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Abstract. We study the global analogue of the Fargues–Fontaine curve over

function fields F . We prove some foundational results about its moduli of G-
bundles BunG,F , which is a geometrization of the global Kottwitz set B(F,G).

For example, BunG,F plays the role of Igusa stacks over function fields. We use

BunG,F to reformulate the global Langlands conjecture forG over F in terms of
categorical local Langlands, refining conjectures of Arinkin–Gaitsgory–Kazhdan–

Raskin–Rozenblyum–Varshavsky and Zhu. Finally, we verify this conjecture

when G is commutative. Along the way, we prove a GAGA theorem for smooth
proper schemes over sousperfectoid spaces, which is of independent interest.
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Introduction

The title of this paper pays homage to the foundational work of Fargues–Fontaine
[24]. Starting from a nonarchimedean local field Fv with residue field Fq (and an

auxiliary algebraically closed nonarchimedean field K over Fq), they constructed an
adic space XFv,K with remarkable properties. Since its introduction, the Fargues–
Fontaine curve XFv,K has played a fundamental role in arithmetic geometry over
Fv. For example, work of Fargues–Scholze [25] shows that its moduli of G-bundles
BunG,Fv

is central to the Langlands correspondence for G over Fv.
When Fv is the function field Fq((z)), the Fargues–Fontaine curve already appears

in work of Hartl–Pink [37], so we also call it the Hartl–Pink curve. It can be
described as follows. The product SpaFv × SpaK over Fq exists as an adic space
(in fact, it is isomorphic to the punctured open unit disk over K), and the absolute
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q-Frobenius automorphism FrobK of K acts freely and totally discontinuously on
SpaFv × SpaK. Hence we can form the quotient adic space

XFv,K := (SpaFv × SpaK)/FrobK .(†)

The goal of this paper is to study a global analogue of the above constructions.

G-bundles on the global Hartl–Pink curve. Let F be a global function field
with field of constants Fq. By viewing schemes as adic spaces, one could try to
define a global Hartl–Pink curve by naively copying (†) and attempting to form

“(SpecF × SpaK)/FrobK ”.(‡)

However, two obstacles arise:

1) It is unclear how to interpret “SpecF × SpaK” in a well-behaved way.
2) In any reasonable interpretation of “SpecF × SpaK”, FrobK will no longer act

freely and totally discontinuously.

We will primarily be interested in G-bundles on (‡), so we can circumvent 2) via
descent. To circumvent 1), write C for the geometrically connected smooth proper
curve over Fq associated with F . Then SpecF = lim←−U U , where U runs over dense

open subschemes of C, so formally we expect

“ SpecF × SpaK” = “ lim←−
U

U × SpaK”.

Now U × SpaK does have a well-behaved interpretation: this product exists as
an adic space and in fact is isomorphic to the analytification Uan

K of U over K.
Moreover, this interpretation works well in families, which leads to the following:

Definition. Let G be a connected split1 reductive group over F . For all affinoid
perfectoid spaces S = Spa(R,R+) over Fq,
a) Write BunG,U (S) for the groupoid of G-bundles G on Uan

S equipped with an

isomorphism ϕ : G
∼→Frob∗S G .

b) Write BunG,F (S) for the groupoid lim−→U
BunG,U (S).

Remarks.

1) One can recover BunG,U from BunG,F ; see Lemma 2.6. Therefore we will inter-
changeably use BunG,U and BunG,F .

2) Amusingly, while we do not define the global Hartl–Pink curve, nonetheless we
can define its moduli of G-bundles BunG,F . This is reminiscent of the situation
for local Hartl–Pink curves XFv,K , which depend on the auxiliary K.

Geometry of BunG,F . We start with the following basic properties of BunG,U .

Theorem A. BunG,U is a small Artin v-stack over Fq. It is ℓ-cohomologically

smooth over Fq, and its dualizing complex with Fℓ-coefficients is isomorphic to Fℓ.

Theorem Amirrors results of Fargues–Scholze [25, Theorem IV.1.19] and Hamann–
Imai [34, Proposition 3.18] in the local setting.

To state our next theorem, let us introduce the localization map, which plays an
important role throughout this paper. Write Z for the closed complement C ∖ U .

1In the introduction, we work with split G for simplicity. However, everything works for general
connected reductive groups G over F , and we work in this generality in the body of the paper.
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For all z in Z, there is a natural map SpaFz→U , so by restricting G-bundles along
these maps and using the presentation (†), we get a map of v-stacks

locZ : BunG,U→
∏
z∈Z

BunG,Fz
.

Recall that the local moduli BunG,Fz
has an open substack BunssG,Fz

[25, Theorem
III.4.5], which is the locus where the corresponding G-bundle on the curve XFz,K is
semistable. By taking its preimage under locZ , we define a global semistable locus
BunssG,U . While BunssG,U is defined in terms of its local analogue BunssG,Fz

, we prove
that it admits the following intrinsic description.

Theorem B. BunssG,F is an open substack of BunG,F , and we have an isomorphism

BunssG,F
∼=

∐
b∈B(F,G)basic

∗/Gb(F ),

where B(F,G) denotes the global Kottwitz set [49], B(F,G)basic denotes its subset
of basic elements, and Gb is the inner twist of G associated with b.

Theorem B mirrors a result of Fargues–Scholze [25, Theorem III.4.5] in the local
setting. This is one incarnation of the idea that BunG,Fz is a geometrization of the
local Kottwitz set B(Fz, G), but there are other such incarnations. For example,
Anschütz [3, Theorem 10] proved that the underlying topological space |BunG,Fz

|
is naturally in bijection with B(Fz, G).

We similarly regard BunG,F as a geometrization of the global Kottwitz set. How-
ever, for reasons explained in the next subsection, we do not expect a natural bijec-
tion between |BunG,F | and B(F,G) in general. Nonetheless, we prove the following

description of the Fq-points of BunG,F .

Theorem C. BunG,F (Fq) is naturally equivalent to the groupoid quotient

G(F ⊗Fq
Fq)/G(F ⊗Fq

Fq),

where the action is given by FrobFq
-conjugation. Consequently, the set of isomor-

phism classes in BunG,F (Fq) is naturally in bijection with B(F,G).

Theorem C mirrors a result of Anschütz [4, Theorem 5.3] in the local setting.
Actually, we prove a generalization of Theorem C that fully describes the reduction
of BunG,F ; see Theorem 2.10. The more general Theorem 2.10 mirrors a result of
Gleason–Ivanov–Zillinger [32, Theorem 7.14.(1)] in the local setting.

Relation with shtukas. It turns out that BunG,U plays the role of Igusa stacks
[72] over function fields. Igusa stacks capture the geometry of Shimura varieties,
so let us recall the function field analogue of the latter. Let I be a finite set, and

for all i in I, let Vi be a representation of the Langlands dual group Ĝ. Write V

for the representation ⊠i∈IVi of ĜI . Associated with I and V , there is a moduli
space ShtIG,V of global shtukas bounded by V [69], which is a Deligne–Mumford

stack that is separated and locally of finite type over CI .
There is also a local version of ShtIG,V . Let {Iz}z∈Z be a partition of I, and for

all z in Z, write Vz for the representation ⊠i∈IzVi of Ĝ
Iz . Associated with Iz and

Vz, there is a moduli space LocShtIzG,Vz
of local shtukas bounded by Vz [67], which

is a small v-stack over (SpdOz)Iz .
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We prove the following function field analogue of Scholze’s fiber product conjec-
ture [72, Conjecture 1.1], which is the defining feature of Igusa stacks:

Theorem D. There is a natural cartesian square of small v-stacks

(ShtIG,V )
♢|∏

z∈Z(SpdOz)
Iz
Fq

πHT //

��

∏
z∈Z

(
LocShtIzG,Vz

)
Fq

BL

��

BunG,U
locZ //

∏
z∈Z

BunG,Fz ,

where BL denotes the product of the Beauville–Laszlo maps (LocShtIzG,Vz
)Fq
→BunG,Fz

[25, p. 98], and πHT is a function field analogue of the Hodge–Tate period map.

Actually, we prove a generalization of Theorem D that allows level structures;
see Theorem 3.10. Previously, Hartl–Viehmann [38] studied a version of the period
map πHT for the function field analogue of Rapoport–Zink spaces.

Remarks.

1) Theorem D implies that BunG,U encodes the function field analogue of Igusa
varieties; see Proposition 4.10. Because Igusa varieties associated with non-basic
elements of the Kottwitz set can be positive-dimensional in general, this explains
why we do not expect a natural bijection between |BunG,F | and B(F,G).

2) Gleason–Ivanov–Zillinger [32, Theorem 7.14.(2)] proved a natural description of

the Fq-points of LocShtIzG,Vz
. By combining this description with Theorem C and

the aforementioned result of Anschütz [4, Theorem 5.3], Theorem D immediately
implies the Langlands–Rapoport conjecture for moduli spaces of global shtukas
with arbitrary (in particular, colliding) legs. This generalizes results of Arasteh
Rad–Hartl [6, Theorem 3.21], who proved this when the legs are disjoint.

Relation with Langlands. In the local setting, BunG,Fz
plays a central role in

the Langlands correspondence for G over Fz. For example, let Λ be one of Qℓ, Zℓ, or
Fℓ, and write D(BunG,Fz

,Λ) for the associated derived category of étale sheaves.2

Associated with Iz and Vz, Fargues–Scholze [25] constructed a Hecke operator

TVz : D(BunG,Fz ,Λ)→D(BunG,Fz ,Λ),

which they used to define the automorphic-to-Galois direction of the Langlands
correspondence for G over Fz, up to semisimplification.

Using Theorem D, we prove that applying Hecke operators to the object

locZ,!Λ ∈ D
(∏
z∈Z

BunG,Fz
,Λ

)
=

⊗
z∈Z

D(BunG,Fz
,Λ)

recovers the cohomology of the moduli of global shtukas at infinite level. Write

π∞Z : (ShtIG,V,∞Z)Fq
→U IFq

for the moduli of global shtukas with infinite level at Z, which has an action of
G(FZ) :=

∏
z∈Z G(Fz), and write SV for its intersection cohomology sheaf. Forth-

coming work of Eteve–Gaitsgory–Genestier–Lafforgue will endow π∞Z,!SV with the
structure of a representation of the Weil groupW I

U on the level of derived categories.

2Strictly speaking, when Λ ̸= Fℓ we use (a base change of) motivic sheaves [65, 66]; see 5.1.
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Theorem E. After restricting to
∏
z∈ZW

Iz
Fz
, we have a natural isomorphism

π∞Z,!SV ∼= i∗1(TV (locZ,!Λ)),

where i1 denotes the product of the natural open embeddings ∗/G(Fz) ↪→BunG,Fz ,

and TV is the endofunctor
⊗

z∈Z TVz
of

⊗
z∈Z D(BunG,Fz

,Λ).

Remarks.

1) If one is only interested in Theorem E after taking cohomology groups, it suffices
to use work of Xue [71] instead of the forthcoming work of Eteve–Gaitsgory–
Genestier–Lafforgue. For example, this is the case for the next remark.

2) One can use Theorem E to recover all of the representation-theoretic results in
[54]; see Remark 5.13.2).

In light of Theorem E, it is natural to ask how to interpret locZ,!Λ on the Galois

side of the Langlands correspondence. Write LSĜ,Fz
for the moduli of continuous Ĝ-

valued representations ofWFz
over Λ [16, 25, 73], which is an algebraic stack locally

of finite type over Λ. When the order of π0(Z(G)F ) is invertible in Λ, Fargues–
Scholze [25, Conjecture X.3.5] conjecture that there is a canonical equivalence

Lψz
: D(BunG,Fz

,Λ)
∼→ IndDqc

coh(LSĜ,Fz
)Nilp,

where IndDqc
coh(LSĜ,Fz

)Nilp is the derived category of ind-coherent sheaves on LSĜ,Fz

with nilpotent singular support, and Lψz
depends on the choice of a maximal unipo-

tent subgroup N of G along with a generic continuous character ψz : N(Fz)→Λ×.
The following conjecture was suggested by Scholze. Let ψ : N(A)→Λ× be a

generic continuous character trivial on N(F ), and for all z in Z, take ψz = ψ|N(Fz).

Conjecture F. Assume Fargues–Scholze’s conjecture, so that
⊗

z∈Z Lψz
yields⊗

z∈Z
D(BunG,Fz

,Λ)
∼→
⊗
z∈Z

IndDqc
coh(LSĜ,Fz

)Nilp = IndDqc
coh

(∏
z∈Z

LSĜ,Fz

)
Nilp

.

Under this equivalence, locZ,!Λ corresponds to resZ,∗(ωLSĜ,U
), where LSĜ,U denotes

the moduli of continuous Ĝ-valued representations of WU over Λ [73], and

resZ : LSĜ,U→
∏
z∈Z

LSĜ,Fz

denotes the restriction map.

Remarks.

1) For U = C and Λ = Qℓ, Conjecture F specializes to asking for a natural isomor-
phism Cc(G(F )\G(A)/G(O),Qℓ) ∼= Γ(LSĜ,C , ωLSĜ,C

); see Example 6.11. Pre-

viously, Arinkin–Gaitsgory–Kazhdan–Raskin–Rozenblyum–Varshavsky [8] con-
jectured this, and recently Gaitsgory–Raskin [29] proved a weak version thereof.

More generally, we use Theorem E to prove that Conjecture F implies a con-
jecture of Zhu [73, Conjecture 4.49] after restricting to

∏
z∈ZW

Iz
Fz
; see Proposi-

tion 6.12.
2) Given the previous remark, we regard Conjecture F as the Langlands conjecture

forG over F when ramification is allowed at places in Z. This fulfills a suggestion
of Fargues–Scholze [26, §7] that the global Langlands conjecture ought to study
an object that encodes automorphic forms on Gb for all b in B(F,G).
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In the number field setting, Fargues [23, section 7] has already emphasized the
importance of studying the analogous object πHT,!Λ, though Shimura varieties
place severe restrictions on which b in B(Q, G) can appear.

3) Conjecture F fits well with the interpretation of Langlands as an isomorphism of
4-dimensional topological quantum field theories. In particular, it fits well with
the recent interpretation of relative Langlands as an identification of boundary
theories [9]; we will investigate this in future work.

4) For a version of BunG,F adapted to the global Kaletha set [20] instead of B(F,G),
see Appendix C, written by Peter Dillery. This builds on work of Fargues [22],
who introduced a version of BunG,Fz

adapted to the local Kaletha set [19].

We conclude by proving Conjecture F in the commutative case:

Theorem G. When G is a (not necessarily split) torus, Conjecture F holds.

Proof sketches. We start with part of Theorem A. We prove that BunG,U and
BunG,F are small v-stacks by locally choosing a Frobenius-splitting on U and an-
alyzing affinoid charts of Uan

S , which reduces the problem to a v-descent result of
Scholze–Weinstein [67, Lemma 17.1.8] for vector bundles on perfectoid spaces.

Next, we turn to Theorem D. The S-points of (ShtIG,V )
♢ involve G-bundles on

the algebraic curve CR, while one can glue in the analytic topology to show that
S-points of the fiber product in Theorem D involve G-bundles on the analytification
Can
S . To reconcile this, we prove the following GAGA result in Appendix A:

Theorem H. Let S = Spa(R,R+) be a sousperfectoid space, and let X be a smooth
proper scheme over R. Then the analytification functor

{vector bundles on X}→{vector bundles on Xan
S }

is an equivalence of categories.

Remark. While we were finalizing this paper, Theorem H was proved independently
by Wang [70, Theorem 4.3.1] along very similar lines; evidently, it is of independent
interest. For example, as an application we prove that algebraic stacks of Higgs
bundles agree with their analytification, answering a question of Heuer–Xu [40,
Remark 8.1.2]; see Theorem A.20. This was also proved independently by Wang.

