)ne(a),icr, and
fr - Shtéfb{ <he K —>H§":1(D1V%Ej)5j is equivariant with respect to this ac-
tion. Hence fry('IC%*T) descends to an object Hﬁ)[ of Du([*/Gp(F)] %
[, [(Divi;, )% /&), A) by [24, Proposition 17.3].

j=1
Proposition. The object Hfﬁ)] arises via pullback from

D[/ oY), )P TE V575 € D/ Gy(F)] x [+ T, W 0 655, A).

5Now [25] only discusses the @ = Q,, case, but the proofs adapt to any Q. Indeed, this
is already implicitly used in [5, Proposition XI.3.2].
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Moreover, the restriction of H(d)l to [%/Gy(F)] x H?:1 Diijj’O is naturally

isomorphic to the restriction of fKu(’IC(d)I),

Proof. The first claim follows from Theorem 3.4} and [24, Proposition 17.3],
since we have a commutative square

[T, [(Divh )% /65) ¢+ 1L, (Divk, )%

| J

5 s 8
[*/H?:l Wi, % 6;] «—— [*/Hle Wi

To prove the second claim, it suffices to see that the pullback under %

of the restriction of fKu(’IC,(f?I) to H§:1 Diijj " is naturally isomorphic
to the restriction of fKu(/ICﬁfI) to H?Zl(Div}%)‘sﬁo. Now Corollary [5)

Proposition IV.2.15], and [5, Proposition VII.4.1] indicate that E*(/IC;{ I) =
'ICﬁfI . So the result follows from the Cartesian square

(I b dxI
ShtG7b’§,u'.7K ShtG7b7§;u'.7K

lfK lf}(
k . #0; % k . ,
Hj:l DlVEjj +—— szl(Dlv}Ej)‘sa
combined with [5, Proposition VII.3.1.(iii)]. O

3.6. Let us recall the special case of local Shimura varieties. In this subsec-
tion, take @) = Qp, d =1, and I to be a singleton. Suppose that (G, b, u1) is
a local Shimura datum as in [2I), Definition 5.1]. Then there exists a unique
smooth rigid space Mg,k over E for which M?},b,u,K is isomorphic to

Shtag p,<pu K X Divk Spd E over Spd F¥ [25, p. 225]. Note that the étale period

morphism implies that /\jlg,b% K has dimension d,.
By applying [25, Proposition 10.2.3] to the isomorphism

Sht(; b,<p,K XDivl Spd E = @E(Shtg b<u,K XDivl Spd E)

arlsmg via pulling back from Div} 5, we get a Weil descent datum on MG by, K
over E. We similarly obtain an action of G,(Q,) on MG b, K Over E.
Write MG,b,u for the locally spatial diamond Shtqg </, X DivL Spd E.

3.7.  Maintain the notation of EL type and PEL type Rapoport—Zink
spaces can be viewed as local Shimura varieties as follows. In the EL case,
let ® = (B,0g,V,b, 1, L) be an EL datum relative to F, in the sense of
[22, definition (3.18)]. In the PEL case, where p # 2, additionally include
(+,-) and = as in [22, definition (3.18)]. Suppose that G is the associated
connected reductive group over Q, as in [22], (1.38)], and for any compact
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open subgroup K of G(Q,), write MQK for the associated smooth rigid
space over E as in [22, (5.34)]. Recall that l\v/Ig,K enjoys a Weil descent
datum over E [22 (5.47)] as well as an action of G3(Q,) [22, (5.35)].

Theorem. We have a natural isomorphism l\v/I@’K = MGJW,K that is com-
patible with the Weil descent datum, the Gy(Qp)-action, and varying K.

Proof. This follows from [25, Corollary 24.3.5] and its proof. O

3.8. Maintain the notation of 3.6l Unramified Hodge type Rapoport—Zink
spaces can also be viewed as local Shimura varieties as follows. Assume that
p # 2, adopt the notation of and suppose that (G, b, u) is of Hodge type
as in [I0, Definition 2.5.5]. Write RZ¢, for the associated formally smooth
formal scheme over O as in [10, Theorem 4.9.1]. Recall that RZ¢ ) enjoys

a Weil descent datum over O [10, Definition 7.3.5] as well as an action of
Gp»(Qp) [10, Section 7.2].

Theorem. We have a natural isomorphism RZg 1)93?@@“ that is compat-
ible with the Weil descent datum and the Gy(Qp)-action.

Proof. By [25], Proposition 18.4.1], it suffices to construct this isomorphism
between the associated diamonds. Let A be the faithful algebraic representa-
tion of G over Zj, as in [10, Definition 2.5.5]. By definition, the corresponding
closed embedding G — GLj, of group schemes over Z, induces a morphism
(G, b, 1) —(GLy, b, 1/') of local Shimura data, where the latter arises from
an EL datum (Qp, Zy,, A ®z, Qp, b', 1/, {pZA}) relative to F, as in

Now [25 Theorem 25.1.2] and [10, Theorem 4.9.1] give us a closed embed-
ding RZgp — ffnGLh,b’,,u’a and [19, Proposition 3.6.2] gives us another closed
embedding 931@71;#—>SZUTIGL,L71,/7M/. Applying [24, Lemma 12.5] to the inclu-
sions of 95?@5,,# ﬂRzg’b into ffTIGJJ,“ and Rzgvb enables us to check the desired

result on geometric points, where it follows immediately from [25, Theorem
17.5.2] and [I, Theorem 9.10]. O

Remark. We could similarly obtain a natural isomorphism between the
smooth rigid space RZIG(’b over F as in [10, p. 91] and /\;1071,7“,;( that is
compatible with the Weil descent datum, the G4(Qp)-action, and varying
K. However, we will not need this.

4. THE PLECTIC CONJECTURE OVER LOCAL FIELDS

Our goal for this section is to prove Theorem C. First, we apply the
twisted diagonal morphism from to construct the plectic diagram for
local Hecke stacks. For this, we elaborate on an observation of Nekovai—
Scholl to generalize the twisted diagonal morphism to account for plectic
reflex fields. We then prove that the symmetrized Satake sheaves from
are compatible with the plectic diagram.
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From here, we deduce the plectic diagram for moduli spaces of local
shtukas, as well as the plectic conjecture over local fields. Finally, we spe-
cialize to the case of local Shimura varieties, proving Theorem C. We also
explain how to extend our results to general finite étale (Q-algebras F', which
we use in §5| to prove our results on global Shimura varieties.

