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ABSTRACT. Let F be a local field of characteristic p > 0. By adapting methods of Scholze [45], we give a new proof
of the local Langlands correspondence for GLn over F . More specifically, we construct ℓ-adic Galois representations
associated with many discrete automorphic representations over global function fields, which we use to construct a map
π 7→ rec(π) from isomorphism classes of irreducible smooth representations of GLn(F ) to isomorphism classes of n-
dimensional semisimple continuous representations of WF . Our map rec is characterized in terms of a local compatibility
condition on traces of a certain test function fτ,h, and we prove that rec equals the usual local Langlands correspondence
(after forgetting the monodromy operator).

CONTENTS

Introduction 1
1. Deformation spaces of local shtukas 6
2. The first inductive lemma: trace identities and parabolic induction 11
3. Geometry of parabolic induction 16
4. The Lubin–Tate tower 24
5. Moduli spaces of D-elliptic sheaves 29
6. A nearby cycles calculation and semisimple trace 37
7. Langlands–Kottwitz counting and the Serre–Tate trick 44
8. Local-global compatibility 52
9. The second inductive lemma: bijectivity of the correspondence 56
10. Duals, L-functions, and ϵ-factors 64
References 68

INTRODUCTION

We start by recalling the local Langlands correspondence for GLn over non-archimedean local fields. Let F be
a nonarchimedean local field, write κ for its residue field, and fix a prime number ℓ ̸= charκ. The local Langlands
correspondence for GLn over F posits a collection of canonical bijections{

isomorphism classes of irreducible
smooth representations of GLn(F ) over Qℓ

}
←→

{
isomorphism classes of n-dimensional continuous

Frobenius-semisimple representations of WF over Qℓ

}
,

where WF denotes the Weil group of F with respect to a fixed separable closure of F , and n ranges over all positive
integers. By canonical, we mean they are characterized by recovering local class field theory when n = 1, being
compatible with central characters and duals, and preserving L-functions and ϵ-factors of pairs.

To prove such a correspondence, work of Bernstein–Zelevinsky allows us to reduce to the case of cuspidal repre-
sentations on the automorphic side and irreducible representations on the Galois side. More precisely, they show [51,
10.3] that one can uniquely reconstruct bijections as above from their restrictions to cuspidal representations{

isomorphism classes of irreducible
cuspidal representations of GLn(F ) over Qℓ

}
←→

{
isomorphism classes of irreducible continuous
n-dimensional representations of WF over Qℓ

}
.(⋄)
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As alluded to above, work of Henniart [22, Theorem 1.2] indicates that there is at most one collection of bijections as
in Equation (⋄) satisfying our canonicity requirements. This ensures the uniqueness of the local Langlands correspon-
dence for GLn over F .

As for its existence, such bijections were first proved for function fields by Laumon–Rapoport–Stuhler [35, (15.7)]
and for p-adic fields by Harris–Taylor [20, Theorem A] and Henniart [25, 1.2]. When F is a p-adic field, Scholze
gave a new proof and characterization [45, Theorem 1.2] of the local Langlands correspondence for GLn over F ,
simplifying arguments of Harris–Taylor.

By adapting the methods of Scholze’s proof, the goal of this paper is to give a new proof and characterization
of the local Langlands correspondence for GLn when F is a function field. Thus, let us henceforth assume that
p := charF > 0. Grothendieck’s ℓ-adic monodromy theorem [46, Appendix] implies that irreducible continuous
n-dimensional representations of WF over Qℓ are smooth, so by fixing a field isomorphism Qℓ = C, Equation (⋄)
remains unchanged if we replace Qℓ with C. Unless otherwise specified, all subsequent representations shall be taken
over C.

We begin by motivating this new characterization of the local Langlands correspondence for GLn over F , as in the
work of Scholze. Since n-dimensional semisimple continuous representations of WF are determined by their traces, it
would be natural to characterize the correspondence via a trace condition. More precisely, one would like to construct
a map π 7→ ρ(π) from isomorphism classes of irreducible smooth representations of GLn(F ) to isomorphism classes
of n-dimensional semisimple continuous representations of WF satisfying the following condition: for all τ in WF ,
there exists a test function fτ in C∞

c (GLn(F )) such that

tr(fτ |π) = tr
(
τ |ρ(π)

)
for all irreducible smooth representations π of GLn(F ).

However, this is too much to ask for, as noted by Scholze in [45]. To see this, note that we want ρ(π) to be (a
Tate twist of) the Weil representation corresponding to π under the local Langlands correspondence. But if this were
the case, then the above equation implies that fτ has nonzero trace on every component of the Bernstein center of
GLn(F ). This is impossible because fτ is locally constant.1

We smooth out this issue by convolving fτ with a cut-off function. To elaborate, let us introduce some notation:
write q for #κ, and write v : WF −→Z for the unramified homomorphism sending geometric q-Frobenii to 1. For
any τ in WF with v(τ) > 0 and h in C∞

c (GLn(O)), we construct a test function fτ,h in C∞
c (GLn(F )) satisfying the

following theorem.

Theorem A. Let n be a positive integer, and let π be any irreducible smooth representation of GLn(F ).

(i) There exists a unique n-dimensional semisimple continuous representation ρ(π) of WF satisfying the following
property:

for all τ in WF with v(τ) > 0 and h in C∞
c (GLn(O)), we have tr(fτ,h|π) = tr

(
τ |ρ(π)

)
tr(h|π).

Write rec(π) for ρ(π)( 1−n
2 ), where (s) denotes the s-th Tate twist.

(ii) Suppose π is isomorphic to a subquotient of the normalized parabolic induction of

π1 ⊗ · · · ⊗ πt,

where the πi are irreducible smooth representations of GLni(F ) such that n1 + · · ·+ nt = n. Then

rec(π) = rec(π1)⊕ · · · ⊕ rec(πt).

Theorem A.(i) indicates that fτ,h satisfies the trace compatibility property we would expect from the convolution
fτ ∗ h. As our notation suggests, we shall see in Theorem C that π 7→ rec(π) equals the usual local Langlands
correspondence for GLn over F (after forgetting the monodromy operator). Thus this gives a new characterization of
the local Langlands correspondence in this case.

How can we find such an fτ,h? Let κ be a fixed separable closure of κ. The Deligne–Carayol conjecture (which
was proven for function fields by Boyer [10, Theorem 3.2.4] and for p-adic fields by Harris–Taylor [20, Theorem

1However, such an fτ does exist as an element of the Bernstein center and hence as a distribution. See Proposition 2.10.
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B]) indicates that, roughly speaking, the local Langlands correspondence for GLn as in Equation (⋄) can be found
in the cohomology of deformation spaces of certain 1-dimensional formal O-modules over κ. By the Dieudonné
equivalence, 1-dimensional formal O-modules correspond to special examples of 1-dimensional effective minuscule
local shtukas. The deformation spaces of general 1-dimensional effective minuscule local shtukas can be pieced
together from those of 1-dimensional formal O-modules (see §1), and this mirrors how general irreducible smooth
representations of GLn(F ) can be pieced together from cuspidal ones via parabolic induction (see §3).

Therefore, to find a test function fτ,h satisfying Theorem A, we study deformation spaces of 1-dimensional effective
minuscule local shtukas. We start by parameterizing these objects as follows. Write r := v(τ), write Fr for the r-th
degree unramified extension of F , write Or for its ring of integers, and write κr for its residue field. Then the Cartan
decomposition for GLn(Fr) shows that isomorphism classes of 1-dimensional effective minuscule local shtukas over
κr correspond to elements

δ ∈ GLn(Or) diag(ϖ, 1, . . . , 1)GLn(Or)

up to GLn(Or)-σ-conjugacy, where ϖ is a uniformizer of F . Form the deformation space of the corresponding 1-
dimensional effective minuscule local shtuka with Drinfeld level-m structure, and write Riψδ,m for the i-th ℓ-adic
cohomology group of the adic generic fiber of this deformation space. As m varies, we use these cohomology groups
to construct representations

Riψδ := lim−→
m

Riψδ,m and [Rψδ] :=

∞∑
i=0

(−1)iRiψδ,

which have commuting actions ofWFr and GLn(O). From here, we can first define a function ϕτ,h in C∞
c (GLn(Fr))

by sending

δ 7→

tr(τ × h|[Rψδ]) if δ is in GLn(Or) diag(ϖ, 1, . . . , 1)GLn(Or),

0 otherwise,

and then we let fτ,h be a transfer of ϕτ,h to GLn(F ).
Now that we have our test function fτ,h, let’s discuss the proof of Theorem A. Kazhdan’s density theorem [31,

Theorem 0]2 indicates that it suffices to check trace identities on tempered π. While we restrict our global construction
of ρ(π) to the case when π is L2 (since global embedding is easier in this case), the remaining tempered π arise via
parabolic induction from L2 representations, where we can leverage our discussion above on piecing together repre-
sentations. To ensure that the resulting inductively constructed ρ(π) is well-behaved, we also need a direct construction
of ρ(π) when π is a Speh module. Altogether, this inductive process of piecing together ρ(π) amounts entirely to local
deformation theory and nonarchimedean harmonic analysis—we proceed as in [45], except the necessary harmonic
analysis is more difficult in characteristic p. Therefore we carefully give the argument and supply references for the
relevant harmonic analysis in characteristic p.

As mentioned above, we use global techniques to construct ρ(π) when π is L2 or a Speh module. But instead of
Shimura varieties as in [45], we use moduli spaces of D-elliptic sheaves, the latter of which is an equi-characteristic
analogue of abelian varieties equipped with certain endomorphisms. For good reduction, these moduli spaces were
first considered by Laumon–Rapoport–Stuhler [35] in their proof of the local Langlands correspondence for GLn over
F , and we shall also crucially use a version of these moduli spaces with bad reduction (which corresponds to using
Drinfeld level structures) as considered by Boyer [10] in his proof of the Deligne–Carayol conjecture for F .

We explicitly define ρ(π) as a multiplicity space in the cohomology of the moduli space of D-elliptic sheaves.
To show that ρ(π) satisfies our desired trace compatibility condition, we adapt Scholze’s version of the Langlands–
Kottwitz method to compute traces of Frobenius and Hecke operators on the aforementioned cohomology groups.
These traces are related to our test function fτ,h via a Serre–Tate theorem for D-elliptic sheaves, which equates
deformations of D-elliptic sheaves to deformations of certain associated local shtukas. For this, it is crucial to carry
out the Langlands–Kottwitz method at bad reduction, which is new in positive characteristic.

2The proof given here is stated for p-adic fields, but it only uses the Langlands classification and hence carries over to any nonarchimedean local
field.
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This global work yields the following construction of ℓ-adic Galois representations associated with certain discrete
automorphic representations. Let F be a global function field, write A for its ring of adeles, and let {x1, x2,∞} be
three distinct places of F. Write GF for the absolute Galois group of F with respect to a fixed separable closure of F.

Theorem B. Let Π be an irreducible discrete automorphic representation of GLn(A) whose components at x1, x2, and
∞ are either irreducible L2 representations or Speh modules. Then there exists a unique n-dimensional semisimple
continuous representationR(Π) ofGF over Qℓ such that, for all places o of F not lying in {x1, x2,∞}, the restriction
of R(Π) to WFo

satisfies

R(Π)
∣∣
WFo

= ρ(Πo),

where we identify Qℓ with C.

We finish the construction of ρ(π) by finding a Π as above such that π is isomorphic to Πo, and then applying
Theorem B. In general, this is more difficult in characteristic p because the trace formula is not as developed, but we
circumvent this using Mœglin–Waldspurger’s description of the discrete automorphic spectrum. This concludes our
construction of ρ(π) in special cases and thus our proof of Theorem A.

From here, we prove the following bijectivity result.

Theorem C. The map π 7→ rec(π) yields a bijection from isomorphism classes of irreducible cuspidal representations
of GLn(F ) to isomorphism classes of n-dimensional irreducible continuous representations of WF .

The key ingredient is an explicit calculation of the inertia invariants of nearby cycles due to Scholze [43, Theorem
5.3], which relies on a case of Grothendieck’s purity conjecture as proved by Thomason [49, Corollary 3.9]. We use
this calculation to deduce that if rec(π) is unramified, then π must be parabolically induced from unramified characters.
By passing to the Galois side and using our work on local-global compatibility, we show that after applying cyclic
base change [27, (II.1.4)] finitely many times, the representation π has the aforementioned form. Passing to this
parabolically induced representation ultimately allows us to prove Theorem C. As in [45], this argument bypasses the
need to appeal to Henniart’s numerical local Langlands [24, Theorem 1.2].

Finally, we show that π 7→ rec(π) satisfies the usual canonicity requirements of the local Langlands correspondence
for GLn.

Theorem D. The bijections

rec :

{
isomorphism classes of irreducible

cuspidal representations of GLn(F )

}
∼−→

{
isomorphism classes of n-dimensional

irreducible continuous representations of WF

}
satisfy the following properties:

(i) for all irreducible cuspidal representations of GL1(F ), that is, smooth characters χ : F×−→C×, we have

rec(χ) = χ ◦Art−1,

where Art denotes the Artin isomorphism Art : F× ∼−→W ab
F that sends uniformizers to geometric q-Frobenii.

(ii) for all irreducible cuspidal representations π of GLn(F ) and smooth characters χ : F×−→C×, we have

rec(π ⊗ (χ ◦ det)) = rec(π)⊗ rec(χ).

(iii) for all irreducible cuspidal representations π of GLn(F ) with central character ωπ : F×−→C×, we have

rec(ωπ) = det ◦ rec(π) and rec(π∨) = rec(π)∨.

(iv) for all irreducible cuspidal representations π of GLn(F ) and π′ of GLn′(F ), we have

L(π × π′, s) = L(rec(π)⊗ rec(π′), s) and ϵ(π × π′, ψ, s) = ϵ(rec(π)⊗ rec(π′), ψ, s)

for all nontrivial continuous homomorphisms ψ : F −→C×.

By [22, Theorem 1.2], Theorem D shows that our construction indeed equals the usual local Langlands correspon-
dence for GLn.
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We now discuss the proof of Theorem D. Compatibility with local class field theory follows from earlier work,
as our use of 1-dimensional formal O-modules recovers the Lubin–Tate description of local class field theory when
n = 1. Compatibility with twists of characters follows by embedding into the global setting, using Theorem B, and
applying the strong multiplicity one theorem [6, Theorem 3.3.(b)]. We prove compatibility with central characters
via similar global means—this time, we reduce to the situation of induced representations by Brauer induction, and
then we prove some cases of non-Galois automorphic induction in order to pass to the automorphic side. From here,
Henniart’s trick of twisting by highly ramified characters [23, Lemma 4.2] implies compatibility with L-functions
and ϵ-factors, and then compatibility with duals follows from the decomposition of L-functions of pairs in terms of
L-functions of characters.

Comparison with Laumon–Rapoport–Stuhler. For cuspidal π, both of our constructions of ρ(π) are identical:
namely, we embed π into an appropriate automorphic representation Π of GLn(A), apply global Jacquet–Langlands
to get an automorphic representation Π̃ of (D⊗A)×, and then consider the multiplicity space of Π̃∞ in the cohomology
of moduli spaces of D-elliptic sheaves. While a full Jacquet–Langlands correspondence was unknown at the time of
Laumon–Rapoport–Stuhler, when π is cuspidal Π can be chosen to have a special form whose Jacquet–Langlands
transfer was known [23, Theorem A.4]. Moreover, these special Π already appear in cohomology with constant
coefficients [35, (14.12)]. Since Laumon–Rapoport–Stuhler plan to use Henniart’s numerical local Langlands [24,
Theorem 1.2], they only need to construct ρ(π) for cuspidal π, so this suffices. From here, they verify compatibility
with L-functions and ϵ-factors using the cohomological interpretation of global L-functions [13, §10].

On the other hand, our proof needs to construct ρ(π) for more general L2 or Speh modules π. This hinders us from
ensuring that Π has the special form alluded to above, so we need both to use a full Jacquet–Langlands correspondence
[6, Theorem 3.2] as well as to consider cohomology with coefficients in certain automorphic local systems instead [35,
p. 286]. By carrying out the Langlands–Kottwitz method at good reduction, Laumon–Rapoport–Stuhler compute this
cohomology with coefficients as a Galois and Hecke module, conditional on a full Jacquet–Langlands correspondence
[35, (14.21)]. In a manner analogous to using Matsushima’s formula for Shimura varieties, our proof needs to compute
the Hecke action on this cohomology with coefficients, so we appeal to Laumon–Rapoport–Stuhler’s result.3 Also,
we verify compatibility with L-functions and ϵ-factors using automorphic induction [27, (IV.1.8)] instead of the co-
homological interpretation of global L-functions. Finally, when carrying out the Langlands–Kottwitz method at bad
reduction, we use many local methods (see §1–§4) that Laumon–Rapoport–Stuhler avoid.

Altogether, our approach to Theorem D is more complicated than that of Laumon–Rapoport–Stuhler. However,
our gains are the trace characterization in Theorem A, a more general construction of global Galois representations in
Theorem B, and a proof of Theorem C that bypasses the need to use Henniart’s numerical local Langlands.

Outline. In §1, we introduce local shtukas, the geometry of their deformation spaces, and the test function fτ,h. Next,
in §2, we recall the Bernstein–Zelevinsky classification, the Bernstein center, and Schneider–Zink tempered types.
We use this to prove Lemma 2.7, which serves as the framework for proving Theorem A. The primary goal of §3–§8
is to prove the ingredients needed for running Lemma 2.7. In §3, we use the geometry of deformation spaces along
with the Bernstein–Zelevinsky induction-restriction formula to prove compatibility with parabolic induction. In §4,
we compare our deformation spaces with the Lubin–Tate tower. With the exception of Lemma 1.14, the entirety of
§1–§4 is local.

At this point, we switch to a global setup. In §5, we introduce D-elliptic sheaves, their moduli spaces, and their
relationship with local shtukas. In §6, we present an explicit calculation of nearby cycle sheaves on the special fibers
of these moduli spaces at bad reduction. In §7, we employ a variant of the Langlands–Kottwitz method, using the
Serre–Tate theorem as introduced in 5.21 to relate the cohomology of the moduli space of D-elliptic sheaves with the
local test function fτ,h. In §8, we deduce Theorem B from §7, and then we embed our local situation into our global
one to finish the proof of Theorem A.

We now turn to the proofs of Theorem C and Theorem D. In §9, we recall cyclic base change, and we combine
this with local-global embedding theorems to prove Theorem C. In §10, we use Theorem B (as well as compatibility

3Alternatively, one could try computing the Hecke action via analytically uniformizing at ∞ as in [48, 4.8] and using the cohomology of the
Drinfeld tower. The latter is known by [39, Théorème 2.3.5], but the proof there also uses Laumon–Rapoport–Stuhler’s result.
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with automorphic induction) to prove some cases of non-Galois automorphic induction. We tie these results together
to prove Theorem D, concluding our proof of the local Langlands correspondence for GLn over F .

Notation. Let ℓ ̸= p be a prime number. We fix an identification Qℓ = C of fields. Unless otherwise specified, all
representations are over C.

Throughout §1–§4, let F be a local field of positive characteristic. WriteO for its ring of integers, fix a uniformizer
ϖ of O, and write κ for the residue field O/ϖ. This choice of ϖ yields an identification O = κ[[ϖ]]. We denote
#κ using q. We write v for the normalized discrete valuation on F , and we denote the normalized valuation on F
using |−|. We fix a separable closure F sep in which our separable extensions of F lie, and we write κ for the residue
field of F sep, which is a separable closure of κ. We write Cϖ for the completion of F sep, and we view completions of
separable extensions of F as closed subfields of Cϖ.

We write WF for the Weil group of F with respect to this choice of F sep, and we view Weil groups of separable
extensions of F as living inside WF . We denote the inertia subgroup of F using IF . We have a canonical short exact
sequence

1−→ IF −→WF
v−→Z−→ 1,

and we identify 1 in Z with the geometric q-Frobenius in Gal(κ/κ). We write Art : F× ∼−→W ab
F for the local Artin

isomorphism normalized by sending uniformizers to geometric q-Frobenii.

Acknowledgments. The author is tremendously indebted to Sophie Morel for her advice on this project, suggesting
this topic of research, and her encouragement. The author extends his gratitude to Richard Taylor for his careful
reading of an earlier iteration of this paper. Many of the ideas in this paper are due to Peter Scholze, and the author
thanks him for answering questions about [45]. The author would also like to thank Thomas Haines for some helpful
conversations on nonarchimedean harmonic analysis, to thank Alain Genestier for directing him to Boyer’s thesis [10],
and to thank the referees for corrections and suggestions.

1. DEFORMATION SPACES OF LOCAL SHTUKAS

In this section, we introduce local shtukas, which are the equi-characteristic analogue of isocrystals. We then narrow
our scope to effective minuscule local shtukas, which are the analogue of Dieudonné modules. A similar Dieudonné
equivalence relates 1-dimensional connected local shtukas to 1-dimensional formalO-modules, which allows us to use
results of Drinfeld to study their deformation spaces. From here, we deduce finitude properties about the cohomology
of these deformation spaces from a global algebraization result, and we conclude by defining the test functions ϕτ,h
and fτ,h using these cohomology groups.

1.1. Given a scheme S over SpecO, we write ζ for the image ofϖ in OS . Note that requiring ζ to be locally nilpotent
is the same as requiring S−→ SpecO to factor as S−→ Spf O−→SpecO. We consider OS [[ϖ]] and OS((ϖ)) as
sheaves of formal power and Laurent series on |S|, respectively [21, p. 4].

Definition. Let S be a scheme over Spf O. An local shtuka over S is a pair (M ,F ), where

• M is a locally free OS [[ϖ]]-module of finite rank,
• F : σ∗M [ 1ϖ ]−→M [ 1ϖ ] is an OS((ϖ))-module isomorphism,

where σ denotes the absolute q-Frobenius on S and its canonical lifts to OS [[ϖ]] and OS((ϖ)). A morphism of local
shtukas is a morphism f : M −→M ′ of locally free OS [[ϖ]]-modules satisfying f [ 1ϖ ] ◦F = F ′ ◦ f [ 1ϖ ]. A quasi-
isogeny of local shtukas is an invertible element in Hom(M ,M ′)[ 1ϖ ]. When such an element exists, we say M and
M ′ are isogenous.

1.2. For any field λ over κ, we see that isomorphism classes of local shtukas over Specλ of rank n correspond
to GLn(λ[[ϖ]])-σ-conjugacy classes in GLn(λ((ϖ))) via sending δ in GLn(λ((ϖ))) to (λ[[ϖ]]n, δ ◦ σ⊕n), where δ
acts via left multiplication on column vectors. In further analogy with isocrystals, we also have a Dieudonné–Manin
classification [34, (2.4.5)] for isogeny classes of local shtukas over algebraically closed fields.
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1.3. Definition. Let M be a local shtuka over S. We say that M is effective if F is the localization of an OS [[ϖ]]-
module morphism σ∗M −→M , which we henceforth refer to as F by abuse of notation. For an effective local shtuka
M , one can show that cokerF is a locally free OS-module of finite rank [21, Lemma 2.3], and we say the dimension
of M is the rank of cokerF . We say M is étale if its dimension equals zero.

We say M is effective minuscule if ϖ− ζ annihilates cokerF . For an effective minuscule local shtuka M , we say
M is connected if F is ϖ-adically nilpotent.

1.4. In our above description 1.2 of isomorphism classes of local shtukas over Specλ, we see that the local shtuka
corresponding to δ is effective if and only if δ lies in Mn(λ[[ϖ]]). By the Cartan decomposition, it is effective minuscule
if and only if δ lies in

n∐
d=0

GLn(λ[[ϖ]]) diag(ϖ, . . . ,ϖ︸ ︷︷ ︸
d times

, 1, . . . , 1)GLn(λ[[ϖ]]),

where d corresponds to the dimension of (λ[[ϖ]]n, δ ◦ σ⊕n).

1.5. Just as with Dieudonné modules, effective minuscule local shtukas have a good theory of

• truncated variants, called finite κ-shtukas [21, Definition 2.6], which we remark can be defined over any scheme S
over SpecO,

• a contravariant Dieudonné equivalence [21, Theorem 5.2] between finite κ-shtukas and certain finite module schemes
called strict κ-modules [21, Definition 4.8] that extends to an anti-equivalence [21, Theorem 8.3] between effective
minuscule local shtukas and certain module sheaves calledϖ-divisible local Anderson modules [21, Definition 7.1],

• a connected-étale short exact sequence over local Artinian rings that splits over perfect fields [21, Proposition 2.9].

1.6. Let F̆ be the completion of the maximal unramified extension of F , and write Ŏ for its ring of integers. Our
choice of ϖ yields an identification Ŏ = κ[[ϖ]].

We begin by examining the case S = Specκ. Let δ be an element of GLn(Ŏ) diag(ϖ, 1, . . . , 1)GLn(Ŏ), and write
H̆δ for the associated effective minuscule local shtuka over Specκ of rank n and dimension 1. The connected-étale
sequence yields a decomposition

H̆δ = H̆◦
δ ⊕ H̆ ét

δ ,

where H̆◦
δ and H̆ ét

δ are the connected and étale parts of H̆δ , respectively. Write k for the rank of H̆◦
δ .

As H̆◦
δ is the connected part, it must have dimension 1, so under the Dieudonné equivalence it corresponds to

the unique formal O-module of height k and dimension 1, i.e. the Lubin–Tate module [16, Proposition 1.7.1)]. By
applying the Dieudonné equivalence to H̆ ét

δ and using the algebraic closedness of Specκ, we also see that H̆ ét
δ is the

unique étale effective minuscule local shtuka over Specκ of rank n− k, i.e. the constant ϖ-divisible local Anderson
module (F/O)n−k. Thus under 1.2, we see that H̆ ét

δ corresponds to the GLn−k(Ŏ)-σ-conjugacy class of 1, and H◦
δ

corresponds to a basic element δ◦ in GLk(Ŏ) diag(ϖ, 1, . . . , 1)GLk(Ŏ), up to GLk(Ŏ)-σ-conjugation.

1.7. Let Fr be the r-th degree unramified extension of F , write Or for its ring of integers, and write κr for Or/ϖ,
which is the r-degree extension of κ. Our choice of ϖ yields an identification Or = κr[[ϖ]].

We now turn to the case of S = Specκr. Let δ be an element of GLn(Or) diag(ϖ, 1, . . . , 1)GLn(Or), and write
Hδ for the associated effective minuscule local shtuka over Specκr of rank n and dimension 1. The connected-étale
sequence yields a decomposition

Hδ = H◦
δ ⊕H ét

δ ,

where H◦
δ and H ét

δ are the connected and étale parts of Hδ , respectively. Write k for the rank of H◦
δ . Under 1.2, we

see that H ét
δ corresponds to some δét in GLn−k(Or), up to GLn−k(Or)-σ-conjugation, and one can show that H◦

δ

corresponds to some δ◦ in GLk(Or) diag(ϖ, 1, . . . , 1)GLk(Or), up to GLk(Or)-σ-conjugation, whose norm

N(δ◦) := δ◦σ(δ◦) · · ·σr−1(δ◦)
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is GLk(Fr)-conjugate to an elliptic element in GLk(F ). We denote the set of such δ by Bn,k, and we write Bk for
Bk,k. Note that the pullback of Hδ to Specκ is isomorphic to H̆δ .

1.8. To define our deformation spaces of local shtukas (with additional data), we need to introduce a notion of
Drinfeld level structures for effective local shtukas. For any effective local shtuka M , its m-th level truncation is
M /ϖm. For any finite κ-shtuka M , we write Dr(M) for the corresponding finite κ-strict module [21, p. 16], which
is an O/ϖm-module scheme over S.

Definition. Let M be an effective minuscule local shtuka over S of constant rank n. We say a Drinfeld level-m
structure on M is a Drinfeld level-m structure on Dr(M /ϖm), that is, an O/ϖm-module morphism

α : (ϖ−mO/O)n−→Dr(M /ϖm)(S)

such that the collection of all α(x) for x in (ϖ−mO/O)n forms a full set of sections of Dr(M /ϖm) as in [30,
(1.8.2)]. For any Drinfeld level-m structure α, its restriction to (ϖ−m′O/O)n is a Drinfeld level-m′ structure, which
we denote by α|m′ . Furthermore, if S is the spectrum of a local Artinian ring, then the restriction of α to kerα is a
Drinfeld level-m structure on the connected part M ◦ of M . We denote this by α◦.

1.9. We now initiate our study of deformation spaces. Write Ĉ for the opposite category of the category whose

• objects are complete Noetherian local Ŏ-algebras A with residue field κ,
• morphisms are local Ŏ-algebra morphisms,

and write C for the full subcategory of Ĉ consisting of Artinian rings. We identify Ĉ with a full subcategory of formal
schemes over Spf Ŏ. Note that for A in C, we have Spf A = SpecA.

For any contravariant functor E : C −→(Set), we write Ê : Ĉ −→(Set) for the extension of E to Ĉ given by sending

A 7→ lim←−
i

E(A/mi
A),

where mA is the maximal ideal of A. We say E has a deformation space if Ê is representable by a finite disjoint union
X of formal schemes in Ĉ. By Yoneda’s lemma, such an X is unique up to isomorphism.

1.10. Return to the situation in 1.6, and let α be a Drinfeld level-m structure on H̆δ . Write Ĕδ,α : C −→(Set) for the
functor sending

A 7→ {triples (H ′, α′, ι′)}/ ∼,

where H ′ is a local shtuka over SpecA, α′ is a Drinfeld level-m structure on H ′, and ι′ is an isomorphism H̆δ
∼−→H ′

κ

such that (α′)κ = ι′ ◦α. In other words, Ĕδ,α parametrizes deformations of (H̆δ, α). Note that Ĕδ,α has a right action
of GLn(O/ϖm) given by sending (H ′, α′, ι′) to (H ′, α′ ◦ γ, ι′) for any γ in GLn(O/ϖm).

By applying the Dieudonné equivalence to rephrase the problem in terms of ϖ-divisible local Anderson modules,
we immediately deduce the following from classical results of Drinfeld.

Proposition ([16, Proposition 4.2], [16, Proposition 4.3], [47, 2.1.2.(ii)]).
(i) The functor Ĕδ,α has a deformation space, which we denote using X̆δ,α = Spf R̆δ,α. This R̆δ,α is a regular

complete local Noetherian Ŏ-algebra.
(ii) Write X̆δ = Spf R̆δ for the deformation space with Drinfeld level-0 structure, that is, no Drinfeld level structure.

Choosing a coordinate on H̆◦
δ and an isomorphism H̆δ

∼−→ H̆◦
δ ⊕ (F/O)n−k induces an isomorphism from R̆δ

to the formal power series ring Ŏ[[s1, . . . , sn−1]].
(iii) The same choice as in (ii) induces an isomorphism from R̆δ,α to the formal power series ring R̆δ◦,α◦ [[t1, . . . , tn−k]],

where the R̆δ◦,α◦ -algebra structure is given by the restriction morphism R̆δ◦,α◦ −→ R̆δ,α.
(iv) For all non-negative integers m′ ≤ m, the restriction morphism R̆δ,α|m′ −→ R̆δ,α is finite flat. Its generic fiber

R̆δ,α|m′ [
1
ϖ ]−→ R̆δ,α[

1
ϖ ] is a Galois extension of rings, and the left action of

ker
(
GLn(O/ϖm)−→GLn(O/ϖm′

)
)

on R̆δ,α|m′ −→ R̆δ,α yields the Galois action on R̆δ,α|m′ [
1
ϖ ]−→ R̆δ,α[

1
ϖ ].
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In particular, parts (ii) and (iv) imply that X̆δ,α has dimension n− 1 over Spf Ŏ.

1.11. Let e1, . . . , ek be an O/ϖm-basis of kerα. After choosing a coordinate on H̆δ◦ , we may identify its A-points
with mA. Classical results of Drinfeld yield certain local parameters of R̆δ,α which satisfy the following relationship
with Drinfeld level-m structures.

Proposition ([16, Proposition 4.3.2)]). There exist local parameters x1, . . . , xk of the regular local ring R̆δ◦,α◦ such
that, for any morphism f : R̆δ◦,α◦ −→A in Ĉ, the image of xi under f equals the element of mA corresponding to
α′(ei), where (H ′, α′, ι′) is the deformation of (H̆◦

δ , α
◦) corresponding to f .

1.12. Next, we allow the Drinfeld level-m structure to vary. Write Ĕδ,m : C −→(Set) for the functor sending

A 7→ {triples (H ′, α′, ι′)}/ ∼,

whereH ′ is a local shtuka over SpecA, α′ is a Drinfeld level-m structure onH ′, and ι′ is an isomorphism H̆δ
∼−→H ′

κ.
In other words, Ĕδ,m parametrizes deformations of H̆δ along with a Drinfeld level-m structure. As in 1.10, our functor
Ĕδ,m has a right action of GLn(O/ϖm).

Because every α′ yields a Drinfeld level-m structure α′
κ of H̆δ , we have

Ĕδ,m =
∐
α

Ĕδ,α,

where α ranges over all Drinfeld level-m structures on H̆δ . This disjoint union respects both restriction to the con-
nected component as well as restriction to level-m′, where m′ ≤ m. By decomposing Drinfeld level-m structures in
terms of the connected-étale sequence, we deduce the following result from Proposition 1.10.

Proposition. The functor Ĕδ,m has a deformation space, which we denote using X̆δ,m. We have an identification

X̆δ,m =
∐
α

X̆δ,α =
∐
V

∐
kerα=V

Spf R̆δ◦,α◦ [[t1, . . . , tn−k]],

where V ranges over all O/ϖm-linear direct summands of (ϖ−mO/O)n with rank k. Under the first identification,
the restriction morphisms X̆δ,m−→ X̆δ,m′ equal the disjoint union of the restriction morphisms X̆δ,α−→ X̆δ,α|m′ .

Fix such a V . Since Drinfeld level-m structures on étale group schemes are precisely group isomorphisms [30,
(1.8.3)], the set of all α satisfying kerα = V is a right principal homogeneous space for GL((ϖ−mO/O)n/V ).