Theorem H provides a lot of control. In addition to proving Theorem D, we use
it to prove Theorem C as follows. An Fq-point of BunG,U involves a G-bundle G
on Uan

Spa Fq((t1/q
∞ ))

equipped with a descent datum with respect to the diagram

Uan
Spa Fq((t1/q

∞ ))×FqSpa Fq((t1/q
∞ ))×FqSpa Fq((t1/q

∞ ))

⇒→ Uan
Spa Fq((t1/q

∞ ))×FqSpa Fq((t1/q
∞ ))

⇒ Uan
Spa Fq((t1/q

∞ ))
.

A result of Gleason–Ivanov–Zillinger [32, Theorem 3.15] implies that the restriction

of G along SpaFz→U arises uniquely from a G-bundle on F̆z. The latter are all
trivial, so we can glue in the analytic topology to assume that U = C. Finally, we
can apply Theorem H and a result of D. Kim [48, Theorem 4.9] to conclude that G
arises uniquely from a G-bundle on CFq

.

We now turn to Theorem B. By proving a description of pro-étale OU -local
systems analogous to Kedlaya–Liu’s description [47, Theorem 8.5.12] of pro-étale
Qp-local systems, we show that BunG,F has a natural open substack isomorphic to

∗/G(F ). From here, twisting and Theorem C let us show that BunG,F has an open
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substack isomorphic to the disjoint union in Theorem B. To prove that this is all
of BunssG,F , we use Beauville–Laszlo uniformization [25, Proposition III.3.1] to lift

geometric points from BunssG,Fz
to LocShtIzG,Vz

for some Vz. Combining this with

Theorem D yields geometric points of ShtIG,V , and we conclude using a standard

nonemptiness criterion for ShtIG,V . Similarly, we finish proving Theorem A by using
the charts provided by Beauville–Laszlo uniformization and Theorem D.

In an ideal world, Theorem E would follow immediately from Theorem D. For
Λ = Fℓ, one can successfully execute this using the étale sheaf theory of [63], but for
general Λ one has to compare the motivic sheaf theory of [65] with classical étale
ℓ-adic sheaf theories for algebraic varieties. We develop some tools for facilitating
these comparisons in Appendix B.

Finally, we prove Theorem G by using work of Langlands [52] on his conjectures
for tori T to prove an explicit description of LSLT,U .

Outline. In §1, we study vector bundles on the global Hartl–Pink curve. In §2,
we use the Tannakian description of G-bundles to convert results from §1 into part
of Theorem A, part of Theorem B, and Theorem C. In §3, we introduce shtukas
and prove Theorem D. In §4, we use Theorem D to finish proving Theorem A and
Theorem B, as well as explain the relation with Igusa varieties. In §5, we state a
forthcoming result of Eteve–Gaitsgory–Genestier–Lafforgue and prove Theorem E.
Finally, in §6 we discuss Conjecture F and prove Theorem G.

In Appendix A, we prove Theorem H, which is used throughout the paper. In
Appendix B, we prove basic results about the (overconvergent) motivic sheaves of
[65, 66], which we use in §5 and §6. Finally, in Appendix C, written by Peter
Dillery, we consider a version of BunG,F adapted to the global Kaletha set.

Notation. Except for in Appendix A, all rings and stacks are classical (i.e. not
derived) unless otherwise specified.

By nonarchimedean field, we mean a topological field complete with respect to a
rank-1 nonarchimedean valuation. For any ring homomorphism A→B, write A∼

for the integral closure of the image of A in B. For any scheme X and affine group
G over X, write RepX G for the category of representations of G in vector bundles
on X.

We view schemes as adic spaces via the fully faithful functor sending SpecA
to Spa(A,Z∼) for all rings A, where A is endowed with the discrete topology [62,
p. 64]. For any adic space X over SpaZp, write X♢ for the associated small v-sheaf
over Fp as in [67, Lemma 18.1.1].

Unless otherwise specified, all products are over Fq. For any prestack X on

{affine schemes over Fq},

write FrobX : X→X for its absolute q-Frobenius endomorphism, and write Xperf

for its limit perfection. The transition morphisms for our ind-schemes are required
to be closed embeddings. Write Perf for the category of affinoid perfectoid spaces
over Fp, and for any small v-stack X over Fq, write FrobX : X→X for its absolute
q-Frobenius endomorphism.

We view derived categories as stable ∞-categories, and we view all functors
between derived categories as derived functors. Write Sym for the ∞-category of
presentably closed symmetric monoidal stable ∞-categories.
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For any ring A, write D(A) for the derived category of A-modules, and write
Dperf(A) ⊆ D(A) for the full subcategory of perfect objects. For any derived
algebraic stack X, write Dqcoh(X) for its derived category of quasicoherent sheaves,
and write Dperf(X) ⊆ D(X) for the full subcategory of perfect objects. Write Xcl

for the underlying classical algebraic stack of X.
For any topological space X, write X for the associated condensed set as in [61,

Proposition 1.7].
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1. Vector bundles on the global Hartl–Pink curve

In this section, we introduce and study vector bundles on the global Hartl–Pink
curve. They are defined using analytifications, so we start by discussing the latter
in terms of adic spaces. For example, we prove v-descent for vector bundles on
analytifications. This entire discussion applies to any smooth scheme over Fq.

We then specialize to smooth curves U over Fq, which are the main case of
interest in this paper. We prove a description of pro-étale OU -local systems in
terms of vector bundles on the global Hartl–Pink curve, analogous to Kedlaya–
Liu’s description of pro-étale Qp-local systems. Finally, we prove a vector bundle

version of Theorem C.

1.1. Analytification has the following interpretation in the category of adic spaces.

Definition. Let X be a scheme. Let S be an adic space over X, and let Y be a
scheme over X. Write Y an

S , if it exists, for the fiber product Y ×X S in the category
of adic spaces.

By replacing X and Y with affine open covers, the Spec-global sections adjunc-
tion implies that Y an

S equals the “fiber product” Y ×X S in the sense of [42, (3.8)].

1.2. We will use the following generalization of [54, Lemma 4.4], which describes
the functor of points of analytifications without needing to sheafify in the analytic
topology. Let D be a noetherian ring. Let S be an adic space over D, and let Y
be a quasiprojective scheme over D.

Lemma. For all adic spaces Spa(A,A+) over S, morphisms Spa(A,A+)→Y an
S

over S are equivalent to morphisms SpecA→Y over D.

Proof. Since D is noetherian and Y is quasiprojective over D, there exist finitely
many homogeneous polynomials f1, . . . , fl and g1, . . . , gm in D[T0, . . . , Td] such
that Y is the locus in PdD where fa(T0, . . . , Td) vanishes for all 1 ≤ a ≤ l and
gb(T0, . . . , Td) vanishes nowhere for all 1 ≤ b ≤ m.
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By the universal property of Y an
S , morphisms Spa(A,A+)→Y an

S over S are equiv-
alent to morphisms Spa(A,A+)→Y over D. The Spec-global sections adjunction
implies that the latter are equivalent to the data of a line bundle L on Spa(A,A+)
equipped with sections s0, . . . , sd generating L such that fa(s0, . . . , sd) vanishes
for all 1 ≤ a ≤ l and gb(s0, . . . , sd) vanishes nowhere for all 1 ≤ b ≤ m. Finally, [46,
Theorem 1.4.2] shows these are equivalent to morphisms SpecA→Y over D. □

1.3. The following lemma lets us compute the global sections of analytifications.

Lemma. Let Y = Spa(A,A+) be a smooth affinoid adic space over a nonar-
chimedean field K, let Spa(R,R+) be an affinoid sousperfectoid adic space over
SpaK, and write (A⊗̂KR, (A+⊗̂K◦R+)∼) for the base change of (K,K◦)→(A,A+)
to (R,R+). Then Spa(A⊗̂KR, (A+⊗̂K◦R+)∼) is a sousperfectoid adic space.

Proof. Since Y is smooth over K, [43, (2.2.8)] implies that there is a finite rational
open cover {Yi}mi=1 of Y that are rational open subspaces of finite étale covers of
closed unit polydisks over K. For all 1 ≤ i ≤ m, write Yi = Spa(Ai, A

+
i ). Then

Ai⊗̂KR is a rational localization of a finite étale algebra over R⟨T1, . . . , Td⟩, so [67,
Proposition 6.3.3] shows that Ai⊗̂KR is sousperfectoid and hence strongly sheafy
as in [36, Definition 4.1].

Write (Ai⊗̂KR, (A+
i ⊗̂K◦R+)∼) for the base change of (K,K◦)→(Ai, A

+
i ) to

(R,R+). Then {Spa(Ai⊗̂KR, (A+
i ⊗̂K◦R+)∼)}mi=1 is a finite rational open cover of

Spa(A⊗̂KR, (A+⊗̂K◦R+)∼),

and its associated Čech complex is obtained by applying −⊗̂KR to the Čech com-
plex associated with {Yi}mi=1. Because A is sheafy, the latter has cohomology A
in zeroth degree and 0 elsewhere. The exactness of −⊗̂KR implies that the Čech
complex associated with {Spa(Ai⊗̂KR, (A+

i ⊗̂K◦R+)∼)}mi=1 has cohomology A⊗̂KR
in zeroth degree and 0 elsewhere, so the result follows from [36, Corollary 4.5]3. □

1.4. We will analytify smooth varieties as follows. Let Y = SpecK[T1, . . . , Td]/I
be a smooth affine scheme over a nonarchimedean field K, and let S = Spa(R,R+)
be an affinoid sousperfectoid space over SpaK. For all pseudouniformizers ϖ of
K, write BS,ϖ for the topological ring R⟨ϖT1, . . . , ϖTd⟩/I, and write B+

S,ϖ for the

integral closure in BS,ϖ of the image of R+⟨ϖT1, . . . , ϖTd⟩.

Proposition. The pre-adic space YS,ϖ := Spa(BS,ϖ, B
+
S,ϖ) is a sousperfectoid adic

space. Moreover, Y an
S equals lim−→ϖ

YS,ϖ, where ϖ runs over pseudouniformizers of

K and the transition morphisms are open embeddings. Consequently, Y an
S exists

and is sousperfectoid.

Proof. Write A for K⟨ϖT1, . . . , ϖTd⟩/I, and write A+ for the integral closure in
A of the image of K◦⟨ϖT1, . . . , ϖTd⟩. Since Y is smooth over K, the affinoid adic
space Spa(A,A+) is smooth over K. Hence the first statement follows from Lemma
1.3 and (BS,ϖ, B

+
S,ϖ) being the base change of (K,K◦)→(A,A+) to (R,R+). The

second statement follows from the universal property of Y an
S . □

3While [36] works over Qp, the proof of [36, Corollary 4.5] does not use this assumption.
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1.5. Next, we specialize to smooth varieties over Fq. Let Y = SpecFq[T1, . . . , Td]/I
be a smooth affine scheme over Fq, and let S = Spa(R,R+) be an affinoid perfectoid
space over Fq. Any pseudouniformizer ϖ of R induces a morphism

S→SpaFq((ϖ1/q∞)).

By applying Proposition 1.4 to YFq((ϖ1/q∞ )), we see that Y an
S exists and equals⋃

ϖ YS,ϖ, where ϖ runs over pseudouniformizers of R.
To prove v-descent for vector bundles on the analytification of Y , we use Frobe-

nius to construct the following natural perfectoid cover. Note that (FrobY )
an
S sends

YS,ϖ1/q to YS,ϖ. Write B+,perf
S,ϖ for the ϖ-adic completion of lim−→i

B+

S,ϖ1/qi
, where i

runs over non-negative integers and the transition maps are given by (FrobY )
an,∗
S .

Write Bperf
S,ϖ for B+,perf

S,ϖ [ 1ϖ ]. Finally, write (Y an
S )perf , if it exists, for the limit lim←−i Y

an
S

in the category of uniform analytic adic spaces, where the transition maps are given
by (FrobY )

an
S .

Proposition. The pre-adic space Y perf
S,ϖ := Spa(Bperf

S,ϖ , B
perf,+
S,ϖ ) is affinoid perfec-

toid. Moreover, Y perf
S,ϖ equals the fiber product YS,ϖ ×Y an

S
(Y an
S )perf in the category

of uniform analytic adic spaces, so (Y an
S )perf =

⋃
ϖ Y

perf
S,ϖ exists and is perfectoid.

Finally, the map BS,ϖ→Bperf
S,ϖ of topological BS,ϖ-modules splits.

Proof. For the first statement, note that (Bperf
S,ϖ , B

+,perf
S,ϖ ) is the colimit of

{(BS,ϖ1/qi , B
+

S,ϖ1/qi
)}i

in the category of uniform Tate Huber pairs. Therefore [63, Proposition 3.5] in-

dicates that it suffices to check that Bperf
S,ϖ is perfect. Because S is perfectoid,

FrobS induces an isomorphism YS,ϖ
∼→YS,ϖ1/q . Composing this isomorphism with

(FrobY )
an
S : YS,ϖ1/q→YS,ϖ yields the absolute q-Frobenius endomorphism, which

implies that Bperf
S,ϖ is indeed perfect.

For the second statement, the above shows that Y perf
S,ϖ equals the limit lim←−i YS,ϖ1/qi

in the category of uniform analytic adic spaces. The universal property of Y an
S im-

plies that the square

YS,ϖ1/q

(FrobY )anS //
� _

��

YS,ϖ� _

��

Y an
S

(FrobY )anS // Y an
S

is cartesian, so taking lim←−i in the category of uniform analytic adic spaces yields

the desired result.
For the third statement, the smoothness of Y implies that FrobY,∗ Fq[T1, . . . , Td]/I

is a finite projective Fq[T1, . . . , Td]/I-module [12, Lemma 1.1.1]4. Since Y is also
affine, [12, Proposition 1.1.6] shows that Y is Frobenius-split.

4While [12] works over an algebraically closed field, the proofs of [12, Lemma 1.1.1] and [12,
Proposition 1.1.6] do not use this assumption.
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Note that the square

Fq[T1, . . . , Td]/I
Frob∗

Y //

��

FrobY,∗ Fq[T1, . . . , Td]/I

��

BS,ϖ
(FrobY )an,∗S // BS,ϖ1/q

is a pushout in the category of rings. Therefore applying −⊗Fq [T1,...,Td]/IBS,ϖ to an
Fq[T1, . . . , Td]/I-module splitting of the top arrow yields a topological BS,ϖ-module
splitting of the bottom arrow. Finally, taking the completed colimit of {BS,ϖ1/qi}i
yields a topological BS,ϖ-module splitting of BS,ϖ→Bperf

S,ϖ . □

1.6. We now prove v-descent for vector bundles on (open subspaces of) analyti-
fications. Let Y be a smooth scheme over Fq, and let VS be an open subspace of
Y an
S . For all affinoid perfectoid spaces S′ over S, write VS′ for the preimage of VS .

Theorem. The presheaf of categories on PerfS given by

S′ 7→ {vector bundles on VS′}

satisfies v-descent.

Proof. By replacing Y and VS with open covers, we can assume that

Y = SpecFq[T1, . . . , Td]/I

is affine and that VS = Spa(A,A+) is affinoid. Let S′→S be an affinoid perfectoid
v-cover. Since Y an

S =
⋃
ϖ YS,ϖ, we see that VS lies in YS,ϖ for some pseudouni-

formizer ϖ of R. Write V perf
S for the preimage of VS in Y perf

S,ϖ .

Let E ′ be a vector bundle on VS′ with descent datum α with respect to

VS′×SS′×SS′ ⇒→ VS′×SS′ ⇒ VS′ .

By Proposition 1.5, pullback yields a vector bundle Ẽ ′ on V perf
S′ with commuting

descent data α̃ with respect to the adic spaces

V perf
S′×SS′×SS′ ⇒→ V perf

S′×SS′ ⇒ V perf
S′

and β′ with respect to the affinoid pre-adic spaces

V perf
S′ ×VS′ V

perf
S′ ×VS′ V

perf
S′,ϖ ⇒→ V perf

S′ ×VS′ V
perf
S′ ⇒ V perf

S′ .