4.1.  We begin with the local Hecke stack incarnation of the plectic diagram.
Recall the notation of Proposition

Proposition. We have a natural Cartesian square

mfl I
Hekl, " gD

Lo

.1 (m .
[Licr Dlvb Div .

4 H
Proof. Recall that an S-point of Hcké consists of
i) for all 7 in I, a point z; of (Divé)(S),
ii) two G-bundles £ and &’ on Spec Big (3;c; i),
) = E'lspec Bar (¢, xi) Of G-bundles.

i€l

iii) an isomorphism a : Egpec (X i
1

By applying Proposition to Spec Bjx (3;c; @i) and Spec Bar(>;c; i)
and using Proposition we see that ii) and iii) are equivalent to two H-
bundles F and 7’ on Spec Bi; (3,c; m™*(2;)) along with an isomorphism

/B : f‘SpechR(Zielm—l(xi)) ;f/’SpechR(ziE[m—l(xi))

of H-bundles. Together with i), this is precisely the data parametrized by
the above fiber product. O

4.2. To proceed, we need the following elaboration of [I8, Proposition 5.2]
on plectic reflex groups. Let S be a maximal subtorus of H over F, and take
T to be the Weil restriction RpqS. Then the Wg-set X;F(T) is induced
from the Wg-set X;7(.9), so the Wp-action on X7 (T) naturally extends to

a Wg%—action via the canonical map Wy — W}I;),l/eé [16], (4.1.5)]. For any u

in X} (T), write W[[TH/]Q for the stabilizer of u in ng/‘g_

Proposition. There exists an enumeration of representatives for Wgo/Wp

in Wq such that, under the resulting identification W;l/eé = Wlﬂi X Gy, the
(1]

subgroup WF”/Q corresponds to H§:1 Wf,j X &g, for some partition dy, ...,
of [d] and finite separable extensions Fi,...,Fy of F.

Proof. Any enumeration of representatives for Wg/Wp in Wg yields an

identification X} (T) = X;F(S)? such that the action of ng/eé > Wi x &y

is the natural one. View u = (p4)ne[q as an element of XF(S)?, and choose
our enumeration of representatives such that, if pup and pp lie in the same
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Wpg-orbit, then u, = pp. Partitioning [d] according to these Wg-orbits
and letting W, be their corresponding stabilizers in Wy yields the desired
result. O

4.3. Maintain the notation of Proposition and write E for the field of
definition of u. Let us introduce a version of the twisted diagonal morphism
that encapsulates the relation between reflex fields and plectic reflex fields.

Proposition. We have a natural commutative square

-1
Divy, — [T}, [(Div}, )% /&5

L]

Divy, ——— [(Div})?/&4]

that realizes Div}g as an open and closed subspace of the fiber product. More-
over, we also obtain a commutative square with the same property after re-

placing the right arrow with H?:l DivFjj — Dive..

Proof. The proof of [25, Theorem 16.3.1] shows that the finite étale funda-
mental group of (Div})? is T'4. Thus the finite étale fundamental group of
[(Div})4/&4] is T4 x &4, and its finite étale cover

[1j—1 [(Div},) /&6,] = [(Div)?/&4]

corresponds to the open subgroup H§:1 F% X G,
Using our enumeration of representatives for Wg /Wp in Wg from Propo-
sition we see that the map on fundamental groups induced by

m~": Divg, —[(Divk)?/6,]
is precisely I'g — F%l% >~ T4 x S,4. Note that Wg equals the intersection of
W}f/]Q with Wg, so Proposition indicates that the pullback of
[T} [(DivE, )% /&5,] —[(Divi)?/&4]

to Dile has a connected component corresponding to the open subgroup I'g
of I'g (using the fact that absolute Galois and Weil groups agree on profinite
completions). The latter corresponds to the finite étale cover Div}g — Div({?7
as desired.

By Proposition the image of m™! lies iné Div%o. The preimage of
Div® in [T5_,[(Divh, )% /&) lies in [[E, Divi*®, so [L.5] implies the last
statement. O



20 SIYAN DANIEL LI-HUERTA

4.4. The plectic diagram in Proposition [.1]restricts to affine Schubert cells
as follows. Let 1o = (f1;)icr be an element of X} (T')!. For any i in I, write
E; for the field of definition of ;. Applying Proposition to p; yields
a partition &;1,...,0;, of [d] = [d] x {i} and finite separable extensions
Fi1,...,Fi, of F', and the proof of Proposition also yields p; 1, ..., fik;
in X;(S). Applying Proposition yields a natural morphism

—1 . .1 kz . #6J
m .Dlin—>Hj:1D1vFj .

As we vary ¢ over I, altogether we obtain a partition d1,...,6d; of [d] x I,
elements p1, ..., u, of X;F(S), and finite separable extensions Fi, ..., F}, of
F as in@ By abuse of notation, we also write p, for the associated element

of X; ()™ as in2.4]

Proposition. We have a natural Cartesian square

m—l I
Hokl, <.~ Hek (DL

J,f Jf
(m=HI _ g

.1 . #;
[L;c; Divg, —— j=1 Divp .

Moreover, we also obtain a Cartesian square after replacing Hckééu. and
Hckg)ém with HCkéyu- and Hckgﬂ., respectively.

Proof. Pulling back Proposition [4.1] to the top row of Proposition [4.3] gives
a Cartesian square

. q (m™H! )1 k . #6;
HCké X (Divh)! [Lic: DlV}Ei — >H0kgﬁ1) X (Divd)T Hj:l DIVFjJ

. (m=1H)! . HS
Hie[ Dlv}zi H§:1 Dlvﬁ_ E

From here, the desired results follow by checking on geometric points. [

4.5. Recall the notation of Proposition [2.8

Corollary. The pullback of ICEi)I under (m~Y! is naturally isomorphic to
IC;., .