1.13. Now suppose that δ lies in GLn(Or) diag(ϖ, 1, . . . , 1)GLn(Or). This will allow us to descend X̆δ,m to a
formal scheme Xδ,m over Spf Or as follows. Let σ be any element of Gal(κ/κr), which we identify with its canonical
lift to Aut(Ŏ/Or), and write σ for Specσ by abuse of notation. The automorphism of H̆δ = Hδ,κ given by idHδ

×κr
σ

lies over σ and hence induces an isomorphism σ∗H̆δ
∼−→ H̆δ over Specκ, which we denote using fσ .

Note that σ∗H̆δ is isomorphic to H̆σ(δ) and that σ∗X̆δ,m is isomorphic to X̆σ(δ),m. We obtain an isomorphism φσ :

X̆δ,m
∼−→σ∗X̆δ,m by sending (H ′, α′, ι′) to (H ′, α′, ι′ ◦ fσ). Since the morphisms fσ satisfy the cocycle condition,

the morphisms φσ do as well (albeit contravariantly), and thus the φσ provide Weil descent datum for X̆δ,m as in
[40, Definition (3.5)]4 One can show this Weil descent datum is effective, and we write Xδ,m for the resulting formal
scheme over Spf Or. The right action of GLn(O/ϖm) on X̆δ,m commutes with φσ and hence also descends to a right
action on Xδ,m. The restriction morphisms similarly descend to morphisms Xδ,m−→Xδ,m′ .

1.14. Let X be a special formal scheme over Spf A as in [7, p. 370] for a complete valuation ringA. For any complete
nonarchimedean field K containing A, we write XK for the adic pullback of X to K [7, p. 370]. Writing λ for the
residue field ofK, we denote the adic pullback5 of X to λ by Xλ [7, p. 370]. These constructions correspond to generic
and special fibers, respectively, in the setting of nonarchimedean analytic geometry.

4The definition here is stated for mixed characteristic, but it adapts to equal characteristic by using formal power series instead of Witt vectors.
5These are referred to in [7] as the generic and special fibers, respectively. Our terminology stems from interpreting them as pullbacks in the
category of adic spaces.
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We shall now introduce the cohomology of our deformation spaces. Write Riψδ,m for the Qℓ-vector space
Hi(Xδ,m,Cϖ

,Qℓ). The zero-dimensionality of Xδ,m,κ and the nearby cycles spectral sequence [7, Corollary 2.5]
show that

Riψδ,m = H0(Xδ,m,κ, R
iΨXδ,m,Cϖ

Qℓ),

where RiΨXδ,m,Cϖ
denotes the i-th nearby cycles functor6 [7, p. 373] on Xδ,m,OCϖ

. This equality explains our choice
of notation for Riψδ,m. To prove the finite-dimensionality of Riψδ,m as well as eventually prove the admissibility of
a certain GLn(O)-action, we take recourse to the following algebraization result.

Lemma. There exists a projective schemeM over Spec Ŏ, a zero-dimensional closed subscheme Z ofMκ, and a
right action of GLn(O/ϖm) on the pair (M,Z) such that the completion ofM at Z is isomorphic to X̆δ,m with its
right action of GLn(O/ϖm).

The desired algebraization comes from a moduli space of D-elliptic sheaves with bad reduction, but we won’t
introduce these moduli spaces until §5, and we won’t explain how to relate them to local shtukas until §7. Although
we record the proof here, one can safely take this algebraization result as a black box.

Proof of Lemma 1.14. Let C = P1
κ be our curve of interest, and let∞ and o be distinct κ-points of C. Let D be any

central division algebra over κ(C) of dimension n2 that splits at o and∞, and let D be a maximal order of D, which
can be constructed using 5.4 because division algebras split at cofinitely many places. Proposition 7.9 allows us to find
a D-elliptic sheaf (Ei, ti, ji)i over κ whose local shtuka M ′

o at o as in 5.16 is isomorphic to H̆δ .
Denote the corresponding κ-point ofM∅,Ŏ using z. Write om for the finite closed subscheme of C supported on o

with multiplicitym, and write π :Mom,Ŏ −→M∅,Ŏ for the restriction morphism. Then 5.21 says thatM =Mom,Ŏ
and Z = π−1(z) yield the desired algebraization of X̆δ,m. □

1.15. With Lemma 1.14 in hand, Berkovich’s nearby cycles comparison theorem [7, Theorem 3.1] implies that
Riψδ,m is finite-dimensional over Qℓ and vanishes for i > n− 1 by Proposition 1.10. Furthermore, it has commuting
continuous left actions of WFr and GLn(O/ϖm). Write Riψδ for the direct limit

Riψδ := lim−→
m

Riψδ,m,

where the transition mapsRiψδ,m′ −→Riψδ,m are induced by the restriction morphisms Xδ,m−→Xδ,m′ form′ ≤ m.
Now Riψδ has commuting left actions of WFr and GLn(O), and Proposition 1.10.(iv) shows that

(Riψδ)
1+ϖmMn(O) = Riψδ,m.

Therefore Riψδ is a GLn(O)× IF -admissible/continuous representation as in [20, p. 24] of GLn(O)×WFr
over Qℓ.

Write [Rψδ] for the virtual representation

[Rψδ] :=

∞∑
i=0

(−1)iRiψδ.

1.16. At this point, we can finally begin to define the test function fτ,h mentioned in Theorem A. We shall start
by defining ϕτ,h, which will end up being a transfer of fτ,h. Let τ be an element of WF with positive v(τ), write
r = v(τ), and let h be a function in C∞

c (GLn(O)). We write ϕτ,h : GLn(Fr)−→C for the function

δ 7→

tr(τ × h|[Rψδ]) if δ is in GLn(Or) diag(ϖ, 1, . . . , 1)GLn(Or),

0 otherwise,

where we have identified Qℓ with C.

Lemma. The map GLn(F̆ )−→GLn(F̆ ) given by g 7→ g−1δσ(g) is open, where σ denotes the lift of q-Frobenius.

Proof. This follows from reducing to the Lie algebra situation, using the Dieudonné–Manin classification to casework
on δ, and applying the nonarchimedean Banach open mapping theorem, c.f. [44, Lemma 4.4]. □

6This is referred to in [7] and [20] as the vanishing cycles functor.
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Lemma 1.16 implies that the subsets Bn,k of GLn(Or) diag(ϖ, 1, . . . , 1)GLn(Or) are open. Because

GLn(Or) diag(ϖ, 1, . . . , 1)GLn(Or) =

n∐
k=1

Bn,k,

we see that the subsets Bn,k are also closed.
One uses Lemma 1.16 and proceeds as in [44, Proposition 4.3] to show that ϕτ,h is locally constant. As ϕτ,h is sup-

ported on the compact subset GLn(Or) diag(ϖ, 1, . . . , 1)GLn(Or) by definition, we see that ϕτ,h is inC∞
c (GLn(Or)).

1.17. Let fτ,h be a transfer of ϕτ,h, i.e. a function inC∞
c (GLn(F )) such that fτ,h and ϕτ,h have matching twisted or-

bital integrals [27, (I.2.5, prop.)]. We remark that while fτ,h is not uniquely determined as a function inC∞
c (GLn(F )),

its orbital integrals are well-defined by the fact that they equal the corresponding twisted orbital integrals of ϕτ,h.
Hence the Weyl integration formula [27, (II.2.10, formula (1)], along with the local integrability of characters [36,
Theorem (7.1)], implies that the trace of fτ,h on admissible representations of GLn(F ) is also well-defined.

Since we have now defined fτ,h, the statement of Theorem A makes sense.

2. THE FIRST INDUCTIVE LEMMA: TRACE IDENTITIES AND PARABOLIC INDUCTION

In this section, we begin by recalling the Bernstein–Zelevinsky classification of irreducible smooth representations
of GLn(F ), which we use to prove a lemma on checking equalities of traces. Then, we use Schneider–Zink’s theory
of tempered types for GLn(F ), which is a version of Bushnell–Kutzko types for tempered representations, to construct
test functions that pick out certain representations.

With these preliminaries, we proceed to the main result of this section: a lemma which allows us to prove Theorem
A by inducting on n, provided that we verify certain conditions. The proof of our lemma uses theory of the Bernstein
center, which describes the center of the category of smooth representations of GLn(F ). In subsequent sections, we
will focus on verifying the necessary conditions for our inductive lemma.

2.1. First, we recall Bernstein–Zelevinsky’s description of irreducible essentially L2 representations of GLn(F ). Let
∆ be a segment

∆ = {π0[ 1−m
2 ], π0[

3−m
2 ], . . . , π0[

m−1
2 ]}

as in [51, 3.1], where m is a positive divisor of n, π0 is an irreducible cuspidal representation of GLn/m(F ), and [s]

denotes twisting by the unramified character |det|s. Consider the normalized parabolic induction

n-Ind
GLn(F )
P (F ) (π0[

1−m
2 ]⊗ π0[ 3−m

2 ]⊗ · · · ⊗ π0[m−1
2 ]),

where P is the standard parabolic subgroup of GLn with block sizes (m, . . . ,m). This representation of GLn(F ) has
a unique irreducible quotient [51, 9.1], which we denote by Q(∆).

Recall that the irreducible essentially L2 representations of GLn(F ) are those isomorphic to Q(∆) [51, 9.3]. We
see that ∆ is the cuspidal support of Q(∆), and note that Q(∆) has unitary central character if and only if π0 does.

2.2. Next, we proceed to arbitrary irreducible smooth representations of GLn(F ). Let {∆1, . . . ,∆t} be a collection
of segments such that ∆i does not precede ∆j as in [51, 4.1] for i < j. Each Q(∆i) is an irreducible essentially L2

representation of GLni(F ), and we may form the normalized parabolic induction

n-Ind
GLn(F )
P (F )

(
Q(∆1)⊗ · · · ⊗Q(∆t)

)
,

where n = n1 + · · · + nt, and P is the standard parabolic subgroup of GLn with block sizes (n1, . . . , nt). This
representation of GLn(F ) is always generic, and when none of the ∆i are linked, it is even irreducible [51, 9.7.(a)]. For
general ∆i, it has a unique irreducible quotient, which we denote by Q(∆1, . . . ,∆t). Furthermore, every irreducible
generic representation of GLn(F ) is isomorphic to Q(∆1, . . . ,∆t) for some ∆i that are not linked [51, 9.7.(b)].

The isomorphism class of Q(∆1, . . . ,∆t) does not depend on the ordering of the {∆1, . . . ,∆t}, as long as it still
satisfies the condition that ∆i does not precede ∆j for i < j. Recall that every irreducible smooth representation of
GLn(F ) is isomorphic to Q(∆1, . . . ,∆t) for a unique choice of {∆1, . . . ,∆t} [51, 9.7.(b)], up to reordering. We see
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that the multiset ∆1

∐
· · ·

∐
∆t is the cuspidal support of Q(∆1, . . . ,∆t). Furthermore, recall that Q(∆1, . . . ,∆t) is

tempered if and only if every Q(∆i) is L2 [28].

2.3. The following terminology generalizes the Steinberg and trivial representations, respectively.

Definition. Let t be a positive divisor of n, and let π0 be an irreducible cuspidal representation of GLn/t(F ). We
write Stt(π0) for the representation

Stt(π0) := Q
(
{π0[ 1−t

2 ], π0[
3−t
2 ], . . . , π0[

t−1
2 ]}

)
,

and we write Spt(π0) for the representation

Spt(π0) := Q
(
{π0[ t−1

2 ]}, {π0[ t−3
2 ]}, . . . , {π0[ 1−t

2 ]}
)
.

We say that a representation of GLn(F ) is a Steinberg module if it is isomorphic to some Spt(π0) for some π0 with
unitary central character, and we say it is a Speh module7 if it is isomorphic to Spt(π0) for some π0 with unitary central
character. Note that 2.1 indicates that being a Steinberg module means the same thing as being irreducible L2.

We recover the usual Steinberg and trivial representations by taking t = n and letting π0 be the trivial representation.

2.4. We now turn to the following lemma on checking equalities of traces.

Lemma. Let f be a function in C∞
c (GLn(F )), and suppose that tr(f |π) = 0 whenever π is an irreducible smooth

representation of GLn(F ) that is

(a) tempered but not L2,
(b) a Speh module.

Then tr(f |π) = 0 for all irreducible smooth representations π of GLn(F ).

Proof. Kazhdan’s density theorem [31, Theorem 0] indicates that it suffices to check tr(f |π) = 0 for all irreducible
tempered π, and (a) above further reduces it to checking tr(f |π) = 0 whenever π is irreducible L2. Thus we can write
π as Stt(π0), where t is some positive divisor of n, we set d := n/t, and π0 is an irreducible cuspidal representation
of GLd(F ) with unitary central character.

If t = 1, then π = π0 = Sp1(π0), so (b) shows that tr(f |π) = 0. Next, suppose that t ≥ 2. A routine calculation
[20, Lemma I.3.2] using the graph-theoretic description of the Jordan–Hölder factors of

n-Ind
GLn(F )
P (F ) (π0[

1−t
2 ]⊗ π0[ 3−t

2 ]⊗ · · · ⊗ π0[ t−1
2 ]),

where P is the standard parabolic subgroup of GLn with block sizes (d, · · · , d), yields the following equality of virtual
smooth representations of GLn(F ):

Spt(π0) + (−1)tπ =

t−1∑
j=1

(−1)j−1 n-Ind
GLn(L)
Pj(L)

(
Spt−j(π0[

t−1+j
2 ])⊗ Stj(π0[

j−1
2 ])

)
,

where Pj is the standard parabolic subgroup of GLn with block sizes (d(t − j), dj). Note that Spt(π0) is a Speh
module. Therefore once we prove the following lemma, taking traces and using (b) yields the desired result. □

2.5. Lemma. Let f be a function in C∞
c (GLn(F )), and suppose that tr(f |π) = 0 whenever π is irreducible tempered

but not L2. Then for all partitions n = n1 + n2 and irreducible smooth representations πi of GLni
(F ), we have

tr
(
f |n-IndGLn(F )

P (F ) (π1 ⊗ π2)
)
= 0,

where P is the standard parabolic subgroup of GLn with block sizes (n1, n2).

For any function f inC∞
c (GLn(F )), we write fP,GLn(O) for its normalized GLn(O)-invariant constant term along

a parabolic subgroup P as in [37, p. 80]. It is a function in C∞
c (M(F )), where M is the standard Levi subgroup of P .

7What we call a Steinberg module is often called a generalized Steinberg representation. However, what we call a Speh module is actually less
general than the usual definition of Speh representations.
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Proof of Lemma 2.5. Van Dijk’s formula [37, Theorem 5.9] implies that

tr
(
f |n-IndGLn(F )

P (F ) (π1 ⊗ π2)
)
= tr(fP,GLn(O)|π1 ⊗ π2).

Recall from 2.2 that, if π1 and π2 are tempered, then

n-Ind
GLn(F )
P (F ) (π1 ⊗ π2)

is irreducible tempered but not L2. In this situation, the left-hand side of the above equation vanishes by assumption.
As π1 and π2 run over tempered representations of GLn1

(F ) and GLn2
(F ), respectively, π1⊗π2 runs over irreducible

tempered representations of M = GLn1(F )×GLn2(F ). Thus applying Kazhdan’s density theorem [31, Theorem 0]
to fP,GLn(O) indicates that the right-hand and hence left-hand side of the above equation vanishes for all π1 and π2,
as desired. □

2.6. By using Schneider–Zink’s tempered types, we can construct the following test functions that pick out Speh
modules.

Lemma. Let π = Spt(π0) be a Speh module, where t is a positive divisor of n, and π0 is an irreducible cuspidal
representation of GLn/t(F ) with unitary central character. Then there exists a function h in C∞

c (GLn(O)) such that

(i) tr(h|π) = 1,
(ii) if π′ is an irreducible tempered representation of GLn(F ) that is not isomorphic to Q

(
{π0[s1]}, . . . , {π0[st]}

)
for some purely imaginary s1, . . . , st, then tr(h|π′) = 0.

Proof. We reduce this to tempered type theory as follows. Suppose we could find an irreducible smooth representation
λ of GLn(O) such that

(i) π contains λ with multiplicity 1,
(ii) if π′ is an irreducible tempered representation of GLn(F ) that is not isomorphic to Q

(
{π0[s1]}, . . . , {π0[st]}

)
for some purely imaginary s1, . . . , st, then π′ does not contain λ.

Then Schur orthogonality shows that the function g 7→ tr(g|λ) yields the desired h. As for finding such a λ, we use
[41]. More precisely, let λ be the representation σP(λ) as in [41, p. 30] for P = t · ∆(π0, 1), where we adopt the
notation of [41]. Note that π lies in imQP , so (i) follows from [41, Prop. 11, i.]. Furthermore, we see that P is a
maximal partition-valued function on C, so (ii) follows from [41, Prop. 11, iii.]. □

2.7. Finally, we can introduce the main result of this section: our inductive lemma.

First Inductive Lemma. Assume that the following conditions hold for all admissible representations π of GLn(F ):

(a) Theorem A is true for all n′ < n,
(b) if π is isomorphic to the normalized parabolic induction

n-Ind
GLn(F )
P (F ) (π1 ⊗ · · · ⊗ πt),

where t ≥ 2, the πi are irreducible smooth representations of GLni
(F ), we have n = n1 + · · ·+ nt, and P is the

standard parabolic subgroup of GLn with block sizes (n1, . . . , nt), then we have an equality of traces

tr(fτ,h|π) = tr
(
τ |ρ(π1)(n−n1

2 )⊕ · · · ⊕ ρ(πt)(n−nt

2 )
)
tr(h|π)

for all τ in WF with v(τ) > 0 and h in C∞
c (GLn(O)),

(c) if π is a Speh module or irreducible essentially L2, there exists an n-dimensional Q≥0-virtual continuous repre-
sentation ρ(π) of WF satisfying the trace condition

tr(fτ,h|π) = tr
(
τ |ρ(π)

)
tr(h|π)

for all τ in WF with v(τ) > 0 and h in C∞
c (GLn(O)),

(d) if π is irreducible cuspidal, then the representation ρ(π) from condition (c) is actually a Z-virtual continuous
representation of WF .

Then Theorem A is true for n.
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Since semisimple representations of WF are determined by their traces, any ρ(π) satisfying the equality of traces
in Theorem A.(i) is unique up to isomorphism. In particular, the ρ(π) whose existence is posited by Theorem A.(i) is
isomorphic to the ρ(π) whose existence is provided by condition (c).

We now proceed to prove the first inductive lemma. To this end, for the remainder of this section we shall assume
that conditions (a)–(d) hold. Later, we shall verify these conditions in §3, §4, and §8.

2.8. We begin with the following observation. Suppose that π is irreducible cuspidal. Then condition (c) provides
an n-dimensional Q-virtual continuous representation ρ(π) of WF such that, when expanded in terms of the Q-basis
of irreducible continuous representations of WF , every coefficient is non-negative. Condition (d) implies that these
coefficients are integers, so ρ(π) corresponds to an actual n-dimensional semisimple continuous representation ofWF .

2.9. Now let π be any irreducible smooth representation of GLn(F ). Before proceeding, we gather a few recollec-
tions on the Bernstein center. For any f in the Bernstein center Ẑ of GLn(F ), we write tr(f |π) for the scalar by which
f acts on π. We identify Ẑ with the product of the rings of regular functions on the Bernstein components of GLn(F )

[8, 2.10].
Write π1, . . . , πt for the cuspidal support of π, where the πi are irreducible cuspidal representations of GLni

(F )

such that n = n1 + · · ·+ nt. Write P for the standard parabolic subgroup of GLn with block sizes (n1, . . . , nt). For
any function h in C∞

c (GLn(F )), van Dijk’s formula [37, Theorem 5.9] implies that the assignment

π 7→ tr
(
h|n-IndGLn(F )

P (F ) (π1 ⊗ · · · ⊗ πt)
)

yields an element of Ẑ , which we shall denote using ĥ. When n-Ind
GLn(F )
P (F ) (π1 ⊗ · · · ⊗ πt) is irreducible and hence

isomorphic to π, we have tr(ĥ|π) = tr(h|π). However, we stress that this is false for general π.

2.10. We construct an element fτ of Ẑ as follows. Write r(π) for the representation

r(π) := ρ(π1)(
1−n1

2 )⊕ · · · ⊕ ρ(πt)( 1−nt

2 ),

which is well-defined for t = 1 by 2.8 and for t ≥ 2 by Theorem A.(i) for the πi. Note that r(π) is semisimple. We
shall see in Proposition 2.11 that r(π) is always isomorphic to rec(π), where the latter is defined as in Theorem A.

Proposition. The function fτ whose action on π is given by tr
(
τ |r(π)(n−1

2 )
)

is an element of Ẑ .

This fulfills the desire to have a function-like object (in this case, an element of the Bernstein center, which is a
distribution) associated with τ whose trace equals the action of τ on r(π) and hence on rec(π).

Proof. It suffices to prove that π 7→ tr
(
τ |r(π)(n−1

2 )
)

is a regular function on every Bernstein component, so we may
focus on one particular π. First, use Schur orthogonality to obtain a function h1 in C∞

c (GLn(O)) that satisfies

tr
(
h1|n-IndGLn(F )

P (F ) (π1 ⊗ · · · ⊗ πt)
)
= 1,

where P is the standard parabolic subgroup of GLn with block sizes (n1, . . . , nt). Now any other irreducible repre-
sentation π′ in the Bernstein component of π is a subquotient of

n-Ind
GLn(F )
P (F ) (π1[s1]⊗ · · · ⊗ πt[st]),

where the si are complex numbers. The Iwasawa decomposition implies that hP,GLn(O)
1 is supported onM(O), where

M is the standard Levi subgroup of P , so van Dijk’s formula [37, Theorem 5.9] shows that

tr
(
h1|n-IndGLn(F )

P (F ) (π1[s1]⊗ · · · ⊗ πt[st])
)
= tr

(
h1|n-IndGLn(F )

P (F ) (π1 ⊗ · · · ⊗ πt)
)
= 1.

Because π1[s1], . . . , πt[st] is the cuspidal support of π′, we obtain

tr
(
τ |r(π′)(n−1

2 )
)
= tr

(
τ |ρ(π1[s1])(n−n1

2 )⊕ · · · ⊕ ρ(πt[st])(n−nt

2 )
)

= tr
(
τ |ρ(π1[s1])(n−n1

2 )⊕ · · · ⊕ ρ(πt[st])(n−nt

2 )
)
tr
(
h1|n-IndGLn(F )

P (F ) (π1[s1]⊗ · · · ⊗ πt[st])
)
.
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This equals

tr
(
fτ,h1

|n-IndGLn(F )
P (F ) (π1[s1]⊗ · · · ⊗ πt[st])

)
for t = 1 by condition (c) and for t ≥ 2 by condition (b). Altogether, we see that fτ acts on the Bernstein component
of π via f̂τ,h1

, so it is a regular function. □

2.11. We can relate the distribution fτ to the test function fτ,h as follows. Recall that the convolution product fτ ∗ h
is a function in C∞

c (GLn(F )).

Proposition. We have tr(fτ,h|π) = tr(fτ ∗ h|π).

Note that, since fτ lies in the Bernstein center of GLn(F ), we have

tr(fτ ∗ h|π) = tr(fτ |π) tr(h|π) = tr
(
τ |r(π)(n−1

2 )
)
tr(h|π).

By defining ρ(π) := r(π)(n−1
2 ), we see that this proposition gives the existence part of Theorem A.(i) for n.

Proof of Proposition 2.11. By Lemma 2.4, it suffices to consider π that are either Speh modules or irreducible tem-
pered but not L2. In the latter case, the descriptions given in 2.2 imply that π is isomorphic to a representation of the
form considered in condition (b). Therefore condition (b) yields the desired result in this case.

Turning to the case where π is a Speh module, suppose that π is isomorphic to Spt(π0) for some positive divisor
t of n and irreducible cuspidal representation π0 of GLn/t(F ) with unitary central character. If t = 1, then π = π0
is cuspidal, and condition (c) gives the desired equality. Therefore suppose that t ≥ 2, and let h2 be a function in
C∞

c (GLn(O)) as in Lemma 2.6. We start by proving the case where h = h2.

2.12. Lemma. For all irreducible smooth representations π′ of GLn(F ), we have tr
(
fτ,h2 |π′) = tr

(
fτ ∗ h2|π′).

Proof. Kazhdan’s density theorem [31, Theorem 0] indicates that it suffices to check this for irreducible tempered π′.
When π′ is not L2, this identity is a case of Proposition 2.11 we proved above, so we now tackle the case when π′ is
L2. Since t ≥ 2, the descriptions given in 2.1 and 2.2 indicate that π′ cannot be of the formQ

(
{π0[s1]}, . . . , {π0[st]}

)
for purely imaginary s1, . . . , st. Thus condition (c) and Lemma 2.6.(ii) imply that

tr
(
fτ,h2

|π′) = tr
(
τ |ρ(π′)

)
tr(h2|π′) = 0 = tr

(
τ |r(π)(n−1

2 )
)
tr(h2|π) = tr

(
fτ ∗ h2|π′) ,

which concludes the proof of Lemma 2.12. □

Return to the proof of Proposition 2.11. By plugging π′ = π into Lemma 2.12 and using condition (c) and Lemma
2.6.(i), we see that

tr
(
τ |ρ(π)

)
= tr

(
fτ,h2 |π

)
= tr

(
fτ ∗ h2|π

)
= tr

(
τ |r(π)(n−1

2 )
)
.

Because semisimple representations of WF are determined by their traces, this indicates that ρ(π) is isomorphic to
r(π)(n−1

2 ). In particular, applying condition (c) again verifies the desired equality when π is a Speh module.
□

We conclude this section by finishing the proof of Lemma 2.7, that is, by proving that Theorem A holds for n.

Proof of Lemma 2.7. We have already noted that Proposition 2.11 gives the existence part of Theorem A.(i) for n.
Since semisimple representations of WF are determined by their traces, any such ρ(π) satisfying the equality of
traces in Theorem A.(i) is unique. As for Theorem A.(ii), it immediately follows from the associativity of normalized
parabolic induction as well as the definition of σ(π) in terms of the cuspidal support of π. □

The next several sections will focus on verifying that conditions (b)–(d) hold, sometimes while assuming the in-
ductive condition (a). More precisely, we shall prove condition (b) in Proposition 3.11 under the assumption that the
inductive condition (a) holds, we will prove condition (d) in Proposition 4.11 while black-boxing condition (c), and
we shall prove condition (c) itself in Proposition 8.13. We will also prove the n = 1 case of Theorem A in Proposition
4.6, which serves as the base case for applying Lemma 2.7.



16 SIYAN DANIEL LI-HUERTA

3. GEOMETRY OF PARABOLIC INDUCTION

Our goal in this section is to prove that condition (b) in Lemma 2.7 holds, under the assumption that the inductive
condition (a) holds. To do this, we start by using étale local shtukas to prove the existence of transfers for GLn(O)-
conjugation-invariant functions in C∞

c (GLn(O)). We then use work from this proof, along with our description of the
deformation spaces X̆δ,m from §1, to prove an identity relating tr(fτ,h|π) with the traces of ϕτ,h′ on certain Jacquet
restrictions of π (where h′ now ranges over functions in C∞

c (M(O)) for certain Levi blocksM in GLn). The proof of
this identity uses Casselman’s theorem on characters of Jacquet modules. We finish the proof that condition (b) holds,
under the assumption that the inductive condition (a) holds, by using the Bernstein–Zelevinsky induction-restriction
formula to relate this aforementioned trace identity to a reformulated version of condition (b).

3.1. We begin by using two descriptions of isomorphism classes of étale local shtukas over Specκr to prove the
following bijection. In the end, this amounts to an application of completed unramified descent.

Lemma. The norm map δ 7→ δσ(δ) · · ·σr−1(δ) induces a bijection

N : {GLn(Or)-σ-conjugacy classes in GLn(Or)}
∼−→{GLn(O)-conjugacy classes in GLn(O)}.

Proof. We shall construct bijections between both the left-hand as well as right-hand sides and the set

{isomorphism classes of étale local shtukas over Specκr of rank n}

such that the composed bijection is equal to N. On the left-hand side, 1.4 yields the desired bijection.
We now turn to the right-hand side. Let M be an étale local shtuka over Specκr. Completed unramified de-

scent implies that the isomorphism class of M is determined by the isomorphism class of M̆ := Mκ along with a
descent isomorphism f : σ−r,∗M̆

∼−→ M̆ corresponding to the action of the geometric qr-Frobenius map σ−r. As
M̆ must be isomorphic to (κ[[ϖ]]n, σ⊕n) by 1.6, any such isomorphism identifies Aut(M̆ ) with GLn(O). Write
F̆ : σ∗M̆ −→ M̆ for the Frobenius of M̆ , which is an isomorphism because M̆ is étale, and write γ for the auto-
morphism

γ := F̆ ◦ · · · ◦ σr−1,∗F̆ ◦ σr,∗f

of M̆ , viewed as an element of GLn(O). Since any other choice of isomorphism M̆
∼−→(κ[[ϖ]]n, σ⊕n) preserves the

GLn(O)-conjugacy class of γ, this yields a bijection γ ↔ M between GLn(O)-conjugacy classes in GLn(O) and
isomorphism classes of étale local shtukas over Specκr of rank n.

Recall that F̆ corresponds to δ ◦ σ⊕n under 1.4. Since f corresponds to (σ⊕n)−r, we see that γ corresponds to

(δ ◦ σ⊕n) ◦ · · · ◦ (δ ◦ σ⊕n)︸ ︷︷ ︸
r times

◦(σ⊕n)−r =
(
δσ(δ) · · ·σr−1(δ)

)
◦ (σ⊕n)r ◦ (σ⊕n)−r = Nδ,

as desired. □

3.2. We now construct certain functions with matching twisted orbital integrals, that is, certain transfers of functions.
Let h be a GLn(O)-conjugation-invariant function in C∞

c (GLn(O)), and form the function ϕ : GLn(Or)−→C by
sending δ 7→ h(Nδ). One can show that ϕ is locally constant [43, Corollary 2.3]8.

Lemma. The functions h and ϕ have matching twisted orbital integrals.

Proof. We need to prove that ONδ(h) = TOδ,σ(ϕ) for all regular δ in GLn(Or), where ONδ and TOδ,σ denote the
orbital integral on Nδ and twisted orbital integral on δ, respectively, with respect to compatible Haar measures. We
can prove this as follows: write M for the étale local shtuka corresponding to δ under 1.4, and write X for the set
of isomorphism classes of quasi-isogenies β : M 99K M ′ between étale local shtukas. Note that the group Γ of
self-quasi-isogenies M 99K M has a left action on X given by sending β to β ◦ g−1 for any g in Γ.

One can equate both ONδ(h) as well as TOδ,σ(ϕ) to the sum∑
(M ′,β)

h̃(M ′, β),

8The proof given here is stated for mixed characteristic, but it works verbatim for any nonarchimedean field.
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where (M ′, β) ranges over elements in Γ\X , and h̃ is the function sending (M ′, β) to h(δ′), where δ′ corresponds to
M ′ under 1.4. In a line of reasoning similar to the proof of Lemma 3.1, we relate TOδ,σ(ϕ) to the above sum by using
1.4, and we relate ONδ(h) to the above sum by using completed unramified descent, c.f. [45, Proposition 4.3] □

3.3. Next, we recast our results from §1 in terms of our test functions. For this, recall that for any δ in

GLn(Or) diag(ϖ, 1, . . . , 1)GLn(Or),

we constructed an associated effective minuscule local shtuka Hδ over Specκr of dimension 1. Its connected–étale
decomposition [21, Proposition 2.9] is Hδ◦ ⊕ Hδét , where Hδ◦ has rank k, and Bn,k is the set of δ such that Hδ de-
composes in this way. By considering δ as an element of GLn(Ŏ) diag(ϖ, 1, . . . , 1)GLn(Ŏ), we obtain the pullback
H̆δ of Hδ to Specκ, and the space X̆δ,m parametrizes deformations of H̆δ along with a Drinfeld level-m structure.
We defined a virtual representation [Rψδ] in terms of the cohomology of X̆δ,m as m varies, and we defined ϕτ,h(δ) as
a trace on [Rψδ].

Proposition. We have an equality

ϕτ,h(δ) = tr
(
(τ × h)| IndGLn(O)

Pk(O)

(
[Rψδ◦ ]⊗ C∞

c (GLn−k(O))
))
,

where Pk is the standard parabolic subgroup of GLn with block sizes (k, n−k), GLn−k(O) acts on C∞
c (GLn−k(O))

by left inverse multiplication, and WFr acts on C∞
c (GLn−k(O)) via the unramified action sending τ to the action of

right multiplication by Nδét.

Proof. Let fσ−r : σ−r,∗H̆δ
∼−→ H̆δ and φσ−r : X̆δ,m−→σ−r,∗X̆δ,m be as in 1.13. Using the Dieudonné equivalence

[21, Theorem 8.3] to pass to ϖ-divisible local Anderson modules, the proof of Lemma 3.1 shows that the triple
(H ′, α′, ι′ ◦ fσ−r ) is isomorphic to the triple (H ′,Nδét ◦α′, ι′). Therefore φσ−r sends X̆δ,α to σ−r,∗X̆δ,Nδét◦α. Taking
cohomology of both sides in Proposition 1.12 and using [20, Lemma I.5.6] give us

Rψi
δ,m = Ind

GLn(O/ϖm)
Pk(O/ϖm)

(
Rψi

δ◦,m ⊗Qℓ[GLn−k(O/ϖm)]
)
,

where WFr
acts on Qℓ[GLn−k(O)] via the unramified action sending σ−rIF and hence τ to the action of right

multiplication by Nδét. Taking the direct limit over m and forming the alternating sum over i gives an equality

[Rψδ] = Ind
GLn(O)
Pk(O)

(
[Rψδ◦ ]⊗ C∞

c (GLn−k(O))
)

of virtual representations, where we have identified Qℓ with C. Taking the trace of τ ×h yields the desired result. □

3.4. Before proceeding, we gather a few facts about twisted characters and automorphic base change. Recall that the
norm map δ 7→ δσ(δ) · · ·σr−1(δ) induces an injection

N : {GLn(Fr)-σ-conjugacy classes in GLn(Fr)} ↪−→ {GLn(Fr)-conjugacy classes in GLn(Fr)}

[33, Lemma 4.2]. For any finite length smooth representation π of GLn(F ), its character distribution tr(−|π) is
represented by a locally integrable conjugation-invariant function Θπ : GLn(F )−→C [36, Theorem (7.1)], which
we call the character of π. Naturally, taking characters is additive. The function Θσ

π/Fr
: GLn(Fr)−→C that sends

δ 7→ Θπ(Nδ) is locally integrable [27, (II.2.8)], and we denote the associated distribution by tr
(
(−, σ)|π/Fr

)
:

C∞
c (GLn(Fr))−→C.
The twisted Weyl integration formula [27, (II.2.10, formula (1)] implies that, if f and ϕ are functions inC∞

c (GL(F ))

and C∞
c (GLn(Fr)), respectively, such that f and ϕ have matching twisted orbital integrals, then we have

tr
(
(ϕ, σ)|π/Fr

)
= tr(f |π).