Proposition 1.5 indicates that the V perf
(−) are perfectoid, so [67, Lemma 17.1.8] en-

ables us to descend (Ẽ ′, α̃) and (β, α̃) to a vector bundle Ẽ on V perf
S with descent

datum β with respect to the affinoid pre-adic spaces

V perf
S ×VS

V perf
S ×VS

V perf
S ⇒→ V perf

S ×VS
V perf
S ⇒ V perf

S .

Finally, Proposition 1.5 shows that the map BS,ϖ→Bperf
B,ϖ of topological BS,ϖ-

modules splits, so the map A→A⊗̂BS,ϖ
Bperf
B,ϖ of topological A-modules also splits.

Hence [68, Tag 08XA] and [68, Tag 08XD] enable us to descend (Ẽ , β) to a vector
bundle E on VS , as desired. □
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1.7. The Frobenius-invariants of global sections of analytifications are given as
follows. Write A for the global sections of Y , endowed with the discrete topology.

Proposition. The natural map A(S)→Γ(Y an
S ,OY an

S
)Frob

∗
S=1 is an isomorphism.

Proof. By replacing Y with an open cover, we can assume that

Y = SpecFq[T1, . . . , Td]/I

is affine. Let {em}m be an Fq-basis of A consisting of images of monomials. For

all pseudouniformizers ϖ of R, this induces an identification
⊕̂

mR · em
∼→BS,ϖ via

sending Ti toϖTi for all 1 ≤ i ≤ d. Under this identification, Frob∗S : Bϖ,S
∼→Bϖq,S

acts coordinatewise, so
⊕

mR
Frob∗

S=1 · em
∼→B

Frob∗
S=1

S,ϖ . Now [47, Corollary 3.1.4]5

implies that Cont(|S|,Fq)
∼→RFrob∗

S=1, so the quasicompactness of |S| shows that

A(S) = Cont(|S|, A) = Cont
(
|S|,

⊕
m

Fq · em
) ∼→

⊕
m

RFrob∗
S=1 · em.

Finally, note that the global sections of Y an
S are given by

⋂
ϖ BS,ϖ, where ϖ runs

over pseudouniformizers of R. Therefore taking
⋂
ϖ yields the claim. □

1.8. Finally, we specialize to smooth curves over Fq, which are the main case of
interest in this paper. Let C be a geometrically connected smooth proper curve
over Fq. Write F for its function field, and write A for its adele ring. Let U be a
dense open subscheme of C, and write OU for its ring of integral adeles. When U
equals C, we omit it from our notation.

For all closed points v of C, write Fv for its residue field, fix an embedding
Fv→Fq over Fq, write Ov for the completed local ring at v, and write Fv for the
fraction field of Ov. Let Av be one of {Ov, Fv}. By applying [25, Proposition II.1.1]
to SpaFv × S, we see that SpaAv × S is a sousperfectoid adic space.

We define vector bundles on the global and local Hartl–Pink curves as follows.

Definition.

a) Write BunU (S) for the category of vector bundles E on Uan
S equipped with an

isomorphism ϕ : E
∼→Frob∗S E .

b) Write BunF (S) for the category lim−→U
BunU (S), where U runs over dense open

subschemes of C.
c) Write BunAv

(S) for the category of vector bundles E on SpaAv × S equipped

with an isomorphism ϕ : E
∼→Frob∗S E .

Theorem 1.6 indicates that BunU satisfies v-descent. Proposition 1.7 implies
that the transition morphisms in b) are faithful, so BunF also satisfies v-descent.

1.9. Usually, the local Hartl–Pink curve for Fv is defined using qdeg v-Frobenius
instead of q-Frobenius. We now relate these two definitions. Write XS,Fv

for the
relative Fargues–Fontaine curve for Fv as in [25, Definition I.2.2].

Proposition. The presheaf of categories BunAv satisfies v-descent, and its base
change to PerfFv is naturally isomorphic to

S 7→
{

vector bundles E on SpaAv ×Fv
S equipped

with an isomorphism ϕ : E
∼→(Frobdeg vS )∗E

}
.

5While [47, Corollary 3.1.4] is stated for q = p, the proof applies verbatim for general q.
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Consequently, the base change of BunFv
to PerfFv

is naturally isomorphic to

S 7→ {vector bundles on XS,Fv
}.

Proof. For the first statement, let S′→S be an affinoid perfectoid v-cover. Then
SpaFv×S′→SpaFv×S is also an affinoid perfectoid v-cover, so the first statement
follows from [67, Proposition 19.5.3]. The second statement follows from arguing
as in the proof of [54, Lemma 5.12]. Finally, the third statement follows from

XS,Fv
= (SpaFv ×Fv

S)/Frobdeg vS . □

1.10. Thanks to Artin–Schreier–Witt, BunOv
enjoys the following description.

Proposition. The presheaf of categories BunOv
is naturally isomorphic to

S 7→ {pro-étale Ov-local systems on S}.

Proof. After replacing (−)[[π]] with −⊗̂FqFv[[π]], where π denotes a uniformizer of
Ov, the proof proceeds as in [54, Proposition 3.7] and [54, Theorem 3.12]. □

1.11. The following relationship between vector bundles on the global and local
Hartl–Pink curves plays an important role in this paper. Write Z for the closed
complement C ∖ U . For all closed points u of U , we have a natural morphism of
adic spaces SpaOu→U , and for all z in Z, we have a natural morphism of adic
spaces SpaFz→U . Therefore pullback yields morphisms

locu : BunU→BunOu
and locz : BunU→BunFz

.

Definition.

a) Write

loc : BunU→
∏
u

BunOu ×
∏
z

BunFz

for the morphism induced by the {locu}u and {locz}z, where u runs over closed
points of U , and z runs over Z.

b) Write BunA for the presheaf of categories lim−→U

∏
u BunOu

×
∏
z BunFz

, where U

runs over dense open subschemes of C.
c) Write loc : BunF →BunA for the morphism obtained by taking lim−→U

of a).

Proposition 1.9 implies that BunA satisfies v-descent.

1.12. We will use the following lemma to reduce to the situation where PicU = 1.
Because U is Dedekind, PicU = 1 if and only if all vector bundles on U are trivial.
Since U is a smooth curve, this implies that U is affine.

Lemma. There exists an open cover {C1, C2} of C satisfying PicC1 = PicC2 = 1
and hence an open cover {U1, U2} of U satisfying PicU1 = PicU2 = 1.

Proof. The finitude of Fq implies that PicC is finitely generated. Let L1, . . . ,Lg

be generators of PicC, and let C1 be a dense open subscheme of C such that Li|C1

is trivial for all 1 ≤ i ≤ g. Then excision for class groups implies that PicC1 = 1.
Because C ∖ C1 is finite, weak approximation shows that the order-of-vanishing
map F×→Z⊕(C∖C1) is surjective, so for all 1 ≤ i ≤ g, there exists a divisor Di

supported on C1 such that Li
∼= OC(Di). By taking C2 = C ∖

⋃g
i=1 suppDi,

excision for class groups again implies that PicC2 = 1. Finally, the analogous
statements hold for U1 = U ∩C1 and U2 = U ∩C2 by excision for class groups. □
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1.13. We will use the following notion of local systems on S with coefficients in
OU , which is local both in S and in U . For any E in QCoh(U), write E for the
constant QCoh(U)-valued sheaf on the site ∗pro-ét induced by E .

Definition. A pro-étale OU -local system on S is an OU -module on the site Spro-ét

that, locally in Spro-ét, is of the form E for some vector bundle E on U .

When PicU = 1, note that this agrees with the notion of pro-étale A-local sys-
tems, where A denotes the global sections of U endowed with the discrete topology.

1.14. We now prove a description of pro-étale OU -local systems in terms of vector
bundles on the global Hartl–Pink curve; this is the global analogue of a theorem of
Kedlaya–Liu [47, Theorem 8.5.12].

We say that an object in BunFv
(S) has slope zero if, under the identification from

Proposition 1.9, its image in BunFv (SpaFv×S) has slope zero Harder–Narasimhan
polygon as in [25, p. 74]. Note that this agrees with the usual notion when S lies
over Fv. Moreover, for all (E , ϕ) in BunG,Ov

(S), its image in BunG,Fv
(S) has slope

zero.

Theorem. We have an exact tensor equivalence of categories

{pro-étale OU -local systems on S} ∼→
{

objects in BunU (S) whose image in
BunFz

(S) has slope zero for all z in Z

}
given by L 7→ (L⊗OU

OUan
S
,L⊗OU

(Frob−1
S )∗).

Proof. By replacing U with the open cover {U1, U2} from Lemma 1.12, we can
assume that PicU = 1. Note that the above functor preserves tensor products and
duals. Hence taking internal homs reduces full faithfulness to proving that, for all
A-local systems L on S, the map

HomA(A,L)→HomOUan
S
((OUan

S
, (Frob−1

S )∗), (L⊗A OUan
S
,L⊗A (Frob−1

S )∗))

is a bijection. By replacing S with a pro-étale cover and using Theorem 1.6, we can
assume that L = A. Then the result follows from Proposition 1.7.

For essential surjectivity, let (E , ϕ) be an object in BunU (S). By full faithfulness
and pro-étale descent, it suffices to prove that there exists an affinoid perfectoid
pro-étale cover S′→S such that (E , ϕ)|S′ is trivial. Since locz(E , ϕ) has slope zero
for all z in Z, [25, Theorem II.2.19] yields an affinoid perfectoid pro-étale cover
S′ = Spa(R′, R′+)→S such that, for all z in Z, the base change locz(E , ϕ)|S′ is
trivial. Now {Uan

S′ }∪{SpaOz×S′}z is an open cover of Can
S′ , so we can glue (E , ϕ)|S′

with the trivial object in BunOz
(S′) for all z in Z to obtain an object (E ′, ϕ′) in

BunC(S
′). Theorem A.19 shows that (E ′, ϕ′) is the analytification of a vector bundle

E ′ alg on CR′ equipped with an isomorphism ϕ′ alg : E ′ alg ∼→Frob∗R′ E ′ alg. After
replacing SpecR′ with a clopen cover, [50, Lemme 3 du paragraphe I.3] indicates
that (E ′ alg, ϕ′ alg) is isomorphic to (E alg|R′ , idE alg ⊗Fq

(Frob−1
R′ )∗) for some vector

bundle E alg on C. Finally, PicU = 1 implies that E alg|U is trivial. □

1.15. Let B be a perfect Fq-algebra, endowed with the discrete topology. We
conclude this section by proving that, in many situations, vector bundles on UB
are equivalent to vector bundles on “USpdB”.



COURBES ET FIBRÉS VECTORIELS EN THÉORIE DE HODGE z-ADIQUE GLOBALE 15

What do we mean by “USpdB”? Note that SpaB((t1/q
∞
))→SpdB is surjective

and representable in perfectoid spaces, so we have a natural diagram of perfectoids

SpaB((t1/q
∞
))×SpdB SpaB((t1/q

∞
))×SpdB SpaB((t1/q

∞
))

⇒→ SpaB((t1/q
∞
))×SpdB SpaB((t1/q

∞
)) ⇒ SpaB((t1/q

∞
)).

(⋆)

Theorem. Assume that each connected component of SpecB is a valuation ring.
Then analytification induces an exact tensor equivalence from

{vector bundles on UB}

to vector bundles on Uan
SpaB((t1/q∞ ))

with descent datum with respect to

Uan
SpaB((t1/q∞ ))×SpdBSpaB((t1/q∞ ))×SpdBSpaB((t1/q∞ ))

⇒→ Uan
SpaB((t1/q∞ ))×SpdBSpaB((t1/q∞ )) ⇒ Uan

SpaB((t1/q∞ )).
(⋆⋆)

Proof. For full faithfulness, let E1 and E2 be vector bundles on UB , write (E ′
1, α1)

and (E ′
2, α2) for the corresponding vector bundles on Uan

SpaB((t1/q∞ ))
with descent

data with respect to (⋆⋆), and let f ′ : E ′
1→E ′

2 be a morphism of vector bundles
compatible with the descent data. By replacing U with an open cover, we can
assume that U = SpecA is affine. Write A = Fq[T1, . . . , Td]/I. For all affinoid
perfectoid spaces S = Spa(R,R+) over Fq, Lemma 1.3 shows that

US,1 := Spa(R⟨T1, . . . , Td⟩/I, (R+⟨T1, . . . , Td⟩)∼)

is an open subspace of Uan
S . For all affinoid perfectoid spaces S′ over S, note that

the preimage of US,1 in U
an
S′ equals US′,1, so restricting (⋆⋆) to USpaB((t1/q∞ )),1 yields

USpaB((t1/q∞ ))×SpdBSpaB((t1/q∞ ))×SpdBSpaB((t1/q∞ )),1

⇒→ USpaB((t1/q∞ ))×SpdBSpaB((t1/q∞ )),1 ⇒ USpaB((t1/q∞ )),1.

Since I is finitely generated, for all positive integers m, we have

B((t
1/q∞

1 , . . . , t1/q
∞

m ))⟨T1, . . . , Td⟩/I =
(
B[T1, . . . , Td]/I

)
((t

1/q∞

1 , . . . , t1/q
∞

m )),

so taking global sections yields

(A⊗Fq B)((t
1/q∞

1 , t
1/q∞

2 , t
1/q∞

3 )) ⇔← (A⊗Fq B)((t
1/q∞

1 , t
1/q∞

2 )) ⇔ (A⊗Fq B)((t
1/q∞

1 )).

Therefore [48, Theorem 4.9] indicates that the restriction of f ′ to USpaB((t1/q∞ )),1

arises uniquely from a morphism f : E1→E2 of vector bundles on UB . Since
morphisms of vector bundles on Uan

S are determined by their restrictions to US,1,
this yields the desired result.

For essential surjectivity, let E ′ be a vector bundle on Uan
SpaB((t1/q∞ ))

with descent

datum α with respect to (⋆⋆). For all z in Z, pullback yields a vector bundle E ′
z on

SpaFz × SpaB((t1/q
∞
)) with descent datum αz with respect to the evaluation of

SpaFz×(−) on (⋆), and applying [32, Theorem 3.15] and [32, Remark 3.14] to Fv⊗Fq

B shows that (E ′
z , αz) arises uniquely from a vector bundle Ez on SpecFz⊗̂Fq

B.
After replacing SpecB by a clopen cover, [45, Theorem 6.1] indicates that Ez is
trivial. Now {Uan

(−)} ∪ {SpaOz × (−)}z is an open cover of Can
(−), so we can glue

(E ′, α) to the trivial vector bundle on SpaOz × SpaB((t1/q
∞
)) with descent datum
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with respect to the evaluation of SpaOz × (−) on (⋆). This yields a vector bundle

Ê ′ on Can
SpaB((t1/q∞ ))

with descent datum α̂ with respect to

Can
SpaB((t1/q∞ ))×SpdBSpaB((t1/q∞ ))×SpdBSpaB((t1/q∞ ))

⇒→ Can
SpaB((t1/q∞ ))×SpdBSpaB((t1/q∞ )) ⇒ Can

SpaB((t1/q∞ )).

Theorem A.19 shows that this corresponds to a vector bundle Ê ′ alg on C
B((t

1/q∞
1 ))

with, for all positive integers n, a descent datum α̂n with respect to

C
B[[t

1/q∞
1 ,t

1/q∞
2 ,t

1/q∞
3 ]]⟨tn1 /t2t3,tn2 /t1t3,tn3 /t1t2⟩[1/t1t2t3]

⇒→ C
B[[t

1/q∞
1 ,t

1/q∞
2 ]]⟨tn1 /t2,tn2 /t1⟩[1/t1t2]

⇒ C
B((t

1/q∞
1 ))

.
(⋆ ⋆ ⋆)

Let {C1, C2} be an affine open cover of C. For all i in {1, 2}, write Ai for the
global sections of Ci, and note that Ai is free over Fq. Hence restricting (⋆ ⋆ ⋆) to
(Ci)B((t

1/q∞
1 ))

, taking global sections, and taking lim←−n yields

Ai ⊗Fq
B((t

1/q∞

1 , t
1/q∞

2 , t
1/q∞

3 )) ⇔← Ai ⊗Fq
B((t

1/q∞

1 , t
1/q∞

2 )) ⇔ Ai ⊗Fq
B((t

1/q∞

1 )).