Proof. Proposition and [5, Proposition VI.7.4] indicate that the PH? is
preserved. The Cartesian square

(m~H!

d)I
Hckla e Hckg{?u.

| |-

.1 (m™Hf I k . HS
Hekl X oivt) [ier Div, —— k(D! x (oiviy [—1 Divi”
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and [24, Proposition 22.19] indicate that the j,, is preserved. O

4.6. Maintain the notation of Proposition[d.4] view b as an element of B(H)
via the bijection B(G) = B(H) from [I4, 1.10], and view K as a compact
open subgroup of G(Q) = H(F'). We arrive at the plectic diagram for moduli
spaces of local shtukas.

Proposition. We have a natural Cartesian square

—1\I
I (m™1) (d)I
ShtG7b7§u07K ShtH7b7§MO7K

-

—1\I
-1 (m ) k . #(5]'
[Lie;Divg, —— 11— Divp ™.

Proof. Note that an S-point of Sh‘cé@S 4o Consists of
i) for all ¢ in I, a point D; of (Divy,)(S),
ii) an isomorphism a : & x, o~Sics Di = &l xg o~Tie;s Di of G-bundles that

is meromorphic along ). ; D; and satisfies the relative position bound

from Definition [2.4]a).

By applying Proposition to X5\ > ,cr Di, using Corollary to iden-
tify the bundles, and using Proposition [£.4] to compare relative position
bounds, we see that ii) is equivalent to an isomorphism

el

B &1lxg p e m1(Ds) = Eblxg 5, m1(D2)

of H-bundles that is meromorphic along >, , m~!(D;) and satisfies the rel-
ative position bound from Definition b). Therefore we obtain a Cartesian
square

—1\I
Shté‘,béu. o) Shtgi)bl,ﬁu.

| |

—1\I
-1 (m ) k . #6]‘
[Lie; Divg, — T4 Divi ™.

Quotienting the top row by K yields the desired Cartesian square. ]

4.7.  'We now prove the plectic conjecture over local fields.

Theorem. The object th('ICfL_) of Dis([x/Gp(Q)], N)Bict Wei canoni-
k i
cally lifts to an object of Dlis([>|</Gb(Q)],A)Bl_[j:1 Wi xSa;.

Proof. First, I claim that the pullback of fy(’ IC;(f?I) under (m~1)! is nat-
urally isomorphic to th('IC;Z.). By applying Corollary [5, Proposition
IV.2.15], and [5, Proposition VIL4.1], we see that (m~1)!*(1C{2") = "ICL .
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Hence the claim follows from combining Proposition With [5, Proposition
VIL3.1.(iif)].

By modifying the claim using Proposition [I.5 and Proposition [3.5 we
also see that the pullback of HDY! ynder (m~H! is naturally isomorphic to
f Ku(’Ith ). Proposition [3.5/also indicates that Hﬁ)[

& 5
Dyis([*/Hy(F)), A)BHj:1 WF§ xS

the commutative square

arises via pullback from

7, so the identification Gy(Q) = Hy(F') and

(m~H!

[Ticr Divis, —— [Tj_1 [(Div}, )% /&)

| |

[/ TLies We] —— /15 WE % 65

enable us to conclude. O

4.8. Let us specialize Theorem [£.7] to the situation of proving Theorem
C. Write fx for the structure morphism Mg, .k — Spa E, and recall that
RfrA is naturally an object of Dys([*/Gy(Q,)], A)BWE [5, Theorem I1X.3.1].

Corollary. The object RfiiA canonically lifts to an object of

k 5;
B Hj:l WF; ><165j

Dyis([*/Go(Qp)], A)
Proof. Now [9, (7.5.3)] indicates that A is isomorphic to Rf} A(—d,,)[—2d,].
Therefore RfxiA is isomorphic to RngRf}{A(—d#)[—2d#]. As in the proof
of [B, Theorem IX.3.1], we can identify RngRfI!(A with fgy('IC,), which

k 5j
canonically lifts to an object of Dys([*/Gs(Qp)], A)BH":1 Wr; s by Theo-
rem H Furthermore, because d,, = Zk dy; - #4;5, we explicitly see that

j:l
k 5j
B Hj:l WFj ><165], .

A(—d,,) also canonically lifts to an object of Dys([*/Gs(Qp)], A)
Hence taking shifts and tensor products yields the desired result. O

4.9. To extend our results to finite étale Q-algebras F', we need the Kiinneth
formula for relative homology. This does not seem to be written down yet
in the 5-functor formalism of [5, Chapter VII], so we record it here. In this

subsection, A is any solid 2p—algebra.

Lemma. Let f : X =S and g : Y =S be morphisms of small v-stacks,
and let A and B be objects of Da(X,A) and Du(Y,\), respectively. Write
h:X xgY — S for the structure morphism. Then we have a natural iso-

. * .]L * ~ .]L
morphism hy(pri A ®@g prs B) = fLA @z B.
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Proof. By [5, Proposition VII.3.1.(i)] and [5l Proposition VII.3.1.(iii)], we
have natural isomorphisms

* .]L * ~ * .IL ~ * .IL,
proy(pri A @5 pry B) = (pry, pri A) @xB = (¢" fyA) @xB.

Applying gy to both sides and using [5, Proposition VIL.3.1.(i)] again yield

* .]L * ~ * .]L ~ .]L
hy(pr1 A @5 pry B) = g4 ((9" f1A) @xB) = fiA @5 gy B. a

4.10. Remark. The results of §I}-44] generalize to finite étale Q-algebras F'.
We explain how this works when I is a singleton. Write F as [[;_, F}, where
Fy is a degree d; finite separable extension of Q).

a)

We have a natural Cartesian square

[T Xs.n —— X5

| |

SpaFF—— Spa @,

which induces a natural closed embedding m™" : Divb -1, Div;l}l.

Let H be a reductive group scheme over F' with geometrically con-
nected fibers. Write H as chzl H;, where H; is a connected reductive
group over Fj, and let S; be a maximal subtorus of H; over F;. Then
T =1I_, RF,/q Si is a maximal subtorus of G = Rp/q H, and we can
identify X, (T') with the product of the Wg-sets induced from the Wpg,-
sets X;7(S;). Hence the Wy-action on X (T) naturally extends to a

ngl/‘g = [T/, ngll?zg—action via the canonical map Wg — Wlfll/eé.