As suggested by our notation, if π is generic, then the twisted character of its base change lift πFr to GLn(Fr) equals
Θσ

π/Fr
, and we have tr((ϕ, σ)|πFr ) = tr

(
(ϕ, σ)|π/Fr

)
[27, (II.2.8)].

3.5. We use 3.4 to obtain the following compatibility result for ρ and unramified twists.

Proposition. Let π be an irreducible smooth representation of GLn(F ), and suppose that Theorem A.(i) holds for π.
Then for any complex number s, Theorem A.(i) holds for π[s]. That is, there exists a unique n-dimensional semisimple
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continuous representation ρ(π[s]) of WF satisfying the following property:

for all τ in WF with v(τ) > 0 and h in C∞
c (GLn(O)), we have tr

(
fτ,h|π[s]

)
= tr

(
τ |ρ(π[s])

)
tr
(
h|π[s]

)
.

This ρ(π[s]) is given by ρ(π[s]) = ρ(π)(s).

Proof. We immediately have tr
(
fτ,h|π[s]

)
= tr

(
(ϕτ,h, σ)|π[s]/Fr

)
by 3.4. Unpacking definitions shows that the

right hand side equals �
GLn(Or) diag(ϖ,1,...,1)GLn(Or)

dδ tr
(
τ × h|[Rψδ]

)
Θπ[s](Nδ).

Since π[s] is the twist of π by the character |det|s, we see that Θπ[s](Nδ) = Θπ(Nδ)|detNδ|s. As δ lies in

GLn(Or) diag(ϖ, 1, . . . , 1)GLn(Or),

its determinant has valuation 1, which makes detNδ have valuation r. Therefore the above integral becomes

1

qrs

�
GLn(Or) diag(ϖ,1,...,1)GLn(Or)

dδ tr
(
τ × h|[Rψδ]

)
Θπ(Nδ) =

1

qrs
tr
(
τ |ρ(π)

)
tr
(
h|π

)
by applying Theorem A.(i) for π. Because τ acts through (s) via 1/qrs, the desired result follows. □

3.6. In order to state the trace identity involving fτ,h and Jacquet restriction, we first need to recall the Peter–Weyl
theorem for profinite groupsG. One version of it says that we have a canonical isomorphism of smooth representations
of G×G

C∞
c (G)

∼−→
⊕
λ

EndC(λ) =
⊕
λ

λ∨ ⊗ λ

f 7−→
⊕
λ

λ(f),

where λ ranges over isomorphism classes of irreducible smooth representations of G, and G×G acts on C∞
c (G) via

letting (g1, g2) send f to the function x 7→ f(g−1
2 xg1). This implies, along with Schur orthogonality, that the trace

map induces a C-linear bijection

tr : {C-virtual admissible representations of G} ∼−→{conjugation-invariant distributions on G}.

We shall use this bijection to view conjugation-invariant distributions as C-virtual admissible representations.

3.7. We may now introduce an identity that relates the trace of fτ,h on π with traces on certain Jacquet restrictions
of π. The proof shall critically use Proposition 3.3, which itself is derived from the geometry of X̆δ,m as described in
§1.

For all integers 1 ≤ k ≤ n, write Nk for the unipotent radical of Pk. Write πNk
for the unnormalized Jacquet

restriction of π, and suppose that we have an equality of virtual representations

πNk
=

tk∑
i=1

πk
1,i ⊗ πk

2,i,

where tk is a non-negative integer, and the πk
1,i and πk

2,i are finite length smooth representations of GLk(F ) and
GLn−k(F ), respectively. Note that we do not require the πk

1,i and πk
2,i to be irreducible. For any subset X , we denote

the indicator function on that subset using 1X .

Proposition. We have an equality of traces

tr(fτ,h|π) =
n∑

k=1

q(n−k)r
tk∑
i=1

tr

(
h| IndGLn(O)

Pk(O)

(
tr((1Bk

· ϕτ,−, σ)|πk
1,i/Fr)⊗ πk

2,i

))
,

where we view the conjugation-invariant distribution tr((1Bk
· ϕτ,−, σ)|πk

1,i/Fr) as a C-virtual admissible represen-
tation of GLk(O) via 3.6.

In the proof, we take our Haar measures compatibly whenever possible.
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Proof. We immediately have tr(fτ,h|π) = tr
(
(ϕτ,h, σ)|π/Fr

)
. Because ϕτ,h is supported on

GLn(Or) diag(ϖ, 1, . . . , 1)GLn(Or) =

n∐
k=1

Bn,k,

it suffices to show that

tr
(
(1Bn,k

· ϕτ,h, σ)|π/Fr

)
= q(n−k)r

tk∑
i=1

tr

(
h| IndGLn(O)

Pk(O)

(
tr((1Bk

· ϕτ,−, σ)|πk
1,i/Fr)⊗ πk

2,i

))
for all k. We begin with left-hand side. Applying the twisted Weyl integration formula [27, (II.2.10, formula (1)] to
the function 1Bn,k

· ϕτ,h in C∞
c (GLn(Fr)) gives

tr
(
(1Bn,k

· ϕτ,h, σ)|π/Fr

)
=

∑
T

1

#W (T,GLn)

�
T (Fr)σ−1\T (Fr)

dδ |DGLn(Nδ)|TOδ,σ(1Bn,k
· ϕτ,h)Θσ

π/Fr
(δ),

where T runs over conjugacy classes of maximal tori of GLn over F , and DGLn
: GLn(F )−→F is the regular

function defined by the equation

det(t− ad γ + 1|gln(F )) ≡ DGLn
(γ)tn (mod tn+1).

The decomposition δ = δ◦ ⊕ δét, along with the description of δ◦ and δét in 1.7, shows that the only terms remaining
in the above sum are∑

Tk

1

#W (Tk,GLk)

∑
Tn−k

1

#W (Tn−k,GLn−k)

·
�
(Tk(Fr)σ−1\Tk(Fr)1)×(Tn−k(Fr)σ−1\Tn−k(Or))

dδ |DGLn(Nδ)|TOδ,σ(1Bn,k
· ϕτ,h)Θπ(Nδ),

where Tk runs over conjugacy classes of anisotropic mod center maximal tori of GLk, Tn−k runs over conjugacy
classes of maximal tori of GLn−k, and we have T = Tk × Tn−k.

With visible product decompositions beginning to form, let us make the change of variables δ = (δk, δn−k). Our
goal is to break up the integrand in terms of GLk and GLn−k. By using block matrices to expand |DGLn(Nδ)|, we
see that

|DGLn
(Nδ)| = q(n−k)r|DGLk

(Nδk)| · |DGLn−k
(Nδn−k)|.

To obtain a similar decomposition of TOδ,σ(1Bb,k
· ϕτ,h), we shall use the following result.

3.8. Lemma. We have an equality of twisted orbital integrals

TOδ,σ(1Bn,k
· ϕτ,h) = TO(δk,δn−k),σ((1Bn,k

· ϕτ,h)|Mk(Fr)),

where Mk is the standard Levi subgroup of Pk, (1Bn,k
· ϕτ,h)|Mk(Fr) is the restriction of 1Bn,k

· ϕτ,h to Mk(Fr), and
the right-hand side is the twisted orbital integral of (1Bn,k

· ϕτ,h)|Mk(Fr) on (δk, δn−k).

Proof. Using Nakayama’s lemma over O to reduce to the residue field, we can explicitly calculate the normalized
GLn(Or)-σ-invariant constant term (1Bn,k

· ϕτ,h)Pk,σ,GLn(Or) of 1Bn,k
· ϕτ,h along Pk to be

(1Bn,k
· ϕτ,h)Pk,σ,GLn(Or) = q

1
2 (n−k)r(1Bn,k

· ϕτ,h)|Mk(Fr)

[43, Lemma 6.6]. The desired equality follows by applying a standard result [34, (4.4.9)] relating the twisted orbital
integrals of 1Bn,k

· ϕτ,h and (1Bn,k
· ϕτ,h)Pk,σ,GLn(Or). □

Return to the proof of Proposition 3.7. Casselman’s theorem [11, 5.2] shows that

Θπ(Nδ) = ΘπNk
(Nδ) =

tk∑
i=1

Θπk
1,i
(Nδk)Θπk

2,i
(Nδn−k),
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and by putting all of this together, we can rewrite our sum of integrals as

q(n−k)r
tk∑
i=1

∑
Tk

1

#W (Tk,GLk)

�
Tk(Fr)σ−1\Tk(Fr)1

dδk |DGLk
(Nδk)|Θπk

1,i
(Nδk)

∑
Tn−k

1

#W (Tn−k,GLn−k)

·
�
Tn−k(Fr)σ−1\Tn−k(Or)

dδn−k |DGLn−k
(Nδn−k)|TO(δk,δn−k),σ(ϕτ,h|Mk(Fr))Θπk

2,i
(Nδn−k),

where we drop 1Bn,k
since our δ all lie in Bn,k.

Before proceeding further, we apply Proposition 3.3 as follows. Write f̃τ,h(δk,−) : GLn−k(O)−→C for the
function that sends

γ 7→ tr
(
(γ, h)| IndGLn(O)

Pk(O)

(
ϕτ,−(δk)⊗ C∞

c (GLn−k(O))
))
,

where we view the conjugation-invariant distribution ϕτ,−(δk) as a C-virtual admissible representation of GLk(O) via
3.6, γ acts trivially on ϕτ,−(δk), and γ acts on C∞

c (GLn−k(O)) via right multiplication. Note that, with Proposition
3.3 in mind, f̃τ,h heavily resembles ϕτ,h.

3.9. Lemma. The function f̃τ,h(δk,−) is in C∞
c (GLn−k(O)), and it satisfies the equalities

tr((ϕτ,h(δk,−), σ)|πk
2,i/Fr) = tr(f̃τ,h(δk,−)|πk

2,i) = tr
(
h| IndGLn(O)

Pk(O) (ϕτ,−(δk)⊗ πk
2,i)

)
.

Proof. Proposition 3.3 indicates that ϕτ,h(δk, δ) = f̃τ,h(δk,Nδ). Thus 3.2 reduces the first claim to the statement that
ϕτ,h is in C∞

c (GLn(Or)), which holds by 1.16. For the second claim, note that Lemma 3.2 implies f̃τ,h(δk,−) and
ϕτ,h(δk,−) have matching twisted orbital integrals. Therefore 3.4 yields tr((ϕτ,h(δk,−), σ)|πk

2,i/Fr) = tr(f̃τ,h(δk,−)|πk
2,i).

From here, applying the Peter–Weyl theorem and Schur orthogonality to the definition of f̃τ,h(δk,−) show that

tr(f̃τ,h(δk,−)|πk
2,i) = tr

(
h| IndGLn(O)

Pk(O) (ϕτ,−(δk)⊗ πk
2,i)

)
. □

Return to the proof of Proposition 3.7. Applying the twisted Weyl integration formula [27, (II.2.10, formula (1)]
to the function TOδk,σ(ϕτ,h(−,−)) in C∞

c (GLn−k(Fr)) allows us to collapse the sum over Tn−k and simplify our
expression into

q(n−k)r
tk∑
i=1

∑
Tk

1

#W (Tk,GLk)

�
Tk(Fr)σ−1\Tk(Fr)1

dδk |DGLk
(Nδk)|Θπk

1,i
(Nδk) TOδk,σ(tr(f̃τ,h(−,−)|πk

2,i)),

where we first used tr((TOδk,σ(ϕτ,h(−,−)), σ)|πk
2,i/Fr) = TOδk,σ(tr((ϕτ,h(−,−), σ)|πk

2,i/Fr)) and then the first
equality in Lemma 3.9. Applying the twisted Weyl integration formula to the function 1Bk

· tr(f̃τ,h(−,−)|πk
2,i) in

C∞
c (GLk(Fr)) lets us collapse the sum over Tk, and we get

q(n−k)r
tk∑
i=1

tr
(
(1Bk

· tr(f̃τ,h(−,−)|πk
2,i), σ)|πk

1,i/Fr)
)
.

Now the second equality in Lemma 3.9 turns this into

q(n−k)r
tk∑
i=1

tr

(
h| IndGLn(O)

Pk(O)

(
tr((1Bk

· ϕτ,−, σ)|πk
1,i/Fr)⊗ πk

2,i

))
,

which completes the proof of Proposition 3.7. □

3.10. Before moving on to the proof of condition (b) in Lemma 2.7, we record a useful consequence of van Djik’s
formula. Let P be a proper standard parabolic subgroup of GLn, write M for the standard Levi subgroup of P , let π′

be an irreducible smooth representation of M(F ), and write π for the induced representation

π := n-Ind
GLn(F )
M(F ) π′.

As π′ has finite length, so does π.
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Lemma. Let ϕ be a function in C∞
c (GLn(Fr)) that is supported in elements of GLn(Fr) whose norm is elliptic. Then

we have tr((ϕ, σ)|π/Fr) = 0.

Proof. Let f be a transfer of ϕ, i.e. a function in C∞
c (GLn(F )) such that f and ϕ have matching twisted orbital

integrals. Then f is supported in elliptic elements of GLn(F ), and no such element is contained in P (F ) because P
is a proper parabolic subgroup. Therefore the normalized GLn(O)-invariant constant term fP,GLn(O) of f along P is
identically zero on M(F ). Our remark from 3.4 and van Djik’s formula [37, Theorem 5.9] together yield

tr((ϕ, σ)|π/Fr) = tr(f |π) = tr(fP,GLn(O)|π′) = 0,

as desired. □

We will apply the above lemma to 1Bk
· ϕτ,h in the proof of Proposition 3.11.

3.11. Finally, we use Proposition 3.7 to prove condition (b), assuming condition (a).

Proposition. Assume that the inductive condition (a) in Lemma 2.7 holds, that is, Theorem A is true for n′ < n. Let
π be a smooth representation of GLn(F ), and suppose it is of the form

π = n-Ind
GLn(F )
P (F ) (π1 ⊗ · · · ⊗ πt),

where t ≥ 2, the πi are some irreducible smooth representations of GLni
(F ) with n = n1 + · · · + nt, and P is the

standard parabolic subgroup of GLn with block sizes (n1, . . . , nt). Then we have an equality of traces

tr(fτ,h|π) = tr
(
τ |ρ(π1)(n−n1

2 )⊕ · · · ⊕ ρ(πt)(n−nt

2 )
)
tr(h|π)

for all τ in WF with v(τ) > 0 and h in C∞
c (GLn(O)).

In the proof of Proposition 3.11, we shall frequently pass between normalized and un-normalized induction. For
this, one immediately checks that

n-Ind
GLm(F )
Q(F ) (λ1 ⊗ λ2) = Ind

GLm(F )
Q(F ) (λ1[

m2

2 ]⊗ λ2[−m1

2 ]),

where the λi are irreducible smooth representations of GLmi
(F ) with m = m1+m2, and Q is the standard parabolic

subgroup of GLm with block sizes (m1,m2).
We also recall that the two representations

n-Ind
GLm(F )
Q(F ) (λ1 ⊗ λ2) and n-Ind

GLm(F )
Q′(F ) (λ2 ⊗ λ1),

where Q′ denotes the standard parabolic subgroup of GLn with block sizes (m2,m1), have the same Jorder–Hölder
series [9, 2.9]. This enables us to identify them as virtual representations of GLn(F ).

Proof of Proposition 3.11. We start with some immediate reductions. By using the transitivity of parabolic induction
[51, 1.7], it suffices to prove the proposition for t = 2. Furthermore, because swapping π1 and π2 leaves the virtual
representation π unchanged, we may assume that n1 ≤ n2. Finally, by taking the trace of h afterwards, Proposition
3.7 shows that it suffices to find, for all integers 1 ≤ k ≤ n, a decomposition of virtual representations

πNk
=

tk∑
i=1

πk
1,i ⊗ πk

2,i

of GLk(F ) × GLn−k(F ), where the πk
1,i and πk

2,i have finite length, such that we have an equality of C-virtual
representations

n∑
k=1

q(n−k)r
tk∑
i=1

Ind
GLn(O)
Pk(O)

(
tr((1Bk

· ϕτ,−, σ)|πk
1,i/Fr)⊗ πk

2,i

)
= tr

(
τ |ρ(π1)(n−n1

2 )⊕ ρ(π2)(n−n2

2 )
)
π(⋆)

of GLn(O). We will choose these πk
1,i and πk

2,i in a way that relates them to π1 and π2. To do so, we shall use the
following induction-restriction formula of Bernstein–Zelevinsky.



22 SIYAN DANIEL LI-HUERTA

3.12. Write T for the standard maximal torus of GLn, and write B for the standard Borel subgroup of GLn. Let P
andQ be standard parabolic subgroups of GLn, and denote their standard Levi subgroups usingM andN , respectively.
We identify the Weyl group W (T,GLn) with the symmetric group Sn acting by permuting entries. Write WM,N for
the subset

WM,N := {w ∈W (T,GLn)|w(M ∩B) ⊆ B and w−1(N ∩B) ⊆ B}

of W (T,GLn).

Lemma ([9, 2.12]). Let π be an irreducible smooth representation of GLn(F ). Then we have an equality of virtual
representations

n-Res
GLn(F )
Q(F ) (n-Ind

GLn(F )
P (F ) π) =

∑
w

n-Ind
N(F )
Q′(F )(w(n-Res

M(F )
P ′(F ) π))

of N(L), where n-Res denotes normalized Jacquet restriction, w runs over all elements of WM,N , P ′ denotes the
standard parabolic subgroup of M whose standard Levi subgroup is M ∩ w−1(N), and Q′ denotes the standard
parabolic subgroup of N whose standard Levi subgroup is w(M) ∩N .

Return to the proof of Proposition 3.11. Our goal will be to apply tr((1Bk
·ϕτ,−, σ)|−/Fr) to the πk

1,i. At this point,
Lemma 3.10 indicates that the terms corresponding to properly parabolically induced πk

1,i will vanish. Therefore, when
using the induction-restriction formula for M = GLn1

×GLn2
and N = GLk ×GLn−k, we will only be interested

in the terms for which w(M) ∩N contains GLk.
With these choices of M and N , now WM,N corresponds precisely to the set of permutations w in Sn for which

• w is order-preserving on {1, . . . , n1} and {n1 + 1, . . . , n},
• w−1 is order-preserving on {1, . . . , k} and {k + 1, . . . , n}.

Furthermore, the w(M) ∩N ⊇ GLk condition is equivalent to asking that

w({1, . . . , n1}) ⊇ {1, . . . , k} or w({n1 + 1, . . . , n}) ⊇ {1, . . . , k}.

If k ≤ n1, then the only such w in WM,N are the identity permutation and the permutation θ that sends {1, . . . , n1} to
{n2 + 1, . . . , n} and {n1 + 1, . . . , n} to {1, . . . , n2} while preserving their internal orders. If instead n1 < k ≤ n2,
then the identity no longer satisfies w(M)∩N ⊇ GLk, although θ continues to do so. Finally, for n2 < k, no element
of WM,N has w(M) ∩N ⊇ GLk. Altogether, Lemma 3.12 yields an equality

πNk
=Ind

GLk(F )×GLn−k(F )
Pn1 (F )∩(GLk(F )×GLn−k(F ))(π

′
Nk1
⊗ π′′)

+ Ind
GLk(F )×GLn−k(F )
Pn2

(F )∩(GLk(F )×GLn−k(F ))(π
′′
Nk2

[n1]⊗ π′[−n2]) +
uk∑
j=1

τk1,j ⊗ τk2,j(1)

of virtual representations of GLk(F ) × GLn−k(F ), where π′ denotes π1[n2

2 ], π′′ denotes π2[−n1

2 ], Nk1
denotes the

unipotent radical of Pn1 ∩GLk, Nk2 denotes the unipotent radical of Pn2 ∩GLk, and the τk1,1, . . . , τ
k
1,uk

(respectively
τk2,1, . . . , τ

k
2,uk

) are smooth representations of GLk(F ) (respectively GLn−k(F )) such that the τk1,j are properly in-
duced representations of GLk(F ). As remarked above, if k > n1 or k > n2, then we can absorb the first or second
term on the right hand side into the third summation term, respectively.

So suppose that k ≤ n1 and k ≤ n2. We shall begin by studying the first term on the right hand side of Equation
(1). Because the unnormalized Jacquet restriction π′

Nk1
of π′ is a smooth representation of GLk(F )×GLn1−k(F ) of

finite length, we can write its virtual representation as

π′
Nk1

=

t′k∑
i=1

π′k
1,i ⊗ π′k

2,i,

where t′k is a non-negative integer, and the π′k
1,i and π′k

2,i are irreducible smooth representations of GLk(F ) and
GLn1−k(F ), respectively. Write Pk,n1 for the standard parabolic subgroup of GLn with block sizes (k, n1 − k, n2).
By applying Ind

GLk(F )×GLn−k(F )
Pn1

(F )∩(GLk(F )×GLn−k(F ))(− ⊗ π
′′) to the above decomposition of π′

Nk1
, we obtain the equality of
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virtual representations

Ind
GLk(F )×GLn−k(F )
Pn1

(F )∩(GLk(F )×GLn−k(F ))(π
′
Nk1
⊗ π′′) =

t′k∑
i=1

π′k
1,i ⊗ Ind

GLn−k(F )
Pk,n1

(F )∩GLn−k(F )(π
′k
2,i ⊗ π′′),(2)

giving an alternate description of the first term on the right hand side of Equation (1).
Now Proposition 3.7 for π′ indicates that

n1∑
k=1

q(n1−k)r

t′k∑
i=1

tr

(
h1| Ind

GLn1
(O)

Pk(O)∩GLn1
(O)

(
tr((1Bk

· ϕτ,−, σ)|BC(π′k
1,i))⊗ π′k

2,i

))
= tr(fτ,h1

|π′)

for all functions h1 in C∞
c (GLn1

(O)). Theorem A.(i) for π′ implies that tr(fτ,h1
|π′) = tr

(
τ |ρ(π′)

)
tr(h1|π′), so 3.6

yields an equality of C-virtual representations

n1∑
k=1

q(n1−k)r

t′k∑
i=1

Ind
GLn1

(O)

Pk(O)∩GLn1
(O)

(
tr((1Bk

· ϕτ,−, σ)|BC(π′k
1,i))⊗ π′k

2,i

)
= tr

(
τ |ρ(π′)

)
π′

of GLn1
(O). Since we defined π′ to be π1[n2

2 ], taking Ind
GLn(F )
Pn1

(F ) (−⊗ π
′′) on both sides shows that

n1∑
k=1

q(n−k)r

t′k∑
i=1

Ind
GLn(O)
Pk,n1

(O)

(
tr((1Bk

· ϕτ,−, σ)|BC(π′k
1,i))⊗ π′k

2,i ⊗ π′′
)
= tr

(
τ |ρ(π1)(n2

2 )
)
π(3)

as C-virtual representations of GLn(O), where we used Proposition 3.5 to identify ρ(π′) with ρ(π1)(n2

2 ).
Next, we turn to the second term on the right hand side of Equation (1). As with the first term, we have an equality

of virtual representations

π′′
Nk2

=

t′′k∑
i=1

π′′k
1,i ⊗ π′′k

2,i,

where t′′k is a non-negative integer, and the π′′k
1,i and π′′k

2,i are irreducible smooth representations of GLk(F ) and
GLn2−k(F ), respectively. Write Pk,n2 for the standard parabolic subgroup of GLn with block sizes (k, n2 − k, n1).
By applying Ind

GLk(F )×GLn−k(F )
Pn2 (F )∩(GLk(F )×GLn−k(F ))((−)[n1] ⊗ π

′[−n2]) to the above decomposition of π′′
Nk2

, we obtain the
equality of virtual representations

Ind
GLk(F )×GLn−k(F )
Pn2

(F )∩(GLk(F )×GLn−k(F ))(π
′′
Nk2

[n1]⊗ π′[−n2]) =
t′′k∑
i=1

π′′k
1,i[n1]⊗ Ind

GLn−k(F )
Pk,n2

(F )∩GLn−k(F )(π
′′k
2,i[n1]⊗ π′[−n2]),

(4)

giving an alternate description of the second term on the right hand side of Equation (1).
Now Proposition 3.7 for π′′ indicates that

n2∑
k=1

q(n2−k)r

t′′k∑
i=1

tr

(
h2| Ind

GLn2
(O)

Pk(O)∩GLn2
(O)

(
tr((1Bk

· ϕτ,−, σ)|BC(π′′k
1,i))⊗ π′′k

2,i

))
= tr(fτ,h2

|π′′)

for all functions h2 in C∞
c (GLn2

(O)). Theorem A.(i) for π′′ implies that tr(fτ,h2
|π′′) = tr

(
τ |ρ(π′′)

)
tr(h2|π′′), so

3.6 yields an equality of C-virtual representations

n2∑
k=1

q(n2−k)r

t′′k∑
i=1

Ind
GLn2

(O)

Pk(O)∩GLn2
(O)

(
tr((1Bk

· ϕτ,−, σ)|BC(π′′k
1,i))⊗ π′′k

2,i

)
= tr

(
τ |ρ(π′′)

)
π′′

of GLn2
(O). Since we defined π′′ to be π2[−n1

2 ], taking Ind
GLn(F )
Pn2

(F ) ((−)[n1]⊗ π
′[−n2]) on both sides shows that

n2∑
k=1

q(n2−k)r

t′′k∑
i=1

Ind
GLn(O)
Pk,n2

(O)

(
tr((1Bk

· ϕτ,−, σ)|BC(π′′k
1,i[n1]))⊗ π′′k

2,i[n1]⊗ π′[−n2]
)
= tr

(
τ |ρ(π2)(n1

2 )
)
π(5)
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as C-virtual representations of GLn(O), where we used Proposition 3.5 to identify ρ(π′′) with ρ(π2)(−n2

2 ).
We piece together the above work as follows. Equation (1), Equation (2), and Equation (4) indicate that

πNk
=

t′k∑
i=1

π′k
1,i ⊗ Ind

GLn−k(F )
Pk,n1

(F )∩GLn−k(F )(π
′k
2,i ⊗ π′′)

+

t′′k∑
i=1

π′′k
1,i[n1]⊗ Ind

GLn−k(F )
Pk,n2

(F )∩GLn−k(F )(π
′′k
2,i[n1]⊗ π′[−n2]) +

uk∑
j=1

τk1,j ⊗ τk2,j ,

and we take this decomposition for our πk
1,i and πk

2,i. Because the τk1,j are properly induced, Lemma 3.10 shows
that the tr((1Bk

· ϕτ,−, σ)|BC(τk1,j)) terms vanish. Therefore the sum of Equation (3) and Equation (5) is precisely
Equation (⋆), and this concludes the proof of Proposition 3.11. □

4. THE LUBIN–TATE TOWER

In this section, our goal is to prove that condition (d) in Lemma 2.7 holds, under the assumption that condition (c)
holds. Although we postpone the proof of condition (c) for later, our proof of condition (d) does not use anything from
the construction of condition (c)—we may safely black box the latter. Along the way, we also prove the n = 1 case of
Theorem A, which serves as the base case for applying Lemma 2.7.

We begin by using connected local shtukas to prove, in the same vein as Lemma 3.1 and Lemma 3.2, the existence
of transfers for certain conjugation-invariant functions on division algebras over F . We then introduce the Lubin–Tate
tower, which is closely related to our deformation spaces from §1. By studying this relation, along with the fact that
it gives the Lubin–Tate proof of local class field theory, we prove the n = 1 case of Theorem A. We also use this
relation to compare the cohomologies of the Lubin–Tate tower and X̆δ,m. This comparison is stated in terms of the
local Jacquet–Langlands correspondence, which relates representations of GLn(F ) with representations of division
algebras. Finally, we use results from Jacquet–Piatetski-Shapiro–Shalika’s theory of new-vectors, which are certain
elements in irreducible generic representations of GLn(F ), to conclude the proof of condition (d).

4.1. We start by using two descriptions of isomorphism classes of connected local shtukas over Specκr to prove the
following proposition. Write B for the central division algebra over F of Hasse invariant 1

n , and write OB for its ring
of integers. By abuse of notation, we denote the normalized valuation on B using v. Write Br for the subset of b in B
satisfying v(b) = r.

Lemma. There exists a bijection

N : {GLn(Or)-σ-conjugacy classes in Bn}
∼−→{O×

B-conjugacy classes in Br}

such that the characteristic polynomial of Nδ equals that of δσ(δ) · · ·σr−1(δ). By abuse of notation, we call this the
norm map.

This result and its proof are entirely analogous to those of Lemma 3.1.

Proof. We shall construct bijections between both the left-hand as well as right-hand sides and the set

{isomorphism classes of connected local shtukas over Specκr of rank n},

and we denote the composed bijection using N. On the left-hand side, 1.4 yields the desired bijection.
We now turn to the right-hand side. Let M be a connected local shtuka over Specκr. Completed unramified

descent implies that the isomorphism class of M is determined by the isomorphism class of M̆ := Mκ along with a
descent isomorphism f : σ−r,∗M̆

∼−→ M̆ corresponding to the action of the geometric qr-Frobenius map σ−r. As M̆

must be isomorphic to the local shtuka associated with the Lubin–Tate module, after choosing such an isomorphism
we may identify End(M̆ ) with OB . Write F̆ : σ∗M̆ −→ M̆ for the Frobenius of M̆ , which corresponds to an
element of valuation 1 in OB , and write γ for the endomorphism

γ := F̆ ◦ · · · ◦ σr−1,∗F̆ ◦ σr,∗f
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of M̆ , viewed as an element ofOB . As σr,∗f is an isomorphism and hence corresponds to an element of valuation 0 in
OB , this shows that v(γ) = r. Since any other choice of isomorphism between M̆ and the local shtuka associated with
the Lubin–Tate module preserves theO×

B-conjugacy class of γ, this yields a bijection γ ↔M betweenO×
B-conjugacy

classes in Br and isomorphism classes of connected local shtukas over Specκr of rank n.
Recall that F̆ corresponds to δ ◦ σ⊕n under 1.4. Since f corresponds to (σ⊕n)−r, we see that γ corresponds to

(δ ◦ σ⊕n) ◦ · · · ◦ (δ ◦ σ⊕n)︸ ︷︷ ︸
r times

◦(σ⊕n)−r =
(
δσ(δ) · · ·σr−1(δ)

)
◦ (σ⊕n)r ◦ (σ⊕n)−r = δσ(δ) · · ·σr−1(δ),

as desired. □

4.2. We will now construct certain functions with matching twisted orbital integrals, that is, certain transfers of
functions. Let h be anO×

B-conjugation-invariant function in C∞
c (Br), and form the function ϕ : Bn−→C by sending

δ 7→ h(Nδ). One can show that ϕ is locally constant [43, Corollary 2.3]9.

Lemma. The functions h and ϕ have matching twisted orbital integrals.

This result and its proof are entirely analogous to those of Lemma 3.2.

Proof. We need to prove that ONδ(h) = TOδ,σ(ϕ) for all regular δ in Bn, where ONδ and TOδ,σ denote the orbital
integral on Nδ and twisted orbital integral on δ, respectively, with respect to compatible Haar measures. We can prove
this as follows: write M for the connected local shtuka corresponding to δ under 1.4, and write X for the set of
isomorphism classes of quasi-isogenies β : M 99K M ′ between connected local shtukas. Note that the group Γ of
self-quasi-isogenies M 99K M has a left action on X given by sending β to β ◦ g−1 for any g in Γ.

One can equate both ONδ(h) as well as TOδ,σ(ϕ) to the sum∑
(M ′,β)

h̃(M ′, β),

where (M ′, β) ranges over all elements in Γ\X , and h̃ is the function sending (M ′, β) to h(δ′), where δ′ corresponds
to M ′ under 1.4. In a line of reasoning similar to the proof of Lemma 4.1, we relate TOδ,σ(ϕ) to the above sum
by using 1.4, and we relate ONδ(h) to the above sum by using completed unramified descent, c.f. [45, Proposition
4.7]. □

4.3. At this point, we introduce the Lubin–Tate tower. Let δ be in Bn. By the Dieudonné–Manin classification [34,
(2.4.5)], the isomorphism class of H̆δ is independent of our choice of δ, and we may take δ to lie in GLn(F ). We
write H̆ for H̆δ . The inverse system (X̆δ,m)m does not depend on δ either, so we shall rewrite it as

· · · −→ X̆m−→· · ·−→ X̆1−→ X̆0.

This is the Lubin–Tate tower. Of course, all our statements from §1 concerning H̆δ also apply to the Lubin–Tate tower:

• this inverse system has a right action of GLn(O),
• we can form the cohomology group Riψm := Hi(X̆m,Cϖ

,Qℓ), which is isomorphic to H0(X̆m,κ, R
iΨX̆m,Cϖ

,Qℓ),
• we can form the direct limit Riψ := lim−→m

Riψm,
• we can take the alternating sum [Rψ] :=

∑∞
i=0(−1)iRiψ.