Therefore [48, Theorem 4.9] indicates that the restriction of (Ê ′, α̂) to (Ci)(−),1

arises uniquely from a vector bundle Êi on (Ci)B . Now {(C1)(−),1, (C2)(−),1} is an
open cover of Can

(−) and {(C1)B , (C2)B} is an open cover of CB , so (Ê ′, α̂) arises

uniquely from a vector bundle Ê on CB . Finally, restrict Ê to UB . □

2. G-bundles

In this section, we introduce G-bundles on the global Hartl–Pink curve. After
defining the moduli stack BunG,F thereof, we define its localization map to a product
of local moduli stacks BunG,Fz

, which plays an important role in this paper. For
example, we use the localization map to define the global semisimple locus BunssG,F
in BunG,F . Using results from §1, we prove part of Theorem A, part of Theorem B
(though we postpone the official statement of Theorem B to §4), and Theorem C.

2.1. Let G be a parahoric group scheme over C as in [57, Definition 2.18]. We also
write G for its base change to U , F , Ov, or Fv for any closed point v of C.

We have the following standard Tannakian description of G-torsors. Let Y be
a sousperfectoid space over C, and let G be an étale G-torsor on Y . For all V in
RepC G, write G (V ) for the locally free OY,ét-module G ×G (V ⊗OC

OY,ét), which
arises uniquely from a vector bundle G (V ) on Y by [47, Theorem 8.2.22 (d)].

Proposition. The above induces an equivalence of categories between

a) étale G-torsors on Y ,
b) exact tensor functors RepC G→{vector bundles on Y }.
Moreover, when Y = Spa(T, T+) is affinoid, all étale G-torsors on Y are repre-
sentable by adic spaces, and the above are naturally equivalent to

c) étale G-torsors on SpecT ,
d) exact tensor functors RepC G→{finite projective T -modules}.

Proof. By [13, Lemma 3.1], OG is a filtered colimit of objects in RepC G. Hence
the result follows from the proof of [55, Proposition 6.10]. □
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2.2. We now define the stack of G-bundles on the global and local Hartl–Pink
curves. Let Av be one of {Ov, Fv}.

Definition.

a) Write BunG,U (S) for the groupoid of G-torsors G on Uan
S equipped with an

isomorphism ϕ : G
∼→Frob∗S G .

b) Write BunG,F (S) for the groupoid lim−→U
BunG,U (S), where U runs over dense

open subschemes of C.
c) Write BunG,Av

(S) for the groupoid of G-torsors G on SpaAv×S equipped with

an isomorphism ϕ : G
∼→Frob∗S G .

Using Proposition 2.1, Theorem 1.6 indicates that BunG,U is a v-stack. Proposi-
tion 1.7 implies that the transition morphisms in b) are faithful, so BunG,F is also a
v-stack. Finally, Proposition 1.9 indicates that BunG,Av

is a v-stack, and the proof
of [25, Proposition III.1.3] implies that all of these v-stacks are small.

2.3. Example. We claim that BunG,C is naturally isomorphic to the constant stack
over Fq associated with the groupoid∐

α∈ker1(F,G)

Gα(F )\Gα(A)/G(O),(♡)

where ker1(F,G) denotes the kernel of the localization map

(locv)v : H
1(F,G)→

∏
v

H1(Fv, G),

and Gα over F denotes the inner twist of G associated with α. To see this, write
BG for the smooth algebraic stack over Fq of G-bundles on C. Then Theorem A.19
identifies S-points of BunG,C with SpecR-points of the algebraic stack (BG)FrobBG

of FrobBG
-fixed points of BG. By [69, Lemma 3.3 b)], the latter is naturally iso-

morphic to the constant stack over Fq associated with the groupoid BG(Fq), and
[51, Remarque 12.2] identifies BG(Fq) with (♡). Since its automorphism groups are

finite, the claim follows from the natural equivalence (SpecR)fét
∼→Sfét.

2.4. In a manner analogous to Proposition 1.9, the trivial locus in the stack of
G-bundles on the Fargues–Fontaine curve descends to our setting as follows. Write
Bun1G,Fv

for the substack of BunG,Fv
(S) whose S-points consist of objects such

that, for all geometric points s of S, its image in BunG,Fv
(s) is trivial. Consider the

morphism ∗→BunG,Fv
corresponding to the trivial object for all S, which factors

through a morphism ∗→Bun1G,Fv
. One can identify G(Fv) with ∗ ×Bun1

G,Fv
∗ as

group v-sheaves, so descent yields a morphism ∗/G(Fv)→Bun1G,Fv
.

Proposition. The substack Bun1G,Fv
⊆ BunG,Fv is open, and ∗/G(Fv)→Bun1G,Fv

is an isomorphism. Moreover, BunG,Ov
is naturally isomorphic to ∗/G(Ov). Fi-

nally, the base change of BunG,Fv
to Fv is naturally isomorphic to the stack of

G-bundles on the Fargues–Fontaine curve for Fv as in [25, Definition III.1.3].

Proof. After replacing (−)[[π]] with −⊗̂Fq
Fv[[π]], where π denotes a uniformizer of

Ov, the first statement follows from the proof of [25, Theorem III.2.4], and the
second statement follows from the proof of [54, Proposition 3.8] and [54, Theorem
3.12]. The third statement follows from Proposition 1.9. □
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2.5. The following localization maps play an important role in this paper. For all
closed points u in U and z in Z, pullback yields morphisms

locu : BunG,U→BunG,Ou
and locz : BunG,U→BunG,Fz

.

Definition.

a) Write

loc : BunG,U→
∏
u

BunG,Ou
×
∏
z

BunG,Fz

for the morphism induced by the {locu}u and {locz}z, where u runs over closed
points of U , and z runs over Z.

b) Write BunG,A for the prestack lim−→U

∏
u BunG,Ou ×

∏
z BunG,Fz on PerfFq , where

U runs over dense open subschemes of C.
c) Write loc : BunG,F →BunG,A for the morphism obtained by taking lim−→U

of a).

Proposition 2.4 implies that the transition morphisms in b) are faithful, so
BunG,A is a small v-stack.

2.6. When studying BunG,U , one has the following mechanism for changing U .

Lemma. For all dense open subschemes U ′ of U , the square

BunG,U
loc //

��

∏
u

BunG,Ou ×
∏
z

BunG,Fz

��

BunG,U ′
loc //

∏
u′

BunG,Ou′ ×
∏
z′

BunG,Fz′

is cartesian, where u runs over closed points of U ′, and z′ runs over C ∖ U ′.
Similarly, the square

BunG,U
loc //

��

∏
u

BunG,Ou
×
∏
z

BunG,Fz

��

BunG,F
loc // BunG,A

is cartesian.

Proof. Note that {U ′ an
S }∪{SpaOc×S}c is an open cover of Uan

S , where c runs over
U∖U ′. Therefore the first statement follows from gluing, and the second statement
follows from taking lim−→U ′ of the first statement. □

2.7. We use the semistable locus in the stack of G-bundles on the local Hartl–
Pink curve to define a global analogue as follows. Write BunssG,Fv

(S) for the full
subcategory of objects in BunG,Fv

(S) whose image in BunG,Fv
(SpaFv × S), under

the identification from Proposition 2.4, lies in the semistable locus as in [25, Section
III.4.2]. Then [25, Theorem III.4.5] implies that BunssG,Fv

is an open substack of
BunG,Fv

, and the base change of BunssG,Fv
to Fv equals the semistable locus as in

[25, Section III.4.2].

Definition.
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a) Write BunssG,U for the preimage of
∏
u BunG,Ou

×
∏
z Bun

ss
G,Fz

in BunG,U under
loc.

b) Write BunssG,F for the prestack lim−→U
BunssG,U on PerfFq .

As in Definition 2.2.b), BunssG,F is a small v-stack. Since BunssG,U ⊆ BunG,U
is an open substack, we see that BunssG,F ⊆ BunG,F is an open substack as well.
Proposition 2.4 shows that BunG,Ov→BunG,Fv factors through BunssG,Fv

, so for all
dense open subschemes U ′ of U , Lemma 2.6 implies that the preimage of BunssG,U ′

in BunG,U equals BunssG,U .

2.8. The stack of G-bundles on the global Hartl–Pink curve also has a trivial locus
in the following sense. Write Bun1G,U for the substack of BunG,U whose S-points
consist of objects such that, for all geometric points s of S, its image in BunG,U (s)
is trivial. Consider the morphism ∗→BunG,U corresponding to the trivial object

for all S, which factors through a morphism ∗→Bun1G,U . Proposition 1.7 identifies
G(A) with ∗ ×Bun1

G,U
∗ as group v-sheaves, so descent yields a morphism

∗/G(A)→Bun1G,U .

Theorem. The substack Bun1G,U ⊆ BunG,U is open, and ∗/G(A)→Bun1G,U is an
isomorphism.

Proof. Let (G , ϕ) be an object in BunG,U (S). We claim that{
s ∈ |S| | the image of (G , ϕ) in BunG,U (s) is trivial

}
is an open subset of |S|. To see this, by replacing S with a pro-étale cover, we can
assume that S is strictly totally disconnected. Note that the above subset lies in{

s ∈ |S| | the image of (G , ϕ) in BunG,Fz
(s) is trivial for all z in Z

}
,

which is an open subset of |S| by [25, Theorem III.2.4]. Therefore, by replacing
S with an open subspace, we can assume that the image of (G , ϕ) in BunG,Fz (s)
is trivial for all z in Z and geometric points s of S. For all V in RepC G, this
implies that the image of (G (V ), ϕ(V )) in BunFz

(S) has slope zero for all z in Z,
so Theorem 1.14 shows that (G , ϕ) corresponds to an exact tensor functor

RepC G→{pro-étale OU -local systems on S}.
Let {U1, U2} be the open cover of U from Lemma 1.12. For all i in {1, 2}, write

Ai for the global sections of Ui, and write A12 for the global sections of U1 ∩ U2.
Because PicUi = 1, rank-n OUi-local systems are equivalent to GLn(Ai)-torsors.

Hence [25, Lemma III.2.6] implies that OUi
-local systems on S are trivial, so (G , ϕ)

corresponds to two exact tensor functors{
RepC G→{finite free Ai(S)-modules}

}
i

along with an isomorphism between them after postcomposing with

{finite free Ai(S)-modules}→{finite free A12(S)-modules}.
Since Ai is discrete, we have SpecAi(S) = SpecCont(π0(|S|), Ai) = π0(|S|) × Ui.
Therefore Proposition 2.1 and gluing show that (G , ϕ) corresponds to an étale G-
torsor F on π0(|S|)× U .

For all s in |S|, note that |s| × U ∼→ lim←−N
(
N × U

)
, where N runs over compact

neighborhoods of the image of s in π0(|S|), and the transition morphisms are affine.
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Therefore if F ||s|×U is trivial, then F |N×U is trivial for some compact neighbor-

hood N of the image of s in π0(|S|). Hence the image of (G , ϕ) in BunG,U (Ñ) is

trivial, where Ñ denotes the preimage of N in S. As s varies, this yields the claim.
The claim yields the first statement. For the second statement, the above shows

that ∗→Bun1G,U is a pro-étale cover, so descent yields the desired result. □

2.9. Let us recall some notation on the Kottwitz set. In this subsection, we work
over SpdFq. Let K be one of {F, Fv}, write B(K,G) for the Kottwitz set as in
[49, Subsection 10.2], and write B(K,G)basic for its subset of basic elements as in
[49, Definition 10.2]. For all b in B(K,G), write Gb for the associated connected
reductive group over K as in [49, Subsection 2.6]. Write locv : B(F,G)→B(Fv, G)
for the localization map as in [49, (10.7)], and recall that B(F,G) is naturally
isomorphic to the set of FrobFq

-conjugacy classes in G(F ⊗Fq Fq) [44, Theorem

12.2].
Similarly to the local setting [25, Corollary III.4.3], in the global setting we can

pass between the trivial locus and other basic loci by twisting as follows. Let b
be an element in G(UFq

) whose image in B(F,G) is basic. Write BunbG,U for the

substack of BunG,U whose S-points consist of objects such that, for all geometric

points s of S, its image in BunG,U (s) is isomorphic to (G, (Frob−1
S )∗ ◦ b). Twisting

G by ad b over UFq
yields a parahoric group scheme Gb over U , and because b is

basic, [33, (5.2)] shows that the generic fiber of Gb agrees with the above notion.

Proposition. This induces a natural isomorphism BunG,U
∼→BunGb,U such that

the image of BunbG,U equals Bun1Gb,U
.

Proof. For all objects (G , ϕ) in BunG,U (S), we have a natural isomorphism

Isom(G , G)
∼→ Isom(Frob∗S G ,Frob∗S G) = Frob∗S Isom(G , G),

where the left arrow denotes precomposing with ϕ−1 : Frob∗S G
∼→G and postcom-

posing with (Frob−1
S )∗ ◦ b : G ∼→Frob∗S G. Since (Gb)UFq

= GUFq
and we work over

SpdFq, we see Isom(−, G) induces the desired isomorphism BunG,U
∼→BunGb,U . □

2.10. For any small v-stack X, write Xred its reduction, i.e. the perfect v-stack
given by SpecB 7→ Hom(SpdB,X) for all perfect Fp-algebras B [31, Proposition
3.7]. We conclude by proving the following generalization of Theorem C.

Theorem. The perfect v-stack BunredG,U over Fq is the v-sheafification of

SpecB 7→
{
G-torsors G on UB equipped with

an isomorphism ϕ : G
∼→Frob∗B G

}
.(∗)

Moreover, when each connected component of SpecB is a valuation ring, no sheafi-
fication is needed.

Proof. By using [11, Lemma 6.2] and taking perfections, we see that SpecB as in
the second statement form a basis for the v-topology on {affine perfect schemes}.
Hence it suffices to prove that the restriction of BunredG,U to such SpecB is naturally

equivalent to (∗). Because SpaB((t1/q
∞
))→SpdB is surjective and representable

in perfectoid spaces, this follows from Proposition 2.1 and Theorem 1.15. □
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3. Shtukas and the fiber product conjecture

Our goal in this section is to prove Theorem D. First, we recall the algebraic
stack of global shtukas, and we prove that its associated v-stack takes a simple
form. Next, we recall the v-stack of local shtukas. Finally, we define the function
field analogue of the Hodge–Tate period map, and we prove Theorem D.

3.1. We start with some more notation concerning G over F . Fix a separable clo-
sure F of F , and writeWF for the associated absolute Weil group of F . Then global
class field theory yields an isomorphism F×\A× ∼→W ab

F that sends uniformizers to
geometric Frobenii. Let T be a maximal subtorus of G over F , let B ⊆ GF be a
Borel subgroup containing TF , and write X+

∗ (T ) for the associated set of dominant
cocharacters of TF . Write π1(G) for the cocharacter group of TF quotiented by the
subgroup generated by the coroots.

3.2. Let us recall the stack of global shtukas. Let I be a finite set, and let µ• =
(µi)i∈I be in X

+
∗ (T )I . For all i in I, write Ci for the normalization of C in the field

of definition of µi. For all affine schemes SpecB over Fq and morphisms

x : SpecB→Ci

over Fq, write Γx ⊆ CB for the graph of the corresponding morphism SpecB→C
over Fq. Let N be a finite closed subscheme of C, and write Ni for the preimage of
N in Ci.