Let p be in X (T), and write W}f)@ for its stabilizer in ng/eé. Then there
exists an enumeration of representatives for Wy / W, in Wg for all 1 <

I < ¢ such that, under the resulting identification WP o IT-, ngl X

FéQ =
Sy, the subgroup Wl[f/}Q Lj

corresponds to [[j_; Hf’: 1 Wi? %8s, where
the 0;1,...,01 is a partition of [dj], and the FM,...’,FL;@Z are finite
separable extensions of Fj.

Write E for the field of definition of u, and write y; for the component
of p in the factor induced from X7 (S;). Write b; for the component of b
in the factor B(H)), let K; be a compact open subgroup of H;(F;), and

take K = [[;_; K;. Then we have a natural Cartesian square

m~! c (dp)
ShtG,b,Su,K — Hl:l ShtHl,bl,g,ul,Kl

J/fK J{ch=1 fK

—1
.1 _m c ki 1y 7005
Divy a1 = Hj:l DlVFlJ- :
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e) By using Theorem part d), and Lemma one proves that the
object fry('IC,) of Dys([x/Gp(Q)],A)BWE canonically lifts to an ob-

c Ky 6l7j
A)B [T T2 WFM %8s, ; '

ject of Dys([x/Gp(Q)], Consequently, when in
the situation of the complex of compactly supported cohomology
of Map ik With coefficients in A also canonically lifts to an object of
S .
BIIC, TT5L, Wibi x6s,
Diis([#/Gp(@p)], A)™ =171 0 00

5. APPLICATIONS TO SHIMURA VARIETIES

At this point, we shift focus to a global context. Our goal in this section
is to prove Theorem A and Theorem B. We start by describing the relation
between decomposition groups and plectic decomposition groups. Next,
we recall p-adic uniformization results of Rapoport—Zink and Varshavsky
for Shimura varieties by Drinfeld towers, as well as analogous results for
Shimura varieties in the unramified abelian type case from Appendix [A] We
conclude by using these results to prove Theorem A and Theorem B.

5.1. Let F be a degree d finite extension of Q, and write Q for the algebraic
closure of Q in C. Write F}, for F ®g Qp, and recall that F), = [[,, F., where

u runs over places of F' above p. Write F%l;/c@p for Autp, (F' ®q @p), and fix

an isomorphism 7 : C = C,,.
Proposition. We have a natural Cartesian square

FQP Fplec

J Fp/Qp
plec
g —— TR,

plec

where each arrow is a continuous injective homomorphism. Moreover, I'}, /0
P P

. . . . plec
is naturally identified with ], FFU/QP'

Proof. Note that F ®g Q is the integral closure of F in F ®q @p. Hence
restriction to F ®g Q yields the right arrow. The top arrow is given by
v +— idr ®q7, from which commutativity is immediate. Next, the natural

. . . plec ~ plec 1 . . .
identification I' Fo/Qp = IL.T Fu/Q, follows from the F)-linear identification

F®@@PgFP®Qp@p%HuFu®Qp@p'

Finally, let ¢ lie in I’I;G/CQ , and suppose that its restriction to F ®@g Q lies in
p p . _

the image of I'g. Then § preserves Q in F' ®qg Q, and its Q,-linearity shows

that § also preserves @p in F®q @p. Hence § arises from an element of I'g,,

as desired. O
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5.2. Let H be a connected reductive group over I, and write G := Rp/q H.
Let S be a maximal subtorus of H over F', write T":= Rp/q S, and let u be
in X;(T). Write E for the field of definition of x, and write E, for the field
of definition of uc,.

Corollary. We have a natural Cartesian square

FEU SN F[#]

‘/ FP/QP
T —wﬂ%,

and E, is the closure of E in Cp.

Proof. Because I'p (respectively I'g, ) equals the stabilizer of p in I'g (re-
spectively I'g, ), this follows immediately from Proposition (]

5.3. Maintain the notation of and assume that F' is totally real. We will
consider two situations: the Drinfeld case in[5.4], and the unramified abelian
case in In both situations, we will have a Shimura datum (G, X), and
take p to be its inverse Hodge cocharacter. For any compact open subgroup
K of G(Ay), write Shg (G, X) for the associated Shimura variety over FE,
and write Shy (G, X )aEfl for its rigid analytification over E,.

Write b for the unique basic element of B(Gq,, uc,), and recall that G
has a canonical inner form G’ over Q such that

a) G(’@p is isomorphic to (Gg, ), over Qy,
b) G"M; is isomorphic to G av Over Ai’c,

¢) Gy is anisotropic modulo center over R
[7, Proposition 3.1].

5.4. Let us describe the Drinfeld case, which refers to one of the following
two subcases:

i) Let A be a quaternion algebra over F, and suppose that A splits at a
nonempty set of archimedean places 001, ...,00; of F. Forall 1 <i <t
the composition n o co; induces a place u; of F above p. Suppose that
the places u1,...,u; are distinct and that A is not split at said places.

Take H to be the unit group A* over F, and take (G, X) to be the
associated Shimura datum as in [27, 5.1].

ii) Let F. be a totally imaginary quadratic extension of F', let A be a central
simple algebra over F, of dimension n2. and let * be an involution of
the second kind on A over F. Suppose that * has signature (n—1,1) at
a nonempty set of archimedean places coq,...,00; of ' and signature
(n,0) at all other archimedean places of F', For all 1 < i < d, fix an
embedding oo; : F, — C that extends oo; : F'— R, so that nooo; induces
a place w; of F, above p. Suppose that the places of F' below the places
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w; are distinct and split in F,., and suppose that A has Hasse invariant
1/n at the places wj.

Take H to be the general unitary group GU(A, %) over F', and take
(G, X) to be the associated Shimura datum as in [27, 2.2].

In both subcases, note that Shx (G, X) is projective over E.

5.5. Maintain the notation of and recall the following p-adic uni-
formization result of Rapoport-Zink and Varshavsky. Let K, be a maximal

compact open subgroup of G(Q)), and let K? be a compact open subgroup
of G(A%).

Theorem. We have an isomorphism
G (Q\(Mag, bpuc, K, X GA)/KP) 5 Shie, k0 (G, X)

a;Il

E,

of rigid spaces over E, that is compatible the Weil descent datum and varying
KP.