We shall now explain how the left action of IF on Riψm actually extends to an action of (B× × WF )0, where
(B× ×WF )0 is the subgroup

(B× ×WF )0 := {b× τ ∈ B× ×WF |v(b) + v(τ) = 0}

of B× ×WF . We start by describing the action for b× τ with non-negative v(τ) = −v(b). Let r = v(τ) = v(b−1),
and note that b−1 lies in OB . By abuse of notation, write b−1 : H̆ −→ H̆ for the corresponding endomorphism of H̆ ,
write F̆ : σ∗H̆ −→ H̆ for the Frobenius of H̆ , and write fτ : σ−r,∗H̆

∼−→ H̆ for the isomorphism from 1.13. Using

9The proof given here is stated for mixed characteristic and GLn, but it only uses Lang’s lemma and the relationship between inner twists of GLn

and central division algebras. In particular, it adapts to equal characteristic and any inner twist of GLn.
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the isomorphism σ∗H̆ ∼= H̆ obtained from the fact that δ lies in GLn(F ), the map F̆ corresponds to an element of
valuation 1 in OB . Therefore the quasi-isogeny

b× τ := fτ ◦ (σ−r,∗F̆−1 ◦ · · · ◦ σ−1,∗F̆−1) ◦ b−1

corresponds to an element of valuation 0 and hence equals an automorphism of H̆ .
As for b × τ with negative v(τ), we define b × τ as the inverse of d−1 × τ−1. Since we view OB as acting from

the right on H̆ , we see that in all cases (b× τ) ◦ (b′ × τ ′) = bb′ × ττ ′.
By sending the triple (H ′, α′, ι′) to (H ′, α′, ι′ ◦ (d× τ)), we obtain a right action on X̆m and hence its base change

X̆m,OCϖ
. Taking cohomology gives us the desired left action on Riψm. Forming the direct limit over all m yields a

(GLn(O)×O×
B)× IF -admissible/continuous representation as in [20, p. 24] of GLn(O)× (B× ×WF )0 over Qℓ.

4.4. Now return to the situation of an arbitrary δ in Bn. We shall begin studying the relationship between X̆δ,m and
the Lubin–Tate tower by considering the virtual representations [Rψδ] and [Rψ].

Proposition. We have an equality of traces

tr(τ × h|[Rψδ]) = tr(h× (Nδ)−1 × τ |[Rψ]).

Proof. Under our GLn(O)-equivariant isomorphism H̆δ
∼= H̆ , we see that F̆ corresponds to δ ◦ σ⊕n. Therefore work

from the proof of Lemma 4.1 shows that

(Nδ, τ) = fτ ◦ (σ−r,∗F̆−1 ◦ · · · ◦ σ−1,∗F̆−1) ◦
(
(F̆ ◦ · · · ◦ σr−1,∗F̆ ◦ σr,∗f)−1

)−1

= fτ ◦ σr,∗f,

where f : σ−r,∗H̆
∼−→ H̆ corresponds to the action of σ−r. The description of Xδ,m in 1.13 shows that precomposing

with fτ ◦ σr,∗f induces the action of τ on Riψδ,m. Thus the action of γ × (Nδ)−1 × τ on Riψm corresponds to the
action of τ × γ on Riψδ,m for all γ in GLn(O). Taking the direct limit over all m, forming the alternating sum over
all i, and taking traces yields the desired result. □

4.5. Before turning to the proof of the n = 1 case of Theorem A, we take a brief interlude to describe the cohomology
of the Lubin–Tate tower in terms of the Lubin–Tate proof of local class field theory. Note that in the n = 1 case,
GL1(O) = O× and (B× × WF )0 = (F× × WF )0. Recall that Art : F× ∼−→W ab

F denotes the local reciprocity
isomorphism that sends uniformizers to geometric q-Frobenii. We denote the maximal unramified extension of F
using F nr, and we denote the extension of F nr corresponding to (O/ϖm)× using F nr,m.

In our calculations for the n = 1 case, we take δ = ϖ.

Proposition. In the n = 1 case, we have an equality of representations

[Rψ] = C∞
c (O×),

where O× acts by inverse left multiplication, and (F× ×WF )0 acts via right multiplication by Art−1(τ)−1b.

We only distinguish between left and right multiplication to maintain the situation for general n ≥ 1—there is no
difference between them in the n = 1 case, because all groups involved only act through their abelianizations.

Proof of Proposition 4.5. Recall from §1 that X̆m = Spf R̆m for some regular complete local Noetherian Ŏ-algebra
R̆m. The Lubin–Tate proof of local class field theory shows that R̆m is isomorphic to the completion of Onr,m, where
Onr,m is the ring of integers of F nr,m. Therefore X̆m,Cϖ

= Spf R̆m⊗̂ŎCϖ consists of one point for each element of
Gal(R̆m[ 1ϖ ]/F̆ ) = (O/ϖm)×.

Under this identification, the right action of O× on X̆m,Cϖ
is given by sending g to γ−1g for any γ in O×, and

the Lubin–Tate proof of local class field theory implies that the right action of (F× ×WF )0 is given by sending g to
gArt−1(τ)b−1 for any τ × b in (F× ×WF )0. Taking cohomology shows that

R0ψm = Qℓ[(O/ϖm)×],

whereO× acts by inverse left multiplication, and (F××WF )0 acts via right multiplication by Art−1(τ)−1b. Finally,
as Riψm vanishes for i > n − 1 = 0, we have [Rψ] = R0ψ. Forming the direct limit over all m yields the desired
result, where we have identified Qℓ and C. □
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4.6. With Proposition 4.4 and Proposition 4.5 in hand, we can now prove the n = 1 case of Theorem A. This amounts
to rewriting the Lubin–Tate tower in terms of the Lubin–Tate proof of local class field theory.

Proposition. Let χ be an irreducible smooth representation of GL1(F ), that is, a smooth character χ : F×−→C×.
Then Theorem A holds for χ, that is, there exists a unique continuous character ρ(χ) : WF −→C satisfying the
following property:

for all τ in WF with v(τ) > 0 and h in C∞
c (GLn(O)), we have tr(fτ,h|χ) = tr

(
τ |ρ(χ)

)
tr(h|χ).

This ρ(χ) is given by ρ(χ) = χ ◦Art−1.

Note that we need not consider Theorem A.(ii) for n = 1, since GL1 has no proper parabolic subgroups. As before,
we always take compatible Haar measures, but we generally omit their precise description.

Proof of Proposition 4.6. We first use 3.4 to show that

tr(fτ,h|χ) = tr((ϕτ,h, σ)|BC(χ)) =
�
ϖO×

r

dδ tr(τ × h|[Rψδ])χ(Nδ),

and then Proposition 4.4 implies that the above integral is equal to�
ϖO×

r

dδ tr(h× (Nδ)−1 × τ |[Rψ])χ(Nδ).

Since tr(h× (−)−1 × τ |[Rψ]) and tr(h× (N−)−1 × τ |[Rψ]) have matching twisted orbital integrals by Lemma 4.2,
making the change of variables b = Nδ gives us�

ϖrO×
db tr(h× b−1 × τ |[Rψ])χ(b).

Using Proposition 4.5 and applying the Peter–Weyl theorem to O× (which is really just Pontryagin duality, since O×

is commutative) shows that the above integral is equal to

tr(h|χ) tr(Art−1(τ)|χ) = tr(h|χ) tr(τ |χ ◦Art−1).

Therefore ρ(χ) = χ ◦ Art−1 satisfies the desired property. Since χ is a character, it equals its trace, so it is also
characterized uniquely by this property. □

4.7. Now return to the arbitrary n ≥ 1 case. We introduce some notation on the multiplicity of λ in Riψ, where λ is
an irreducible smooth representation of B×. Write Riψ(λ) for the vector space

Riψ(λ) := HomO×
B
(λ|O×

B
, Riψ).

This has a left action of GLn(O)×WF as follows. For any f in Riψ(λ) and (γ, τ) in GLn(O)×WF , we set

((γ × τ)f)(v) = (γ × b× τ)f(b−1v)

for all v in λ, where b is any element of B× satisfying v(b) + v(τ) = 0. Since f commutes with O×
B , this action

is independent of our choice of b. We see that Riψ(λ) is a GLn(O) × IF -admissible/continuous representation of
GLn(O)×WF over Qℓ. Write [Rψ](λ) for the virtual representation

∑∞
i=0(−1)iRiψ(λ).

4.8. In order to state our next result, we recall the local Jacquet–Langlands correspondence. Let B be a central divi-
sion algebra over F of dimension n2. Since every irreducible smooth representation λ of B× is finite-dimensional, its
character distribution is represented by the function Θλ : B×−→C that sends b 7→ tr(b|λ). This finite-dimensionality
also implies that every such representation is essentially L2.

There exists a unique bijection [5, (th. 1.1)]

JL :

{
isomorphism classes of irreducible essentially

L2 representations of GLn(F )

}
∼−→

{
isomorphism classes of irreducible

representations of B×

}
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such that, for all regular elliptic elements γ in GLn(F ) and b in B× whose characteristic polynomials are the same,
we have the equality

Θπ(γ) = (−1)n−1ΘJL(π)(b).

Furthermore, the central characters of π and JL(π) are equal.

4.9. Proposition. Assume that condition (c) in Lemma 2.7 holds, and suppose that π is an irreducible cuspidal repre-
sentation of GLn(F ). Then we have an equality of virtual GLn(O)× IF -admissible/continuous representations

(−1)n−1 π|GLn(O) ⊗ ρ(π) = [Rψ](JL(π)).

Proof. We begin by using condition (c) in Lemma 2.7 and 3.4 to see that

tr(h× τ | π|GLn(O) ⊗ ρ(π)) = tr(h|π) tr(τ |ρ(π)) = tr(fτ,h|π) = tr((ϕτ,h, σ)|BC(π)).

Then, Proposition 4.4 shows that this twisted trace is equal to the integral�
GLn(Or) diag(ϖ,1,...,1)GLn(Or)

dδ tr(h× (Nδ)−1 × τ |[Rψ])Θσ
π(δ).

To narrow down our domain of integration, we shall use the following lemma.

4.10. Lemma. The twisted character Θσ
π vanishes on GLn(Or) diag(ϖ, 1, . . . , 1)GLn(Or)∖Bn.

Proof. Recall that we have the decomposition

GLn(Or) diag(ϖ, 1, . . . , 1)GLn(Or) =

n∐
k=1

Bn,k,

and recall the description of Bn,k from 1.7 in terms of δ = δ◦ ⊕ δét. Write Pδ for the parabolic subgroup of GLn over
Fr associated with δ. This shows that Pδ is a proper subgroup if and only if δ does not lie in Bn, and because π is
cuspidal, Casselman’s theorem [11, 5.2] yields the desired result. □

Return to the proof of Proposition 4.9. Lemma 4.10 implies that our integral becomes�
Bn

dδ tr(h× (Nδ)−1 × τ |[Rψ])Θπ(Nδ).

As tr(h × (−)−1 × τ |[Rψ]) and tr(h × (N−)−1 × τ |[Rψ]) have matching twisted orbital integrals by Lemma 4.2,
making the change of variables b = Nδ and applying the local Jacquet–Langlands correspondence indicate that the
above expression equals

(−1)n−1

�
Br

db tr(h× b−1 × τ |[Rψ])ΘJL(π)(b) = (−1)n−1 tr(h× τ |[Rψ](JL(π))).

Since virtual GLn(O)× IF -admissible/continuous representations of GLn(O)×WF are determined by their traces,
this yields the desired result. □

4.11. We conclude this section by verifying that, under the assumption that condition (c) from Lemma 2.7 holds,
condition (d) holds as well.

Proposition. Assume that condition (c) in Lemma 2.7 holds, and suppose that π is an irreducible cuspidal represen-
tation of GLn(F ). Then the Q≥0-virtual continuous representation ρ(π) is actually a Z-virtual continuous represen-
tation of WF .

Proof. Proposition 4.9 shows that the Z-virtual representation [Rψ](JL(π)) equals π|GLn(O)⊗ρ(π) as virtual GLn(O)×
IF -admissible/continuous representations of GLn(O)×WF over Qℓ. Thus its λ-isotypic component is also a Z-virtual
representation for any irreducible smooth representation λ of GLn(O). If we could find such a λ that is contained in
π with multiplicity 1, then the λ-isotypic component of [Rψ](JL(π)) would equal ρ(π). Therefore, once we prove the
following lemma, the result follows. □
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4.12. Lemma. Let π be an irreducible cuspidal representation of GLn(F ). Then there exists an irreducible smooth
representation λ of GLn(O) such that π contains λ with multiplicity 1.

Proof. Since π is cuspidal and hence generic, the theory of new-vectors [29, Theorem (5.1).(ii)] shows that there exists
a non-negative number a such that dimπK(a) = 1, where K(a) is the subgroup

K(a) :=
{[

a b
c d

]
∈ GLn(O)

∣∣∣a ∈ GLn−1(O), c ≡ 0 (mod ϖa), d ≡ 1 (mod ϖa)
}

for positive a, and K(a) := GLn(O) for a = 0. In other words, dimHomK(a)(C, π|K(a)) = 1, where C denotes the
trivial representation. Frobenius reciprocity yields

dimHomGLn(O)(c-Ind
GLn(O)
K(a) C, π|GLn(O)) = dimHomK(a)(C, π|K(a)) = 1.

The Peter–Weyl theorem then implies that some irreducible smooth subrepresentation λ of c-IndGLn(O)
K(a) C is contained

in π with multiplicity 1, as desired. □

5. MODULI SPACES OF D -ELLIPTIC SHEAVES

At this point, we shift our focus from local considerations to global ones. In this section, we begin by introducing
D-elliptic sheaves, which are the equi-characteristic analog of abelian varieties equipped with certain endomorphism
structures. Afterwards, we introduce moduli spaces of D-elliptic sheaves, which therefore correspond to certain
Shimura varieties and their integral models. The cohomology of these moduli spaces plays an important role in the
Langlands correspondence. We can also obtain local shtukas from D-elliptic sheaves, and this is the equi-characteristic
version of taking the p-divisible group of an abelian variety. We conclude this section by introducing a Serre–Tate
theorem, which relates deformations of D-elliptic sheaves to deformations of their associated local shtukas. This will
eventually allow us to prove condition (c) in Lemma 2.7.

5.1. We start by switching our notation to a global context. In these next few sections, let κ be a finite field of
characteristic p and cardinality q, and fix a separable closure κ of κ. We view all separable extensions of κ as lying
in κ. Let C be a geometrically connected proper smooth curve over κ, and write F for its field of rational functions.
Denote the adele ring of C using A, denote the ring of integers of A using O, and for any finite closed subscheme I of
C, write KI for the ideal of O corresponding to I .

For any place x of C, write Ox for the local ring given by the completion of C at x, and write Fx for the fraction
field ofOx. Then Fx is a completion of F at x. Choose a uniformizer ϖx of x in F, write κx forOx/ϖx, write qx for
#κx, and write deg x for [κx : κ]. By abuse of notation, we write x for the normalized valuation corresponding to x.
We also write deg : A×−→Z for the function given by sending

(ax)x 7→ −
∑
x

x(ax) deg x.

We fix a closed point∞ in C, which shall serve as a replacement for the archimedean places at infinity.

5.2. Since division algebras are fundamental to our constructions, we recall some facts about them here. For any
central division algebra D over F, write Dx for D ⊗F Fx, and write invx(D) for the Hasse invariant of Dx. Recall
that the Brauer group of F fits into an exact sequence

0−→Br(F)−→
⊕
x

Br(Fx) =
⊕
x

Q/Z−→Q/Z−→ 0,

where x runs over all places of C, the first map sends D 7→ (Dx)x, and the second map sums the Hasse invariants
of any element in

⊕
x Br(Fx). In particular, we have invx(D) = 0 for cofinitely many x, that is, D is split at x for

cofinitely many x. For any central division algebra D in Br(F), its dimension equals the square of the least common
denominator of invx(D) as x runs over all places of F.

We now fix a central division algebra D over F of dimension n2 such that inv∞(D) = 0, and we write Bad for the
set of places x of C where invx(D) ̸= 0, that is, where D ramifies. Then Bad is finite, and∞ does not lie in Bad. We
write C ′ for the open subscheme C ∖ Bad of C.
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5.3. Next, we introduce orders of D, which shall provide some sort of integrality structure on D.

Definition. Let D be a locally free (not necessarily commutative) OC-algebra of rank n2. We say D is an order of D
if its generic fiber DF is isomorphic to D. For an order D of D, we say D is maximal if it is maximal with respect to
injective OC-algebra morphisms D ′ ↪−→ D between orders of D.

We denote the completion of D at x using Dx, which is a free Ox-algebra of rank n2, and we identify its generic
fiber Dx[

1
ϖx

] with Dx.

5.4. Let D be an order of D. Let U be an affine open subset of C, and let M be an F-basis of D contained in
D(U). Because D splits at cofinitely many places, checking valuations shows that Ox ·M = Dx for cofinitely many
x. Conversely, let (Dx)x be a collection of Ox-orders (where x ranges over all places of C) such that there exists an
F-basis M of D for whichOx ·M = Dx for cofinitely many x. One can use the Riemann–Roch theorem to show that
the Zariski sheaf

U 7→
⋂
x′

Dx′ ∩D,

where x′ runs over all closed points in U , is an order of D.
This construction yields a bijection between isomorphism classes of orders of D and collections (Mx)x of Ox-

orders such that there exists an F-basis M of D satisfying Ox · M = Mx for cofinitely many x. Note that D is
maximal if and only if every Mx is maximal.

5.5. From now on, fix a maximal order D of D. We may now introduce D-elliptic sheaves. For any scheme S over
κ, write σ for the absolute q-Frobenius on S, and write σ for (idC ×κσ)

∗.

Definition. Let S be a scheme over κ. A D-elliptic sheaf over S is a commutative diagram of sheaves on C ×κ S

· · ·
ji−2

// Ei−1

ji−1
// Ei

ji
// Ei+1

ji+1
// · · ·

· · ·
σji−2

//

ti−2

99

σEi−1

σji−1
//

ti−1

99

σEi

σji
//

ti

99

σEi+1

σji+1
//

ti+1

99

· · ·

where the Ei are locally free right D ⊠ OS-modules of rank 1 (and hence vector bundles over S of rank n2), and the
ti and ji are injective morphisms of right D ⊠ OS-modules satisfying the following conditions:

• for all i, Ei+n deg∞ is isomorphic to Ei(∞), and this isomorphism identifies Ei ↪−→ Ei+n deg∞ with the canonical
injection Ei ↪−→ Ei(∞),

• there exists a morphism i∞ : S−→∞ such that coker j1 is supported on the image of its graph Γ∞ : S−→∞×κS,
• there exists a morphism io : S−→C ′∖∞ such that coker t1 is supported on the image of its graph Γo : S−→C×κ

S,
• when viewed as OS-modules, the coker ji and coker ti are locally free of rank n.

We denote D-elliptic sheaves by (Ei, ti, ji)i. We say that i∞ is the pole of (Ei, ti, ji)i, and we say that io is the zero
of (Ei, ti, ji)i.

Since the image of io is disjoint from ∞, we see ti induces an isomorphism σ(Ei/Ei−1)
∼−→Ei+1/Ei. Thus

coker ji+1 is supported on the image of the graph of i∞ ◦ σi. And as the image of io is disjoint from ∞, we see
that coker ti is supported on the image of Γo for all i.

5.6. We proceed to describe the moduli space of D-elliptic sheaves. For any scheme S over κ, write EℓℓD(S) for
the category whose objects are D-elliptic sheaves and whose morphisms are isomorphisms of D-elliptic sheaves.
Then EℓℓD forms an fppf stack over κ [35, (2.4)], and the assignment sending a D-elliptic sheaf over S to its zero
io : S−→C ′ ∖∞ yields a morphism EℓℓD −→C ′ ∖∞. We have the following result of Laumon–Rapoport–Stuhler.

Proposition ([35, (4.1)]). Our EℓℓD is Deligne–Mumford stack, and the morphism EℓℓD −→C ′ ∖∞ is smooth of
relative dimension n− 1.
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This morphism EℓℓD −→C ′∖∞ is the equi-characteristic analog of the structure morphism from an integral model
of a Shimura variety to SpecZ. Given that D-elliptic sheaves (Ei, ti, ji)i correspond to abelian schemes A−→S in
our analogy, the zero of (Ei, ti, ji)i therefore corresponds to the characteristic of S.

5.7. Just as with abelian varieties, we have a notion of level structure for D-elliptic sheaves. The situation is more
complicated when the characteristic divides the level, so we begin by excluding this case. Let I be a finite closed
subscheme of C ∖∞.

Definition. Let (Ei, ti, ji)i be D-elliptic sheaf over S such that the image of io does not meet I . A level-I structure
on (Ei, ti, ji)i is an isomorphism of right D |I ⊠ OS-modules

ι : D |I ⊠ OS
∼−→ E |I×κS

such that the diagram

σ(D |I ⊠ OS)
fσ

//

σι

��

D |I ⊠ OS

ι

��
σ E |I×κS

j|I×κS
// E |I×κS

commutes, where fσ denotes the linearization of id×κσ : D |I ⊠OS −→ D |I ⊠OS . For any closed subscheme I ′ of
I and level-I structure ι, its restriction ι|I′ is a level-I ′ structure.

5.8. We now incorporate the data of level-I structures in order to introduce more moduli spaces of D-elliptic sheaves.
Write EℓℓD,I(S) for the category whose

• objects are pairs ((Ei, ti, ji)i, ι), where (Ei, ti, ji)i is a D-elliptic sheaf over S, and ι is a level-I structure on
(Ei, ti, ji)i,

• morphisms are isomorphisms of pairs.

Then EℓℓD,I forms a Deligne–Mumford stack over κ [35, (4.1)]. We naturally identify EℓℓD,∅ = EℓℓD , and as in 5.6,
we have a morphism EℓℓD,I −→C ′∖ (I ∪∞) given by sending any D-elliptic sheaf with level-I structure to its zero.

By abuse of notation, we shall write D ⊗O/KI for the product ring
∏

x Dx/KI,xDx, where x runs over all places
in C. Since KI,x = Ox for cofinitely many x, we see that D ⊗ O/KI is finite. As I varies, the stacks EℓℓD,I are
related as follows.

Proposition ([35, (4.1)]). For any closed subscheme I ′ of I , the restriction morphism EℓℓD,I −→ EℓℓD,I′
∣∣
C′∖(I∪∞)

is finite representable Galois, and the right action of

ker
(
(D ⊗O/KI)

×−→(D ⊗O/KI′)×
)

on EℓℓD,I −→ EℓℓD,I′
∣∣
C′∖(I∪∞)

given by multiplication on the level-I structure yields the Galois action.

By combining this with Proposition 5.6, we see that EℓℓD,I −→C ′∖(I∪∞) is smooth of relative dimension n−1.

5.9. In anticipation for studying the cohomology of EℓℓD,I , we present some operations that one can perform on
EℓℓD,I . First, write PicI(C) for the group

PicI(C) := {pairs (L , β)}/∼,

where L is a line bundle on C, and β is an isomorphism β : OI
∼−→ L |I of OI -modules, under tensor product.

As D-elliptic sheaves consist of vector bundles, we can twist them by line bundles. That is, for any D-elliptic sheaf
(Ei, ti, ji)i over S with level-I structure ι, we obtain another D-elliptic sheaf over S with level-I structure as follows:

(L , β) · ((Ei, ti, ji)i, ι) := ((Ei ⊗ (L ⊠ OS), ti ⊗ id, ji ⊗ id)i, ι⊗ β).

This yields an action of PicI(C) on EℓℓD,I over C ′ ∖ (I ∪∞).
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5.10. As I varies, the moduli spaces of D-elliptic sheaves with level-I structure form a system of stacks (EℓℓD,I)I ,
which corresponds to how Shimura varieties form systems of schemes. We package this system into one object as
follows. First, let T be a finite set of places of F. Write AT for the ring of adeles away from T , and more generally
for any subset X of A, write XT for the projection of X to AT . Similarly, write AT for the ring of adeles at T , and
write XT for the projection of X to AT . We write Eℓℓ∞D for the inverse limit

Eℓℓ∞D := lim←−
I

EℓℓD,I ,

where I ranges over all finite closed subschemes of C that do not meet ∞. This inverse limit yields a morphism
Eℓℓ∞D −→ SpecF. By abuse of notation, write O∞ for the OC-algebra given by

U 7→
∏
x′

Ox′ ,

where x′ runs over all closed points in U ∖∞. We see that Eℓℓ∞D (S) is the category whose [35, (7.1)]

• objects are pairs ((Ei, ti, ji)i, ι
∞), where (Ei, ti, ji)i is a D-elliptic sheaf over S and ι∞ is a (D ⊗OC

O∞)⊠ OS-
linear isomorphism

ι∞ : (D ⊗OC
O∞)⊠ OS

∼−→E ⊗ (O∞ ⊠ OS)

such that the diagram

σ((D ⊗OC
O∞)⊠ OS)

fσ
//

σι∞

��

(D ⊗OC
O∞)⊠ OS

ι∞

��
σE ⊗ (O∞ ⊠ OS)

j⊠id
// E ⊗ (O∞ ⊠ OS)

commutes, where fσ denotes the linearization of id×κσ : (D ⊗OC
O∞)⊠ OS −→(D ⊗OC

O∞)⊠ OS ,
• morphisms are isomorphisms of pairs.

5.11. The action of twisting by line bundles is compatible with the inverse limit, so Eℓℓ∞D has an action of

lim←−
I

PicI(C) = F×\A×/F×
∞ = F∞,×\A∞,×

over F, where we identify the idele (ax)x with the line bundle OC(−
∑

x x(ax)) along with the trivialization induced
via multiplication by (ax)x. In particular, Eℓℓ∞D has an action of A∞,×. We see that Eℓℓ∞D also has a right action of

lim←−
I

(D ⊗O/KI)
× = (D ⊗O∞)×

over F given by multiplication on the level structure, and both of these actions actually arise from a right action of
(D ⊗ A∞)× on Eℓℓ∞D [35, (7.3)]. This is the Hecke action, analogous to the Hecke action on Shimura varieties.
Writing KI for the subgroup

KI := ker
(
(D ⊗O)×−→(D ⊗O/KI)

×) ,
we see that Proposition 5.8 implies Eℓℓ∞D /K ∞

I = EℓℓD,I .

5.12. Since D-elliptic sheaves are essentially vector bundles, they have a notion of degree.

Definition. Let (Ei, ti, ji)i be a D-elliptic sheaf. We say its degree is the locally constant function

deg E1 − degD

n

on the base scheme S, where we use 1 instead of 0 to avoid confusion with o. One can show that the degree is
integer-valued [32, p. 49].

By partitioning the base scheme S by the degree of (Ei, ti, ji)i, we can write EℓℓD,I as a disjoint union

EℓℓD,I =
∐
d

EℓℓD,I,d,



THE LOCAL LANGLANDS CORRESPONDENCE FOR GLn OVER FUNCTION FIELDS 33

where d ranges over all integers, and EℓℓD,I,d is the open substack of D-elliptic sheaves with level-I structure whose
degree equals d. Note that the restriction morphisms EℓℓD,I −→EℓℓD,I′ preserve degree, so we obtain a similar
decomposition

Eℓℓ∞D =
∐
d

Eℓℓ∞D,d,

where Eℓℓ∞D,d = lim←−I
EℓℓD,I,d for I running over all finite closed subschemes of C ∖∞.

5.13. We shall define an action of Z on EℓℓD,I over C ′ ∖ (I ∪∞) as follows. For any integer l and D-elliptic sheaf
(Ei, ti, ji)i, write

[l](Ei, ti, ji)i := (Ei+l, ti+l, ji+l)i,

that is, [l] acts via translation by l on the index i. Then [l](Ei, ti, ji)i also forms a D-elliptic sheaf, so this yields an
action of Z on EℓℓD,I . The definition of a D-elliptic sheaf implies that deg Ei+l = deg Ei + nl, so the degree of
[l](Ei, ti, ji)i is l plus that of (Ei, ti, ji)i. This allows us to identify the quotient stack EℓℓD,I/Z with

EℓℓD,I/Z = EℓℓD,I,0

as stacks over κ. The translation action of Z commutes with restriction morphisms as well as the Hecke action, so we
obtain a similar description of Eℓℓ∞D /Z. The Hecke action also descends to EℓℓD,I/Z. By passing to this quotient
stack (or equivalently, by restricting the degree), we obtain the following finite-type representability result.

Proposition ([35, (6.2)]). Suppose I is nonempty. Then EℓℓD,I/Z is actually a projective scheme over C ′ ∖ (I ∪∞).

Thus Eℓℓ∞D /Z = lim←−I
EℓℓD,I/Z is also representable by a scheme.

5.14. Before we proceed to the cohomology of our moduli spaces, we introduce a covering of EℓℓD,I which we shall
use to construct our coefficient sheaves. Write B for the central division algebra over F∞ of Hasse invariant − 1

n .

Proposition ([35, (8.11)]). There exists a pro-Galois covering

ẼℓℓD,I −→EℓℓD,I ,

where ẼℓℓD,I is a scheme, whose Galois group is given by a right action of B
×
/ϖZ

∞. This covering is compatible
with restriction morphisms EℓℓD,I −→EℓℓD,I′ , so taking the inverse limit yields an analogous pro-Galois covering

Ẽℓℓ
∞
D −→Eℓℓ∞D

whose Galois group is given by a right action of B
×
/ϖZ

∞.

Briefly, the covering ẼℓℓD,I −→EℓℓD,I is given as follows. Given a D-elliptic sheaf (Ei, ti, ji)i, we can construct
an object resembling a local shtuka at the place∞ (in a fashion similar to the construction to be given in 5.22). This
“local shtuka at ∞” will always be isomorphic to a fixed object analogous to the local shtuka of slope − 1

n under
the Dieudonné–Manin classification [34, (2.4.5)], and the covering ẼℓℓD,I −→EℓℓD,I parametrizes isomorphisms be-
tween our “local shtuka at∞” and this fixed object. The Galois action is given by composition with this isomorphism,
as the endomorphism ring of a local shtuka of slope − 1

n at∞ is B.
The stack ẼℓℓD,I also has an action of Z by translation, and it is preserved under the morphism ẼℓℓD,I −→EℓℓD,I .

Thus we obtain a pro-Galois morphism ẼℓℓD,I/Z−→EℓℓD,I/Z whose Galois group is given by a right action of
B

×
/ϖZ

∞. This yields a similar pro-Galois morphism Ẽℓℓ
∞
D /Z−→Eℓℓ∞D /Z as well.

The space Ẽℓℓ
∞
D is the equi-characteristic analog of the Hermitian symmetric space covering a Shimura variety.

5.15. At this point, we can finally introduce the cohomology of our moduli spaces. Fix a separable closure Fsep of
F, and view all separable extensions of F as lying in Fsep. For every place x of C, choose a separable closure Fsep

x of
Fx, fix an embedding Fsep ↪−→ Fsep

x , and form the absolute Galois groups GF and Gx of F and Fx, respectively, with
respect to these separable closures. Write Cx for the completion of Fsep

x . We view Gx as a subgroup of GF via our
embedding, and we denote the arithmetic qx-Frobenius at x using σx.
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Fix an irreducible smooth representation

ξ : B
×
/ϖZ

∞−→GLN (Qℓ).

Since B
×
/ϖZ

∞ is compact, we see ξ has finite image and is therefore defined over a finite extension of Qℓ in Qℓ.
Write Lξ,I for the ℓ-adic sheaf on EℓℓD,I/Z induced from ξ and the pro-Galois morphism ẼℓℓD,I/Z−→EℓℓD,I/Z
via monodromy, and write Lξ for the analogous ℓ-adic sheaf on Eℓℓ∞D /Z. Form the Qℓ-vector space

Hi
ξ,η := Hi(Eℓℓ∞D,Fsep/Z,Lξ) = lim−→

I

Hi(EℓℓD,I,Fsep/Z,Lξ,I,Fsep),

where I runs over all finite closed subschemes of C ∖∞. This has a left action of (D⊗A∞)× ×GF, and it vanishes
for sufficiently large i. Proposition 5.8 implies that

(Hi
ξ,η)

K ∞
I = Hi(EℓℓD,I,Fsep/Z,Lξ,I,Fsep),

which shows that Hi
ξ,η is an admissible/continuous representation as in [20, p. 24] of (D ⊗ A∞)× × GF over Qℓ.

Furthermore, for any g in (D ⊗ A∞)×, the action of
1

vol(K ∞
I )

1K ∞
I gK ∞

I
∈ C∞

c ((D ⊗ A∞)×)

on Hi
ξ,η is induced by a correspondence [35, (7.5)]

Eℓℓ∞D,F/(Z× (K ∞
I ∩ g−1K ∞

I g))

c1,F

tt

c2,F

**

Eℓℓ∞D,F/(Z×K ∞
I ) Eℓℓ∞D,F/(Z×K ∞

I )

over F, where c1,F is induced by further quotienting by K ∞
I , and c2,F is induced by the right action of g−1 followed

by quotienting by K ∞
I . This is the equi-characteristic analog of Hecke correspondences.

Proposition 5.8 implies that c1,F and c2,F are finite étale. We write cF : EℓℓD,I,F/Z 99K EℓℓD,I,F/Z for the
correspondence formed by c1,F and c2,F, and we write [Hξ] for the virtual representation [Hξ] :=

∑∞
i=0(−1)iHi

ξ,η .

5.16. Now we introduce a construction that takes any D-elliptic sheaf over a certain base and yields an object
resembling a local shtuka. Let o be a closed point in C ′ ∖∞, let S be a scheme over SpecOo, and let (Ei, ti, ji)i be
a D-elliptic sheaf over S.

Let Γo be the image of the graph of io : S−→C×κS, and denote completions along Γo using (−)∧Γo
. Then (E1)

∧
Γo

is a vector bundle on (C ×κ S)
∧
Γo

of rank n2 with a right action of Do = Mn(Oo), and (j1)
∧
Γo

is an isomorphism
because Γo lies away from∞. Thus we may form the composed morphism

(j1)
∧,−1
Γo

◦ (t1)∧Γo
: (σE1)

∧
Γo
−→(E1)

∧
Γo
.

We see that the adic pullback of (j1)
∧,−1
Γo
◦ (t1)∧Γo

as in [7, p. 370] to Fo is an isomorphism, and its cokernel is a vector
bundle on S of rank n.

We may identify (C ×κ S)
∧
Γo

with the locally ringed space whose support is |S| and whose structure sheaf is
OS [[ϖo]] [1, Lemma 5.3]. From this point of view, the pair

((E1)
∧
Γo
, (j1)

∧,−1
Γo

◦ (t1)∧Γo
)

corresponds to a pair (Mo,Fo), where Mo is a locally free OS [[ϖo]]-module of rank n2 with a right OS [[ϖo]]-linear
action of Mn(Oo), and Fo : σ∗

oMo−→Mo is an OS [[ϖo]]-linear morphism such that cokerFo is a locally free
OS-module of rank n. Note that Fo[

1
ϖo

] is an isomorphism.
Now Mo is a free right Mn(Oo)-module of rank 1. Applying Morita equivalence to the right Mn(Oo)-action shows

that there exists pair (M ′
o,F

′
o) satisfying

(Mo,Fo) = (M ′⊕n
o ,F ′⊕n

o ),
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where M ′
o is a locally free OS [[ϖo]]-module of rank n, and F ′

o : σ∗
oM

′
o−→M ′

o is an OS [[ϖo]]-linear morphism
whose cokernel is a locally free OS-module of rank 1 and whose generic fiber is an isomorphism. Note that if S is
actually a scheme over Spf Oo, then (M ′

o,F
′
o) actually forms an effective minuscule local shtuka over S of rank n

and dimension 1.