Definition. Write ShtIG,µ•,N |
∏

i∈I Ci∖Ni
for the prestack on {affine schemes over Fq}

whose SpecB-points parametrize data consisting of

i) for all i in I, a morphism xi : SpecB→Ci ∖Ni over Fq,
ii) a G-torsor G on CB ,
iii) an isomorphism of G-torsors

ϕ : G |CB∖
∑

i∈I Γxi

∼→Frob∗B G |CB∖
∑

i∈I Γxi

whose relative position along {Γxi
}i∈I is bounded by µ•,

iv) an isomorphism of G-torsors ψ : G |NB

∼→G such that the square

G |NB

(ϕ)N
//

ψ

��

Frob∗B G |NB

ψ

��

G
(Frob∗

B)−1

// Frob∗B G

commutes.

Write ShtI,◦G,µ•,N
|∏

i∈I Ci∖Ni
for the open substack of ShtIG,µ•,N |

∏
i∈I Ci∖Ni

whose

SpecB-points consist of ({xi}i∈I ,G , ϕ, ψ) such that the isomorphism ϕ has relative
position along {Γxi

}i∈I equal to µ•.

Recall that ShtIG,µ•,N |
∏

i∈I Ci∖Ni
is a Deligne–Mumford stack that is separated

and locally of finite type over
∏
i∈I Ci ∖ Ni [54, Proposition 5.6], and its open

substack ShtI,◦G,µ•,N
|∏

i∈I Ci∖Ni
is smooth over

∏
i∈I Ci ∖Ni.

For all finite closed subschemes N ′ ⊇ N of C, write KN ′

N for the kernel of

G(ON ′)→G(ON ). Recall that ShtIG,µ•,N ′ |∏
i∈I Ci∖N ′

i
→ShtIG,µ•,N |

∏
i∈I Ci∖N ′

i
is fi-

nite Galois with group KN ′

N [54, Proposition 5.5].
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3.3. For convenience, we package the Harder–Narasimhan stratification for global
shtukas into a single parameter t as follows. By [5, Proposition 2.2(b)], there exists
an SLh-bundle V on C along with a closed embedding ι : Gad→Aut(V ) of group
schemes over C such that Aut(V )/Gad satisfies [5, (2.1)]. Let t be a positive integer.

Definition. Write ShtI,≤tG,µ•,N
|∏

i∈I Ci∖Ni
for the open substack of

ShtIG,µ•,N |
∏

i∈I Ci∖Ni

whose SpecB-points consist of ({xi}i∈I ,G , ϕ, ψ) such that the SLh-torsor ι∗(G ad)
on CB has Harder–Narasimhan polygon bounded by t2ρ∨, where 2ρ∨ denotes the
sum of positive coroots in SLh.

Recall that, when degN is large enough, ShtI,≤tG,µ•,N
|∏

i∈I Ci∖Ni
is a disjoint union

of quasiprojective schemes over
∏
i∈I Ci ∖Ni [54, Proposition 5.6].

3.4. We now convert the moduli of global shtukas into a v-stack.

Definition. Write (ShtIG,µ•,N |
∏

i∈I Ci∖Ni
)♢ and (ShtI,≤tG,µ•,N

|∏
i∈I Ci∖Ni

)♢ for the

prestack on PerfFq
whose S-points are given by

(ShtIG,µ•,N |
∏

i∈I Ci∖Ni
)(R) and (ShtI,≤tG,µ•,N

|∏
i∈I Ci∖Ni

)(R),

respectively.

3.5. Proposition.

1) When degN is large enough, (ShtI,≤tG,µ•,N
|∏

i∈I Ci∖Ni
)♢ equals (−)♢ of the adic

space ShtI,≤tG,µ•,N
|∏

i∈I Ci∖Ni
over Fq.

2) For any increasing family {Na}a≥1 of finite closed subschemes of C such that
degNa →∞ as a→∞, the morphism

lim←−
a≥1

(ShtIG,µ•,Na
|∏

i∈I Ci∖(Na)i)
♢→ lim←−

a≥1

(∏
i∈I

Ci ∖ (Na)i
)♢

is separated, representable in locally spatial diamonds, and locally of finite dim. trg.
3) The prestack (ShtIG,µ•,N |

∏
i∈I Ci∖Ni

)♢ is a small v-stack,

(ShtI,≤tG,µ•,N
|∏

i∈I Ci∖Ni
)♢ ⊆ (ShtIG,µ•,N |

∏
i∈I Ci∖Ni

)♢

is an open substack, and for all finite closed subschemes N ′ ⊇ N of C,

(ShtIG,µ•,N ′ |∏
i∈I Ci∖N ′

i
)♢→(ShtIG,µ•,N |

∏
i∈I Ci∖N ′

i
)♢

is finite Galois with group KN ′

N .

Proof. Part 1) follows from Lemma 1.2 and 3.3. For part 2), it follows from part
1) that, for all positive integers t, the morphism

lim←−
a≥1

(ShtI,≤tG,µ•,Na
|∏

i∈I Ci∖(Na)i)
♢→ lim←−

a≥1

(∏
i∈I

Ci ∖ (Na)i
)♢

is separated, representable in locally spatial diamonds, and locally of finite dim. trg.

Recall that ShtIG,µ•,N |
∏

i∈I Ci∖Ni
is the increasing union

⋃
t≥1 Sht

I,≤t
G,µ•,N

|∏
i∈I Ci∖Ni

.

Since the preimage of ShtI,≤tG,µ•,N
|∏

i∈I Ci∖N ′
i
in ShtIG,µ•,N ′ |∏

i∈I Ci∖N ′
i
equals

ShtI,≤tG,µ•,N ′ |∏
i∈I Ci∖N ′

i

and (−)♢ preserves open embeddings, taking
⋃
t≥1 yields the desired result.
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For part 3), let v be a closed point of C∖N ′, and let t be a positive integer. For all

positive integers m, combining the natural equivalence (SpecR)fét
∼→Sfét with 3.2

implies that S-points of (ShtI,≤tG,µ•,N
|∏

i∈I Ci∖(N+v)i)
♢ parametrize KN+mv

N -torsors

S′ on S equipped with a KN+mv
N -equivariant morphism

S′→(ShtI,≤tG,µ•,N+mv |∏i∈I Ci∖(N+v)i)
♢.

By letting m be large, part 1) indicates that (ShtI,≤tG,µ•,N
|∏

i∈I Ci∖(N+v)i)
♢ is a small

v-stack, the morphism

(ShtI,≤tG,µ•,N ′ |∏
i∈I Ci∖(N ′+v)i)

♢→(ShtI,≤tG,µ•,N
|∏

i∈I Ci∖(N ′+v)i)
♢

is finite Galois with groupKN ′

N , and varying t yields open embeddings. Hence taking⋃
t≥1 shows the desired statements after restricting to

∏
i∈I Ci∖ (N + v)i. Finally,

because
∏
i∈I Ci∖Ni is covered by open subspaces of the form

∏
i∈I Ci∖ (N + v)i,

taking
⋃
v yields the desired result. □

3.6. Conversely, we can recover the moduli of global shtukas (up to perfection)
from its associated v-stack:

Corollary.

1) When N is large enough, (ShtI,≤tG,µ•,N
|∏

i∈I Ci∖Ni
)♢,red is naturally isomorphic to

the perfect scheme (ShtI,≤tG,µ•,N
|∏

i∈I Ci∖Ni
)perf over Fq.

2) The perfect v-stack (ShtIG,µ•,N |
∏

i∈I Ci∖Ni
)♢,red is naturally isomorphic to

(ShtIG,µ•,N |
∏

i∈I Ci∖Ni
)perf .

Proof. For part 1), Proposition 3.5.1) shows that (ShtI,≤tG,µ•,N
|∏

i∈I Ci∖Ni
)♢ equals

(−)♢ of the adic space (ShtI,≤tG,µ•,N
|∏

i∈I Ci∖Ni
)perf over Fq.6 Therefore the desired

result follows from [31, Theorem 2.32].
For part 2), let v be a closed point of C. For all perfect Fp-algebras B, the

functor Spd induces a natural equivalence (SpecB)fét
∼→(SpdB)fét [48, Corollary

5.4], so Proposition 3.5.3) implies that, for all positive integersm, the SpecB-points

of (ShtI,≤tG,µ•,N
|∏

i∈I Ci∖(N+v)i)
♢,red parametrizes KN+mv

N -torsors SpecB′ on SpecB

equipped with a KN+mv
N -equivariant morphism

SpecB′→(ShtI,≤tG,µ•,N+mv |∏i∈I Ci∖(N+v)i)
♢,red.

By letting m be large, part 1) and 3.2 indicate that (ShtI,≤tG,µ•,N
|∏

i∈I Ci∖(N+v)i)
♢,red

is naturally isomorphic to (ShtI,≤tG,µ•,N
|∏

i∈I Ci∖(N+v)i)
perf . Finally, taking

⋃
v

⋃
t≥1

yields the desired result. □

3.7. Next, let us recall the moduli of local shtukas. For all closed points v of C,
fix a separable closure F v of Fv, and write WFv

for the associated absolute Weil
group of Fv. Write Cv for the completion of F v. Fix an embedding F →F v over
F →Fv, which induces a homomorphism WFv

→WF .
Let {Iz}z be a partition of I, where z runs over Z. For all z in Z, write µz for

the projection of µ• to X+
∗ (T )Iz , and for all i in Iz, write zi for the closed point

of Ci over z induced by F →F z. For all affinoid perfectoid spaces S = Spa(R,R+)

6We warn that this is not glued from SpaB as SpecB runs over affine open subspaces of the

perfect scheme (ShtI,≤t
G,µ•,N

|∏
i∈I Ci∖Ni

)perf . Instead, this is glued from Spa(B,Z∼).
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over Fz and morphisms x : S→SpaOzi over Fz, write Γx ⊆ SpaOz ×Fz
S for the

graph of the corresponding morphism S→SpaOz over Fz. Write
∏
i∈Iz SpaOzi for

the product of the SpaOzi over Fz, and write
∏
i∈Iz SpaFzi for the product of the

SpaFzi over Fz. Let nz be a positive integer.

Definition. 7

a) Write LocShtIzG,µz
|∏

i∈Iz
SpdOzi

for the prestack on PerfFz whose S-points pa-

rametrize data consisting of
i) for all i in Iz, a morphism xi : S→SpaOzi over Fz,
ii) a G-torsor G on SpaOz ×Fz

S,
iii) an isomorphism of G-torsors

ϕ : G |SpaOz×FzS∖
∑

i∈Iz
Γxi

∼→(Frobdeg zS )∗G |SpaOz×FzS∖
∑

i∈Iz
Γxi

whose relative position along {Γxi
}i∈Iz is bounded by µz,

b) Write LocShtIzG,µz,nz
|∏

i∈Iz
SpdFzi

for the prestack on PerfFz
whose S-points pa-

rametrize data consisting of an S-point ({xi}i∈Iz ,G , ϕ) of LocSht
Iz
G,µz
|∏

i∈Iz
SpdFzi

equipped with
iv) an isomorphism of G-torsors ψ : G |nzz×FzS

∼→G such that the square

G |nzz×FzS

(ϕ)nzz
//

ψ

��

(Frobdeg zS )∗G |nzz×FzS

ψ

��

G
(Frob∗

S)− deg z

// G

commutes.

Write LocShtIz,◦G,µz,nz
|∏

i∈Iz
SpdFzi

for the open substack of LocShtIzG,µz,nz
|∏

i∈Iz
SpdFzi

consisting of ({xi}i∈Iz ,G , ϕ, ψ) such that the isomorphism ϕ has relative position
along {Γxi

}i∈Iz equal to µ•.

Using [67, Proposition 19.5.3] and the proof of [25, Proposition III.1.3], we see

that LocShtIzG,µz
|∏

i∈Iz
SpdOzi

and LocShtIzG,µz,nz
|∏

i∈Iz
SpdFzi

are small v-stacks.

3.8. In the local and global settings, shtukas induce bundles on the Hartl–Pink
curve in the following way. Recall that choosing a uniformizer of Oz identifies
SpaOz ×Fz

S with the open unit disk over S. For all objects ({xi}i∈Iz ,G , ϕ) in

(LocShtIzG,µz
|∏

i∈Iz
SpdOzi

)(S),

the quasicompactness of |S| shows that there exists a closed disk D ⊆ SpaOz×Fz S
over S centered at the origin such that D contains Γxi for all i in Iz. Hence

ϕ restricts to an isomorphism G |SpaFz×FzS∖D
∼→(Frobdeg zS )∗G |SpaFz×FzS∖D. Via

continuation by Frobenius and Proposition 2.4, this corresponds to an object in
BunG,Fz (S), so altogether this construction yields a morphism

LocShtIzG,µz
|∏

i∈Iz
SpdOzi

→BunG,Fz
.

7This definition does not agree with the notation in [54], for which we apologize. This definition
is the one that should be denoted by LocSht, since it parametrizes local shtukas. The definition in

[54] additionally parametrizes a framing (up to isogeny), so it is akin to a Rapoport–Zink space.
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Write
∏
i∈I SpaOzi for

∏
z∈Z

(∏
i∈Iz SpaOzi

)
, and write

∏◦
i∈I SpaOzi for its

open subspace
(∏

i∈I SpaOzi
)
×∏

i∈I Ci

(∏
i∈I Ci ∖Ni

)
. Form the fiber product

(ShtIG,µ•,N |
∏◦

i∈I SpaOzi
)♢ //

��

∏
i∈I

◦ SpaOzi

��

(ShtIG,µ•,N |
∏

i∈I Ci∖Ni
)♢ //

(∏
i∈I

Ci ∖Ni
)♢
.

By arguing as above for all z in Z, we also obtain a morphism

(ShtIG,µ•,N |
∏◦

i∈I SpaOzi
)♢→BunG,U .

3.9. We now describe the analogue of the Hodge–Tate period map for global
shtukas. Write nv for the multiplicity of v in N , and write Knv

v for the kernel

of G(Ov)→G(Onvv). Write LocShtIG,µ•,N |
∏◦

i∈I SpdOzi
for the product∏

z∈Z
nz=0

LocShtIzG,µz
|∏

i∈Iz
SpdOzi

×
∏
z∈Z
nz≥1

LocShtIzG,µz,nz
|∏

i∈Iz
SpdFzi

,

and write KN∩U for the kernel of G(OU )→G(ON∩U ).

Let ({xi}i∈I ,G , ϕ, ψ) be an object in (ShtIG,µ•,N |
∏◦

i∈I SpaOzi
)♢(S). For all z in

Z, arguing as in the proof of [54, Lemma 5.12] shows that

({xi}i∈Iz ,G |SpaOz
, ϕ|SpaOz

)

corresponds to an object in (LocShtIzG,µz
|∏

i∈Iz
SpdOzi

)(S). If nz is positive, then

(ψ)nzz corresponds to a lift of this object to (LocShtIzG,µz,nz
|∏

i∈Iz
SpdFzi

)(S), so

altogether we obtain a morphism

(ShtIG,µ•,N |
∏◦

i∈I SpaOzi
)♢→LocShtIG,µ•,N |

∏◦
i∈I SpdOzi

over
∏◦
i∈I SpdOzi . For all closed points u of U , Proposition 2.4 indicates that

(G |SpaOu , ϕ|SpaOu)

corresponds to an object in (∗/G(Ou))(S). If u lies in N , then (ψ)nuu corresponds

to a lift of this object to (∗/Knu
u )(S), so altogether we also obtain a morphism

(ShtIG,µ•,N |
∏◦

i∈I SpaOzi
)♢→∗/KN∩U .