Proof. Note that the factors of (Gg,,b, uic,) where uc, # 0 are of the form
considered in [22, (3.54)], modulo twisting by a central character. For these
factors, Theorem [22, theorem (3.72)], and compatibility with twisting
by central characters show that the local Shimura variety at level K, is
precisely Drinfeld upper half space. As for the factors where uc, = 0, we use
[25, Proposition 23.3.1] and the proof of [25, Proposition 23.2.1] to identify
the associated tower of local Shimura varieties with the appropriate discrete

spaces. With these identifications, the desired result is [27, Theorem 5.3] in
subcase i) and [27, First Main Theorem 2.13] in subcase ii). O

5.6. Maintain the notation of [5.5] We now prove Theorem B.
Theorem. The complex RF(SthKp(G,X)@ ,\) canonically lifts from an
P

ObjGCt Of Db(FEU7A> to an Obj@Ct Of Db(F%/Qp7A)

Proof. Begin by replacing @p with C,. Next, [9, (3.8.1)] identifies
RT(Shg, k# (G, X)c,, A) = RL(Shy, k0 (G, X )&, A).

By taking derived invariants, we may assume K,K? is sufficiently small.

Then G'(Q) acts properly discontinuously on MG@p,b,u@w Kp X5, G(A?) /KP

[27, Lemma 2.9 a)|, so Theorem and the Kiinneth formula yield an
isomorphism from RI'(Shg,x» (G, X)E, A) to

RT(G'(Q), RTe(May, bug, Ky A) @K Ce(G(AR)/KP, A)).
Consider its restriction to Wg,. Remark e) canonically lifts this to an

object of Db(W#;]/Qp,

algebraic variety, the underlying object of D?(A) is a perfect complex. Hence

our object of Db(VVI[;;:]/Qp7 A) must lie in the full subcategory Db(l“[lfflj/@p, A),
O

A), and since we are calculating the cohomology of an

as desired.
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5.7. Remark. Maintain the notation of and suppose we are in subcase ii).
When all places of F' above p are unramified in F,, Deligne’s theory of con-
nected components and results of Rapoport-Zink [22] theorem (6.36)] yield
a generalization of Theorem that allows arbitrary compact open sub-
groups K, of G(Q)). This gives a corresponding generalization of Theorem
B, with exactly the same proof.

5.8. Let us describe the unramified abelian case. Choose a reductive group
scheme over Z,) with geometrically connected fibers whose generic fiber
is isomorphic to G. By abuse of notation, we also write G for this group
scheme. Suppose that p # 2, and take (G, X) to be a Shimura datum of
abelian type.

5.9. Maintain the notation of In this case, we have the following p-adic
uniformization result. Let K? be a compact open subgroup of G (A?). Write

She(z,)kx# (G, X)%U for the basic locus as in |A.10, which is an open rigid

subspace of Shg(z,)k»(G, X )aén preserved by the Weil descent datum over

v

E,.
Theorem. We have an isomorphism

G/(Q)\(Me@p,bmp,e(zp) x G(A%)/K?) = ShG’(Zp)KP(GaX)bEv

of rigid spaces over E, that is compatible with the Weil descent datum and

varying KP.

Proof. Adapt the notation of Theorem yields an isomorphism
(G, X) 5 gz, (G, X)°

of formal schemes over @Ev that is compatible with the Weil descent datum
ar;:l the G(A?)—action. By taking adic generic fibers gives an isomor-
phism

lim [ G(@\ (Mg, e, iz, * GAT)/E?)] 5 lim [Shez, (G X ) |
K - K®

of rigid spaces over E,. Thus quotienting by K? yields the desired result. [0

5.10. Maintain the notation of We now prove Theorem A.

Theorem. The complex RI'c(Shg(z,)k» (G, X)(bcp,A) canonically lifts from

an object of Db(FEU,A) to an object of Db(FEffj/vaA)-

Proof. Using [9, (3.5.17)] to show that the object RI'¢(Shg(z,)k» (G, X)%p7 A)

of D®(A) is a perfect complex, this follows from arguing exactly as in the
proof of Theorem O
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APPENDIX A. BASIC UNIFORMIZATION FOR UNRAMIFIED ABELIAN TYPE
SHIMURA VARIETIES AT HYPERSPECIAL LEVEL

Our goal for the appendix is to prove Theorem D. First, we recall the
theory of integral local Shimura varieties. Using their relation with affine
Deligne—Lusztig varieties, we describe their sets of connected components
via results of Chen—Kisin—Viehmann and Gleason. Next, we interweave this
description with work of Kisin and Pappas—Rapoport to develop a theory of
connected components for basic p-adic uniformization at hyperspecial level.
We conclude by applying this theory to deduce Theorem D from Kim’s
results in the unramified Hodge type case.

A1, Let G areductive group scheme over Z, with geometrically connected
fibers. By abuse of notation, we also write G for its generic fiber. Let
(G,b, 1) be a local Shimura datum over Q,, and write E for the field of
definition of y, which is unramified over Q,. Write r for [E : Q,], and write
q for p".

Write DZURGM for the small v-sheaf over Spd Op as in [25, Definition
25.1.1]. Recall that D\jl(;’bﬁ enjoys a Weil descent datum & over Op as
well as an action of G(Q,), and its fiber over Spd F is naturally isomorphic
to MG,b,u,G(Zp)' Moreover, [0, Proposition 2.30] identifies its reduction with
the affine Deligne—Lusztig variety Xf(b) as in [30, Section 3.1.1].

When p # 2 and (G, b, u) is of abelian type, E)LVRGJW is the diamond asso-
ciated with a unique normal formal scheme that is flat and locally formally
of finite type over Op by [25, Proposition 18.4.1] and [20, Theorem 2.5.4].
By abuse of notation, we also write ?JTRG’;W for this formal scheme.

A.2. Write wg for the homomorphism G(Q,) — 71 (G) as in [15, (7.1.1)]. Tts
restriction to Gy(Q,) surjects onto 71 (G)¥ [13] (4.6.4)]E|, and write Gp(Qp)™
for the kernel of this restriction.

We can describe the sets of connected components of 95?@71)7“ as follows.