5.17. With the above construction, we can treat level structures in the case when characteristics divide the level. As
with abelian varieties, this requires a notion of Drinfeld level structure.

Begin by recalling some material from §1. We have a notion of finite κo-shtukas, which are truncated versions of
local shtukas, and they correspond to certain module schemes called strict κo-modules under a Dieudonné equivalence.
Now the quotient module M ′

o/ϖ
m
o is a finite κo-shtuka, and we denote the corresponding finite κo-strict module using

Dr(M ′
o/ϖ

m
o ). As with local shtukas, we define Drinfeld level structures via using Dr(−) to pass to module schemes.

Definition. Let S be a scheme over SpecOo, and let (Ei, ti, ji)i be a D-elliptic sheaf over S. We say a Drinfeld level-
m structure on (Ei, ti, ji)i is a Drinfeld level-m structure on Dr(M ′

o/ϖ
m
o ), that is, an Oo/ϖ

m
o -module morphism

α : (ϖ−mOo/Oo)
n−→Dr(M ′

o/ϖ
m
o )(S)

such that the collection of all α(x) for x in (ϖ−mOo/Oo)
n forms a full set of sections of Dr(M ′

o/ϖ
m
o ) as in [30,

(1.8.2)]. For any non-negative integer m′ ≤ m and Drinfeld level-m structure α, its restriction to (ϖ−m′

o Oo/Oo)
n is

a Drinfeld level-m′ structure.

5.18. We may finally define moduli spaces of D-elliptic sheaves at bad reduction. For any scheme S over SpecOo,
writeM∗

I(S) for the category whose

• objects are triples ((Ei, ti, ji)i, ι, α), where (Ei, ti, ji)i is a D-elliptic sheaf over S, ι is a level (I ∖ o)-structure on
(Ei, ti, ji)i, and α is a Drinfeld level-m structure on (Ei, ti, ji)i, where m is the multiplicity of o in I ,

• morphisms are isomorphisms of pairs.

ThenM∗
I forms an fppf stack over κ, and when I does not contain o, we see thatM∗

I is simply the pullback of EℓℓD,I

to SpecOo.
By sending a D-elliptic sheaf to its zero, we obtain a morphismM∗

I −→ SpecOo. For any closed subscheme I ′ of
I , restriction of level structures gives us a morphismM∗

I −→M
∗
I′ over SpecOo, and partitioning by degrees allows

us to obtain a decomposition

M∗
I =

∐
d

M∗
I,d

that respects restriction morphisms, where d runs over all integers.
We see that the translation action of Z from 5.13 naturally extends to an action onM∗

I , and we writeMI for the
quotient stackMI :=MI/Z. We have the following representability result, which follows from work of Katz–Mazur.

Proposition ([30, (1.10.13)]). The restriction morphismM∗
I −→M

∗
I′ is finite and representable.

By combining this with Proposition 5.13, we see thatMI is a projective scheme of dimension n− 1 over SpecOo

whenever I ∖ o is nonempty. The schemeMI shall be our focus in the next few sections.

5.19. In this subsection, we extend the Hecke action toMI . We use om to denote the finite closed subscheme of C
supported on o with multiplicity m. Since Drinfeld level-m structures over Fo are equivalent to level-om structures
over Fo [10, Proposition 7.1.3], the generic fiber MI,Fo is isomorphic to the pullback EℓℓD,I,Fo/Z. Under this
identification, the right action of (D⊗A∞)× on Eℓℓ∞D,Fo

/aZ extends [10, p. 599] to a right action on the inverse limit

M∞ := lim←−
I

MI ,
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where I runs over all finite closed subschemes of C ∖∞. This action satisfiesM∞/K ∞
I =MI . Furthermore, for

any g in D ⊗ A∞, the correspondence from 5.15 extends to a correspondence [10, p. 600]

M∞/(K ∞
I ∩ g−1K ∞

I g)

c1,Oo

uu

c2,Oo

))

M∞/K ∞
I M∞/K ∞

I

where c1,Oo
and c2,Oo

are finite morphisms over SpecOo. We write cOo
: MI 99K M∞

I for the correspondence
formed by c1,Oo

and c2,Oo
.

5.20. Next, we present the Serre–Tate theorem for D-elliptic sheaves, which relates deformations of D-elliptic
sheaves with deformations of their associated local shtukas. Let m be the multiplicity of o in I , let z be a κ-point
of MI , and let (Ei, ti, ji)i be the corresponding D-elliptic sheaf over κ with level (I ∖ o)-structure ι and Drinfeld
level-m structure α. Then α yields a Drinfeld level-m structure for the local shtuka M ′

o formed in 5.16. Recall from
1.4 that M ′

o corresponds to some δo in

GLn(Ŏo) diag(ϖo, 1, . . . , 1)GLn(Ŏo)

uniquely up to GLn(Ŏo)-σo-conjugacy, and recall that the deformation space of (M ′
o, α) is X̆δo,α. Write (MI,Ŏo

)∧z
for the completion ofMI,Ŏo

at z. Boyer proves the following comparison result for deformation spaces.

Proposition ([10, Theorem 7.4.4]). Our ((Ei, ti, ji)i, ι, α) 7→ (M ′
o, α) induces an isomorphism (MI,Ŏo

)∧z
∼−→ X̆δo,α

over Spf Ŏo that preserves the right action of GLn(Oo) as well as the Weil action.

5.21. We extend the above results to X̆δo,m, where X̆δo,m is the deformation space of M ′
o along with a Drinfeld

level-m structure as in 1.12. Write π : MI,Ŏo
−→MI∖o,Ŏo

for the restriction morphism. We see that π−1(π(z))

corresponds to all possible Drinfeld level-m structures on (Ei, ti, ji)i. Therefore the isomorphism in Proposition 5.20
also induces an isomorphism (MI,Ŏo

)∧π−1(π(z))

∼−→ X̆δo,m over Spf Ŏo, where (MI,Ŏo
)∧π−1(π(z)) is the completion

ofMI,Ŏo
along π−1(π(z)), and this isomorphism preserves the right action of GLn(Oo) as well as the Weil action.

5.22. We conclude this section by discussing a variant of the construction from 5.16. Let S be a scheme over
SpecOo, let (Ei, ti, ji)i be a D-elliptic sheaf over S, let x be a closed point in C ∖ o, and let f : S−→C be a
morphism over κ whose image is x.

Write Γf for the image of the graph of f in C×κ S, and denote completions along Γf using (−)∧Γf
. Then (E1)

∧
Γf

is
a vector bundle on (C ×κ S)

∧
Γf

of rank n2 with a right action of Dx. The adic generic fibers (j1)∧Γf ,Fx
and (t1)

∧
Γf ,Fx

as in [7, p. 370] are isomorphisms, so the composed morphism

(j1)
∧,−1
Γf ,Fx

◦ (t1)∧Γf ,Fx
: (σE1)

∧
Γf ,Fx

∼−→(E1)
∧
Γf ,Fx

is also an isomorphism. Similarly to 5.16, we may identify (C ×κ S)
∧
Γf

with the locally ringed space whose support
is |S| and whose structure sheaf is OS [[ϖx]] [1, Lemma 5.3]. From this point of view, the pair

((E1)
∧
Γf
, (j1)

∧,−1
Γf ,Fx

◦ (t1)∧Γf ,Fx
)

corresponds to a pair (Mx,Fx), where Mx is a locally free OS [[ϖx]]-module of rank n2 with a right OS [[ϖx]]-linear
action of Dx, and Fx : σ∗

xMx[
1

ϖx
]

∼−→Mx[
1

ϖx
] is an OS((ϖx))-linear isomorphism that commutes with the right

Dx-action. Note that Mx is a free right Dx-module of rank 1.
When x does not equal ∞, the graph Γf lies away from both o ×κ S and ∞ ×κ S, so the completions (t1)

∧
Γf

and (j1)
∧
Γf

are isomorphisms. In this case, the morphism Fx is the localization of an OS [[ϖx]]-module isomorphism

σ∗
xMx

∼−→Mx, which we also refer to using Fx by abuse of notation.
Finally, in the case when x equals∞, we have D∞ = Mn(O∞) because D splits at∞. Applying Morita equiva-

lence to the right Mn(O∞)-action on M∞ provides a pair (M ′
∞,F

′
∞) that satisfies

(M∞,F∞) = (M ′⊕n
∞ ,F ′⊕n

∞ ),
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where M ′
∞ is a locally free OS [[ϖ∞]]-module of rank n, and F ′

∞ : σ∗
∞M ′

∞[ 1
ϖ∞

]
∼−→M ′

∞[ 1
ϖ∞

] is an OS((ϖ∞))-
linear isomorphism. Furthermore, if S is the spectrum of κ, then the isogeny class of M ′

∞ has slope− 1
n [35, (9.8).(i)]

under the Dieudonné–Manin classification [34, (2.4.5)].

6. A NEARBY CYCLES CALCULATION AND SEMISIMPLE TRACE

Write Fo,r for the r-th degree unramified extension of Fo, and recall our test function ϕτ,h in C∞
c (GLn(Fo,r)) as

in §1. Our goal in this section is to express the integral�
σ−r
o IFo

dτ ϕτ,h

in terms of representations of GLn(Oo). We shall use this description in §9 to show that the preimage of any unramified
representation under π 7→ recπ remains unramified, which plays an important role in our proof that rec is bijective.

To begin, we present a geometric calculation of the inertia invariants of nearby cycles, due to Scholze. This
calculation relies on a case of Grothendieck’s purity conjecture as proved by Thomason, which describes relative
cohomology in the étale setting. By using results from §1, we verify that the hypotheses of this calculation apply
to MI as well as explicitly compute the inertia invariants in terms of representations of GLn(Oo/ϖ

m
o ), where m

denotes the multiplicity of o in I . We then relate nearby cycles to semisimple trace, which is a better-behaved variant
of Frobenius traces for ramified representations of WFo . Finally, we conclude by applying results from §1 once more
to describe our integral in terms of semisimple traces.

6.1. We start by introducing notation for the calculation of nearby cycles. Let X be a scheme over Oo of finite type,
and write

ȷ : XF̆o
−→XŎo

and ı : Xκ−→XŎo

for the inclusion morphisms of the generic and special fibers of XŎo
, respectively. Denote the derived IFo

-invariants
functor by RIFo

, and denote the derived nearby cycles functor on XŎo
by RΨXF̆o

. The Galois description of étale
sheaves implies that

(RIFo
RΨXF̆o

)(−) = ı∗Rȷ∗((−)F̆o
)

as functors from Db
c(XFo

,Qℓ) to Db
c(Xκo

,Qℓ), since the non-derived versions of both sides are equal.

6.2. Next, we use the combinatorics of the geometry of X to construct a certain family of Qℓ-vector spaces involved
in the calculation of nearby cycles. Assume that X is regular, and suppose that the morphism X −→ SpecOo is flat of
relative dimension d. Suppose we have a stratification of Xκo

, i.e. assume that Xκo
can be written as

Xκo =
⋃
j

Z̊j ,

where j ranges over some finite indexing set J, and the Z̊j are disjoint irreducible locally closed subsets of Xκo whose

closures Zj := Z̊j are regular and equal to unions of Z̊k for some k. For any j in J, write c(j) for the codimension of
Zj in X , which is positive because Zj lies in Xκo

. We write k ≻ j if Zk strictly contains Zj .
By inducting on c(j), we shall assign a finite-dimensional Qℓ-vector space Wj to any j in J as follows. In the

c(j) = 1 case, set Wj := Qℓ. In the c(j) = 2 case, we let

Wj := ker

⊕
k

Wk −→Qℓ

 ,

where k runs over elements of J satisfying k ≻ j and c(k) = 1, and the maps in the direct sum are the identity
morphisms. Thus Wj is just the kernel of the summation map. Note that we have a morphism Wj −→Wk given by

Wj ↪−→
⊕
k

Wk −↠Wk
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for all k ≻ j with c(k) = 1. Finally, in the c(j) ≥ 3 case, set

Wj := ker

⊕
k

Wk −→
⊕
l

Wl

 ,

where now k runs over all elements of J satisfying k ≻ j and c(k) = c(j)− 1, l runs over all elements of J satisfying
l ≻ j and c(l) = c(j)− 2, and the maps in the direct sum are of the form Wk −→Wl for l ≻ k. Note that we have a
morphismWj −→Wk as before via inclusion and projection, so we may indeed inductively continue this construction.

Let G be a group, and suppose it acts on Xκo
in a manner preserving the stratification. Then the stabilizer of Zj in

G acts from the left on Wj via permuting the Zk and hence Wk for which k ≻ j.

6.3. We now present Scholze’s calculation of the inertia invariants of nearby cycles. Let j be in J. Consider the chain
complex

0−→Wj −→
⊕
k1

Wk1 −→
⊕
k2

Wk2 −→· · ·−→
⊕

kc(j)−1

Wkc(j)−1
−→Qℓ−→ 0,

where ks runs over elements of J satisfying ks ≻ j and c(ks) = c(j) − s, and the maps in the direct sum are of the
form Wks

−→Wks+1
for ks+1 ≻ ks. Note that this complex is exact at Wj by construction. For any κo-point z of X ,

write z for the corresponding κ-point of X .

Proposition ([43, Theorem 5.3]). If the above chain complex is exact for all j in J, then we have a canonical isomor-
phism

(ı∗Riȷ∗Qℓ)z
∼−→

⊕
k

Wk(−i)

for all κo-points z of X and non-negative integers i, where k ranges over all k in J such that z lies in Zk and c(k) = i.

The proof of this proposition uses a case of Grothendieck’s purity conjecture as proved by Thomason [49, Corollary
3.9], which says that relative étale cohomology is concentrated in the expected degree according to codimension.

6.4. In order to apply Proposition 6.3, we must first describe a stratification ofMI,κo
as in 6.2. This stratification

will be defined in terms of Drinfeld level-m structures, and it is called the Newton stratification.
Let V be anOo/ϖ

m
o -linear direct summand of (ϖ−m

o Oo/Oo)
n, and writeMV

I for the subfunctor ofMI consisting
of triples ((Ei, ti, ji)i, ι, α) that satisfy ∑

v

[α(v)] = #V · [0],

where v runs over all elements of V , [0] denotes the zero section of Dr(M ′
o/ϖ

m
o ), the sum is taken as closed sub-

schemes of Dr(M ′
o/ϖ

m
o ), and #V · [0] denotes #V -fold sum of [0] as a closed subscheme of Dr(M ′

o/ϖ
m
o ). Here,

M ′
o denotes the local shtuka of (Ei, ti, ji)i at o as in 5.16, and Dr(M ′

o/ϖ
m
o ) denotes the strict κo-module associated

with the finite κo-shtuka M ′
o/ϖ

m
o under the Dieudonné equivalence [21, Theorem 5.2].

6.5. Proposition.

(i) The subfunctorMV
I is a regular closed subscheme ofMI that is equidimensional of dimension n−rkOo/ϖm

o
(V ).

(ii) The special fiberMI,κo equals
⋃

V MV
I , where V ranges over all nonzero Oo/ϖ

m
o -linear direct summands of

(ϖ−m
o Oo/Oo)

n.
(iii) For any Oo/ϖ

m
o -linear direct summand V ′ of (ϖ−m

o Oo/Oo)
n, if any irreducible component of MV ′

I lies in
MV

I , then V ′ contains V . Conversely, if V ′ contains V , thenMV ′

I lies inMV
I .

Hence we obtain a decomposition

MI,κo
=

⋃
V

M̊V
I ,
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where V runs over all nonzero Oo/ϖ
m
o -linear direct summands of (ϖ−m

o Oo/Oo)
n, and the M̊V

I are the disjoint
locally closed subschemes

M̊V
I :=MV

I ∖
⋃
V ′

MV ′

I ,

where V ′ runs over all Oo/ϖ
m
o -linear direct summands of (ϖ−m

o Oo/Oo)
n that strictly contain V . Note that the

only condition in 6.2 that this decomposition of MI,κo does not satisfy is that the MV
I might not be connected.

Furthermore, we see that the right action of GLn(Oo/ϖ
m
o ) on MI,κo

given by composition with Drinfeld level-m
structures preserves this decomposition.

Proof of Proposition 6.5. The second part of (iii) is immediate. And when V is zero,MV
I equals all ofMI , so the

whole proposition for this V follows immediately. Now suppose V is nonzero. Let z be a geometric point ofMV
I ,

and write ((Ei, ti, ji)i, ι, α) for the corresponding triple. If z lay inside the generic fiberMI,Fo
, then Dr(M ′

o/ϖ
m
o )

would be étale [10, Proposition 7.1.3] and hence could not possibly satisfy the relation required for z to lie inMV
I .

ThereforeMV
I is contained inMI,κo

. As theMV
I coverMI as V varies, this proves part (ii).

We can check parts (i) and (iii) by passing to the completion of closed points, so now assume that z is a κ-point.
Write δo for the element of

GLn(Ŏo) diag(ϖo, 1, . . . , 1)GLn(Ŏo),

unique up to GLn(Ŏo)-σo-conjugacy, which corresponds to M ′
o. Then the completion of MI at z is isomorphic

to X̆δo,α by Proposition 5.20. Recall from Proposition 1.10 that the restriction morphism induces an isomorphism
R̆δ◦o ,α

◦ [[T1, . . . , Tn−k]]
∼−→ R̆δo,α, where k is the height of the connected part M ′◦

o of M ′
o, δ◦o is an element of

GLk(Ŏo) diag(ϖo, 1, . . . , 1)GLk(Ŏo) corresponding to M ′◦
o ,10 and α◦ is the restriction of α to kerα. The condition

definingMV
I depends only on M ′◦

o , so we may further narrow our focus to the local deformation ring R̆δ◦o ,α
◦ .

Let e1, . . . , es be an Oo/ϖ
m
o -basis of V . If z lies inMV

I , then kerα contains V , so here we may extend this to
an Oo/ϖ

m
o -basis e1, . . . , ek of kerα. For any local Artinian Ŏo-algebra A with residue field κ and local Ŏo-algebra

morphism f : R̆δ◦o ,α
◦ −→A, write (H ′, α′, ι′) for the corresponding triple. Recall from Proposition 1.11 that R̆δ◦o ,α

◦

has a choice of local parameters X1, . . . , Xk such that, for all such A and f , the image of Xi under f equals the
element of mA corresponding to α′(ei). Now the condition definingMV

I is equivalent to∏
v

(T − α′(v)) = (T )#V

as ideals in the formal power series ring A[[T ]], where v runs over all elements in V . This is equivalent to the condition
that X1 = · · · = Xj = 0. This proves the first part of (iii), and as X1, . . . , Xk is a regular sequence, this also proves
part (i). □

6.6. The decomposition of MI,κo from Proposition 6.5 consists of closed subschemes MV
I which might not be

connected. We can immediately rectify this issue (which is necessary for applying Proposition 6.3) by refining this
decomposition into its irreducible components. To simplify the exposition, we proceed as follows.

Let z be a κo-point of MI , and write z for the corresponding κ-point of MI . Then z corresponds to a D-
elliptic sheaf (Ei, ti, ji)i with Drinfeld level-m structure α. Note that, for any Oo/ϖ

m
o -linear direct summand V of

(ϖ−m
o Oo/Oo)

n, the closed subschemeMV
I contains z if and only if V lies in kerα.

Given such a V , write M̊V,0
I , . . . ,M̊V,lV

I for the irreducible components of M̊V
I , and writeMV,0

I , . . . ,MV,lV
I for

their closures, respectively. These are the irreducible components ofMV
I , and regularity implies that they are disjoint.

We label them such that MV,0
I is the one containing z. For any Oo/ϖ

m
o -linear direct summand V ′ lying in V , the

disjointness of the MV ′,0
I , . . . ,MV ′,lV ′

I implies that precisely one of them contains MV,a
I , where a is any integer

0 ≤ a ≤ lV . Therefore

Mz
I,κo

:=
⋃

(V,a)

M̊V,a
I ,

10We apologize for the notation.
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where (V, a) runs over all pairs for which

• V is a nonzero Oo/ϖ
m
o -linear direct summand of (ϖ−m

o Oo/Oo)
n such thatMV

I contains z,
• a is an integer 0 ≤ a ≤ lV ,

is an open subscheme of MI,κo
. Furthermore, the M̊V,a

I now form a stratification of Mz
I,κo

as in 6.2, where the
indexing set equals the collection of such pairs (V, a). Proposition 6.5 shows that c(V, a) = rkOo/ϖm

o
(V ). Note that

the right action of GLn(Oo/ϖ
m
o ) onMI,κo

restricts to an action onMz
I,κo

that preserves this stratification.

6.7. At this point, we specialize the general constructions from 6.2 to our specific situation of Mz
I,κo

. Let WV,a

be the Qℓ-vector space associated with MV,a
I as in 6.2, and make a change of basis in (ϖ−m

o Oo/Oo)
n to identify

V with (ϖ−m
o Oo/Oo)

k, where k ≤ n is rank of V as a free Oo/ϖ
m
o -module. Then the stabilizer of MV,a

I under
the GLn(Oo/ϖ

m
o )-action is P (Oo/ϖ

m
o ), where P denotes the standard parabolic subgroup of GLn with block sizes

(k, n− k), so WV,a has a left action by the finite group P (Oo/ϖ
m
o ).

Proposition 6.5.(iii) implies that the MV ′,a′

I containing MV,a
I are precisely those for which V ′ lies in V . Fur-

thermore, after choosing such a V ′, the integer a′ is uniquely determined by this containment condition. By making
another change of basis, we may identify V ′ with (ϖ−m

o Oo/Oo)
k′

, where k′ ≤ k is the rank of V ′ as a free Oo/ϖ
m
o -

module. Then Q(Oo/ϖ
m
o ) is the stabilizer of MV ′,a′

I under the action of GLn(Oo/ϖ
m
o ), where Q denotes the

standard parabolic subgroup of GLn with block sizes (k′, n− k′). Note that Q contains the unipotent radical of P as
well as the Levi factor GLn−k of P , so we see that P (Oo/ϖ

m
o ) acts on WV,a through the quotient GLk(Oo/ϖ

m
o ).

6.8. Now 6.7 shows that MV,a
I is contained in a unique irreducible component of MV ′

I whenever V ′ lies in V .
Therefore, by inducting on k and examining the construction ofWV,a, we see thatWV,a is isomorphic to the Steinberg
representation

St
Oo/ϖ

m
o

k := ker

Ind
GLk(Oo/ϖ

m
o )

B(Oo/ϖm
o ) Qℓ−→

⊕
P

Ind
GLk(Oo/ϖ

m
o )

P (Oo/ϖm
o ) Qℓ


of GLk(Oo/ϖ

m
o ), where B denotes the standard Borel subgroup of GLk of upper triangular matrices, Qℓ denotes the

trivial representation, and P ranges over all standard parabolic subgroups of GLk that do not equal B. Under this
identification, the chain complex from Proposition 6.3 formed from theMV,a

I becomes

0−→ St
Oo/ϖ

m
o

k −→ Ind
GLk(Oo/ϖ

m
o )

Pk−1(Oo/ϖm
o )

(
St

Oo/ϖ
m
o

k−1 ⊗Qℓ

)
−→ Ind

GLk(Oo/ϖ
m
o )

Pk−2(Oo/ϖm
o )

(
St

Oo/ϖ
m
o

k−2 ⊗Qℓ

)
−→· · ·

· · · −→ Ind
GLk(Oo/ϖ

m
o )

P1(Oo/ϖm
o )

(
Qℓ ⊗Qℓ

)
−→Qℓ−→ 0,

where Ps denotes the standard parabolic subgroup of GLk with block sizes (s, k − s).

6.9. We proceed to verify that the chain complex in 6.8 is exact, that is, the hypotheses of Proposition 6.3 hold for
the stratificationMz

I,κo
=

⋃
(V,a) M̊

V,a
I .

Lemma. For all positive integers k, the chain complex

0−→ St
Oo/ϖ

m
o

k −→ Ind
GLk(Oo/ϖ

m
o )

Pk−1(Oo/ϖm
o )

(
St

Oo/ϖ
m
o

k−1 ⊗Qℓ

)
−→ Ind

GLk(Oo/ϖ
m
o )

Pk−2(Oo/ϖm
o )

(
St

Oo/ϖ
m
o

k−2 ⊗Qℓ

)
−→· · ·

· · · −→ Ind
GLk(Oo/ϖ

m
o )

P1(Oo/ϖm
o )

(
Qℓ ⊗Qℓ

)
−→Qℓ−→ 0,

is exact.

In the proof, we will frequently pass between induced representations of GLk(Fo) and GLk(Oo). For this, one can
use the fact that P (Oo)\GLk(Oo) equals P (Fo)\GLk(Fo) to show that

Ind
GLk(Fo)
P (Fo)

λ = Ind
GLk(Oo)
P (Oo)

λ

as representations of GLk(Oo), where P is a parabolic subgroup of GLk overOo, and λ is a smooth representation of
P (Fo).
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Proof of Lemma 6.9. We reduce this to a fact about representations of GLk(Fo) as follows. Suppose we could show
that the chain complex

0−→ Stk −→ n-Ind
GLk(Fo)
Pk−1(Fo)

(
Stk−1⊗Qℓ

)
−→ n-Ind

GLk(Fo)
Pk−2(Fo)

(
Stk−2⊗Qℓ

)
−→· · ·

· · · −→ n-Ind
GLk(Fo)
P1(Fo)

(
Qℓ ⊗Qℓ

)
−→Qℓ−→ 0,

is exact, where Sts is the Steinberg representation of GLs(Fo), that is, the representation Sts(Qℓ) in the terminology
of Definition 2.3. As the modulus character δPs

of Ps(Fo) vanishes on Ps(Oo), we see that the above chain complex
is isomorphic as representations of GLn(Oo) to

0−→ Stk −→ Ind
GLk(Oo)
Pk−1(Oo)

(
Stk−1⊗Qℓ

)
−→ Ind

GLk(Oo)
Pk−2(Oo)

(
Stk−2⊗Qℓ

)
−→· · ·

· · · −→ Ind
GLk(Oo)
P1(Oo)

(
Qℓ ⊗Qℓ

)
−→Qℓ−→ 0,

which is therefore also exact.
Subgroups of Oo-points are compact, so modulus characters vanish on them. Therefore we have

Sts = ker

n-Ind
GLs(Fo)
B(Fo)

δ
1/2
B −→

⊕
P

n-Ind
GLs(Fo)
P (Fo)

δ
1/2
P

 = ker

Ind
GLs(Oo)
B(Oo)

Qℓ−→
⊕
P

Ind
GLs(Oo)
P (Oo)

Qℓ


as representations of GLs(Oo), where B denotes the standard Borel subgroup of GLs, P runs over all standard
parabolic subgroups of GLb that do not equal B, and δB and δP denote the modulus characters, where we have
identified Qℓ with C. Thus taking (1+ϖm

o Ms(Oo/ϖ
m
o ))-invariants of Sts yields StOo/ϖ

m
o

s . Because the Peter–Weyl
theorem implies that taking (1 +ϖm

o Mk(Oo))-invariants preserves exactness, we conclude that

0−→ St
Oo/ϖ

m
o

k −→ Ind
GLk(Oo/ϖ

m
o )

Pk−1(Oo/ϖm
o )

(
St

Oo/ϖ
m
o

k−1 ⊗Qℓ

)
−→ Ind

GLk(Oo/ϖ
m
o )

Pk−2(Oo/ϖm
o )

(
St

Oo/ϖ
m
o

k−2 ⊗Qℓ

)
−→· · ·

· · · −→ Ind
GLk(Oo/ϖ

m
o )

P1(Oo/ϖm
o )

(
Qℓ ⊗Qℓ

)
−→Qℓ−→ 0

is exact, as desired.
Therefore it suffices to show that our chain complex of representations of GLk(Fo) is exact. A routine calculation

[20, Lemma I.3.2] using the graph-theoretic description of the Jordan–Hölder factors of

Ind
GLk(Fo)
Ps(Fo)

(
Sts⊗Qℓ

)
shows that there exists irreducible smooth representations π0, . . . , πk−1 of GLk(Fo) such that the above representation
has πs as a subrepresentation and πs−1 as a quotient. Because the maps in our chain complex are nonzero, this fact
indicates that our chain complex of representations of GLn(Fo) is exact, which concludes the proof. □

6.10. With Lemma 6.9 in hand, we may apply Proposition 6.3 to our situation. This finally allows us to compute the
inertia invariants of nearby cycles onMI .

Corollary. Write k for the rank of kerα as a free Oo/ϖ
m
o -module. We have a canonical isomorphism

(Ri
IFo

RΨMI,F̆o
Qℓ)z

∼−→

Ind
GLk(Oo/ϖ

m
o )

Pi(Oo/ϖm
o )

(
St

Oo/ϖ
m
o

i ⊗Qℓ

)
(−i) if 0 ≤ i ≤ k,

0 otherwise,

as representations of GLk(Oo/ϖ
m
o ) ×WFo

, where Pi denotes the standard parabolic subgroup of GLk with block
sizes (i, k − i).

Proof. Because Mz
I,κo

is an open subscheme of MI,κo and stalks are local, we may replace MI with its open
subschemeMz

I,κo
∪MI,Fo

. In 6.1, we saw that

Ri
IFo

RΨMI,F̆o
Qℓ = ı∗Riȷ∗Qℓ,
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and Lemma 6.9 implies that we may compute ı∗Riȷ∗Qℓ by means of Proposition 6.3. Recall that z lies inMV
I if and

only if V lies in kerα. Therefore the same argument as in 6.8 shows that the right hand side of Proposition 6.3 yields

Ind
GLk(Oo/ϖ

m
o )

Pi(Oo/ϖm
o )

(
St

Oo/ϖ
m
o

i ⊗Qℓ

)
(−i),

if 0 ≤ i ≤ k, as desired, while we get zero otherwise because kerα contains no Oo/ϖ
m
o -linear direct summands of

rank i > k. □

6.11. At this point, we turn to semisimple traces. LetH be a finite group, and let Y be a finite-dimensional continuous
representation of H ×WFo,r

over Qℓ. Because taking IFo
-invariants is not exact, the operation Y 7→ tr(σ−r

o |Y IFo )

is not additive. One way of rectifying this starts by passing to certain filtrations of Y .

Definition. An exhaustive filtration

0 = Y0 ⊆ Y1 ⊆ · · · ⊆ Yd = Y

of H ×WFo,r
-subrepresentations is admissible if IFo

acts through a finite quotient on the associated graded represen-
tation

grY• :=

d⊕
i=1

Yi/Yi−1.

Note that refinements of admissible filtrations remain admissible, as do their sums and intersections.

6.12. To ensure that admissible filtrations of Y exist, we shall use the following version of Grothendieck’s ℓ-adic
monodromy theorem.

Lemma. There exists an admissible filtration of Y .

Proof. One can prove this precisely as in [42, Lemma 7.2]: the argument proceeds as in the usual proof of Grothendieck’s
ℓ-adic monodromy theorem, except we use WFo,r

in place of Go and carry around the extra commuting action of H
throughout. □

6.13. Definition. Let r be a non-negative integer, and let h be in H . The semisimple trace of h× σ−r
o on Y is

trss (h× σ−r
o |Y

)
:= tr

(
h× σ−r

o |(grY•)IFo

)
,

where Y• is any admissible filtration of Y .

Note that the common refinement of two admissible filtrations remains admissible. Taking IFo
-invariants on the

associated graded representation is exact because IFo
acts through a finite quotient, so we see that trss(h × σ−r

o |Y )

is independent of the choice of Y•. This same observation shows that trss(h × σ−r
o |−) itself is additive. Therefore

semisimple trace descends to the derived category of finite-dimensional continuous representations ofH×WFo,r over
Qℓ, and it is additive on exact triangles.

6.14. Taking derived IFo
-invariants is also additive on exact triangles, so we can consider the additive function

tr(h× σ−r
o |−) ◦RIFo

as well. It has the following relationship with semisimple trace.

Lemma. We have

tr
(
h× σ−r

o |−
)
◦RIFo

= (1− qro) trss (h× σ−r
o |−

)
as functions on the derived category of finite-dimensional continuous representations of H ×WFo,r

over Qℓ.

Proof. One can prove this exactly as in [42, Lemma 7.5]: first, reduce to the case of a complex concentrated in one
degree, and take wild inertia invariants. Since wild inertia is a pro-p group, while the modules in question are ℓ-torsion,
Maschke’s theorem indicates that this is exact. Next, we take tame inertia invariants: as tame inertia is pro-cyclic, we
can take the standard resolution for pro-cyclic groups to conclude the proof. □
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6.15. Semisimple traces have the following interpretation in terms of integrals of traces.

Lemma. We have an equality

trss (h× σ−r
o |Y

)
=

�
σ−r
o IFo

dτ tr
(
h× τ |Y

)
,

where dτ is the Haar measure on WFo
that gives IFo

volume 1.

Proof. Because both sides are additive in Y , it suffices to prove this when Y is irreducible. Lemma 6.12 implies that
IFo

acts on Y through a finite quotient, so we obtain

trss (h× σ−r
o |Y

)
= tr

(
h× σ−r

o |Y IFo

)
.

Furthermore, Y is a smooth representation of WFo,r
, and the action of h× σ−r

o on Y IFo is given by the action of the
function

1h×σ−r
o IFo

∈ C∞
c (H ×WFo,r )

on Y , where 1h×σ−r
o IFo

is the indicator function on h × σ−r
p IFo

. The trace of this function is given by the above
integral, so we obtain the desired equality. □

6.16. Let h be a function in C∞
c (GLn(Oo)). We conclude by combining the results in this section to write the

integral of ϕτ,h, as τ ranges over elements of σ−r
o IFo

, in terms of representations of GLn(Oo). Write Oo,r for the
ring of integers of Fo,r, and write κo,r for the residue field of Oo,r. Let δo be an element of GLn(Fo,r), and if δo
lies in GLn(Oo,r) diag(ϖo, 1, . . . , 1)GLn(Oo,r), write k for the rank of the connected part of the associated effective
minuscule local shtuka Hδo over Specκo,r as in §1.