3.10. Finally, we arrive at Theorem D.

Theorem. The square of small v-stacks

(ShtIG,µ•,N |
∏◦

i∈I SpaOzi
)♢ //

��

∗/KN∩U × LocShtIG,µ•,N |
∏◦

i∈I SpdOzi

��

BunG,U
loc // ∗/G(OU )×

∏
z∈Z

BunG,Fz

is cartesian.
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Proof. For all z be in Z and closed disks Dz ⊆ SpaOz×Fz
S over S centered at the

origin, write D∪
z for the closed subspace∐

r∈Z/deg z

Frob−rS (Dz) ⊆
∐

r∈Z/deg z

SpaOz ×Fz,r S
∼→SpaOz × S,

where SpaOz ×Fz,r S denotes the product of SpaOz and

S // SpaFz
Frobr

Fz // SpaFz
over Fz, and the isomorphism is from [54, Lemma 5.11]. Then{

Uan
S ∖

⋃
z∈Z

D∪
z

}
∪ {SpaOz × S}z∈Z

is an open cover of Can
S , so we can glue an object in BunG,U (S) to an object in

(∗/KN∩U × LocShtIG,µ•,N |
∏◦

i∈I SpdOzi
)(S) to obtain

i) an S-point {xi}i∈I of
∏◦
i∈I SpaOzi ,

ii) a G-torsor G an on Can
S ,

iii) an isomorphism of G-torsors

ϕan : G |Can
S ∖

∑
i∈I Γxi

∼→Frob∗S G an|Can
S ∖

∑
i∈I Γxi

whose relative position along {Γxi}i∈I is bounded by µ•,

iv) an isomorphism of G-torsors ψan : G an|Nan
S

∼→G such that the square

G an|Nan
S

(ϕan)N
//

ψan

��

Frob∗S G an|Nan
S

ψan

��

G
(Frob−1

S )∗
// Frob∗S G

commutes.

Finally, Proposition 2.1 and Theorem A.19 show that the above corresponds to an
object in (ShtIG,µ•,N |

∏◦
i∈I SpaOzi

)♢(S). □

4. Geometric consequences

In this section, we harvest some of the fruits of Theorem D. We start by deducing
an algebraic analogue of Theorem D via taking reductions, and we explain how
this implies the Langlands–Rapoport conjecture for global shtukas. Next, we use
the charts provided by Theorem D and Beauville–Laszlo uniformization to prove
Theorem A and Theorem B. Finally, we conclude by explaining the relation with
Igusa varieties.

4.1. For all z in Z, write
∏
i∈Iz zi for the product of the zi over Fz. Let us recall

the following algebraic analogues of BunG,Fz and LocShtIzG,µz
|∏

i∈Iz
SpdOzi

.

Definition.

a) Write IsocG,Fz for the prestack on {affine perfect schemes over Fq} whose SpecB-

points parametrize data consisting of G-torsors G on SpecFz⊗̂FqB equipped

with an isomorphism ϕ : G
∼→Frob∗B G .

b) Write LocShtIzG,µz
|∏

i∈Iz
zi for the prestack on {affine perfect schemes over Fz}

whose SpecB-points parametrize data consisting of
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i) for all i in Iz, a morphism xi : SpecB→ zi over Fz,
ii) a G-torsor G on SpecOz⊗̂FzB,

iii) an isomorphism of G-torsors ϕ : G |SpecFz⊗̂FzB
∼→(Frobdeg zB )∗G |SpecFz⊗̂FzB

whose relative position along {Γxi}i∈Iz is bounded by µz,

Note that [45, Proposition 5.9] and [11, Remark 4.2] imply that IsocG,Fz
and

LocShtIzG,µz
|∏

i∈Iz
zi are perfect v-stacks.

4.2. Write
∏
i∈I zi for

∏
z∈Z

(∏
i∈Iz zi

)
. By taking reductions, we recover the

following algebraic analogue of Theorem 3.10:

Theorem. Assume that N and Z are disjoint. Then there is a natural cartesian
square of perfect v-stacks

(ShtIG,µ•,N |
∏

i∈I zi
)perf //

��

∗/KN ×
∏
z∈Z

LocShtIzG,µz
|∏

i∈Iz
zi

��

BunredG,U // ∗/G(OU )×
∏
z∈Z

IsocG,Fz .

Proof. Because (−)red preserves limits, base changing the top arrow of Theorem
3.10 to

∏
i∈I zi and taking (−)red yields a cartesian square of perfect v-stacks.

The classifying stacks are preserved by [48, Corollary 5.4], the top left is identified
by Corollary 3.6.2), the top right is identified by [32, Theorem 7.14.(2)], and the
bottom right is identified by [32, Theorem 7.14.(1)]. □

4.3. Remarks.

1) By evaluating Theorem 4.2 on Fq and using the description of BunredG,U (Fq) from
Theorem 2.10, we immediately deduce the Langlands–Rapoport conjecture for
moduli spaces of global shtukas with arbitary (in particular, colliding) legs.

2) If one takes the v-sheafification of (∗) as the definition of BunredG,U , one can
directly prove Theorem 4.2 using Beauville–Laszlo gluing. However, without
using Theorem 2.10, it is unclear why no sheafification is needed when evaluating
BunredG,U on SpecB for which each connected component is a valuation ring.

4.4. Next, we recall some facts about affine Grassmannians. For the rest of this
paper, we work over Fq. For all z in Z, write GrG for the BdR-affine Grassman-

nian over Spd F̆z as in [67, Definition 20.2.1].8 When Iz = {i} is a singleton, recall
from [67, p. 184] the closed affine Schubert variety GrG,µz

|Spd F̆zi
in GrG |Spd F̆zi

and the open affine Schubert variety Gr◦G,µz
|Spd F̆zi

in GrG,µz |Spd F̆zi
. The proof of

[67, Proposition 23.3.1] shows that GrG,µz |Spd F̆zi
is naturally isomorphic to

lim←−
m≥1

LocShtIzG,µz,m
|Spd F̆zi

.

8While [67] works over Qp, the definition of the BdR-affine Grassmannian and its basic prop-

erties hold over any nonarchimedean local field. Indeed, this is implicitly used in [25].
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The proof of [25, Proposition VI.2.3] implies that

GrG |SpaCz =
⋃

µz∈X+
∗ (T )

GrG,µz |SpaCz ,

[25, Proposition III.3.1] indicates that the natural morphism GrG |Spa F̆z
→BunG,Fz

is surjective in the pro-étale topology, and the proof of [25, Theorem IV.1.19] shows∐
µz∈X+

∗ (T )

(
Gr◦G,µz

|Spd F̆zi

)/
G(Fz)→BunG,Fz

×Spd F̆z

is a v-cover that is separated, representable in locally spatial diamonds, and coho-
mologically smooth.

4.5. Write locZ : BunG,U→
∏
z∈Z BunG,Fz

for the morphism (locz)z∈Z , which
plays an important role in §5 and §6. It enjoys the following finitude properties.

Proposition. When Z is nonempty, locZ : BunG,U→
∏
z∈Z BunG,Fz

is compacti-
fiable, representable in locally spatial diamonds, and locally of finite dim. trg. Con-
sequently, BunG,U is an Artin v-stack.

When Z is empty, Example 2.3 shows that loc∅ : BunG,C→∗ is not representable
in locally spatial diamonds but that BunG,C remains an Artin v-stack.

Proof. Letm be a positive integer. In Theorem 3.10, take Iz = {i} to be a singleton
for all z in Z, and take N to be mZ. Then taking lim←−m≥1

yields a cartesian square

lim←−
m≥1

(ShtIG,µ•,mZ |∏i∈I Spa F̆zi
)♢ //

��

lim←−
m≥1

LocShtIG,µ•,mZ |∏i∈I Spd F̆zi

��

BunG,U
locZ //

∏
z∈Z

BunG,Fz
.

Proposition 3.5.2) indicates that lim←−m≥1
(ShtIG,µ•,mZ |∏i∈I Spa F̆zi

)♢ is a locally spa-

tial diamond that is separated and locally of finite dim. trg over
∏
i∈I Spd F̆zi . By

4.4 and [67, Proposition 20.2.3], we see that lim←−m≥1
LocShtIG,µ•,mZ |∏i∈I Spd F̆zi

is

also a locally spatial diamond that is separated and locally of finite dim. trg over∏
i∈I Spd F̆zi , so the top arrow is separated, representable in locally spatial dia-

monds by [63, Proposition 13.4 (ii)], and locally of finite dim. trg.
Next, 4.4 implies that the morphism∐

µ•∈X+
∗ (T )I

lim←−
m≥1

LocShtIG,µ•,mZ |
∏

z∈Z SpaCz
→

∏
z∈Z

BunG,Fz

is surjective in the pro-étale topology. Hence the bottom arrow is separated by [63,
Proposition 10.11 (ii)], representable in locally spatial diamonds by [63, Proposition
13.4 (iv)] and locally of finite dim. trg, as desired.

Finally, [25, Proposition IV.1.8 (i)] and [25, Theorem IV.1.19] show
∏
z∈Z BunG,Fz

is an Artin v-stack, so the same holds for BunG,U [25, Proposition IV.1.8 (iii)]. □
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4.6. At this point, we can finish the proof of Theorem A. For any finite set Q of
closed points of C, write OQ for

∏
v∈QOv, and write FQ for

∏
v∈Q Fv. Write 2ρ in

X∗(T ) for the sum of all positive roots, and write dµ• for
∑
i∈I⟨2ρ, µi⟩.

Proposition. The Artin v-stack BunG,U is cohomologically smooth over SpdFq,
and its dualizing complex over SpdFq with Fℓ-coefficients is isomorphic to Fℓ.

Proof. When Z is empty, this follows immediately from Example 2.3. When Z is
nonempty, take Iz = {i} to be a singleton for all z in Z. Then 4.4 and the cartesian
square from the proof of Proposition 4.5 induce a cartesian square[

lim←−
m≥1

(ShtI,◦G,µ•,mZ
|∏

i∈I Spa F̆zi
)♢
]/
G(FZ) //

g

��

[ ∏
z∈Z

Gr◦G,µz
|Spd F̆zi

]/
G(FZ)

f

��

BunG,U ×
∏
z∈Z

Spd F̆zi
locZ //

∏
z∈Z

(
BunG,Fz

×Spd F̆zi
)
.

Now 4.4 indicates that f is separated, representable in locally spatial diamonds,
and cohomologically smooth, and the proof of [25, Theorem IV.1.19] indicates that
f !Fℓ is isomorphic to Fℓ(dµ•)[2dµ• ]. Hence the same holds for g and g!Fℓ.

Because ShtI,◦G,µ•,mZ
|∏

i∈I Ci∖Zi
is smooth over SpecFq, Proposition 3.5 implies[

lim←−
m≥1

(ShtI,◦G,µ•,mZ
|∏

i∈I Spa F̆zi
)♢
]/
G(FZ)(◦)

admits a separated, representable in locally spatial diamonds, and cohomologically
smooth v-cover from a locally spatial diamond V such that V is cohomologically
smooth over SpdFq. Moreover, the proof of [15, Lemma 8.3.4] shows that the

dualizing complex of (◦) over
∏
i∈I Spd F̆zi with Fℓ-coefficients is isomorphic to

Fℓ(dµ•)[2dµ• ].
Next, 4.4 implies that the morphism∐
µ•∈X+

∗ (T )I

[
lim←−
m≥1

(ShtI,◦G,µ•,mZ
|∏

i∈I Spa F̆zi
)♢
]/
G(FZ)→BunG,U ×

∏
z∈Z

Spd F̆zi

is a v-cover. Therefore the above shows that BunG,U ×
∏
z∈Z Spd F̆zi is cohomolog-

ically smooth over
∏
z∈Z Spd F̆zi and that its dualizing complex over

∏
z∈Z Spd F̆zi

with Fℓ-coefficients is isomorphic to Fℓ. By [25, Proposition IV.1.8 (ii)], this implies
that BunG,U is cohomologically smooth over SpdFq, and by [63, Theorem 19.5 (ii)],

this implies that its dualizing complex over SpdFq with Fℓ-coefficients is isomorphic
to Fℓ. □

4.7. We will use the following analogue of (perfect) Igusa varieties for shtukas. For
all z in Z, let bz be an element in B(Fz, G), and write b• for (bz)z∈Z .

Definition. Write Igb•G for the prestack on {affine schemes over Fq} whose SpecB-
points parametrize data consisting of

i) a G-torsor G on UB ,

ii) an isomorphism of G-torsors ϕ : G
∼→Frob∗B G ,
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iii) for all z in Z, an isomorphism of G-torsors ψz : G |SpecFz⊗̂FzB
∼→G such that

G |SpecFz⊗̂FzB

(ϕdeg z)Fz //

ψz

��

(Frobdeg zB )∗G |SpecFz⊗̂FzB

ψz

��

G
(Frob∗

B)− deg z◦bz
// G

commutes.

For any µ• = (µz)z∈Z in X+
∗ (T )Z , write Igb•G,µ•

for the closed subprestack of Igb•G
whose SpecB-points consist of (G , ϕ, {ψz}z∈Z) such that the relative position of ϕ
along {zB}z∈Z is bounded by µ•.

Write d for the least common multiple of {deg z}z∈Z . Then Definition 4.7.iii) im-

plies that the morphism Frobd
Igb•

G,µ•
: Igb•G,µ•

→(FrobdFq
)∗ Igb•G,µ•

is naturally equiva-

lent to the isomorphism sending (G , ϕ, {ψz}z∈Z}) 7→ (G , ϕ, {ψz◦(ϕ(d/deg z))Fz
}z∈Z).

In particular, Igb•G,µ•
and Igb•G = lim−→µ•∈X+

∗ (T )Z
Igb•G,µ•

are perfect.

4.8. Proposition. When Z is nonempty, Igb•G,µ•
is a filtered open union of schemes

that are cofiltered limits of disjoint unions of quasiprojective schemes over Fq. In

particular, Igb•G is an ind-scheme.

When Z is empty, Example 2.3 shows that Ig
()
G is the constant stack over Fq

associated with the groupoid (♡). In particular, Ig
()
G is not an ind-scheme.

Proof. By Beauville–Laszlo gluing, a SpecB-point of Igb•G is equivalent to the data:

i’) a G-torsor G on CB ,

ii’) an isomorphism of G-torsors ϕ : G |UB

∼→Frob∗B G |UB
,

iii’) for all z in Z, an isomorphism of G-torsors ψz : G |SpecOz⊗̂FzB
∼→G such that

G |SpecFz⊗̂FzB

(ϕdeg z)Fz //

(ψz)Fz

��

(Frobdeg zB )∗G |SpecFz⊗̂FzB

(ψz)Fz

��

G
(Frob∗

B)− deg z◦bz
// G

commutes.

Next, write BG,∞Z for the prestack on {affine schemes over Fq} whose SpecB-
points parametrize data consisting of

i’) a G-torsor G on CB ,

iii”) for all z in Z, an isomorphism of G-torsors ψz : G |SpecOz⊗̂FzB
∼→G.

Recall that BG,∞Z is a filtered open union of schemes that are cofiltered limits
of disjoint unions of quasiprojective schemes [5, p. 15]. Given a SpecB-point
(G , {ψz}z∈Z) of BG,∞Z , the additional data of

ii”) an isomorphism ofG-torsors ϕ : G |UB

∼→Frob∗B G |UB
whose relative position

along {zB}z∈Z is bounded by µ•

corresponds to a projective scheme over SpecB [5, Proposition 3.12], and the com-
mutativity condition of iii’) corresponds to a closed subscheme. Therefore the mor-

phism Igb•G,µ•
→BG,∞Z that sends (G , ϕ, {ψz}z∈Z) 7→ (G , {ψz}z∈Z) is schematic

and projective, which yields the desired result. □
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4.9. Similarly to Definition 3.4, we now convert Igusa varieties into v-stacks.

Definition. Write (Igb•G )♢ and (Igb•G,µ•
)♢ for the prestack on PerfFq

whose S-points

are given by Igb•G (R) and Igb•G,µ•
(R), respectively.

When Z is empty, Example 2.3 shows that (Igb•G )♢ is a small v-stack. When Z
is nonempty, Lemma 1.2 and Proposition 4.8 imply that

(Igb•G,µ•
)♢ and (Igb•G )♢ = lim−→

µ•∈X+
∗ (T )Z

(Igb•G,µ•
)♢

are small v-sheaves.

4.10. As suggested by Theorem 3.10, the fibers of locZ are given by Igusa varieties
in the following sense. We get a morphism (Igb•G )♢→BunG,U by sending

(G , ϕ, {ψz}z) 7→ (G an, ϕan).