Proposition. Assume that b is basic. Then
a) Gp(Qp) acts transitively on 770(957@71),“) with stabilizer G,(Qp) T, so

mo(Mapu) = m(G)?,
b) ® acts on 770(93(@71)#) via translation by the image of
o p(p) + o+ " ().
In particular, each connected component 93?51)’# of ffﬁg,b,u 18 isomorphic.

Proof. Because b is basic, (G, b, u) is Hodge-Newton irreducible. Therefore
everything follows from [§, Theorem A.4] and [2, Corollary 4.1.16]. O

6While this is stated for (G, ) arising from a Shimura datum of Hodge type, the proof
applies verbatim in our situation.
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A.3. We will need the following description of 71 (G)¥, which has already
been used in the proof of [13], (3.8.5)]. Recall that the image of G**(Q,) in
G(Qp) contains the commutator subgroup of G(Q,) [3} 2.0.2].

Lemma. We have a natural isomorphism G¢(Q,)\G(Q,)/G(Z,) = m1(G)¥.

Proof. First, assume that G9' is simply connected. Then Kneser’s theo-
rem gives an isomorphism G*(Q,)\G(Q,) = G*(Q,), and Lang’s lemma
implies that G(Z,) surjects onto G**(Z,). Since G is simply connected,
the evaluation map induces an isomorphism (7 (G) ®z Q; )# = G*P(Q,) that
identifies (m1(G) ®z Z;)“’ with G#(Z,)). Finally, the valuation map yields

(m1(G) ®z Q))?/(m1(G) @z L)% = mi(G)¥.

Next, consider general G. Since G splits over an unramified extension
of Qp, there exists a z-extension G’ —G whose kernel Z’ is a product
of unramified induced tori [4, V.3.1]. Lang’s lemma implies that G'(Z))
surjects onto G(Zp), so Hilbert 90 and Shapiro’s lemma give a surjection
G’ (Q,) /G (Z,) — G*(Q,)\G(Q,)/G(Z,) whose kernel equals the image
of Z'(Qp). Now the sequence m(Z")? — m(G')¥ — m1(G)¥ is short exact by
Shapiro’s lemma, and under our identification G’2*(Q,)/G"#(Z,) = 71 (G")?,
the image of Z'(Q,) is precisely 71 (Z’)?. Hence the result follows. O

A.4. We now switch our notation to a global context. Let G be a reductive
group scheme over Z,) with geometrically connected fibers. By abuse of
notation, we also write G for its generic fiber. Let (G, X) be a Shimura
datum, write u for its inverse Hodge cocharacter, and write E for the field
of definition of pu. For any compact open subgroup K of G(Ay), write
Shi (G, X) for the associated Shimura variety over E.

Fix an isomorphism C = C,, write v for the resulting place of E over p,
and note that the closure £, of E in C, equals the field of definition of uc,.
Write b for the basic element of B(Gq,, ic,). Recall that G has a canonical
inner form G’ over Q such that

a) (’@p is isomorphic to (Gg,)s over Qy,
b) Gf&? is isomorphic to Gyr over A%,
c¢) Gpg is anisotropic modulo center over R
[T, Proposition 3.1]. This enables us to form the small v-sheaf
G, X) = I [ 6@\, e, x AT/
where KP runs through compact open subgroups of G (A?). This is meant to

be the source of the uniformization morphism. Note that Q(G, X) inherits
a Weil descent datum ® over O, as well as an action of G(A’}).
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A.5. The following is meant to correspond to the connected components
morphism of the relevant Shimura variety. Write #7,(G) for the topological
group as in [12, (3.3.2)], and write <7,(G)° for its closed subgroup as in [12),
(3.3.2)]E| Recall that 7,(G)° only depends on G, and 7,(G)° contains
the image of GSC(AZ}) [3, 2.0.9].

The proof of [I3} (3.7.2)] yields a natural action of 7,(G) on (G, X).

Proposition. We have a natural o7,(G)-equivariant morphism over Spd @Ev
ca : WG, X) = ,(G)°\(G).

Moreover, ¢g o @ equals ¢ postcomposed with translation by the image of

ptp(p) + -+ 9" () in 2(G).

Proof. Recall that the natural map <7,(G)°\e,(G) = G(Q) L \G(Ay)/G(Zy)
is an isomorphism [12] (3.3.3)], where G(Q)7 denotes the closure in G(A ) of
the preimage of G*4(R)° in G(Q). Proposition and Lemma indicate
that the connected components morphism of Sﬁgzpjb’%p is of the form

o : 95th},,b,ucp = G*(Q)\G(Qp)/G(Zp).
Using this, we can consider the morphism

Cq,KP : Sfncv’zp,b,uccp X G(AIJ)”)/KP_> GQ)\G(Ay)/G(Zp)KP

that sends (x, g? KP) to the image of (m(z), g? KP), where we use the fact
that G(Q)7 contains the image of G%(Q,).

By construction, the restriction of ¢ to the images of legzpvb,%p de-
pend only on its connected components. Now the connected components
of 95?(;217,1),%? equal those of its reduction, so [13] (3.7.4)] and [13], (3.6.10)]

imply that ¢ x» factors through G’(Q)\(iﬁlgzp,b X G’(Ag)/Kp).

Finally, form the inverse limit

»HCp

lim e 0 : £(G, X) = GQ)7\G4))/G(Z,),
Kp

and let ¢g by its postcomposition with the inverse of
p(G)°\p(G) = G(Q)L\G(Ay) /G (Zyp).
Proposition b) shows ¢ satisfies the desired compatibility with ®. 0O

A.6. The connected components of the uniformization morphism should
depend only on G4 and X*. To make this precise, we need the following
lemma. Let G be another reductive group scheme over Z,) with geomet-
rically connected fibers, let (G1,X1) be another Shimura datum, and let
G1— G be a surjective morphism over Z, that induces an isomorphism

Gler 5 G and a morphism (G1,X1) —(G, X) of Shimura data.

"These groups are denoted A (Gz,,) and &/ (Gz ) in [12], [I3], and [26].
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By Proposition each fiber f,((G, X)* of ¢g is isomorphic.
Lemma. The natural morphism $4(G1, X1)T — (G, X)* is an isomorphism.