Corollary. The integral �
σ−r
o IFo

dτ ϕτ,h(δo)

vanishes if δo does not lie in GLn(Oo,r) diag(ϖo, 1, . . . , 1)GLn(Oo,r). On the other hand, if δo lies in this double
coset, then the above integral equals

Ck :=
1

1− qro

k∑
i=0

(−1)iqiro tr
(
h| IndGLn(Oo)

Pi,k(Oo)
(Sti⊗C)

)
,

where Pi,k is the standard parabolic subgroup of GLn with block sizes (i, k − i, n − k), and C denotes the trivial
representation of GLk−i(Oo)×GLn−k(Oo).

Proof. Because ϕτ,h(δo) vanishes for δo not in GLn(Oo,r) diag(ϖo, 1, . . . , 1)GLn(Oo,r) by definition, it suffices to
prove this when δo actually does lie in this double coset. Recalling the definition of ϕτ,h(δo) for such δo yields�

σ−r
o IFo

dτ ϕτ,h(δo) =

�
σ−r
o IFo

dτ tr
(
τ × h|[Rψδo ]

)
,

where [Rψδo ] is the virtual GLn(Oo)×IFo
-admissible/continuous representation as in [20, p. 24] of GLn(Oo)×WFo

over Qℓ from 1.15. Let m be a positive integer for which h descends to a function in Qℓ[GLn(Oo/ϖ
m
o )], where we

have identified Qℓ with C. We denote this element in Qℓ[GLn(Oo/ϖ
m
o )] using h by abuse of notation. Then this

integral of traces becomes
∞∑
i=0

(−1)i
�
σ−r
o IFo

dτ tr
(
τ × h|Riψδo,m

)
,

where Riψδo,m is the finite-dimensional continuous representation of GLn(Oo/ϖ
m
o )×WFo

from 1.14, since
∞∑
i=0

(−1)iRiψδo,m
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are the (1 +ϖm
o Mn(Oo))-invariants of [Rψδo ]. Lemma 6.15 shows that our above sum of integrals equals

∞∑
i=0

(−1)i trss
(
σ−r
o × h|Riψδo,m

)
.

Next, Lemma 6.14 implies that this sum of traces equals

1

1− qro

∞∑
i=0

(−1)i tr
(
σ−r
o × h|RIFo

Riψδo,m

)
.

Using Mom,Ŏo
as an algebraization of X̆δo,m as in the proof of Lemma 1.14, write z for the point of M∅,Ŏo

cor-
responding to δo, and write π : Mom,Ŏo

−→M∅,Ŏo
for the restriction morphism. Then Berkovich’s nearby cycles

comparison theorem [7, Theorem 3.1] shows that the above sum becomes

1

1− qro

∞∑
i=0

(−1)i tr
(
σ−r
o × h|Ri

IFo
RΨMom,F̆o

Qℓ

∣∣∣
π−1(z)

)
,

where now we use the alternating product to expand RIFo
instead of RΨMom,F̆o

. Applying the decomposition of

X̆δo,m in Proposition 1.12 alongside the calculation of inertia invariants in Corollary 6.10 yields the desired expression,
where we have identified Qℓ with C. □

7. LANGLANDS–KOTTWITZ COUNTING AND THE SERRE–TATE TRICK

In this section, all representations shall be taken over Qℓ, and we view C-valued functions as Qℓ-valued ones
via our fixed identification Qℓ = C. Let fτ,h be our test function in C∞

c (GLn(Fo)) from §1, and let f∞,o be any
function in C∞((D ⊗ A∞,o)×). Our goal is to relate the trace of f∞,o × h × τ to the trace of f∞,o × fτ,h on the
virtual representation [Hξ]. We begin by using the nearby cycles spectral sequence to pass from the generic fiber to
the special fiber. Then, we use Deligne’s conjecture as proven by Fujiwara, which describes this trace in terms of
manageable local terms, to convert this into a sum of terms indexed by geometric points in the special fiber. These
points correspond to isomorphism classes of D-elliptic sheaves with extra structure.

We express this sum in terms of orbital integrals by using the equi-characteristic analog of Langlands–Kottwitz
counting, which describes isomorphism classes of D-elliptic sheaves in terms of the algebraic group-theoretic data
associated with their local shtukas. Here, the Serre–Tate theorem from §5 allows us to convert contributions from
h × τ into contributions from fτ,h. We then use the Selberg trace formula to rewrite this expression in terms of
automorphic representations. Finally, results of Laumon–Rapoport–Stuhler on the cohomology of EℓℓD,I allow us to
conclude.

7.1. The following identity is the main result of this section. Write vo : WFo
−→Z for the canonical surjection that

sends geometric qo-Frobenius at o to 1 in Z.

Proposition. Let τ be an element WFo with vo(τ) > 0, let h be a function in C∞
c (GLn(Oo)), and let f∞,o be a

function in C∞
c ((D ⊗ A∞,o)×). Then we have an equality of traces

tr(f∞,o × h× τ |[Hξ]) =
1
n tr(f∞,o × fτ,h|[Hξ]),

where fτ,h in C∞
c (GLn(Fo)) is the function defined as in 1.17.

Proof. We start with some reductions. Note that both sides are Qℓ-linear with respect to the function f∞,o × h in
C∞

c ((D ⊗ A∞)×). Therefore it suffices to prove this equality for

f∞,o =
1

vol(K ∞,o
I )

1K ∞,o
I goK ∞,o

I
and h =

1

vol(K ∞
I,o )

1K ∞
I,ogoK ∞

I,o
,

where I is any sufficiently large finite closed subscheme of C ∖∞, and g is an element of (D ⊗ A∞)× for which go
lies in GLn(Oo). With these choices of f∞,o and h, our trace becomes

tr(f∞,o × h× τ |[Hξ]) = tr(cFsep × τ |[Hξ]),



THE LOCAL LANGLANDS CORRESPONDENCE FOR GLn OVER FUNCTION FIELDS 45

where cFsep = (c1,Fsep , c2,Fsep) is the pullback [50, 1.1.8] to Fsep of the correspondence from 5.15 inducing the action
of f∞,o × h. Next, we pass to Co and apply nearby cycles, which shows that this trace equals

∞∑
i=0

(−1)i tr
(
cκ × τ |Hi(MI,κ, RΨMI,Co

Lξ,I,Co)
)
,

where RΨMI,Co
denotes the derived nearby cycles functor [14, XIII (1.3.2.3)] onMI,OCo

, and cκ = (c1,κ, c2,κ) is
the pullback to κ of the correspondence cOo from 5.19 extending cF. Writing π :MI −→MI∖o for the restriction
morphism, we see that the above sum equals

∞∑
i=0

(−1)i tr
(
πκ,∗cκ × τ |Hi(MI∖o,κ, πκ,∗RΨMI,Co

Lξ,I,Co)
)
,

where πκ,∗cκ = (πκ,∗c1,κ, πκ,∗c1,κ) is the pushforward correspondence [50, 1.1.6] of cκ. Next, write r = vo(τ). The
independence of characters implies that it suffices to prove our desired equalities for sufficiently large r. Under this
condition, we can now apply Deligne’s conjecture as proven by Fujiwara [18, Corollary 5.4.5] to obtain the sum∑

y

tr
(
(πκ,∗cκ × τ)y|(πκ,∗RΨMI,Co

Lξ,I,Co)c2,κ(y)

)
,

where y runs over all κ-points of Fix(σr
o ◦ πκ,∗cκ), and Fix(σr

o ◦ πκ,∗cκ) in turn denotes the fiber product

Fix(σr
o ◦ cκ) //

��

M∞
κ /(K

∞,o
I ∩ go,−1K ∞,o

I go)

(σr
o◦πκ,∗c1,κ,πκ,∗c2,κ)

��

MI∖o,κ

∆MI∖o,κ
//MI∖o,κ ×κMI∖o,κ

At this point, we use the following lemma to decompose the ℓ-adic sheaf whose cohomology we are studying.

7.2. Lemma. We have an isomorphism in the derived category of constructible ℓ-adic sheaves

(πκ,∗RΨMI,Co
Qℓ)⊗ LI∖o,ξ,κ

∼−→πκ,∗RΨMI,Co
Lξ,I,Co

that preserves the actions of IFo and (D ⊗ A∞)×.

For the proof of this lemma, we will need the following notation. Write

ȷ :MI∖o,Co
−→MI∖o,OCo

and ı :MI∖o,κ−→MI∖o,OCo

for the inclusion morphisms of the generic and special fibers ofMI∖o,OCo
, respectively. In the proof of this lemma,

we shall freely use the fact that

RΨMI∖o,Co
πCo,∗ = πκ,∗RΨMI,Co

,

which follows [14, XIII (1.3.6)] from finite base change.

Proof of Lemma 7.2. We start by identifying

(πκ,∗RΨMI,Co
Qℓ)⊗ LI∖o,ξ,κ = (RΨMI∖o,Co

πCo,∗Qℓ)⊗ ı∗LI∖o,ξ,OCo
.

Next, applying the projection formula to canonical adjunction morphisms yields a morphism [50, (0.2)]

(πκ,∗RΨMI,Co
Qℓ)⊗ LI∖o,ξ,κ−→ ı∗(Rȷ∗πCo,∗Qℓ ⊗Rȷ∗ȷ∗LI∖o,ξ,OCo

),(⋆)

and taking ı∗ of a similar morphism [50, (0.1)]

Rȷ∗πCo,∗Qℓ ⊗Rȷ∗ȷ∗LI∖o,ξ,OCo
−→Rȷ∗(πCo,∗Qℓ ⊗ ȷ∗LI∖o,ξ,OCo

)

provides another morphism

ı∗(Rȷ∗πCo,∗Qℓ ⊗Rȷ∗ȷ∗LI∖o,ξ,OCo
)−→RΨMI∖o,Co

(πCo,∗Qℓ ⊗ LI∖o,ξ,Co
).(⋆⋆)

By reducing to finite coefficients and then checking on an étale trivialization, we see that the composition of Equation
(⋆) and Equation (⋆⋆) is an isomorphism. Applying the projection formula [4, XVII (5.2.9)] to Qℓ and LI∖o,ξ,Co
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implies that

RΨMI∖o,Co
(πCo,∗Qℓ ⊗ LI∖o,ξ,Co

) = RΨMI∖o,Co
πCo,∗π

∗
Co
LI∖o,ξ,Co

= πκ,∗RΨMI,Co
Lξ,I,Co

,

as desired. □

Return to the proof of Proposition 7.1. With the above tensor product decomposition, our sum of traces becomes∑
y

tr
(
(πκ,∗cκ × τ)y|(πκ,∗RΨMI,Co

Qℓ)c2,κ(y)

)
tr
(
(πκ,∗cκ × τ)y|(LI∖o,ξ,κ)c2,κ(y)

)
.

Write z for c2,κ(y), write (Ei, ti, ji)i for the D-elliptic sheaf over κ corresponding to z, write M ′
o for its local shtuka

at o as in 5.16, and write δo for the corresponding element of the double coset

⟨ϖo⟩ := GLn(Ŏo) diag(ϖo, 1, . . . , 1)GLn(Ŏo),

which is unique up to GLn(Ŏo)-σo-conjugacy. Because y lies in Fix(σr
o ◦ πκ,∗cκ), we see z is defined over κr, so δo

can naturally be chosen to lie in ⟨ϖo⟩ ∩GLn(Fo,r).
Writing m for the multiplicity of o in I , we see that finite base change implies that the above sum equals∑

y

tr

(
cκ × τ |Hi(π−1(z), RΨMI,Co

Qℓ

∣∣∣
π−1(z)

)

)
tr
(
(πκ,∗cκ × τ)y|(LI∖o,ξ,κ)z

)
.

Because X̆δo,m is the completion ofMI,Ŏo
along π−1(z) by 5.21, Berkovich’s nearby cycles comparison theorem [7,

Theorem 3.1] indicates that this equals∑
y

∞∑
i=0

tr
(
go × τ |Hi(Xδo,m,κ, R

iΨXδo,m,Co
Qℓ)

)
tr
(
(πκ,∗cκ × τ)y|(LI∖o,ξ,κ)z

)
=
∑
y

tr(τ × h|[Rψδo ]) tr
(
(πκ,∗cκ × τ)y|(LI∖o,ξ,κ)z

)
=

∑
y

ϕτ,h(δo) tr
(
(πκ,∗cκ × τ)y|(LI∖o,ξ,κ)z

)
,

where [Rψδo ] is the virtual GLn(Oo)×IFo
-admissible/continuous representation of GLn(Oo)×WFo

defined in 1.15,
and ϕτ,h in C∞

c (GLn(Fo,r)) is the function defined in 1.16.

7.3. In order to express the above sum in terms of orbital integrals, we now introduce Langlands–Kottwitz counting.
This technique counts isomorphism classes of D-elliptic sheaves over κ whose zero lies over o by

(1) first describing the isogeny classes of D-elliptic sheaves in terms of conjugacy classes in certain groups,
(2) then counting the number of isomorphism classes in each isogeny class by taking orbital integrals.

Since D-elliptic sheaves consist of vector bundles, it is quite natural to reinterpret them in terms of linear algebraic
groups. This incarnation of the Langlands–Kottwitz method is heavily based on work of Drinfeld and Laumon.

7.4. To define isogeny classes of D-elliptic sheaves, we first introduce φ-spaces.

Definition. A φ-space is a pair (V, φ), where

• V is a finite-dimensional F⊗κ κ-vector space,
• φ : σV

∼−→V is an F⊗κ κ-linear isomorphism,

where σ denotes (idF⊗κσ)
∗.

Note that φ-spaces resemble local shtukas and D-elliptic sheaves, with an important difference: φ-spaces lie over
the generic fiber of the curve C, rather than completions of C at closed points in the case of local shtukas or (a specific
open subset of) the entire curve C in the case of D-elliptic sheaves.

7.5. For any D-elliptic sheaf (Ei, ti, ji)i over κ, the generic fiber E1,F⊗κκ is a finite-dimensional F ⊗κ κ-vector
space, and the map (j1,F⊗κκ)

−1 ◦ t1,F⊗κκ is a F⊗κ κ-linear isomorphism. Therefore the pair

(V, φ) :=
(
E1,F⊗κκ, (j1,F⊗κκ)

−1 ◦ t1,F⊗κκ

)
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forms a φ-space, and it has a right action of D for which V is a free right D-module of rank 1. We call this the generic
fiber of (Ei, ti, fi)i, and we say two D-elliptic sheaves over κ are isogenous if they have isomorphic generic fibers.
Thus isogeny classes of D-elliptic sheaves correspond to certain isomorphism classes of φ-spaces.

Suppose that the zero of (Ei, ti, ji)i lies over o. For every place x of F, fix a map κx−→κ over κ, and write Mx

for the resulting local shtuka of (Ei, ti, ji)i at x as constructed in 5.16 for x = o or 5.22 for x ̸= o. Since the set of all
maps κx−→κ over κ are cyclically permuted via composition with σ, we can view Mx as a free module over

Ox⊗̂κκ =
∏
ι

Ox⊗̂κx,ικ

equipped with a σ-semilinear automorphism after inverting ϖx, where the ι runs over all maps κx−→κ over κ [17,
p. 33]. Under this perspective, we may naturally identify (Mx[

1
ϖx

],Fx) with (V ⊗̂FFx, φ⊗̂F idFx
).

7.6. Next, we introduce φ-pairs, which will provide an alternative way of describing φ-spaces.

Definition. A φ-pair is a pair (F̃, Π̃), where

• F̃ is a finite separable (ring) extension of F,
• Π̃ is an element of F̃× ⊗Z Q that is not contained in F′× ⊗Z Q for any proper F-subalgebra F′ of F̃.

Note that F̃ is a product of field extensions of F, so it has a well-defined notion of places. For any place x̃ of F̃, the
Q-valued valuation x̃(Π̃) is well-defined, and we write d(Π̃) for the least common denominator of x̃(Π̃) deg x̃ as x̃
ranges over all places of F̃, where deg x̃ is taken with respect to κ.

Therefore φ-pairs roughly correspond to elements in extensions (up to roots of unity) that cannot be obtained from
subextensions by taking rational powers.

7.7. The notions of a φ-pair and a φ-space are related as follows.

Proposition ([17, Proposition 2.1]). We have a canonical map

{isomorphism classes of φ-spaces}−→{isomorphism classes of φ-pairs}

(V, φ) 7−→ (F̃(V,φ), Π̃(V,φ))

that induces a bijection from isomorphism classes of irreducible φ-spaces to isomorphism classes of φ-pairs for which
F̃ is a field. In that situation, the dimension of V over F ⊗κ κ equals [F̃(V,φ) : F]d(Π̃(V,φ)), and the endomorphism
ring of (V, φ) is isomorphic to the central division algebra D̃ over F̃(V,φ) with Hasse invariants

invx̃(D̃) = −x̃(Π̃(V,φ)) deg x̃.

The above map is constructed by replacing κ with a finite extension of κ of degree a and then considering the
F-algebra generated by φa, where taking a to be sufficiently divisible ensures that the resulting construction is inde-
pendent of the choice of a [17, p. 31]. This is the equi-characteristic analogue of Honda–Tate theory.

7.8. We can describe which φ-spaces occur as generic fibers of D-elliptic sheaves in terms of their associated φ-pairs.
This completes our description of the isogeny classes of D-elliptic sheaves.

Proposition ([35, (9.13)]). The isomorphism classes of φ-spaces that arise from D-elliptic sheaves over κ with zero
lying over o map precisely to φ-pairs (F̃, Π̃) for which

• F̃ is a field, and [F̃ : F] divides n,
• there exists only one place ∞̃ of F̃ lying over∞, and it satisfies ∞̃(Π̃) deg ∞̃ = −[F̃ : F]/n,
• there exists only one other place õ ̸= ∞̃ of F̃ satisfying õ(Π̃) ̸= 0, and it lies over o.

For any D-elliptic sheaf (Ei, ti, ji)i lying in the isogeny class corresponding to (F̃, Π̃), the height of the connected
part of M ′

o equals n[F̃õ : Fo]/[F̃ : F]. Furthermore, if we write (W,ψ) for the irreducible φ-space corresponding to
(F̃, Π̃), then (V, φ) is isomorphic to (W,ψ)⊕n.

By checking Hasse invariants of the endomorphism ring D̃ of (W,ψ) and applying Proposition 7.7, we also deduce
that õ(Π̃) deg õ = [F̃ : F]/n.
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Return to the proof of Proposition 7.1. By gathering terms in the same isogeny class, we can rewrite our sum as∑
(F̃,Π̃)

∑
y

ϕτ,h(δo) tr
(
(πκ,∗cκ × τ)y|(LI∖o,ξ,κ)z

)
,

where (F̃, Π̃) runs over all φ-pairs satisfying the conditions in Proposition 7.8, and y runs over κ-points of Fix(σr
o ◦cκ)

that lie in the isogeny class corresponding to (F̃, Π̃).

7.9. At this point, we initiate the second part of the Langlands–Kottwitz method: counting the number of isomor-
phism classes in each isogeny class. We begin by describing all isomorphism classes—we shall refine our description
by isogeny class afterwards.

Proposition ([35, (9.4)]). The map (Ei, ti, ji)i 7→ ((V, φ), (Mx)x), where

• (V, φ) is the generic fiber of (Ei, ti, ji)i,
• x runs through all places of F, and Mx is as in 7.5,

yields a bijection from isomorphism classes of D-elliptic sheaves over κ with zero lying over o to isomorphism classes
of pairs ((V, φ), (Mx)x), where

• (V, φ) is a φ-space with a right action of D such that V is a free right D ⊗κ κ-module of rank 1,
• x runs over all places in F, and Mx is a local shtuka over κ corresponding to a right Dx⊗̂κκ-submodule of rank 1

in V ⊗̂FFx that is stable under φ⊗̂FFx,

that satisfy the following conditions:

(i) the φ-pair corresponding to (V, φ) satisfies the conditions in Proposition 7.8,
(ii) the Morita reduction M ′

o of Mo is effective minuscule of dimension 1 and rank n,
(iii) the isogeny class of the Morita reduction M ′

∞ of M∞ has slope − 1
n under the Dieudonné–Manin classification,

(iv) Mx is étale for all closed points x in C ∖ {o,∞},
(v) there exists a generator b of V as a free right D ⊗κ κ-module such that, for cofinitely many x, we have

Mx = b(Dx⊗̂κκ)

as right Dx-modules equipped with a σ-semilinear automorphism, where we view Mx as the corresponding free
Dx⊗̂κκ-submodule of V ⊗̂FFx of rank 1 equipped with a σ-semilinear automorphism.

7.10. Next, we use Proposition 7.9 to obtain a description of the isomorphism classes in a given isogeny class. Fix a
φ-pair (F̃, Π̃) satisfying the conditions of Proposition 7.8, and write D̃ for the endomorphism ring of (V(F̃,Π̃), φ(F̃,Π̃)).

WriteMI(κ)(F̃,Π̃) for the set of points inMI(κ) lying in the isogeny class corresponding to (F̃, Π̃). Our goal is to
describeMI(κ)(F̃,Π̃) using algebraic group-theoretic data.

Let k = n[F̃õ : Fo]/[F̃ : F], write εõo for the identity matrix in GLn−k(Fo), write εõ for the k-by-k matrix

εõ :=


0 1

. . . . . .
. . . 1

ϖo 0

 ∈ GLk(Fo),

and write εo for the block matrix εõo⊕ εõ in GLn(Fo). Note that, for any D-elliptic sheaf inMI(κ)(F̃,Π̃), Proposition
7.9 says that its local shtuka at o corresponds to εo via 1.2, by the Dieudonné–Manin classification.

Write Yo for the subset

Yo := {ho ∈ GLn(F̆o)|h−1
o εoσo(ho) ∈ ⟨ϖo⟩},

and write K̆o,m for the subgroup

K̆o,m := ker
(
GLn(Ŏo)−→GLn(Ŏo/ϖ

m
o )

)
.
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Proposition. We have a bijection

MI(κ)(F̃,Π̃)

∼−→ D̃×\
(
(D ⊗ A∞,o)×/K ∞,o

I × Yo/K̆o,m

)
for which g∞,o acts on the right-hand side via left multiplication on (D ⊗ A∞,o)×, and σ−1

o acts on the right-hand
side via sending ho 7→ εoσo(h) on Yo.

Proof. We use the description ofMI(κ)(F̃,Π̃) given in Proposition 7.9. Under this description, the translation action
of Z sends ((V, φ), (Mx)x) to ((V, φ), (φl(Mx))x) for all integers l. The characterization of M ′

∞ given in Proposition
7.9.(iii) implies that we may fix the position of M ′

∞ in V ⊗̂FF∞ via translating by Z.
Next, fix a generator b of V as a free right D ⊗κ κ-module. For all closed points x in C ∖∞, let hx be an element

of Dx such that bhx generates Mx over Dx⊗̂κκ. Parts (iv) and (v) of Proposition 7.9 show that (hx)x is an element of
(D⊗A∞,o)× as x runs over all closed points inC∖{o,∞}, and the level-I structures shows that (hx)x is well-defined
up to right multiplication by K ∞,o

I . Similarly, ho yields a well-defined element of Yo/K̆o,m.
Finally, the left action of D̃× on (V, φ) yields an embedding

D̃× ↪−→ (D ⊗ A∞,o)× × Yo

that preserves the action of D̃× on (V, φ), and taking the quotient of

(D ⊗ A∞,o)×/K ∞,o
I × Yo/K̆o,m

with respect to this action concludes the proof, by Proposition 7.9. □

7.11. With Proposition 7.10 in hand, we shall give an analogous description of Fix(σr
o ◦ π∗cκ). Write Fix(σr

o ◦
π∗cκ)(F̃,Π̃) for the set of y in Fix(σr

o ◦ π∗cκ) lying in the isogeny class corresponding to (F̃, Π̃). Our goal is to
describe Fix(σr

o ◦ π∗cκ)(F̃,Π̃) in terms of the bijection from Proposition 7.10.
Write Kr,m for the subgroup

Kr,m := ker
(
GLn(Oo,r)−→GLn(Oo,r/ϖ

m
o )

)
.

For any element d̃ in D̃×, we say d̃ is r-admissible if there exists some hd̃ in GLn(F̆o) such that

h−1

d̃
· d̃−1 ·Noεo · σr

o(hd̃) = 1,

where we view d̃−1 as an element of (D̃ ⊗F̃ F̆o)
× = GLn(F̆o), and No denotes the norm map. Note that r-

admissibility descends to a property on D̃×-conjugacy classes in D̃×.
For any group G and element g in G, we denote the centralizer of g in G by Gg . We write Yd̃ for the double

quotient space

Yd̃
:= D̃×

d̃
\
(
(D ⊗ A∞,o)×/K ∞,o

I ×GLn(Fo,r)/Kr,m

)
.

Proposition. We have a bijection from Fix(σr
o ◦ π∗cκ)(F̃,Π̃) to the disjoint union∐

d̃

{
D̃×

d̃

(
h∞,oK ∞,o

I , hd̃hrKr,m

)
∈ Yd̃

∣∣∣(h∞,o)−1d̃h∞,o ∈ K ∞,o
I goK ∞,o

I and h−1
r γ̃σo(hr) ∈ ⟨ϖo⟩ ∩GLn(Oo,r)

}
,

where d̃ runs over all r-admissible D̃×-conjugacy classes in D̃×, and γ̃ is defined to be h−1

d̃
εoσ

r
o(hd̃).

Note that γ̃ is fixed by σr
o and hence lies in GLn(Fo,r).

Proof of Proposition 7.11. Begin by applying Proposition 7.9 to go,−1K ∞,o
I go instead of K ∞,o

I to obtain an adelic
description of Fix(σr

o ◦ π∗cκ)(F̃,Π̃)as in [34, p. 53]. Next, simplify the resulting description by using our largeness
hypothesis on I: this ensures that K ∞,o

I is small enough to apply the same argument as in [34, (3.2.6)]. Conclude as
in [34, (3.2.7)]. □
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Return to the proof of Proposition 7.1. Since δo corresponds to h−1
r γ̃σo(hr) under Proposition 7.11, our sum equals∑

(F̃,Π̃)

∑
d̃

vol

(
D̃×

d̃
\
(
(D ⊗ A∞,o)×

d̃
×GLσo

n,γ̃(Fo)
))

Od̃(f
∞,o) TOγ̃,σo

(ϕτ,h) tr
(
(πκ,∗cκ × τ)y|(LI∖o,ξ,κ)z

)
,

where d̃ runs over all r-admissible D̃×-conjugacy classes in D̃×, and GLσo

n,γ̃ denotes the σo-centralizer of γ̃ in
GLn(Fo,r). As before, we do not explicate our Haar measures, but we choose them compatibly whenever possi-
ble. We may rewrite the volume factors in the above sum via the following lemma.

7.12. Lemma ([35, (11.7)]). The embeddings

(D̃ ⊗ A∞,o)×
d̃
↪−→ (D ⊗ A∞,o)×

d̃
and (D̃ ⊗ Fo)

× ↪−→ GLσo

n,γ̃(Fo)

induced by the left action of D̃× as in the proof of Proposition 7.10 are isomorphisms.

Return to the proof of Proposition 7.1. Lemma 7.12 indicates that we can modify our volume terms to make our
expression of interest equal∑

(F̃,Π̃)

∑
d̃

vol
(
D̃×

d̃
\(D̃ ⊗ A∞)×

d̃

)
Od̃(f

∞,o) TOγ̃,σo
(ϕτ,h) tr

(
(πκ,∗cκ × τ)y|(LI∖o,ξ,κ)z

)
.

At this point, we have two goals: to rewrite this as a sum over certain conjugacy classes of D× instead of D̃×, and to
rewrite the trace on (LI∖o,ξ)z in terms of algebraic group-theoretic data. For this, we shall use the following lemma,
which transfers both conjugacy classes as well as volumes of their stabilizers.

7.13. Write rn : D−→F for the reduced norm ofD, and let γ be an element ofD×. Write F′ for the finite extension
F[γ] of F. We say that γ is r-admissible if o(rn γ) = r and there exists a place o′ of F′ above o such that, for all
other places x′ ̸= o′ of F′ lying above o, we have x′(γ) = 0. Note that r-admissibility descends to a property on
D×-conjugacy classes in D×.

Lemma ([35, (11.9)], [34, (3.5.4)]). We have a bijection

{D×-conjugacy classes in D× that are r-admissible and elliptic in D×
∞}

∼−→
∐

(F̃,Π̃)

{D̃×-conjugacy classes in D̃× that are r-admissible},

where (F̃, Π̃) ranges over all φ-pairs satisfying the conditions of Proposition 7.8. If we denote this bijection by γ 7→ d̃,
then the D×

o = GLn(Fo)-conjugacy class of Noγ̃ equals that of γ, and we have an equality of traces

tr
(
(πκ,∗cκ × τ)y|(LI∖o,ξ,κ)z

)
= Θξ(γ),

where γ is any elliptic element of B
×

with the same characteristic polynomial as γ, and Θξ is the character of ξ.
Furthermore, we have an equality of volumes

vol
(
D̃×

d̃
\(D̃ ⊗ A∞)×

d̃

)
= a(γ)

1

vol(ϖZ
∞\D̃×

∞̃)
,

where a(γ) is another volume factor

a(γ) := vol
(
ϖZ

∞D
×
γ \(D ⊗ A)×γ

)
.

Return to the proof of Proposition 7.1. The above lemma implies that our sum becomes∑
γ

a(γ)
ε(γ)

vol(ϖZ
∞\D̃×

∞̃)
Oγ(f

∞,o)ε(γ) TOγ̃,σo
(ϕτ,h)Θξ(γ),

where γ runs over all D×-conjugacy classes in D× that are r-admissible and elliptic in D×
∞, and ε(γ) is the Kottwitz

sign ε(γ) := (−1)n/[F∞[γ]:F∞]−1. Since ϕτ,h and fτ,h have matching orbital integrals, applying Lemma 7.13 further
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changes our sum to∑
γ

a(γ)
ε(γ)

vol(ϖZ
∞\D̃×

∞̃)
Oγ(f

∞,o)Oγ(fτ,h)Θξ(γ) =
∑
γ

a(γ)
ε(γ)

vol(ϖZ
∞\D̃×

∞̃)
Θξ(γ)Oγ(f

∞,o × fτ,h).

We now want to absorb the ε(γ) vol(ϖZ
∞\D̃×

∞̃)−1Θξ(γ) term into our orbital integral. In order to do so, we shall
introduce the following special function on D×

∞ = GLn(F∞).

7.14. We now introduce pseudo-coefficients, which are certain functions in C∞
c (GLn(F∞)). Recall that ϖ∞ acts

trivially under ξ, which implies that ξ has unitary central character. Therefore the local Jacquet–Langlands correspon-
dence as in 4.8 yields an irreducible L2 representation JL−1(ξ) of GLn(F∞). Let fξ,∞ in C∞

c (GLn(F∞)) be the
corresponding pseudo-coefficient of JL−1(ξ) as in [6, Section 5].

Lemma ([5, (th. 4.3)]). Let γ be a regular semisimple element of GLn(F∞). Then the function fξ,∞ satisfies

Oγ(fξ,∞) =


ε(γ)

vol(ϖZ
∞\D̃×

∞̃)
Θξ(γ) if γ is elliptic,

0 otherwise.

Return to the proof of Proposition 7.1. The pseudo-coefficient fξ,∞ allows us to rewrite our sum as∑
γ

a(γ)Oγ(fξ,∞ × f∞,o × fτ,h).

7.15. Before using the Selberg trace formula, we first need some notation regarding automorphic representations.
Write A(ϖZ

∞D
×\(D ⊗ A)×) for the Qℓ-vector space

A(ϖZ
∞D

×\(D ⊗ A)×) := {f : ϖZ
∞D

×\(D ⊗ A)×−→Qℓ | f is locally constant}.

Then A(ϖZ
∞D

×\(D ⊗ A)×) has a left action of ϖZ
∞\(D ⊗ A)× via right multiplication, and we see that this is a

smooth representation of ϖZ
∞\(D⊗A)×. Now ϖZ

∞D
×\(D⊗A)× is compact because D is a division algebra, so we

obtain a decomposition

A(ϖZ
∞D

×\(D ⊗ A)×) =
⊕
Π̃

Π̃⊕m(Π̃),

where Π̃ ranges over all irreducible admissible representations ofϖZ
∞\(D⊗A)×, andm(Π̃) is a non-negative integer.

If m(Π̃) is nonzero, we say Π̃ is automorphic. The weak multiplicity one theorem [6, Theorem 3.3.(a)] indicates that
m(Π̃) is at most 1.

Return to the proof of Proposition 7.1. Applying the Selberg trace formula to A(ϖZ
∞D

×\(D ⊗ A)×) shows that
our sum of orbital integrals equals the sum of traces∑

Π̃

tr(fξ,∞ × f∞,o × fτ,h|Π̃),

where Π̃ runs over all irreducible automorphic representations ofϖZ
∞\(D⊗A)×. Therefore the following proposition

of Laumon–Rapoport–Stuhler concludes the proof of Proposition 7.1. □

7.16. Proposition. We have an equality of traces∑
Π̃

n tr(fξ,∞ × f∞,o × fτ,h|Π̃) = tr(f∞,o × fτ,h|[Hξ]),

where Π̃ ranges over all irreducible automorphic representations of ϖZ
∞\(D ⊗ A)×.

Proof. Proposition 8.2.(i) computes [Hξ] as a virtual representation of (D ⊗ A∞)×. Taking traces of f∞,o × fτ,h
yields the above equality, where we use the conjectured properties [35, (13.8)] of fξ,∞, which were proven in [6,
Section 5]. □



52 SIYAN DANIEL LI-HUERTA

We remark that the proof of this proposition uses similar point-counting methods as we do, except that Laumon–
Rapoport–Stuhler immediately pass to the level of (D⊗A∞)×, rather than remaining at the level of GLn(Fo,r) at the
place o. The latter is necessary for incorporating the contributions of ϕτ,h and hence fτ,h.