The element bz induces a morphism bz : ∗→BunG,Fz , so as z varies we also get a
morphism b• : ∗→

∏
z∈Z BunG,Fz

.

Proposition. The square of small v-stacks

(Igb•G )♢ //

��

∗

b•

��

BunG,U
locZ //

∏
z∈Z

BunG,Fz

is cartesian.

Proof. In Theorem 3.10, take Iz = {i} to be a singleton for all z in Z, take N to be
∅, and base change the top arrow along the morphism SpdFq→

∏
i∈I zi→

∏
i∈I SpdOzi

corresponding to the embeddings Fz→Fq. This yields a cartesian square

(ShtIG,µ•
|Fq

)♢ //

��

LocShtIG,µ•
|Spd Fq

��

BunG,U
locZ //

∏
z∈Z

BunG,Fz .

Note that the morphism b• : ∗→
∏
z∈Z BunG,Fz

naturally lifts to a morphism

b• : ∗→LocShtIG,µ•
|Spd Fq

,

so it suffices to prove that the square of small v-stacks

(Igb•G,µ•
)♢ //

��

∗

b•

��

(ShtIG,µ•
|Fq

)♢ // LocShtIG,µ•
|Spd Fq

is cartesian. An S-point in the fiber product parametrizes data consisting of

i) a G-torsor G on CR,



32 SIYAN DANIEL LI-HUERTA

ii) an isomorphism of G-torsors ϕ : G |UR

∼→Frob∗R G |UR
whose relative position

along {zR}z∈Z is bounded by µ•,

iii) for all z in Z, an isomorphism of G-torsors ψan
z : G |SpaOz×FzS

∼→G such that

G |SpaFz×FzS

(ϕdeg z)Fz //

ψan
z

��

(Frobdeg zS )∗G |SpaFz×FzS

ψan
z

��

G
(Frob∗

S)− deg z

// G.

Note that everything is independent of R+, so we can assume that R+ equals R◦.
Because products of points as in [31, Definition 1.2] form a basis for the v-topology
[31, Example 1.1], we can assume that S is a product of points. Then [32, Corollary

1.9] implies that the above corresponds to an object in (Igb•G,µ•
)♢(S). □

4.11. Let us recall some more notation concerning the Kottwitz set. Let K be one
of {F, Fv}, write XK for the WK-module given by

XK :=

{
Z if K = Fv,

Div(F )0 as in [33, p. 75] if K = F,

and write κ : B(K,G)→(π1(G)⊗Z XK)WK
for the Kottwitz map as in [49, Subsec-

tion 11.5]. Recall that κ restricts to a bijection B(K,G)basic
∼→(π1(G) ⊗Z XK)WK

[49, Proposition 13.1, Proposition 15.1].
Recall the global semistable locus from Definition 2.7, which was defined in

terms of its local analogue. We now prove that it admits the following intrinsic
description; this is Theorem B. For all b in B(F,G)basic, write BunbG,F for the
substack of BunG,F whose S-points consist of objects such that, for all geometric
points s of S, its image in BunG,F (s) is isomorphic to (G, (Frob∗S)

−1 ◦ b).

Theorem. The substack BunbG,F ⊆ BunG,F is open and isomorphic to ∗/Gb(F ).
Moreover, the open substack BunssG,F ⊆ BunG,F equals

∐
b∈B(F,G)basic

BunbG,F .

Proof. Theorem 2.8 implies that Bun1G,F ⊆ BunG,F is open and naturally isomor-

phic to ∗/G(F ). Proposition 2.9 yields an isomorphism BunG,F
∼→BunGb,F of v-

stacks such that the image of BunbG,F equals Bun1Gb,F
, so applying the above to Gb

shows that BunbG,F ⊆ BunG,F is open and isomorphic to ∗/Gb(F ). Theorem 2.10

identifies the isomorphism classes in HomFq
(SpdFq,BunG,F ) with B(F,G), which

indicates that the BunbG,F are disjoint for distinct b. Hence
∐
b∈B(F,G)basic

BunbG,F
is an open substack of BunG,F , and it evidently lies in BunssG,F .

For the reverse inclusion, let s = Spa(K,K+) be a geometric point of BunssG,U ,
where U is some dense open subscheme of C. Then [25, Theorem III.4.5] implies

that, for all z in Z, the image of s in BunG,Fz lies in BunbzG,Fz
for some bz in

B(Fz, G)basic. Take Iz = {i} to be a singleton, and take µz to be a lift of κ(bz) to
X+

∗ (T ). Then 4.4 and the proof of [60, Proposition A.9]9 indicate that the image

of s in BunG,Fz lifts to a Spa(K,K+)-point of lim←−m≥1
LocShtIzG,µz,mz

|SpdFzi
. As z

varies, the cartesian square from the proof of Proposition 4.5 shows that s lifts to

9While [60, Appendix A] works over p-adic local fields and assumes that the cocharacter is
minuscule, this is not used in the proof of [60, Proposition A.9].
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a Spa(K,K+)-point of lim←−m≥1
(ShtIG,µ•,mZ |

∏
i∈I SpaFzi

)♢, which yields a SpecK-

point (G , ϕ) of ShtIG,µ•,∅ |
∏

i∈I Ci
.

Recall that the algebraic stack BG over Fq of G-bundles on C satisfies π0(BG) =
π1(G)WF

. Since absolute q-Frobenius induces the identity on topological spaces,
G and Frob∗K G have the same image in π0(BG). Now ϕ exhibits Frob∗K G as a
modification of G of relative position

∑
z∈Z µz, so the image of Frob∗K G in π0(BG)

equals the image of G in π0(BG) plus the image of
∑
z∈Z µz in π1(G)WF

. Therefore
the image of

∑
z∈Z µz in π1(G)WF

is trivial. By [49, Proposition 15.6], this shows
that there exists a b in B(F,G)basic such that locz(b) = bz for all z in Z and
locu(b) = 1 for all closed points u of U .

Let U ′ be a dense open subscheme of U such that b has a representative in
G(U ′

Fq
), and fix such a representative. By setting bc = 1 for all c in U ∖U ′, we may

replace U with U ′. Then Proposition 2.9 yields an isomorphism BunG,U
∼→BunGb,U

such that, for all z in Z, the image of s in BunGb,Fz
lies in Bun1Gb,Fz

. After using
fpqc descent to extend Gb to a parahoric group scheme over C, Proposition 2.4
implies that BunGb,Oz

→Bun1Gb,Fz
is surjective in the pro-étale topology for all z

in Z. Hence the image of s in BunGb,Fz
lifts to a Spa(K,K+)-point of BunGb,Oz

,
and as z varies, Lemma 2.6 shows that s lifts to a Spa(K,K+)-point (Gb, ϕb) of
BunGb,C .

Proposition 2.1 and Theorem A.19 indicate that (Gb, ϕb) is the analytification of

a Gb-torsor G alg
b on CK equipped with an isomorphism ϕalgb : G alg

b
∼→Frob∗K G alg

b .

Applying [69, Lemma 3.3 b)] to BGb
shows that (G alg

b , ϕalgb ) is isomorphic to

(G
alg

b , id
G

alg
b
⊗Fq

(Frob−1
K )∗)

for some Gb-torsor G
alg

b on C. Write b′ for the image of (G
alg

b )F under

H1(F,Gb) ↪→B(F,Gb)basic
∼→B(F,G)basic,

where the left arrow denotes the injection from [49, (10.5)], and the right arrow
denotes the bijection from [33, Lemma 5.3]. After shrinking U such that b′ has a

representative in G(UFq
), we see that s lies in Bunb

′

G,U , as desired. □

5. Sheaf-theoretic consequences

Our goal in this section is to prove Theorem E, which heavily relies on material
from Appendix B. We start by briefly recalling the theory of motivic sheaves and
explaining why we need it. Next, we explain a general mechanism for constructing
(derived) Hecke actions, which we use in both §5 and §6. We then state a forth-
coming result of Eteve–Gaitsgory–Genestier–Lafforgue, which is necessary to even
formulate Theorem E.

At this point, we can prove Theorem E. As an application, we explain how
Theorem E can be used to recover all of the representation-theoretic results of
[54]; for this, it suffices to use work of Xue instead of the forthcoming result of
Eteve–Gaitsgory–Genestier–Lafforgue.

5.1. We begin by recalling the sheaf theories that we will use. Let L/Qℓ be a finite
extension containing a fixed

√
q. Write OL for the ring of integers of L, and write

Fλ for the residue field of OL. Let Λ be one of {L,OL,Fλ}.
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Recall from B.3 the Z[ 1q ]-linear 6-functor formalism Dmot(−) on

{small v-stacks over Fq},

and recall from B.4 the Λ-linear 6-functor formalism

D(−,Λ) := Dmot(−)⊗Dmot(∗) D(Λ).

We use (this base change of) the theory of motivic sheaves because it enjoys !-
pushforwards and encodes “non-completed” sheaves even when Λ ̸= Fλ (e.g. see
Corollary B.4). However, to facilitate comparisons with classical étale ℓ-adic sheaf
theories for algebraic varieties, we will also use the various 3-functor formalisms
from Definition B.5, Proposition B.7, and B.8.

If one is only interested in the Λ = Fλ case, one can instead take

D(−,Fλ) := Dét(−,Fλ)

and just use the étale sheaf theory of [63]. In fact, since all the sheaves that we
use are overconvergent as in [25, Proposition IV.2.4], the theory of motivic sheaves
specializes to this when Λ = Fλ; see B.3.

5.2. We will use the following mechanism for constructing actions of (derived)
endomorphism algebras on both the automorphic and spectral sides. Let (C, E) be
a geometric setup as in [41, Definition 2.1.1], and let D(−) be a Λ-linear 3-functor
formalism on (C, E). Consider a diagram in C

YO
gO //

jY

��

O ×X
p1 //

jX

��

O

j

��

YF
gF // F ×X

p1 //

p2

��

F

X,

where the squares are cartesian, and the morphisms are all !-able. Write f for the
morphism YO→X, and let A be an object in D(YF ).

Lemma. The object f!j
∗
YA in D(X) is naturally a module for the E1-algebra

EndD(F )(j!1) over Λ.

Proof. Since f = p2 ◦ gF ◦ jY , the projection formula and proper base change yield

f!j
∗
YA = p2,!gF,!jY,!j

∗
YA = p2,!gF,!(A⊗ jY,!1) = p2,!gF,!(A⊗ jY,!g∗Op∗11)

= p2,!gF,!(A⊗ g∗F p∗1j!1) = p2,!(p
∗
1j!1⊗ gF,!A).

Because j!1 is naturally a module for the E1-algebra EndD(F )(j!1) over Λ, the same
holds for f!j

∗
YA by applying the functor p2,!(p

∗
1 −⊗gF,!A). □

5.3. For places in U , we have the following (derived) Hecke algebra action on
locZ,!Λ. Let Q be a finite nonempty set of closed points of U , and write

locQ : BunG,U→∗/G(OQ)
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for the morphism (locu)u∈Q. Then Lemma 2.6 implies that the square

BunG,U
(locQ,locZ)

//

��

∗/G(OQ)×
∏
z∈Z

BunG,Fz

��

∗/G(FQ)×∏
u∈Q BunG,Fu

BunG,U∖Q // ∗/G(FQ)×
∏
z∈Z

BunG,Fz

is cartesian. Proposition 4.5 implies that the bottom arrow is !-able, so the same
holds for the top arrow. Therefore Lemma 5.2 and Corollary B.4 endow locZ,!Λ in
D(

∏
z∈Z BunG,Fz

,Λ) with the structure of a module for the E1-algebra

EndG(FQ)(c-Ind
G(FQ)

G(OQ) Λ) =
⊗
u∈Q

EndG(Fu)(c-Ind
G(Fu)
G(Ou)

Λ)

over Λ, which we remind the reader can have cohomology in nonzero degrees when
Λ ̸= L. Taking the colimit over Q shows that locZ,!Λ is naturally a module for the

E1-algebra
⊗

u EndG(Fu)(c-Ind
G(Fu)
G(Ou)

Λ) over Λ, where u runs over closed points of

U .

5.4. Let us recall some notation on Langlands dual groups. For the rest of
this paper, assume that G is reductive over U . Write WU for the absolute

Weil group of U with respect to F , write F̃ /F for the finite Galois extension such

that Gal(F̃ /F ) equals the image of the WU -action on X+
∗ (T ), and write C̃ for the

normalization of C in F̃ . Write Ũ for the preimage of U in C̃, and write Z̃ for

the closed complement C̃ ∖ Ũ . Write Ĝ for the dual group of G over Λ, and write
LG for Ĝ ⋊ Gal(F̃ /F ). Similarly, for all closed points v of C, write F̃v/Fv for the

finite Galois extension such that Gal(F̃v/Fv) equals the image of the WFv
-action

on X+
∗ (T ), and write LGv for Ĝ⋊Gal(F̃v/Fv).

Using LG, we re-index stacks of global shtukas as follows. Recall from 3.2 the

Deligne–Mumford stack ShtIG,µ•,N |
∏

i∈I Ci∖Ni
. Let V̇ be an object in RepΛ(

LG)I ,

write Ñ for the preimage of N in C̃, and note that the disjoint union∐
µ•∈X+

∗ (T )I

arising in V̇ |T̂ I

ShtIG,µ•,N |(C̃∖Ñ)I

naturally descends to a Deligne–Mumford stack ShtI
G,V̇ ,N

|(C∖N)I that is separated

and locally of finite type over (C ∖N)I . Write πN : ShtI
G,V̇ ,N

|(C∖N)I →(C ∖N)I

for the structure morphism.

5.5. Briefly, write Sht for ShtI
G,V̇ ,N

|(C∖N)I
Fq
. Using 3.2, Proposition 3.5, and finite

étale descent, we can extend the Λ-linear 3-functor formalisms from Proposition B.7
and B.8 to the mildly stacky setting of πN : Sht→(C ∖ N)IFq

. More precisely, we
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have a natural diagram

IndD
(C∖N)IFq

\
∏

i∈I SpaCzi

mot

(
(Sht |∏

i∈I SpaCzi
)♢
) Υ //

rℓ,(Sht |∏
i∈I Spa Czi

)♢

��

Dmot

(
(Sht |∏

i∈I SpaCzi
)♢
)

IndD
(C∖N)IFq

\
∏

i∈I SpaCzi

ét

(
(Sht |∏

i∈I SpaCzi
)♢,Λ

)
D(Sht,Zℓ)

ρ
oo

such that !-pushforward along πN yields a morphism of diagrams to

IndD
(C∖N)IFq

\
∏

i∈I SpaCzi

mot

(∏
i∈I SpaCzi

) Υ //

rℓ,
∏

i∈I Spa Czi
��

Dmot

(∏
i∈I SpaCzi

)

IndD
(C∖N)IFq

\
∏

i∈I SpaCzi

ét

(∏
i∈I SpaCzi ,Λ

)
D((C ∖N)I ,Zℓ).

ρ
oo

5.6. We now state a forthcoming result of Eteve–Gaitsgory–Genestier–Lafforgue.
Roughly, it asserts that the cohomology of stacks of global shtukas satisfies the
conclusion of Drinfeld’s lemma even on the level of derived categories. On the level
of cohomology groups, this is already known by work of Xue; see Remark 5.7 below.

For any separated finite type scheme X over Fq, write Dlis(X,Λ) ⊆ Dcons(X,Λ)
for the full subcategory of lisse objects. Since FrobU∖N is a universal homeomor-
phism, the functor

(FrobU∖N )∗Fq
: Dcons((U ∖N)Fq

,Λ)→Dcons((U ∖N)Fq
,Λ)

restricts to an equivalence (FrobU∖N )∗Fq
: Dlis((U ∖N)Fq

,Λ)
∼→Dlis((U ∖N)Fq

,Λ).