Proof. Note that the connected components ffRJGrZ b map isomorphically
p7

HHCp

onto their images in 4(G, X). As hm G’(Q)\G(A’})/K” is totally discon-

nected, these images are precisely the connected components of ﬁ(G , X) and
hence (G, X)*.

Now (G1z,, b1, pac,) —(Gz,, b, uc,) is an ad-isomorphism of integral local
shtuka data as in [20, p. 28]. Therefore [20, Theorem 5.1.2] implies that
our natural morphism induces an isomorphism on connected components.
Because the connected components of Q(G , X)T equal those of its reduction,
we see from [I3] (3.8.2)] that our morphism also induces a bijection on g,
which enables us to conclude. ([

A.7. For any multiple s of r, write &5 (G%") for the stabilizer of G, x)*
in o7,(G) x ®+%2. When s = r, we omit it from our notation.

Lemma. The closed subgroup é?lf(Gder) is an extension of ®rZ by o, (G)°.
Moreover, gps(Gder) and ijl(G,X)+ only depend on G, X+, and s.

Proof. Using Proposition and Lemma this follows from arguing
exactly as in the proof of [13] (3.8.5)] and [I13] (3.8.6)]. O

A.8. We start by proving the main theorem for connected components of
the uniformization morphism in the following special case. Let G5 be an-
other reductive group scheme over Z,) with geometrically connected fibers,
let (G2, X2) be another Shimura datum, and let Go — G be a surjective mor-
phism over Z, that induces a morphism (G2, X2) —(G, X) of Shimura data
and whose kernel is a product of induced tori. Assume that s is a multiple
of .

Lemma. We have a natural isomorphism
GC)° wy (- 63(GE) S E5(G).
Under this identification, we have a natural éa;(Gder)—equivariant 1somor-

phism o,(G)° x %92 {(Gy, X)T 3 8(G, X))

Proof. Proposition implies that we have a natural continuous homo-
morphism 7,(G)° * 4 (Gy)e é;f(Gger) — &5(G9°"), and Lemma indicates
that it is an isomorphism. Proposition also implies that we have a natu-
ral £ (G9°")-equivariant morphism 7,(G)° x 292" {((Gy, X) T = (G, X) T

Observe that the connected components zmg b
27,02, 12C),

onto their images in #7,(G)° x Zo(G2)” (G2, X)*t, and these images are
precisely its connected components. Using [20, Theorem 5.1.2] and [I3]|

(3.8.10)], the desired result follows from arguing as in the proof of Lemma
A6l (|

map isomorphically
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A.9. We now bootstrap from Lemmal[A §|to the general case. Let G3 be an-
other reductive group scheme over Z,) with geometrically connected fibers,

let (G3,X3) be another Shimura datum, and let G3°" — G be an isogeny

over Z, that induces an isomorphism (Gad, X34) 5(G*, x2d). Assume
that s is a multiple of r and r3.

Theorem. We have an isomorphism
Gy(G)° * g5y Ep (GS) = E5(G).

Under this identification, we have a é"}f(Gder)—equivariant isomorphism

Ay (G)° xZel9)” {((Gs, X3)t = (@, X)F

and hence an o,(G) x ®r%-equivariant isomorphism
(G x P G2 (G, X5)T = (G, X).

Proof. By Lemmal[A’7] we may replace G5 with the relative connected com-
ponent of G3 Xgaa G over Z, and therefore assume that Gder — gder s
induced by a surjective morphism Gz — G over Z,). Next, write Z for the
kernel of G3 — G, and embed Z into a product of induced tori Z’ over Lp).-

Lemma enables us to replace Gz with G3 xZ Z’ and thus additionally
assume that Z is a product of induced tori. Then the first two statements
follow from Lemma [A:8] and the final statement follows from Proposition
A5 g

A.10. Let us establish some notation on the basic locus. Assume that p # 2
and (G, X) is of abelian type. Write Shg(z,)(G, X) for the inverse limit

lim She(z,) ke (G, X),
Kpr

and write -7(z,)(G, X) for its integral canonical model over Op,) as in [12,
(3.4.14)]. Write S5z, (G, X)%q for the basic locus as in [26, p. 16], which is
a closed subscheme of (7, (G, X )Fq preserved by Frobenius as well as the
,(G)-action. Write Ghg(z,)(G, X)? for the completion of Jae,) (G, X)@EU
along S(z,)(G, X)%q, and write Shg(z,)(G, X)%U for the adic generic fiber
of &gz, (G, X)? over E,. Note that Sha(z,) (G, X)? inherits a Weil descent

datum over Op, as well as an action of .7,(G).
Write Shg(z,)k» (G, X)% for the smooth rigid space Shgz,) (G, X)% JKP.

A.11. We now prove Theorem D.
Theorem. We have an isomorphism
(G, X) 5 Sb6(z,) (G, X)°
that is compatible with the Weil descent datum and the <7,(G)-action.



THE PLECTIC CONJECTURE OVER LOCAL FIELDS 33

Proof. When (G, X) is of Hodge type, this follows from Theorem and
[11, Theorem 4.7]. Next, consider (G, X) of abelian type. Then there exists
a reductive group scheme G5 over Z,) with geometrically connected fibers,
a Shimura datum (G3, X3) of Hodge type, and an isogeny Gz — G over Z,
that induces an isomorphism (G394, X24) 5(G*4, X24) such that r3 divides
[13, (4.6.6)]. Now [3, 2.1.16], [12] (2.2.4)], and [IZ, (3.3.3)] indicate that the
connected components morphism of ,Vg(zp)(Gg, X3) O, is of the form

0+ La(2,) (G, X3) g, = Pp(G3)"\p(G3).

Moreover, [13, (3.6.10)] yields a commutative square

Shey(z,)(G3, X3)" —— Fay(2,)(G3, X3) 5,

g -

{1(Gly, X3) —— s () \Fp(G).