8. LOCAL-GLOBAL COMPATIBILITY

Our goal in this section is to prove that condition (c) in Lemma 2.7 holds, which completes our proof of Theorem A.
Along the way, we shall prove Theorem B. Returning to the local notation of §1–§4 for a moment, we shall construct
the desired virtual representation ρ(π) of WF from our cohomology representation [Hξ].

Now revert back to global notation conventions. We start by recalling results of Laumon–Rapoport–Stuhler that
specify the automorphic representations of (D ⊗ A∞)× occurring in [Hξ]. Next, we use the strong multiplicity one
theorem, which says that automorphic representations of (D ⊗ A)× are determined by their local components at
cofinitely many places, to convert Proposition 7.1 into a global analog of condition (c) in Lemma 2.7. Finally, we in-
troduce the global Jacquet–Langlands correspondence, which enables us to pass between automorphic representations
of (D ⊗ A)× and GLn(A). This finishes the proof of Theorem B, our titular local-global compatibility result.

At this point, we want to use Theorem B to prove condition (c) in Lemma 2.7. To do so, we need to embed local
representations of GLn into global representations. We start by presenting such an embedding for L2 representations,
which uses the Deligne–Kazhdan simple trace formula. Trace formula methods also allow us to embed cuspidal
representations globally. From here, we use Mœglin–Waldspurger’s description of the discrete automorphic spectrum
of GLn in order to realize Speh modules in a global setting, and this enables us to complete the proof of condition (c)
in Lemma 2.7.

8.1. First, we introduce some notation on multiplicity spaces. Let Π̃∞ be an irreducible admissible representation of
(D ⊗ A∞)×, and write Hi

ξ,η(Π̃
∞) for the Qℓ-vector space

Hi
ξ,η(Π̃

∞) := Hom(D⊗A∞)×(Π̃
∞, Hi,ss

ξ,η ),

that is, the multiplicity of Π̃∞ in Hi,ss
ξ,η , where Hi,ss

ξ,η denotes the semisimplification of Hi
ξ,η . We see that Hi

ξ,η(Π̃
∞) is

a continuous finite-dimensional representation of GF over Qℓ, where GF denotes the Galois group of the global field
F. Write [Hξ(Π̃

∞)] for the virtual representation
∑∞

i=0(−1)iHi
ξ,η(Π̃

∞), which we see equals the multiplicity of Π̃∞

in [Hξ]. Therefore Π̃∞ occurs in [Hξ] if and only if [Hξ(Π̃
∞)] is nonzero.

8.2. The question of whether Π̃∞ occurs in [Hξ] is connected to automorphic representations of ϖZ
∞\(D ⊗ A)× as

well as the representation ξ of B
×

. Since ϖ∞ acts trivially under ξ, we see ξ has unitary central character. Therefore
the representation JL−1(ξ) as in 4.8 is an irreducible L2 representation of GLn(F∞) and hence isomorphic to a
Steinberg module

JL−1(ξ) = Stt(π0,ξ)

as in 2.3, where t is a positive divisor of n, d = n
t , and π0,ξ is an irreducible cuspidal representation of GLd(F∞) with

unitary central character. Recall that we can also form the Speh module Spt(π0,ξ) as in 2.3, which is an irreducible
smooth representation of GLn(F∞) The following result of Laumon–Rapoport–Stuhler determines precisely when
Π̃∞ occurs in [Hξ].

Proposition.
(i) The virtual representation [Hξ(Π̃

∞)] of GF is nonzero if and only if either Π̃∞ ⊗ Stt(π0,ξ) or Π̃∞ ⊗ Spt(π0,ξ)

is an irreducible automorphic representation of ϖZ
∞\(D ⊗ A)×. Furthermore, we have dim[Hξ(Π̃

∞)] = n.
(ii) In addition, we have Hi

ξ,η(Π̃
∞) = 0 either for all odd i or all even i.

Proof. Part (ii) and the first statement of part (i) comprise the generalization of [35, (14.7)] as described in [35,
(14.21)]. This generalization follows from the global Jacquet–Langlands correspondence between D× and GLn(F)

(which is now known [6, Theorem 3.2]), by the remark made in [35, (14.24)]. As for the dimension statement in part
(i), this follows from Deligne’s purity theorem, c.f. [35, (14.11)(ii)]. □
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8.3. Next, we use Proposition 7.1 to obtain the following result, which resembles condition (c) in Lemma 2.7.

Proposition. Let τ be an element of WFo
with vo(τ) > 0, and let h be a function in C∞

c (GLn(Oo)). Let Π̃∞ be an
irreducible admissible representation of (D ⊗ A∞)× for which [Hξ(Π̃

∞)] is nonzero. Then we have an equality of
traces

tr(fτ,h|Π̃∞
o ) = tr(τ |[Hξ(Π̃

∞)]) tr(h|Π̃∞
o ),

where Π̃∞
o denotes the component of Π̃∞ at o.

For any irreducible admissible representation Π̃′∞ of (D⊗A∞)×, we write Π̃′∞,o for the component of Π̃′∞ away
from o.

Proof. Let I be a sufficiently large finite closed subscheme of C ∖∞ such that Π̃∞,o has nonzero K ∞,o
I -invariants

and h is invariant under K ∞
I,o . Because [Hξ] is admissible, we see that [Hξ]

K ∞
I is finite-dimensional, so [Hξ] can

only contain finitely many non-isomorphic irreducible admissible representations Π̃′∞ of (D ⊗ A∞)× with nonzero
K ∞

I -invariants. By applying the Chinese remainder theorem to these left C∞
c ((D⊗A∞,o)×//K ∞,o

I )-modules Π̃′∞,
we obtain a function f∞,o in C∞

c ((D ⊗ A∞,o)×) satisfying the following properties:

(i) tr(f∞,o|Π̃∞,o) = 1,
(ii) if tr(f∞,o|Π̃′∞) ̸= 0 for one of our aforementioned Π̃′∞, then Π̃′∞,o is isomorphic to Π̃∞,o.

In order to strengthen property (ii) to show that Π̃′∞ is isomorphic to Π̃∞ (hence extending our isomorphism to the
component at o), we use the strong multiplicity one theorem. We recall its statement below.

8.4. Let T be a finite set of places of F. For any irreducible admissible representation Π̃ ofϖZ
∞\(D⊗A)×, we write

Π̃T for the component of Π̃ away from T , and we write Π̃T for the component of Π̃ at T .

Theorem ([6, Theorem 3.3.(b)]). Let Π̃ and Π̃′ be two irreducible automorphic representations of ϖZ
∞\(D ⊗ A)×,

and let T be a finite set of places of F. If Π̃T is isomorphic to Π̃′T , then Π̃ is isomorphic to Π̃′.

We remark that [6] deduces the strong multiplicity one theorem by using the global Jacquet–Langlands correspon-
dence [6, Theorem 3.2] to reduce to the case of GLn(F).

Return to the proof of Proposition 8.3. The strong multiplicity one theorem and Proposition 8.2.(i) imply that, if the
hypothesis of property (ii) holds, then Π̃′∞ is actually isomorphic to Π̃∞. Therefore plugging f∞,o into Proposition
7.1 shows that

tr(h|Π̃∞
o ) tr(τ |[Hξ(Π̃

∞)]) = tr(f∞,o × h× τ |[Hξ]) =
1
n tr(f∞,o × fτ,h|[Hξ]) =

1
n dim[Hξ(Π̃

∞)] tr(fτ,h|Π̃∞
o ),

and applying the second statement in Proposition 8.2.(i) concludes the proof of Proposition 8.3. □

8.5. To convert automorphic representations of GLn(A) into those of (D ⊗ A)×, we use the global Jacquet–
Langlands correspondence. Recall from 5.2 that Bad denotes the set of places where D ramifies.

From this point onwards, assume that Dx is a division algebra for all places x in Bad. We say that an irreducible
discrete automorphic representation Π of GLn(A) is D-admissible if, for all places x in Bad, the local component Πx

is a Steinberg module or Speh module, as a representation of GLn(Fx).
There exists a unique bijection [6, Theorem 3.2]

JL :

{
isomorphism classes of irreducible

D-admissible representations of GLn(A)

}
∼−→

{
isomorphism classes of irreducible

automorphic representations of (D ⊗ A)×

}
such that, for all places x of F,

(i) if x does not lie in Bad, then JL(Π)x is isomorphic to Πx,
(ii) if x lies in Bad, and Πx is isomorphic to either Stt(π0) or Spt(π0) as in Definition 2.3, then JL(Π)x is isomorphic

to JL(Stt(π0)), where the latter JL denotes the local Jacquet–Langlands correspondence from 4.8.
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8.6. Before using the global Jacquet–Langlands correspondence to deduce Theorem B, let us fix our choice of di-
vision algebra. Fix three distinct places x1, x2, and ∞ of F, and let D be the central division algebra over F of
dimension n2 defined by

invx(D) =


1
n if x = x1,

− 1
n if x = x2,

0 otherwise,

as in 5.2. Let D be a maximal order of D, which can be constructed using 5.4 because division algebras split at
cofinitely many places.

8.7. We now proceed to prove Theorem B, using Proposition 8.3 and the global Jacquet–Langlands correspondence.

Proposition. Let Π be an irreducible discrete automorphic representation of GLn(A) whose components at x1, x2,
and∞ are either irreducible L2 representations or Speh modules of GLn(Fx1), GLn(Fx2), and GLn(F∞), respec-
tively. Then there exists a unique n-dimensional semisimple continuous representation R(Π) of GF over Qℓ such that,
for all places o of F not lying in {x1, x2,∞}, the restriction of R(Π) to WFo

satisfies

R(Π)
∣∣
WFo

= ρ(Πo),

where we identify Qℓ with C.

Proof. The Chebotarev density theorem implies that, as o varies over all places of F not lying in {x1, x2,∞}, the con-
jugacy classes of geometric qo-Frobenius elements at o in GF are dense. Now n-dimensional continuous semisimple
representations of GF are determined, up to isomorphism, by their characteristic polynomials, and said polynomials
are continuous in GF, so we see that the above condition determines R(Π) uniquely.

We turn to the existence ofR(Π). Our hypotheses indicate that Π isD-admissible, so we can form the automorphic
representation Π̃ := JL(Π) of (D ⊗ A)×. Now Π̃∞ = Π∞ is either a Steinberg module or a Speh module, so
Proposition 8.2.(i) ensures that there exists an irreducible smooth representation of B

×
/ϖZ

∞ such that [Hξ(Π̃
∞)] has

dimension n. Finally, Proposition 8.3 indicates that [Hξ(Π̃
∞)]

∣∣∣
WFo

satisfies the defining condition Theorem A.(i) of

ρ(Πo), so taking R(Π) = [Hξ(Π̃
∞)] yields the desired result. □

8.8. Briefly return to the local notation of §1–§4. In order to convert Theorem B into a proof of condition (c) in
Lemma 2.7, we must find some global automorphic representation Π̃ of GLn(A) such that our local representation π
is isomorphic to Π̃o as a representation of GLn(Fo). That is, we must embed local representations into global ones.
Recall that the two classes of possibilities for π from condition (c) of Lemma 2.7 that we must consider are

(1) essentially L2 representations, which we will reduce to the case of L2 representations via Proposition 3.5,
(2) Speh modules, which we reduce to the case of cuspidal representations by Mœglin–Waldspurger’s classification

of the discrete automorphic spectrum of GLn.

8.9. Return to our global notation. We start by embedding local L2 representations into global representations.

Lemma. Let π be an irreducible L2 representation of GLn(Fo). Then there exists an irreducible automorphic repre-
sentation Π of GLn(A) whose

(i) component at o is isomorphic to π,
(ii) components at x1, x2, and ∞ are irreducible L2 representations of GLn(Fx1

), GLn(Fx2
), and GLn(F∞),

respectively, with unitary central characters.

Proof. This is proven precisely as in [20, Corollary VI.2.5] using the simple trace formula [15, A.1.d Theorem]. □

8.10. As a first step towards embedding Speh modules into a global setting, we first realize certain local cuspidal
representations in a global context.

Lemma. Let π be an irreducible cuspidal representation of GLn(Fo) with unitary central character. Then there exists
an irreducible cuspidal automorphic representation Π of GLn(A) whose
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(i) component at o is isomorphic to π,
(ii) components at x1, x2, and∞ are irreducible cuspidal representations of GLn(Fx1

), GLn(Fx2
), and GLn(F∞),

respectively, with unitary central characters.

Proof. This follows from the proof of [35, (15.2)], where we use∞ instead of x3 and o instead of x0. □

8.11. We want to use Mœglin–Waldspurger’s classification of the discrete automorphic spectrum of GLn. To present
this classification, let us recall some notation from 2.2 on local representations. Briefly return to the local notation of
§1–§4, and let {∆1, . . . ,∆t} be a collection of segments as in [51, 3.1] such that ∆i does not precede ∆j as in [51,
4.1] for i < j. Then each associated Q(∆i) is an irreducible essentially L2 representation of GLni(F ), and recall that
Q(∆1, . . . ,∆t) denotes the unique irreducible quotient of

n-Ind
GLn(F )
P (F )

(
Q(∆1)⊗ · · · ⊗Q(∆t)

)
,

where n = n1 + · · ·+ nt, and P is the standard parabolic subgroup of GLn with block sizes (n1, . . . , nt).
Now return to the global notation. Work of Mœglin–Waldspurger implies the following.

Lemma ([38, Theorem]). Let d be a positive divisor of n, write d := n
t , and let Π0 be an irreducible automorphic

cuspidal representation of GLd(A). Then the restricted tensor product

Π :=
⊗′

x

Spt(Π0,x),

where x ranges over all places of F, is an irreducible discrete automorphic representation of GLn(A).

8.12. We apply Lemma 8.11 to embed Speh modules into global representations.

Lemma. Let π be a Speh module, as a representation of GLn(Fo). Then there exists an irreducible discrete automor-
phic representation Π of GLn(A) whose

(i) component at o is isomorphic to π,
(ii) components at x1, x2, and∞ are Speh modules, as representations of GLn(Fx1

), GLn(Fx2
), and GLn(F∞),

respectively.

Proof. Write π as π = Spt(π0), where t is some positive divisor of n, and π0 is an irreducible cuspidal represen-
tation of GLn/t(Fo) with unitary central character. Now Lemma 8.10 provides an irreducible cuspidal automorphic
representation Π̃0 of GLn/t(A) whose component at o is isomorphic to π0 and whose components at x1, x2, and∞
are irreducible cuspidal representations of GLn(Fx1

), GLn(Fx2
), and GLn(F∞), respectively, with unitary central

characters. Then restricted tensor product Π associated with Π0 as in Lemma 8.11 has components

Πo = Spt(π0) = π, Πx1
= Spt(Π0,x1

), Πx2
= Spt(Π0,x2

), and Π∞ = Spt(Π0,∞),

as desired. □

8.13. Return to the local notation of §1–§4. Thus F is a local field of positive characteristic, O denotes its ring of
integers, ϖ is a fixed uniformizer, and κ denotes O/ϖ. We will finally complete our proof of condition (c) in Lemma
2.7 by explicitly embedding our local situation into the global situation of D-elliptic sheaves.

Proposition. Let π be a Speh module or an irreducible essentially L2 representation of GLn(F ). Then there exists
an n-dimensional Q≥0-virtual continuous representation ρ(π) of WF satisfying the trace condition

tr(fτ,h|π) = tr
(
τ |ρ(π)

)
tr(h|π)

for all τ in WF with v(τ) > 0 and h in C∞
c (GLn(O)).

Proof. Our goal is to apply Theorem B. Let C = P1
κ be our curve of interest, choose o in 8.6 to be a κ-point of C, and

choose x1, x2, and∞ in 8.6 to be distinct closed points in C ∖ o. Note that Fo is isomorphic to F .
Let us first consider the case when π has unitary central character, that is, π is either a Speh module or L2. Then

Lemma 8.9 or Lemma 8.12, respectively, yields an irreducible discrete automorphic representation Π of GLn(A)
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satisfying the hypotheses of Theorem B such that Πo is isomorphic to π. Applying Theorem B to Π shows that we
may take ρ(π) = R(Π)

∣∣
WFo

.

In the last remaining case when π is an arbitrary irreducible essentially L2 representation π of GLn(F ), note that
π is isomorphic to an unramified twist of an L2 representation. Thus the above work, along with Proposition 3.5,
concludes the proof in this case. □

By using Proposition 3.11, Proposition 8.13, and Proposition 4.11 to verify that conditions (b)–(d) of Lemma 2.7
hold and using Proposition 4.6 to check the n = 1 base case, this concludes our proof by induction of Theorem A.

9. THE SECOND INDUCTIVE LEMMA: BIJECTIVITY OF THE CORRESPONDENCE

Retain the local notation of §1–§4. The purpose of this section is to prove Theorem C, i.e. that π 7→ recπ yields
a bijection from isomorphism classes of irreducible cuspidal representations of GLn(F ) to isomorphism classes of
n-dimensional irreducible continuous representations of WF . We start by collecting some facts on restricting repre-
sentations of WF to representations of WE for cyclic extensions E/F . Next, we use these facts to motivate auto-
morphic base change, an analogous operation that turns representations of GLn(F ) into representations of GLn(E).
Automorphic base change yields section’s first main result: a lemma which allows us to prove Theorem C by inducting
on n, provided that we verify certain conditions.

We then proceed to verify the conditions needed for this inductive lemma, thus completing the proof of Theorem
C. The main ingredients are Theorem A, Theorem B, and our nearby cycles calculation from §6. More precisely, we
apply results from §6 to show that the preimage of any unramified representation under rec remained unramified, and
we use Theorem B to show that rec is compatible with automorphic base change as well as twisting by characters.

9.1. We begin by establishing some notation on field extensions. Let E be a finite extension of F inside F sep. For
any finite-dimensional semisimple continuous representation ρ′ of WE and any map α in GF , write ρ′α for the finite-
dimensional semisimple continuous representation of Wα−1(E) given by τ 7→ ρ′(α ◦ τ ◦ α−1) for all τ in Wα−1(E).

Now assume that E/F is a cyclic extension. Hence α−1(E) = E. Write r for the degree of E/F , and fix a
generator σ of Gal(E/F ) = WF /WE , which identifies it with Z/rZ. Write K(E/F ) for the set of group homomor-
phisms Gal(E/F )−→C×, and interpret K(E/F ) as a set of characters of WF . Note that K(E/F ) acts on the set of
isomorphism classes of irreducible continuous finite-dimensional representations of WF via twisting.

When r is prime, one can use Frobenius reciprocity and the Mackey formula to verify the following assertions:

(i) Let ρ′ be an irreducible continuous finite-dimensional representation of WE . Then ρ′ extends to a representation
ρ of WF if and only if ρ′ = ρ′σ . Furthermore, if this is the case, then there are r isomorphism classes of such ρ′,
and any two differ by a twist of a character in K(E/F ).

(ii) Let ρ be an irreducible continuous finite-dimensional representation of WF . Then ρ|WE
is reducible if and only

if the stabilizer of ρ in K(E/F ) is nontrivial (and hence all of K(E/F )). Furthermore, if this is the case, then

ρ|WE
= ρ′ ⊕ · · · ⊕ ρ′σ

r−1

for some irreducible continuous finite-dimensional representation ρ′ of WE satisfying ρ′ ̸= ρ′σ , and ρ is the
unique finite-dimensional semisimple continuous representation of WF with this property.

We remark that the same argument works in the global setting, for which we shall use entirely analogous notation.

9.2. Next, we recall automorphic base change in the local setting. For any finite extension E of F inside F sep,
any irreducible smooth representation π′ of GLn(E), and any map α in GF , write π′α for the irreducible smooth
representation of GLn(α

−1(E)) given by g 7→ π′(α(g)) for all g in GLn(α
−1(E)). Note that Θπ′α = Θπ′ ◦ α.

As in 9.1, specialize to cyclic extensions E of F , and adopt the notation of 9.1 as well. Since Art induces an
isomorphism F×/NmE/F (E

×)
∼−→Gal(E/F ), we can view K(E/F ) as a set of characters of GLn(F ) via precom-

position with det ◦Art. Thus K(E/F ) acts on the set of isomorphism classes of irreducible smooth representations
of GLn(F ) by twisting.
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First, let π be an irreducible cuspidal representation of GLn(F ). Write u for the cardinality of the stabilizer of π in
K(E/F ). Then u divides n, and there exists an irreducible cuspidal representation π′ of GLn/u(E) such that

Q
(
{π′}, . . . , {π′σu−1

}
)

is an irreducible generic representation of GLn(E) and is isomorphic to the base change lift of π to GLn(E) [27,
(II.4.12, prop.)]. In particular, the description of genericity from 2.2 indicates that π′ is isomorphic to π′σ if and only
if u = 1. Note that this is the automorphic analogue of 9.1.

9.3. We now turn to local automorphic base change for generic representations. For any irreducible cuspidal repre-
sentation τ of GLd(F ), write ∆(τ,m) for the segment {τ, . . . , τ [m − 1]} as in [51, 3.1]. Recall from 2.2 that every
irreducible generic representation π of GLn(F ) is of the form

n-Ind
GLn(F )
P (F )

(
Q(∆(π1,m1))⊗ · · · ⊗Q(∆(πt,mt))

)
,

where n = d1m1 + · · · + dtmt, the πi are irreducible cuspidal representations of GLdi(F ), and P is the standard
parabolic subgroup of GLn with block sizes (d1m1, . . . , dtmt). Furthermore, none of the ∆(πi,mi) are linked.

At this point, suppose that π also has K(E/F )-regular segments as in [27, (II.3.4)]. Write ui for the divisor of di
and π′

i for the irreducible cuspidal representation of GLdi/ui
(E) associated with πi as in 9.2. Then the base change

lift πE of π to GLn(E) is isomorphic to [27, (II.4.4)], [27, (II.4.12, cor.)]

Q
(
∆(π′

1,m1), . . . ,∆(π′σu1−1

1 ,m1), . . . ,∆(π′
t,mt), . . . ,∆(π′σut−1

t ,mt)
)
.

Note that πE is an irreducible generic representation of GLn(E).
Next, let ξ be any irreducible generic representation of GLn(F ) with K(E/F )-regular segments such that the base

change lift of ξ to GLn(E) is isomorphic to πE . Then ξ must be isomorphic to

n-Ind
GLn(F )
P (F )

(
Q(∆(χ1 · π1,m1))⊗ · · · ⊗Q(∆(χt · πt,mt))

)
for some χ1, . . . , χt in K(E/F ) [27, (II.4.13, lem.)]. Finally, every σ-stable irreducible generic representation π′ of
GLn(E) is the base change lift of some irreducible generic representation of GLn(F ) with K(E/F )-regular segments
[27, (II.1.4)].

9.4. We will also need automorphic base change in the global setting, for which we briefly return to our global
notation. Hence F is a global function field, and A denotes its ring of adeles. Let E be a cyclic extension of F, write
AE for the ring of adeles of E, and fix a generator σ of Gal(E/F) =WF/WE. Then σ acts on the set of isomorphism
classes of irreducible discrete automorphic representations of GLn(AE) via precomposition.

Let Π be an irreducible cuspidal automorphic representation of GLn(A). Then there exists a unique irreducible
discrete automorphic representation ΠE of GLn(AE) such that, for all places o of F and places o′ of E lying above
o, the base change lift of Πo to GLn(Eo′) is isomorphic to ΠE,o′ [27, (IV.1.3)]. Next, let Ξ be any irreducible
cuspidal automorphic representation of GLn(A) such that ΞE is isomorphic to ΠE. Then Ξ must be isomorphic to
Π⊗ (X ◦ det) for some character X : A×/(F× NmE/F(A×

E))−→C× [2, Theorem III.3.1].11 Finally, every σ-stable
irreducible cuspidal representation Π′ of GLn(AE) is isomorphic to ΠE for some irreducible cuspidal automorphic
representation Π of GLn(A).

9.5. Return to the local notation of §1–§4. We first verify that rec is compatible with automorphisms.

Lemma. For any α in GF and any irreducible smooth representation π′ of GLn(E), we have an isomorphism

rec(π′α) = rec(π′)α.

Proof. We immediately seeα preserves the Tate twist ( 1−n
2 ), so it suffices to show that ρ(π′α) = ρ(π′)α. We will do so

by verifying that ρ(π′)α satisfies the defining property of ρ(π′α) as in Theorem A.(i). WriteOE for the ring of integers

11The proof given here is stated for number fields, but it only uses the relationship between unramified local L-functions and Satake parameters, as
well as the fact that L(Π×Π′, s) has a pole at s = 1 if and only if Π ∼= Π′∨. In particular, it carries over to arbitrary global fields.
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of E. Let τ be an element of Wα−1(E) satisfying r := v(τ) > 0, and let h be a function in C∞
c (GLn(α

−1(OE))).
Now 3.4 yields

tr
(
fτ,h|π′α) = tr

(
(ϕτ,h, σ)|π′α/Er

)
=

�
GLn(α−1(E))

dδ′ ϕτ,h(δ
′)Θπ′α(Nδ′),

where ϕτ,h is our test function in C∞
c (GLn(α

−1(E)r)) from §1. Fixing a uniformizer ϖE of E and expanding the
definition of ϕτ,h, we see that this integral equals�

GLn(α−1(OE)) diag(α−1(ϖE),1,...,1)GLn(α−1(OE))

dδ′ tr(τ × h|[Rψδ′ ])Θπ′(α(Nδ′)).

Upon making the change of variables δ = α(δ′), our integral becomes�
GLn(OE) diag(ϖE ,1,...,1)GLn(OE)

dδ tr(τ × h|[Rψα−1(δ)])Θπ′(N(α(δ′)))

=

�
GLn(OE) diag(ϖE ,1,...,1)GLn(OE)

dδ tr((α ◦ τ ◦ α−1)× h ◦ α−1|[Rψδ])Θπ′(Nδ)

=

�
GLn(E)

dδ ϕα◦τ◦α−1,h◦α−1(δ)Θπ′(Nδ) = tr
(
(ϕα◦τ◦α−1,h◦α−1 , σ)|π′/Er

)
.

Applying 3.4 once more indicates that this equals tr
(
fα◦τ◦α−1,h◦α−1 |π′). From here, Theorem A.(i) shows that

tr
(
fα◦τ◦α−1,h◦α−1 |π′) = tr

(
α−1 ◦ τ ◦ α|ρ(π′)

)
tr
(
h ◦ α−1|π′) = tr

(
τ |ρ(π′)α

)
tr
(
h ◦ α−1|π′).

Thus all that remains is to prove that tr
(
h ◦ α−1|π′) = tr

(
h|π′α). Now tr

(
h|π′α) is the trace of the operator

v 7→
�
GLn(α−1(E))

dg′ h(g′)π′(α(g′))v =

�
GLn(E)

dg h(α−1(g))π′(g)v,

where we have made the change of variables g = α(g′). This shows that tr(h|π′α) = tr(h ◦ α−1|π′), concluding our
proof of Lemma 9.5. □

9.6. Finally, we can introduce our inductive lemma.

Second Inductive Lemma. Assume that the following conditions hold for all irreducible smooth representations π of
GLn(F ):

(a) Theorem C is true for n′ < n,
(b) if n = 1, then recπ is isomorphic to π ◦Art−1,
(c) if π is isomorphic to a subquotient of the normalized parabolic induction of

π1 ⊗ · · · ⊗ πt,

where the πi are irreducible smooth representations of GLni
(F ) for which n1 + · · ·+ nt = n. Then

rec(π) = rec(π1)⊕ · · · ⊕ rec(πt),

(d) for all smooth characters χ : F×−→C×, we have

rec(π ⊗ (χ ◦ det)) = rec(π)⊗ rec(χ),

(e) if π is generic, then for all cyclic extensions E/F of prime degree, we have

rec(πE) = rec(π)
∣∣
WE

,

where πE denotes the base change lift of π to GLn(E),
(f) if rec(π) is an unramified representation of WF , then π is parabolically induced from unramified characters of

F×.

Then Theorem C is true for n.

In the first part of this section, our goal is to prove the second inductive lemma. To this end, starting from this
point, assume that conditions (a)–(f) hold. We have already proved condition (b) in Proposition 4.6 and condition (c)
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in Theorem A. After proving Lemma 9.6, we shall prove conditions (d)–(f) in the remainder of this section, using
results from §6 and §8.

9.7. We begin by immediately upgrading condition (e) to finite solvable extensions E/F .

Proposition. Let π be generic. Then, for all finite solvable extensions E/F , we have

rec(πE) = rec(π)
∣∣
WE

,

where πE denotes the base change lift of π to GLn(E).

Proof. We induct on the degree of E over F . The result is immediate for E = F , and condition (e) ensures that it
holds for prime [E : F ]. In general, the solvability of E/F yields a Galois subextension E ⊃ E′ ⊇ F such that E/E′

is cyclic of prime degree and E′/F is solvable. Writing πE′ for the base change lift of π to GLn(E
′), we see that

rec(πE′) = rec(π)
∣∣
WE′

by the inductive hypothesis. Transitivity of base change indicates that πE is also the base
change lift of πE′ to GLn(E), so condition (e) gives us

rec(πE) = rec(πE′)
∣∣
WE

= rec(π)
∣∣
WE

. □

9.8. We make the following observation. Let ρ be a finite-dimensional semisimple continuous representation ofWF .
Then ρ is smooth, so ρ|IE is trivial for some finite Galois extension E of F . As F is a nonarchimedean local field,
E/F is solvable. Altogether, ρ becomes unramified after passing to a solvable extension.

In particular, by letting ρ = recπ for any irreducible generic representation π of GLn(F ), Proposition 9.7 and
condition (f) imply that the base change lift πE of π to GLn(E) is parabolically induced from unramified characters
of E×.

9.9. We now check that rec sends irreducible cuspidal representations to irreducible ones.

Proposition. Suppose that π is irreducible cuspidal. Then recπ is an irreducible representation of WF .

Proof. This is immediate for n = 1, so suppose that n ≥ 2. Now 9.8 yields a finite solvable extension E/F for which
the base change lift πE of π to GLn(E) is unramified. As n ≥ 2, we see that πE cannot be cuspidal. Therefore,
by replacing E/F with a subextension if necessary, we can find a Galois subextension E ⊃ E′ ⊇ F satisfying the
following properties:

• E/E′ is cyclic of prime degree r,
• E′/F is solvable,
• the base change lift πE′ of π to GLn(E

′) remains cuspidal.

Since πE is also the base change lift of πE′ to GLn(E), we can apply 9.2 to obtain a positive integer u and an
irreducible cuspidal representation π′ of GLn/u(E) such that πE is isomorphic to

Q
(
{π′}, . . . , {π′σu−1

}
)
,

where σ is a generator of Gal(E/E′). Thus condition (e) and condition (c) indicate that rec(πE′) restricts to

rec(πE′)
∣∣
WE

= rec(πE) = rec(π′)⊕ · · · ⊕ rec(π′)σ
r−1

.

Now u is the cardinality of a subgroup of K(E/E′), so u divides r. But πE is not cuspidal, which forces u = r.
Hence π′ is not isomorphic to π′σ . From here, Theorem C for π′ and Lemma 9.5 show that rec(π′) is not isomorphic
to rec(π′σ) = rec(π′)σ , so 9.1.(ii) indicates that rec(πE′) is irreducible.

Finally, because Proposition 9.7 shows that rec(πE′) = rec(π)
∣∣
WE′

, we see that rec(π) is irreducible as well. □

9.10. Next, we establish a few lemmas on the bijectivity of rec in special cases.

Lemma. Let ρ be an n-dimensional irreducible continuous representation of WF , and let E/F be a cyclic extension
of prime degree. If ρ|WE

is reducible, then there exists a unique irreducible cuspidal representation π of GLn(E)

such that recπ = ρ.
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Proof. Write r for the degree of E/F , and fix a generator σ of Gal(E/F ). Then 9.1.(ii) yields an irreducible contin-
uous finite-dimensional representation ρ′ of WE satisfying ρ|WE

= ρ′ ⊕ · · · ⊕ ρ′σr−1

and ρ′ ̸= ρ′σ . Now Theorem C
for ρ′ provides a unique irreducible cuspidal representation π′ of GLn/r(E) such that rec(π′) is isomorphic to ρ′.

Define π̃ to be the irreducible smooth representation

π̃ := Q
(
{π′}, . . . , {π′σr−1

}
)

of GLn(E). We see that π̃ is generic, and van Dijk’s formula [37, Theorem 5.9] implies that π̃ is σ-stable. Therefore
9.3 shows that π̃ is the base change lift of some irreducible generic representation π of GLn(F ). Furthermore, because
the segments {π′}, . . . , {π′σr−1} in π̃ have length 1, our description of possibilities for π in 9.3 indicates π is cuspidal.

Condition (e), condition (c), and Lemma 9.5 yield

rec(π)
∣∣
WE

= rec(π̃) = rec(π′)⊕ · · · ⊕ rec(π′σr−1

) = ρ′ ⊕ · · · ⊕ ρ′σ
r−1

.

The uniqueness of ρ from 9.1.(ii) therefore indicates that recπ = ρ. This takes care of the existence of π.
We now tackle uniqueness. Suppose ξ is any irreducible cuspidal representation of GLn(F ) with rec(ξ) = ρ, and

write ξE for the base change lift of ξ to GLn(E). Condition (e) and condition (c) show that rec(ξE) = ρ|WE
is

reducible, so Proposition 9.9 implies that ξE is not cuspidal. Therefore our description of base change in 9.2 gives

ξE = Q
(
{ξ′}, . . . , {ξ′σ

r−1

}
)

for some irreducible cuspidal representation ξ′ of GLn/r(E). Applying condition (e), condition (c), and Lemma 9.5
once more yields

ρ′ ⊕ · · · ⊕ ρ′σ
r−1

= rec(π)
∣∣
WE

= rec(ξE) = rec(ξ′)⊕ · · · ⊕ rec(ξ′σ
r−1

) = rec(ξ′)⊕ · · · ⊕ rec(ξ′)σ
r−1

.

Theorem C for ξ′ tells us that rec(ξ′) is irreducible. As ρ′ is irreducible too, we see that ρ′ is isomorphic to rec(ξ′)σ
i

for some 0 ≤ i ≤ r − 1. After replacing ξ′ with ξ′σ
i

, we get ρ′ = rec(ξ′). Similarly replacing π′ with π′σi

for some
0 ≤ i ≤ r− 1 yields ρ′ = rec(π′), and hence π′ = ξ′ via Theorem C for ρ′. This in turn yields π̃ = ξE . Since π̃ is the
base change lift of π to GLn(E), we see from 9.3 that ξ must be isomorphic to χ · π for some χ in K(E/F ). But the
stabilizer of π in K(E/F ) has cardinality r by 9.2. Thus we finally obtain ξ = χ · π = π, as desired. □

9.11. Lemma. Let ρ be an n-dimensional irreducible continuous representation of WF , and let E/F be a cyclic
extension of prime degree. Suppose that there exists a unique irreducible cuspidal representation π̃ of GLn(E) such
that rec π̃ = ρ|WE

. If ρ|WE
is irreducible, then there also exists a unique irreducible cuspidal representation π of

GLn(F ) such that recπ = ρ.

Proof. Write r for the degree of E/F , and fix a generator σ of Gal(E/F ). As 9.1.(i) indicates that

(ρ|WE
)σ = ρ|WE

,

our uniqueness hypothesis on π̃ and 9.5 yield π̃σ = π̃. Thus π̃ is σ-stable, so 9.3 shows that it is the base change
lift of some irreducible generic representation π of GLn(F ). Furthermore, because π̃ is cuspidal, our description of
possibilities for π implies that π is also cuspidal. Consequently, Proposition 9.9 indicates that recπ is irreducible.
Now condition (e) yields

rec(π)
∣∣
WE

= rec(π̃) = ρ|WE
,

so 9.1.(i) shows that rec(π) is isomorphic to χ · ρ for some χ in K(E/F ). After replacing π with χ−1 · π, condition
(d) tells us that recπ = ρ. This takes care of the existence of π.

As for uniqueness, suppose ξ is any irreducible cuspidal representation of GLn(F ) satisfying rec(ξ) = ρ. Writing
ξE for the base change lift of ξ to GLn(E), we see that condition (e) gives us

rec(ξE) = ρ|WE
= rec(π̃).

Condition (c) and the irreducibility of ρ|WE
imply that ξE is cuspidal, so our uniqueness hypothesis on π̃ indicates

that ξE = π̃. As ξE is the base change lift of ξ to GLn(E), we see from 9.3 that ξ must be isomorphic to χ · π for
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some χ in K(E/F ). From here, condition (d) yields

ρ = rec ξ = rec(χ · π) = χ · recπ = χ · ρ,

and 9.1 along with the irreducibility of ρ|WE
imply that χ = 1. Hence ξ = π, as desired. □

We shall finally wrap up the proof of Lemma 9.6 itself, that is, prove Theorem C holds for n.

Proof of Lemma 9.6. Proposition 9.9 shows that π 7→ recπ indeed yields a map from isomorphism classes of irre-
ducible cuspidal representations of GLn(F ) to isomorphism classes of n-dimensional irreducible continuous repre-
sentations of WF .

Next, we proceed towards bijectivity. Let ρ be an n-dimensional irreducible continuous representation of WF .
Bijectivity is immediate for n = 1, so suppose that n ≥ 2. Now 9.8 yields a finite solvable extension E/F for
which ρ|WE

is unramified. As n ≥ 2, this implies that ρ|WE
cannot be irreducible. Thus, by replacing E/F with a

subextension if necessary, we obtain a tower of field extensions E = Es ⊃ · · · ⊃ E0 = F such that

• Ej+1/Ej is cyclic of prime degree for all 0 ≤ j ≤ s− 1,
• ρ|Es−1

is irreducible,
• ρ|Es

is reducible.

Lemma 9.10 provides a unique irreducible cuspidal representation πs−1 of GLn(Es−1) satisfying recπs−1 = ρ|Es−1
.

From here, repeated applications of Lemma 9.11 yield unique irreducible cuspidal representations πj of GLn(Ej)

such that recπj = ρ|Ej
, and the j = 0 case is precisely the desired result. □

Now that we have Lemma 9.6, we turn our attention towards verifying that conditions (b)–(f) hold. Recall that we
already proved condition (b) in Proposition 4.6 and condition (c) in Theorem A.

9.12. To prove condition (d) and condition (e), we use the following explicit description of recπ for unramified π.

Lemma. Let π be isomorphic to Q
(
{χ1}, . . . , {χn}

)
, where the χi : F

×−→C× are unramified characters sending
ϖ to zi in C×. Then recπ is isomorphic to the n-dimensional unramified representation of WF where geometric q-
Frobenius acts via diag(z1, . . . , zn). In particular, for all irreducible unramified representations π and π′ of GLn(F ),
we have L(π × π′, s) = L(rec(π)⊗ rec(π′), s).

Proof. Theorem A shows that recπ is isomorphic to rec(χ1) ⊕ · · · ⊕ rec(χn), and Proposition 4.6 allows us to
conclude recπ has the desired form. Next, any irreducible unramified representation π of GLn(F ) is isomorphic
to Q

(
{χ1}, . . . , {χn}

)
for some unramified characters χi : F×−→C× [12]. Write zi for χi(ϖ), and form the

analogous χ′ and z′i for π′ too. Then we have

L(π × π′, s) =

n∏
i,j=1

L(χi × χ′
j , s) =

n∏
i,j=1

(1− zizjq−s)−1 = L(rec(π)⊗ rec(π′), s). □

9.13. From here, we shall prove condition (d) and condition (e) via embedding into the global situation. More
precisely, we will use Theorem B along with the Chebotarev density theorem. Let us recall some global notation: C
denotes a geometrically connected proper smooth curve over κ, F denotes its field of rational functions, A denotes its
ring of adeles, and WF denotes the Weil group of F. By abuse of notation, we write Art : A×/F× ∼−→W ab

F for the
global Artin isomorphism normalized by sending uniformizers to geometric Frobenii. Fix distinct places x1, x2, and
∞ of F.

9.14. Proposition. Let π be an irreducible smooth representation of GLn(F ). For all smooth characters χ : F×−→C×,
we have

rec(π ⊗ (χ ◦ det)) = rec(π)⊗ rec(χ).

Proof. We begin with some reductions. Theorem A indicates that both sides are compatible with parabolic induction,
so it suffices to prove this for cuspidal π. As rec(π) = ρ(π)( 1−n

2 ) and rec(χ) = χ ◦Art−1, this is equivalent to

ρ(π ⊗ (χ ◦ det)) = ρ(π)⊗ (χ ◦Art−1).
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Finally, note that χ is the product of a finite order character with |·|s for some complex number s. The χ = |·|s case
follows immediately from Proposition 3.5, so we need only consider the case when χ has finite order.

Assume this is the case, and let C = P1
κ be our curve of interest. Choose o to be a κ-point of C, and choose x1,

x2, and ∞ in 8.6 to be distinct closed points in C ∖ o. Note that Fo is isomorphic to F . Since χ has finite order,
there exists a finite order smooth character X : A×/F×−→C× such that X|F×

o
= χ [3, Theorem 5 of Chapter

X]. Furthermore, as π is cuspidal, Lemma 8.10 provides an irreducible cuspidal representation Π of GLn(A) whose
component at o is isomorphic to π and whose components at x1, x2, and∞ are irreducible cuspidal representations of
GLn(Fx1

), GLn(Fx2
), and GLn(F∞), respectively, with unitary central characters.

Because the smooth character X ◦ Art−1 : WF−→C× has finite image, it extends to a continuous character
Ξ : GF−→Q×

ℓ , where we identify Qℓ with C [27, (IV.2.2)]. Note also that Π ⊗ (X ◦ det) is an irreducible cuspidal
representation of GLn(A). Therefore we may apply Theorem B to obtain the n-dimensional semisimple continuous
representations

R1 := R(Π⊗ (X ◦ det)) and R2 := R(Π)⊗ Ξ

of GF over Qℓ. Write T for the set of places x of F such that

• X|F×
x

is unramified,
• Πx is unramified,
• x does not lie in {x1, x2,∞},

and note that T is cofinite. For x in T , Lemma 9.12 indicates that R1|WFx
and R2|WFx

are isomorphic.
The Chebotarev density theorem implies that, as x varies over all places of F not lying in T , the conjugacy classes in

GF of arithmetic qx-Frobenius elements at x are dense. Because n-dimensional continuous semisimple representations
of GF are determined, up to isomorphism, by their characteristic polynomials (and said polynomials are continuous
in GF), we see that R1 = R2 as representations of GF. Restricting both sides to WFo and applying Theorem B again
yields the desired result. □

9.15. Proposition. Let π be an irreducible generic representation of GLn(F ). For all cyclic extensions E/F of prime
degree, we have

rec(πE) = rec(π)
∣∣
WE

,

where πE denotes the base change lift of π to GLn(E).

Proof. Applying Theorem A to the decomposition of πE from 9.3 shows that it suffices to consider cuspidal π. With
this reduction in hand, first set C = P1

κ as our curve of interest, and choose a κ-point o of C. We may identify Fo with
F . By writing E = F [t]/f(t) and approximating f(t) using a polynomial with entries in F, Krasner’s lemma yields
a separable extension E/F such that o is inert in E, and Eo′/Fo can be identified with E/F , where o′ is the unique
place of E dividing o. By replacing E with its Galois closure and replacing F (and changing C accordingly) with the
subfield corresponding to the decomposition group of o′, we may assume that E/F is Galois and hence cyclic as well.

Since E is a global function field, it corresponds to a geometrically connected proper smooth curve C ′ over a finite
field κ′. Thus we can apply the results of §5–§8 to E and C ′. By the Chebotarev density theorem, we may choose x1,
x2, and∞ in 8.6 for F to be distinct closed points in C ∖ o such that they split completely in C ′. Choose x′1, x′2, and
∞′ in 8.6 for E lying above x1, x2, and∞, respectively. This allows us to identify Ex′

1
with Fx1

, Ex′
2

with Fx2
, and

E∞′ with F∞.
Because π is cuspidal, Lemma 8.10 gives an irreducible cuspidal representation Π of GLn(A) whose component at

o is isomorphic to π and whose components at x1, x2, and∞ are irreducible cuspidal representations of GLn(Fx1
),

GLn(Fx2
), and GLn(F∞), respectively, with unitary central characters. As x1, x2, and∞ split in E, the irreducible

discrete automorphic representation ΠE formed in 9.4 has components

ΠE,x′
1
= Πx1 , ΠE,x′

2
= Πx2 , and ΠE,∞′ = Π∞.
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In particular, these components are irreducible cuspidal with unitary central characters. Hence we can apply Theorem
B to ΠE to form the n-dimensional semisimple continuous representations

R1 := R(ΠE) and R2 := R(Π)
∣∣
GE

of GE over Qℓ.
Write T for the set of places x of F such that Πx is unramified and x does not lie in {x1, x2,∞}, which is a cofinite

set of places. For all x in T , Lemma 9.12 and the description of base change lifts in 9.2 and 9.4 indicate that R1|WFx

is isomorphic to R2|WFx
. From here, we conclude using the Chebotarev density theorem and Theorem B, as in the

proof of Proposition 9.14. □

9.16. Finally, we prove condition (f) using our results from §6.

Proposition. Let π be an irreducible smooth representation of GLn(F ). If rec(π) is an unramified representation of
WF , then π is parabolically induced from unramified characters of F×.

Proof. Write π1, . . . , πt for the cuspidal support of π, where the πi are irreducible cuspidal representations of GLni
(F )

such that n = n1 + · · ·+ nt. Now Theorem A.(ii) yields

rec(π) = rec(π1)⊕ · · · ⊕ rec(πt).

If π is not parabolically induced from unramified characters of F×, then there exists some i such that either

(1) ni = 1 and πi : F×−→C× is not an unramified character,
(2) ni ≥ 2.

In case (1), Proposition 4.6 shows that rec(πi) and hence rec(π) is not unramified, so we need only tackle case (2).
By replacing π with πi, it suffices to assume that π is cuspidal and n ≥ 2. Finally, because rec(π) is an unramified
twist of ρ(π), we need only show that ρ(π) is not unramified.

We begin by using Schur orthogonality to obtain a function h in C∞
c (GLn(O)) that satisfies tr(h|π) = 1. Then we

have

tr
(
σ−r|ρ(π)IF

)
= tr

(
1σ−rIF |ρ(π)

)
tr(h|π) =

�
σ−rIF

dτ tr
(
τ |ρ(π)

)
tr(h|π),

where 1σ−rIF is the indicator function on σ−rIF . Applying Theorem A.(i), we obtain�
σ−rIF

dτ tr
(
fτ,h|π

)
,

and 3.4 indicates that this integral becomes�
σ−rIF

dτ tr
(
(ϕτ,h, σ)|π/Fr

)
=

�
σ−rIF

dτ

�
GLn(Or) diag(ϖ,1,...,1)GLn(Or)

dδ ϕτ,h(δ)Θ
σ
π(δ).

Recall the subset Bn ⊆ GLn(Or) diag(ϖ, 1, . . . , 1)GLn(Or), which was defined in 1.7 using the decomposition
δ = δ◦ ⊕ δét. As π is cuspidal, we can use Lemma 4.10 to convert our integral into�

σ−rIF

dτ

�
Bn

dδ ϕτ,h(δ)Θ
σ
π(δ).

Now let C = P1
κ be our curve of interest, and choose a κ-point o of C. Since we may identify Fo with F , the results

of §6 apply to our situation. Namely, Fubini’s theorem and Corollary 6.16 allow us to rewrite this integral as�
σ−rIF

dτ ϕτ,h(δ)

�
Bn

dδΘσ
π(δ) = Cn

�
Bn

dδΘσ
π(δ),

where Cn is as in Corollary 6.16. The definition of Θσ
π turns the above expression into

Cn

�
Bn

dδΘπ(Nδ),
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and from here Lemma 4.1 and the local Jacquet–Langlands correspondence yield

Cn(−1)n−1

�
Br

dbΘJL(π)(b) = Cn(−1)n−1 tr
(
1Br
| JL(π)

)
= Cn(−1)n−1 tr

(
1Br
| JL(π)O

×
B

)
,

where B is the central division algebra over F of Hasse invariant 1
n , and Br is the subset of valuation r elements

in B. Because π has no GLn(O)-invariants, its image under the local Jacquet–Langlands correspondence has no
O×

B-invariants. Hence the above trace vanishes.
Altogether, we have shown that tr

(
σ−r|ρ(π)IF

)
vanishes for any positive integer r. As semisimple representations

are determined by their traces, we have ρ(π)IF = 0. In particular, ρ(π) is not unramified. □

By using Theorem A, Proposition 9.14, Proposition 9.15, and Proposition 9.16 to verify that conditions (b)–(f) of
Lemma 9.6 hold and using Proposition 4.6 to check the n = 1 base case, this concludes our proof by induction of
Theorem C.

10. DUALS, L-FUNCTIONS, AND ϵ-FACTORS

In this section, our goal is to prove Theorem D, i.e. that π 7→ recπ satisfies Henniart’s properties [22, Theorem
1.2] characterizing the local Langlands correspondence for GLn over F . We begin by collecting facts on inducing
representations of WE to representations of WF for separable extensions E/F. Similar statements hold for extensions
E/F of local fields. We use these facts to motivate automorphic induction, an analogous operation that turns repre-
sentations of GLn(AE) (respectively GLn(E)) into representations of GLn[E:F](A) (respectively GLn[E:F ](F )) for
cyclic extensions. Combining this with Theorem B allows us to prove automorphic induction for some non-Galois
extensions E/F.

We use this non-Galois automorphic induction to show that rec is compatible with central characters. More pre-
cisely, we apply Brauer induction to reduce to the case of induced representations, embed into the global setting, and
then invoke our non-Galois automorphic induction. Afterwards, we use compatibility with central characters to prove
that rec preserves L-functions and ϵ-factors, by twisting with highly ramified characters. Finally, compatibility with
duals follows from the decomposition of L-functions of pairs in terms of L-functions of characters. This concludes
our proof of the local Langlands correspondence for GLn over F .

10.1. Let us recall some global notation: C denotes a geometrically connected proper smooth curve over κ, F denotes
its field of rational functions, A denotes its ring of adeles, and WF denotes the Weil group of F.

Let E be a finite extension of F inside Fsep. Now write Ẽ for the Galois closure of E over F, and letR :WE−→C×

be a smooth character. One can use Frobenius reciprocity and the Mackey formula to show that IndWF

WE
R is irreducible

if and only if the stabilizer of R|WẼ
in Gal(Ẽ/F) equals Gal(Ẽ/E). The same argument works in the local setting:

letE be a finite extension of F in F sep, and let ρ :WE −→C× be a smooth character. Writing Ẽ for the Galois closure
of E over F , we see that IndWF

WE
ρ is irreducible if and only if the stabilizer of ρ|WẼ

in Gal(Ẽ/F ) equals Gal(Ẽ/E).

10.2. We begin by recalling automorphic induction in the local case. LetE be a cyclic F -algebra, and write K(E/F )
for the set of group homomorphisms Gal(E/F )−→C×. By reducing to the case when E is a field, one can show that
Art induces an isomorphism F×/NmE/F (E

×)
∼−→Gal(E/F ), so K(E/F ) acts on isomorphism classes of smooth

representations of GLn[E:F ](F ) as in 9.2.
Let π be an irreducible tempered representation of GLn(E). Then there exists a unique irreducible tempered

representation IE/F (π) of GLn[E:F ](F ) that is fixed by K(E/F ) and satisfies a certain character identity involving
Θπ [26, Theorem 1.3]. This representation satisfies L(IE/F (π), s) = L(π, s) [26, Theorem 1.4.(a)]. Furthermore,
IE/F (π) is cuspidal if and only if the stabilizer of π in Gal(E/F ) is trivial [26, Proposition 5.5]. Note that this is the
automorphic analog of 10.1.

10.3. Next, we introduce automorphic induction in the global setting. Let E/F be a finite cyclic extension, and
write AE for the ring of adeles of E. Then for any irreducible cuspidal automorphic representation Π of GLn(AE),
there exists a unique irreducible automorphic representation IE/F(Π) of GLn[E:F](A) such that, for cofinitely many
places o of F for which Π is unramified at every place o′ of E above o, we have L(IE/F(Π)o, s) =

∏
o′|o L(Πo′ , s)
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[27, (IV.1.8)]. In addition, for any place o of F where the irreducible smooth representation Πo of GLn(E⊗F Fo) is
tempered, we have IE/F(Π)o = IE⊗FFo/Fo

(Πo) [27, (IV.1.9)].

10.4. We establish some terminology that reflects the connection between automorphic and Galois representations.

Definition. Let R be an n-dimensional semisimple continuous representation of GF over Qℓ, and let Π be an irre-
ducible automorphic representation of GLn(A). We say R and Π are associated if there exists a finite set T of places
of F such that, for all places x of F not in T ,

(a) R|WFx
and Πx are unramified,

(b) recΠx is isomorphic to R|WFx
, where we identify Qℓ with C.

Note that either one ofR or Π determines the other, by the strong multiplicity one theorem and the Chebotarev den-
sity theorem. Furthermore, when there exist three places {x1, x2,∞} of F where Π is irreducibleL2 or a Speh module,
Theorem B shows that R is isomorphic to R(Π)( 1−n

2 ) and that condition (b) is true for all x not in {x1, x2,∞}, even
if R|WFx

or Πx are ramified.

10.5. We view automorphic induction within the framework of Definition 10.4 as follows. Let E/F be a finite cyclic
extension. Let R′ be an n-dimensional continuous semisimple continuous representation of GE over Qℓ, and let Π′

be an irreducible automorphic representation of GLn(AE). If R′ and Π′ are associated, then Lemma 9.12, 10.3, and
10.2 show that IndGF

GE
R′ and IE/F(Π

′) are associated.
Next, let X : A×/F×−→C× be a finite order smooth character. The smooth character X ◦ Art−1 : WF−→C×

has finite image, so it extends uniquely to a continuous character Ξ : GF−→C× [27, (IV.2.2)]. Proposition 4.6 and
the local-global compatibility of the Artin map imply that Ξ and X are associated.

Finally, letR be an n-dimensional semisimple continuous representation ofGF over Qℓ, and let Π be an irreducible
automorphic representation of GLn(AF) such that R and Π are associated. Since any irreducible unramified repre-
sentation of GLn(Fx) is isomorphic to Q

(
{χ1}, . . . , {χn}

)
for some unramified characters χi : F×

x −→C× [12],
Lemma 9.16 shows that recωΠ,x = det R|WFx

for cofinitely many places x of F. Then the Chebotarev density the-
orem, Proposition 4.6, and the local-global compatibility of the Artin map indicate that detR is the unique extension
of ωΠ ◦Art−1 to a continuous character GF−→Q×

ℓ , where we identify Q×
ℓ with C.

10.6. We apply Theorem B via 10.4 to prove automorphic induction in a non-Galois setting.

Proposition. Let E/F be a finite separable extension, and letX : A×
E/E

×−→C× be a finite order smooth character.
Assume that

(a) the Galois closure Ẽ of E/F is solvable,

(b) there exist three places {x1, x2,∞} of F inert in Ẽ such that, for all x in {x1, x2,∞}, the stabilizer of (X ◦Art−1)
∣∣∣
WẼẽ

in Gal(Ẽẽ/Fx) equals Gal(Ẽẽ/Ee), where ẽ (respectively e) is the unique place of Ẽ (respectively E) lying above
x.

Then there exists an irreducible cuspidal automorphic representation IFE(X) of GL[E:F](A) associated with IndGF

GE
(X̂),

where Ξ : GE−→C× is the character associated with X as in 10.5. Furthermore, the components of IFE(X) at x1,
x2, and∞ are irreducible cuspidal representations with unitary central characters.

Proof. We induct on the degree of E over F, where the result is immediate for E = F. In general, the solvability of
E/F yields a Galois subextension Ẽ ⊇ K ⊃ F such that K/F is cyclic of prime degree. Write k for the place of K
above x, and write k′ for the place of KE above x. Then the stabilizer of

(X ◦NmKE/E ◦Art−1)
∣∣∣
WẼẽ

=
(
(X ◦Art−1)

∣∣∣
WKE

)∣∣∣∣
WẼẽ

= (X ◦Art−1)
∣∣∣
WẼẽ

in Gal(Ẽẽ/Kk) equals Gal(Ẽẽ/Ee) ∩ Gal(Ẽẽ/Kk) = Gal(Ẽẽ/KEk′). Also, note that the unique extension of
X ◦ NmKE/E ◦Art−1 to a continuous character of GKE is Ξ|GKE

. Finally, as [Ẽ : K] < [Ẽ : F], we can ap-
ply the inductive hypothesis to obtain an irreducible cuspidal automorphic representation IKKE(X ◦ NmKE/E) of
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GL[KE:K](AK) associated with IndGK

GKE
(Ξ|GKE

). Furthermore, IKKE(X ◦ NmKE/E) is cuspidal with unitary central
character at k. We now casework:

(1) Suppose that E contains K. Then KE = E, and we define IFE(X) to be IK/F(I
K
E (X)). Now 10.5 indicates that

IFE(X) and IndGF

GK
IndGK

GE
(Ξ) = IndGF

GE
(Ξ) are associated. Because x is inert in K and IKE (X) is cuspidal at k,

we see from 10.3 that IFE(X)x = IKk/Fx
(IKE (X)k). Note that the stabilizer of IKE (X)k in Gal(Kk/Fx) equals

the image of Gal(Ẽẽ/Ee). Since Ee contains Kk, this is trivial, and hence 10.2 shows that IKk/Fx
(IKE (X)k) is

cuspidal.
(2) Suppose that E does not contain K. Then K ∩ E = F and [E : F] = [KE : K], so IndGK

GKE
(Ξ|GKE

) is

isomorphic to IndGF

GE
(Ξ)

∣∣∣
GK

. Next, fix a generator σ of Gal(K/F). As IKKE(X ◦ NmKE/E) and IndGF

GE
(Ξ)

∣∣∣
GK

are associated, there exist cofinitely many places v of K where both are unramified and

rec(IKKE(X ◦NmKE/E)
σ
v ) = rec(IKKE(X ◦NmKE/E)v)

σ =
(
IndGF

GE
(Ξ)

∣∣∣
WKv

)σ

= IndGF

GE
(Ξ)

∣∣∣
WKv

,

by Lemma 9.5 and 9.1.(i). Then Lemma 9.12 indicates that the local representations IKKE(X ◦ NmKE/E)
σ
v and

IKKE(X ◦ NmKE/E)v are isomorphic. Hence the strong multiplicity one theorem shows that the global repre-
sentations IKKE(X ◦ NmKE/E)

σ and IKKE(X ◦ NmKE/E) are isomorphic, so 9.4 yields an irreducible discrete
automorphic representation IFE(X) of GL[E:F](A) such that IFE(X)K is isomorphic to IKKE(X ◦ NmKE/E). Be-
cause Gal(Kk∞/F∞) = Gal(K/F), where k∞ is the place of K above ∞, Proposition 9.15 and 9.1.(i) show
that we may choose IFE(X) such that rec IFE(X)∞ = IndGF

GE
(Ξ)

∣∣∣
WF∞

.

Now the base change lift of IFE(X)x to GL[E:F](Kk) is cuspidal with unitary central character, so 9.3 indicates
IFE(X)x is also cuspidal with unitary central character. Thus we may apply Theorem B to obtain a semisim-
ple continuous representation Σ of GF over Qℓ associated with IFE(X). Proposition 9.15 implies that Σ|GK

is isomorphic to IndGF

GE
(Ξ)

∣∣∣
GK

, so 9.1.(i) shows that Σ is isomorphic to IndGF

GE
(Ξ) tensored with a character

Gal(K/F)−→C×. By restricting to WF∞ , we see that this character is trivial. Altogether, IFE(X) is associated
with Σ = IndGF

GE
(Ξ).

Finally, as IFE(X) is cuspidal at one place, we see that IFE(X) itself is cuspidal. □

10.7. We now introduce some notation for Z-virtual representations of WF . Write GF for the Grothendieck group of
finite-dimensional continuous representations of WF . Then GF is free over Z, with a Z-basis given by isomorphism
classes of finite-dimensional irreducible continuous representations ρ of WF . As every such ρ is of the form σ(s) for
some complex number s and continuous representation σ of GF , Brauer induction shows that GF is Z-spanned by
elements of the form IndWF

WE
χ, where E runs over finite separable extensions of F , and χ : WE −→C× runs over

smooth characters [13, 4.10].
The assignments ρ 7→ det ρ and ρ 7→ ρ∨ for finite-dimensional continuous representations ρ of WF are additive.

Therefore they extend to homomorphisms

det : GF −→Homcts(WF ,C×) and (−)∨ : GF −→GF .

Write M for the field of meromorphic functions on C, and fix a nontrivial continuous homomorphism ψ : F −→C×.
We also define Z-bilinear maps

L(−⊗−, s) : GF × GF −→M× and ϵ(−⊗−, ψ, s) : GF × GF −→M×

by extending via Z-linearity from their values on pairs (ρ, ρ′) of isomorphism classes of finite-dimensional irreducible
continuous representations of WF .

10.8. The following forms an automorphic analogue of GF . Write AF for the free Z-basis with generators given by
isomorphism classes of irreducible cuspidal representations π of GLn(F ), where n ranges over all positive integers.
The assignment π 7→ rec(π) extends to a map rec : AF −→GF , and Theorem C implies that this is an isomorphism.
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Write ωπ : F×−→C× for the central character of π. We define Z-linear maps

ωπ : AF −→Homcts(F
×,C×) and (−)∨ : AF −→AF ,

L(−×−, s) : AF ⊗Z AF −→M× and ϵ(−×−, ψ, s) : AF ⊗Z AF −→M×.

by extending via Z-linearity from their values on isomorphism classes of irreducible cuspidal representations of
GLn(F ), or pairs thereof.

10.9. We now prove Theorem D, by using Proposition 10.6 and embedding into the global situation.

Proposition.

(i) For any smooth character χ : F×−→C×, we have rec(χ) = χ ◦Art−1.
(ii) For any irreducible cuspidal representation π of GLn(F ) and smooth character χ : F×−→C×, we have

rec(π ⊗ (χ ◦ det)) = rec(π)⊗ rec(χ).

(iii) For any irreducible cuspidal representation π of GLn(F ), we have

rec(ωπ) = det ◦ rec(π) and rec(π∨) = rec(π)∨.

(iv) For any irreducible cuspidal representations π of GLn(F ) and π′ of GLn′(F ), we have

L(π × π′, s) = L(rec(π)⊗ rec(π′), s) and ϵ(π × π′, ψ, s) = ϵ(rec(π)⊗ rec(π′), ψ, s).

Proof. We have already proved (i) in Proposition 4.6 and (ii) in Proposition 9.14. Now both sides of (iii) are Z-linear
in π, and both sides of (iv) are Z-bilinear in (π, π′). Therefore 10.7 and 10.8 show that (iii) and (iv) follow from
considering the same equations for π = rec−1(IndWF

WE
ρ) and π′ = rec−1(IndWF

WE′ ρ
′) in AF , where E and E′ are

separable extensions of F , and ρ :WE −→C× and ρ′ :WE′ −→C× are smooth characters.
Note that ρ is the product of a finite order character with a Tate twist (s) for some complex number s. The projection

formula and (ii) indicate that twisting ρ by (−s) results in twisting π by (−s). Now (ii) implies that both sides of (iii)
and (iv) are compatible with Tate twists, so we need only consider the case when ρ has finite order. In the same way,
we may assume ρ′ also has finite order.

With this reduction in hand, write Ẽ for the Galois closure of E. The proof of Proposition 9.15 yields a Galois
extension Ẽ/F of global function fields and a place z of Ẽ such that z is inert over F and Ẽz/Fo can be identified
with Ẽ/F , where o is the place of F below z. Note then that Gal(Ẽ/F) is identified with Gal(Ẽ/F ). Writing E for
the subfield of Ẽ corresponding to Gal(Ẽ/E), we see that this identifies Ey with E, where y is the place of E below
z. We apply this to E′ to similarly obtain extensions Ẽ′ ⊇ E′ ⊇ F′ with places z′, y′, and o′.

Because Ẽ/F is inert at one place o, the Chebotarev density theorem provides three more places {x1, x2,∞} of F
that are inert in Ẽ. For all x in {x1, x2,∞}, there exists a finite order smooth character χx : E×

e −→C× such that
the stabilizer of χx ◦ NmẼẽ/Ee

in Gal(Ẽẽ/Fx) equals Gal(Ẽẽ/Ee), where ẽ (respectively e) is the unique place of

Ẽ (respectively E) lying above x [19, Lemma 4.7]. As ρ ◦ Art also has finite order, there exists a finite order smooth
character X : A×

E/E
×−→C× such that X|E×

y
= ρ ◦ Art and X|E×

x
= χx for all x in {x1, x2,∞} [3, Theorem 5

of Chapter X]. The same discussion yields analogous places {x′1, x′2,∞′} of F′ and an analogous finite order smooth
character X ′ : A×

E′/E′×−→C×.
Since F is a nonarchimedean local field, Ẽ/F and hence Ẽ/F are solvable. Therefore we may apply Proposition

10.6 to obtain an irreducible cuspidal automorphic representation IFE(X) of GL[E:F](A) associated with IndGF

GE
(Ξ),

where Ξ : GE−→C× is the character associated with X as in 10.5. Furthermore, the components of IFE(X) at x1,
x2, and∞ are irreducible cuspidal representations, so 10.4 shows that

rec(IFE(X)v) = IndGF

GE
(Ξ)

∣∣∣
WFv

for all places v of F not in {x1, x2,∞}. Taking v = o yields

rec(IFE(X)o) = IndGF

GE
(Ξ)

∣∣∣
WFo

= Ind
WFo

WEy
(X|E×

y
◦Art−1) = IndWF

WE
ρ,
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so π is the component of IFE(X) at o. We apply this to E′/F′ and X ′ to similarly obtain an irreducible cuspidal
automorphic representation IF

′

E′ (X ′) associated with Ind
GF′
GE′ (Ξ

′).
Now 10.5 implies that ωIF

E(X) equals
(
det IndGF

GE
(Ξ)

)
◦Art, so restricting to o tells us that

ωπ = ωIF
E(X)o = det IndGF

GE
(Ξ)

∣∣∣
WFo

= det IndWF

WE
ρ = det recπ.

This completes the first part of (iii). Additionally, because
(
det IndGF

GE
(Ξ)

)
◦ Art has finite image, ωIF

E(X) does as
well. And 10.1 shows that the restriction of IndGF

GE
(Ξ) to WF∞ is irreducible, so IndGF

GE
(Ξ) itself is irreducible. The

same discussion holds for IF
′

E′ (X ′) and Ind
GF′
GE′ (Ξ

′), so we can apply [25, Theorem 2.4] to conclude that (iv) holds.
Finally, return to the situation where π and π′ are irreducible cuspidal representations. Then

L(π × π′, s) =
∏
χ

L(χ, s),

where χ ranges over unramified characters F×−→C× such that π′∨⊗ (χ◦det) is isomorphic to π. Since L(χ, s) has
a pole at s = 1 if and only if χ is trivial, we see that L(π × π′, s) has a pole at s = 1 if and only if π′∨ = π. We have
an analogous decomposition of L(rec(π) ⊗ rec(π′), s), and the same argument indicates that L(rec(π) ⊗ rec(π′), s)

has a pole at s = 1 if and only if rec(π′)∨ = rec(π). Applying (iv) completes the second part of (iii). □
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[23] G. Henniart. On the local Langlands conjecture for GL(n): the cyclic case. Ann. of Math. (2), 123(1):145–203, 1986.
[24] G. Henniart. La conjecture de Langlands locale numérique pour GL(n). Ann. Sci. École Norm. Sup. (4), 21(4):497–544, 1988.
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[30] N. M. Katz and B. Mazur. Arithmetic moduli of elliptic curves, volume 108 of Annals of Mathematics Studies. Princeton University Press,

Princeton, NJ, 1985.
[31] D. Kazhdan. Cuspidal geometry of p-adic groups. J. Analyse Math., 47:1–36, 1986.
[32] L. Lafforgue. Chtoucas de Drinfeld et conjecture de Ramanujan-Petersson. Astérisque, (243):ii+329, 1997.
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[38] C. Mœglin and J.-L. Waldspurger. Le spectre résiduel de GL(n). Ann. Sci. École Norm. Sup. (4), 22(4):605–674, 1989.
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