3v

Taking fibers gives us an & (G4°")-equivariant isomorphism
$U(Gs3, X3)" 5 Shgyz,)(Gs, X3)"T,

where Gheg(zp)(G37X3)b’+ denotes the intersection of 6hG3(Zp)(G3,X3)b
with a connected component of g4 (z,)(Gs, X3);5, . Now Theorem [A.9
3v

shows that we have an @7,(G) x ®Z-equivariant isomorphism
UG, X) 3 o7,(G) x2 G (G, X3)T 5 o7,(G) x 29" Shgy, 7 1(G3, X3)0 T,
and [26], p. 17] implies that we have an .27,(G) x dZ_equivariant isomorphism

y(G) x 2B S, 71 (G, X3)H 5 She ) (G, X). O

REFERENCES

[1] J. Anschiitz. Extending torsors on the punctured Spec(Aint). J. Reine Angew. Math.,
783:227-268, 2022.

[2] M. Chen, M. Kisin, and E. Viehmann. Connected components of affine Deligne-
Lusztig varieties in mixed characteristic. Compos. Math., 151(9):1697-1762, 2015.

[3] P. Deligne. Variétés de Shimura: interprétation modulaire, et techniques de construc-
tion de modeles canoniques. In Automorphic forms, representations and L-functions
(Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc.
Sympos. Pure Math., XXXIII, pages 247-289. Amer. Math. Soc., Providence, R.I.,
1979.

[4] P. Deligne, J. S. Milne, A. Ogus, and K.-y. Shih. Hodge cycles, motives, and Shimura
varieties, volume 900 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New
York, 1982.

[5] L. Fargues and P. Scholze. Geometrization of the local Langlands correspondence.
arXiv e-prints, page arXiv:2102.13459, Feb. 2021, 2102.13459.

[6] I. Gleason. On the geometric connected components of moduli spaces of p-adic
shtukas and local Shimura varieties. arXiv e-prints, page arXiv:2107.03579, July 2021,
2107.03579.



34

SIYAN DANIEL LI-HUERTA

[7] D. Hansen. On the supercuspidal cohomology of basic local Shimura varieties. http:

//www.davidrenshawhansen.com/middle.pdf}, 2021.

[8] X. He and R. Zhou. On the connected components of affine Deligne-Lusztig varieties.

Duke Math. J., 169(14):2697-2765, 2020.

[9] R. Huber. Etale cohomology of rigid analytic varieties and adic spaces. Aspects of

Mathematics, E30. Friedr. Vieweg & Sohn, Braunschweig, 1996.

[10] W. Kim. Rapoport-Zink spaces of Hodge type. Forum Math. Sigma, 6:Paper No. e8,

110, 2018.

[11] W. Kim. Rapoport-Zink uniformization of Hodge-type Shimura varieties. Forum

Math. Sigma, 6:Paper No. el6, 36, 2018.

[12] M. Kisin. Integral models for Shimura varieties of abelian type. J. Amer. Math. Soc.,

23(4):967-1012, 2010.

[13] M. Kisin. mod p points on Shimura varieties of abelian type. J. Amer. Math. Soc.,

30(3):819-914, 2017.

[14] R. E. Kottwitz. Isocrystals with additional structure. Compositio Math., 56(2):201—

220, 1985.

[15] R. E. Kottwitz. Isocrystals with additional structure. II. Compositio Math.,

109(3):255-339, 1997.

[16] M. Leonhardt. Plectic arithmetic of Hilbert modular varieties. PhD thesis, University

of Cambridge, 2019. https://doi.org/10.17863/CAM.49057.

[17] S. D. Li-Huerta. The plectic conjecture over function fields, 2021. https://arxiv.

org/abs/2106.05382.

[18] J. Nekovar and A. J. Scholl. Introduction to plectic cohomology. In Advances in the

theory of automorphic forms and their L-functions, volume 664 of Contemp. Math.,
pages 321-337. Amer. Math. Soc., Providence, RI, 2016.

[19] G. Pappas and M. Rapoport. p-adic shtukas and the theory of global and local

Shimura varieties. arXiv e-prints, page arXiv:2106.08270, June 2021, 2106.08270.

[20] G. Pappas and M. Rapoport. On integral local Shimura varieties. arXiv e-prints, page

arXiv:2204.02829, Apr. 2022, 2204.02829.

[21] M. Rapoport and E. Viehmann. Towards a theory of local Shimura varieties. Miinster

J. Math., 7(1):273-326, 2014.

[22] M. Rapoport and T. Zink. Period spaces for p-divisible groups, volume 141 of Annals

of Mathematics Studies. Princeton University Press, Princeton, NJ, 1996.

(23] D. Rydh. Representability of Hilbert schemes and Hilbert stacks of points. Comm.

Algebra, 39(7):2632-2646, 2011.

[24] P. Scholze. Etale cohomology of diamonds. arXiv e-prints, page arXiv:1709.07343,

Sept. 2017, 1709.07343.

[25] P. Scholze and J. Weinstein. Berkeley Lectures on p-adic Geometry, volume 207 of

Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2020.

[26] X. Shen and C. Zhang. Stratifications in good reductions of Shimura varieties of

abelian type. arXiv e-prints, page arXiv:1707.00439, July 2017, 1707.00439.

[27] Y. Varshavsky. p-adic uniformization of unitary Shimura varieties. II. J. Differential

Geom., 49(1):75-113, 1998.

[28] E. Viehmann. On Newton strata in the B;R—Grassmannian. arXiv e-prints, page

arXiv:2101.07510, Jan. 2021, 2101.07510.

[29] Z. Yun and W. Zhang. Shtukas and the Taylor expansion of L-functions. Ann. of

Math. (2), 186(3):767-911, 2017.

[30] X.Zhu. Affine Grassmannians and the geometric Satake in mixed characteristic. Ann.

of Math. (2), 185(2):403-492, 2017.
Email address: sli@math.harvard.edu

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, 1 OXFORD STREET, CAM-

BRIDGE, MA 02138


http://www.davidrenshawhansen.com/middle.pdf
http://www.davidrenshawhansen.com/middle.pdf
https://doi.org/10.17863/CAM.49057
https://arxiv.org/abs/2106.05382
https://arxiv.org/abs/2106.05382

	Introduction
	1. Fargues–Fontaine curves
	2. Symmetrized Satake sheaves
	3. Symmetrized moduli spaces of local shtukas
	4. The plectic conjecture over local fields
	5. Applications to Shimura varieties
	Appendix A. Basic uniformization for unramified abelian type Shimura varieties at hyperspecial level
	References