Write SV̇ for the object in Dcons(Sht
I
G,V̇ ,N

|(U∖N)I
Fq
,Λ) associated with V̇ via

geometric Satake. Unless otherwise specified, all Lurie tensor products are over
D(Λ).

Theorem (Eteve–Gaitsgory–Genestier–Lafforgue). The object πN,!SV̇ in

D((U ∖N)IFq
,Λ)

lies in the image of the fully faithful external tensor product functor[
IndDlis((U ∖N)Fq

,Λ)
]⊗I

↪→D((U ∖N)IFq
,Λ)

and naturally lifts to an object of
[(

IndDlis((U ∖N)Fq
,Λ)

)(FrobU∖N )∗Fq

]⊗I
.

5.7. Remark. Work of Xue [71, Theorem 3.2.3]10 already implies the first statement
in Theorem 5.6, as well as the second statement after taking cohomology groups
[71, Corollary 3.2.6]. In particular, if one is only interested in Theorem 5.11 below
after taking cohomology groups, one does not need to appeal to Theorem 5.6. For
example, this is the case for Corollary 5.12 below.

10While [71, Theorem 3.2.3] assumes that G is split, its proof does not use this. See [71, §4].
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5.8. For places in U , we have the following (derived) Hecke algebra action on the
cohomology of stacks of global shtukas. Let Q be a finite set of closed points of U .
Write

π∞(Q∪Z) : lim←−
m≥1

ShtI
G,V̇ ,m(Q∪Z)

|(U∖Q)I
Fq
→(U ∖Q)IFq

for the structure morphism, and recall that lim←−m≥1
ShtI

G,V̇ ,m(Q∪Z)
|(U∖Q)I

Fq
has a

natural G(FQ∪Z)-action over (U ∖Q)IFq
[53, 3.9]. Because the square[

lim←−
m≥1

ShtI
G,V̇ ,mZ

|(U∖Q)I
Fq

]/
G(FZ)

π∞Z //

��

∗/G(OQ)× ∗/G(FZ)× (U ∖Q)IFq

��[
lim←−
m≥1

ShtI
G,V̇ ,m(Q∪Z)

|(U∖Q)I
Fq

]/
G(FQ∪Z)

π∞(Q∪Z)
// ∗/G(FQ)× ∗/G(FZ)× (U ∖Q)IFq

is cartesian, applying Lemma 5.2 and taking the colimit over Q endow

π∞Z,!SV̇ = lim−→
m≥1

πmZ,!SV̇ ∈ D(∗/G(FZ),Λ)⊗
[(

IndDlis(UFq
,Λ)

)(FrobU )∗Fq

]⊗I
with the structure of a module for the E1-algebra

⊗
u EndG(Fu)(c-Ind

G(Fu)
G(Ou)

Λ).

5.9. Our formula for π∞Z,!SV̇ will involve the followingHecke operators of Fargues–
Scholze. For all closed points v of C, recall from 1.9 the relative Fargues–Fontaine
curve XS,Fv

. Write Div1v(S) for the set of degree 1 effective Cartier divisors on

XS,Fv
as in [25, Definition II.1.19], so that Div1v is a small v-sheaf [25, p. 52]. For

all objects Vv in RepΛ(
LGv)

I , recall that we have a natural functor [66, p. 25]

TVv
: D(BunG,Fv

,Λ)→D(BunG,Fv
,Λ)⊗D(Div1v,Λ)

⊗I .

For all z in Z, let V̇z be an object in RepΛ(
LG)Iz , and take V̇ to be the object

⊠z∈Z V̇z in RepΛ(
LG)I . Write Vz for the restriction of V̇z to (LGz)

Iz , and write V

for the restriction of V̇ to
∏
z∈Z(

LGz)
Iz . Then

⊗
z∈Z TVz yields a natural functor

TV :
⊗
z∈Z

D(BunG,Fz
,Λ)→

⊗
z∈Z

[
D(BunG,Fz

,Λ)⊗D(Div1z,Λ)
⊗Iz

]
.

Recall from [66, Proposition 3.2] that
⊗

z∈Z D(BunG,Fz
,Λ) = D(

∏
z∈Z BunG,Fz

,Λ).

5.10. We restrict ℓ-adic sheaves on UFq
to local Galois representations as follows.

Write F̆v for the completion of the maximal unramified extension of Fv. Fix an

isomorphism F×
q
∼= Q/Z[ 1p ]. For all z in Z, choose a uniformizer π of Oz, and choose

a compatible system {π1/n}p∤n of n-th roots of π in F z. These choices induce

• group schemes IDFz
and WDFz

over Λ by B.10,
• a functor Ψz : D(SpaCz,Λ)→D(∗,Λ) by B.11,
• compatible identifications

D(Spd F̆z,Λ) ∼= Dqcoh

(
(SpecΛ)/IDFz

)
and D(Div1z,Λ)

∼= Dqcoh

(
(SpecΛ)/WDFz

)
such that the compositionD(Spd F̆z,Λ)−→D(SpaCz,Λ)

Ψz−→D(∗,Λ) corresponds
to pullback along SpecΛ→(SpecΛ)/IDFz

, by Lemma B.10.
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Moreover, Grothendieck’s ℓ-adic monodromy theorem implies that these choices
also induce a functor Dcons(UFq

,Λ)→Dperf((SpecΛ)/IDFz), arising from pullback

along Spec F̆z→UFq
. Ind-extending and taking Frobenius-equivariant objects yields

a functor D(UFq
,Λ)

(FrobU )∗Fq →Dqcoh

(
(SpecΛ)/WDFz

)
.

5.11. Finally, we prove Theorem E. Recall from 2.4 the natural open embedding
i1 : ∗/G(Fz) ↪→BunG,Fz , so that taking the product over all z in Z yields an open

embedding i1 : ∗/G(FZ) ↪→
∏
z∈Z BunG,Fz

.

Theorem. The image of π∞Z,!SV̇ in

D(∗/G(FZ),Λ)⊗
⊗
z∈Z

Dqcoh

(
(SpecΛ)/WDFz

)⊗Iz
is naturally isomorphic to i∗1(TV (locZ,!Λ)) as modules for

⊗
u EndG(Fu)(c-Ind

G(Fu)
G(Ou)

Λ).

Proof. After pulling back along SpecΛ→(SpecΛ)/WDFz , we claim that the im-
ages of π∞Z,!SV̇ and i∗1(TV (locZ,!Λ)) in D(∗/G(FZ),Λ) are naturally isomorphic as

modules for
⊗

u EndG(Fu)(c-Ind
G(Fu)
G(Ou)

Λ). To see this, first let us write

Sht :=
[
lim←−
m≥1

ShtI
G,V̇ ,mZ

|(U∖Q)I
Fq

]/
G(FZ)

for convenience.
Next, Theorem 5.6 enables us, after replacing Vz with its restriction to the

diagonal, to assume that Iz is a singleton for all z in Z. Consider the diagram

(Sht |∏
z∈Z SpaCz

)♢ //

��

[ ∏
z∈Z

GrG,Vz
|SpaCz

]/
G(FZ)

� _

��

// ∗/G(FZ)×
∏
z∈Z

SpaCz
� _

i1×id

��∏
z∈Z

HckG,Vz
|SpaCz

h1

��

h2 //
∏
z∈Z

BunG,Fz
×

∏
z∈Z

SpaCz

BunG,U
locZ //

∏
z∈Z

BunG,Fz ,

where HckG,Vz
|SpaCz

denotes the Hecke stack over SpaCz as in [25, p. 16], and h1
and h2 denote the morphisms as in [25, p. 317]. The left square is cartesian by 4.4
and Theorem 3.10, and the right square is cartesian by [25, p. 97]. Note that the

composition in the top row equals the restriction of π♢
∞Z to

∏
z∈Z SpaCz.

Proper base change and the above diagram imply that the image of i∗1(TV (locZ,!Λ))
in D(∗/G(FZ),Λ) has the following description. For all z in Z, write SVz

for the ob-

ject in Dmot(HckG,Vz |SpaCz ) associated with Vz via motivic geometric Satake as in
[66, Theorem 5.7], and write SV for the pullback of ⊠z∈ZSVz to (Sht |∏

z∈Z SpaCz
)♢.

The discussion on [66, p. 25] shows that π♢
∞Z,!SV lies in the full subcategory

Dmot(∗/G(FZ),Λ)⊗Dmot(∗)
⊗
z∈Z

Dmot(SpaCz) ↪→Dmot

(
∗/G(FZ)×

∏
z∈Z

SpaCz
)
,
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where
⊗

z∈Z is over Dmot(∗), and Proposition B.11 implies that applying⊗
z∈Z

Ψz : Dmot(∗/G(FZ))⊗Dmot(∗)
⊗
z∈Z

Dmot(SpaCz)→Dmot(∗/G(FZ),Λ)

yields an object whose image under

Dmot(∗/G(FZ))→D(∗/G(FZ),Λ)

is precisely the image of i∗1(TV (locZ,!Λ)) in D(∗/G(FZ),Λ).
We lift this to a Zariski-constructible version as follows. Note that SV lies in

D
UI

Fq
\
∏

z∈Z SpaCz

mot

(
(Sht |∏

z∈Z SpaCz
)♢
)
⊆ Dmot

(
(Sht |∏

z∈Z SpaCz
)♢
)
,

so 5.5 yields an object

π♢
∞Z,!SV ∈ Dmot(∗/G(FZ))⊗Dmot(∗) IndD

UI
Fq

\
∏

z∈Z SpaCz

mot

( ∏
z∈Z

SpaCz
)

(△)

whose image under Υ is identified with the previously mentioned

π♢
∞Z,!SV ∈ Dmot(∗/G(FZ))⊗Dmot(∗) Dmot

( ∏
z∈Z

SpaCz
)
.

The Zariski-constructible version enables us to compare with ℓ-adic realizations.
More precisely, the proof of [54, Lemma 6.4] identifies rℓ,(Sht |∏

z∈Z Spa Cz )
♢(SV ) with

ρ(SV̇ ), so 5.5 identifies the image of (△) under

rℓ,
∏

z∈Z SpaCz
:Dmot(∗/G(FZ))⊗Dmot(∗) IndD

UI
Fq

\
∏

z∈Z SpaCz

mot

( ∏
z∈Z

SpaCz
)

→D(∗/G(FZ),Λ)⊗ IndD
UI

Fq
\
∏

z∈Z SpaCz

ét

( ∏
z∈Z

SpaCz,Λ
)

with ρ(πZ∞,!SV̇ ). Theorem 5.6 indicates that πZ∞,!SV̇ lies in the full subcategory

D(∗/G(FZ),Λ)⊗D(UFq
,Λ)⊗I ↪→D(∗/G(FZ),Λ)⊗D(U IFq

,Λ).

Finally, consider the diagram

⊗
z∈Z

IndD
UFq\ SpaCz

mot (SpaCz)
⊗

z∈Z Υ
//

⊗
z∈Z rℓ,Spa Cz

��

⊗
z∈Z

Dmot(SpaCz)

⊗
z∈Z

IndD
UFq\ SpaCz

ét (SpaCz,Λ) D(UFq
,Λ)⊗I ,

⊗
z∈Z ρ

oo

where the top arrow is an equivalence by Proposition B.9 and [65, Proposition 10.1],
and the left arrow is identified with

⊗
z∈Z Ψz by Proposition B.11. Then the claim

follows from the observation that external tensor product induces a morphism from
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this diagram to

IndD
UI

Fq
\
∏

z∈Z SpaCz

mot

( ∏
z∈Z

SpaCz
) Υ //

rℓ,
∏

z∈Z Spa Cz

��

Dmot

( ∏
z∈Z

SpaCz
)

IndD
UFq\ SpaCz

ét

( ∏
z∈Z

SpaCz,Λ
)

D(U IFq
,Λ).

ρ
oo

By instead working over
∏
z∈Z Spd F̆z and keeping track of the partial Frobenii, we

obtain the stated result. □

5.12. As an application of Theorem 5.11, we can give a quick proof that the excur-
sion operators constructed by V. Lafforgue and Xue agree with those constructed
by Fargues–Scholze. We proved this originally in [54, Theorem 6.13].

Recall from Example 2.3 the set ker1(F,G). For any finite set I, object V̇ in

RepΛ(
LG)I , morphism x : 1→ V̇ |∆(Ĝ), morphism ξ : V̇ |∆(Ĝ)→1, and element γ•

in WF , recall that work of V. Lafforgue and Xue defines a Λ-linear endomorphism
SI,V̇ ,x,ξ,γ• of C∞

c (
∐
α∈ker1(F,G)Gα(F )\G(A),Λ) [71, Proposition 2.2.1].

Write z(G(Fv),Λ) for the Bernstein center of G(Fv) over Λ, and write V for the

restriction of V̇ to (LGv)
I . When γ• lies inWFv

, recall that work of Fargues–Scholze
defines an element zI,V,x,ξ,γ• of z(G(Fv),Λ) [25, Theorem VIII.4.1].

Corollary. The element zI,V,x,ξ,γ• acts on C∞
c (

∐
α∈ker1(F,G)Gα(F )\G(A),Λ) via

SI,V̇ ,x,ξ,γ• .

Proof. After shrinking U , we can assume that v lies in Z. Take Iz to be empty for
all z in Z∖v, so that Iv = I. The counit i1,!i

∗
1→ id induces a commutative diagram

i∗1T1i1,!i
∗
1locZ,!Λ

x //

��

i∗1TV i1,!i
∗
1locZ,!Λ

γ• //

��

i∗1TV i1,!i
∗
1locZ,!Λ

ξ
//

��

i∗1T1i1,!i
∗
1locZ,!Λ

��

i∗1T1locZ,!Λ
x // i∗1TV locZ,!Λ

γ• // i∗1TV locZ,!Λ
ξ

// i∗1T1locZ,!Λ.

Because T1 is naturally isomorphic to the identity, the left and right arrows are
isomorphisms, and the corners are identified with i∗1locZ,!Λ. By using Lemma 2.6
and arguing as in Example 2.3, we see that H0(i∗1locZ,!Λ) is naturally isomorphic
to C∞

c (
∐
α∈ker1(F,G)Gα(F )\G(A)/G(OU ),Λ). After applying H0(−) to the above

diagram, the top arrow equals the action of zI,V,x,ξ,γ• by construction, and the bot-
tom arrow equals SI,V̇ ,x,ξ,γ• by Theorem 5.11. This indicates that the restrictions

of zI,V,x,ξ,γ• and SI,V̇ ,x,ξ,γ• to C∞
c (

∐
α∈ker1(F,G)Gα(F )\G(A)/G(OU ),Λ) coincide.

Finally, taking
⋃
Z yields the desired result. □

5.13. Remarks.

1) The proof of Corollary 5.12 only relies on Theorem 5.11 after taking cohomology
groups. In particular, one does not need to appeal to Theorem 5.6; see Remark
5.7.

2) The main ingredient for the representation-theoretic results in [54] is [54, Theo-
rem 6.13]. Therefore one can use Corollary 5.12 to prove all the representation-
theoretic results in [54]; see the proof of [54, Theorem 6.16].
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6. Relation with Langlands duality

In this section, we discuss the role that BunG,F plays in the Langlands corre-
spondence. First, we recall the moduli of Galois representations and their derived
categories of ind-coherent sheaves, which are the main players on the Galois side. By
restricting Galois representations to decomposition groups, we obtain a map resZ
analogous to locZ ; we study the pushforward of the coherent dualizing complex ω
along resZ .

Next, we recall the spectral action of Fargues–Scholze, which enables us to
state their categorical Langlands conjecture. We can then state Conjecture F, and
we explain how Conjecture F implies conjectures of Arinkin–Gaitsgory–Kazhdan–
Raskin–Rozenblyum–Varshavsky and Zhu. Finally, we prove Conjecture F when G
is commutative; this is Theorem G.

6.1. We start by recalling the stacks of Galois representations that we will use.
For the rest of this paper, assume that ℓ ≥ 3.11 Write LSLG,U for the derived

algebraic stack over Λ of continuous LG-valued representations of WU

• as in [73, (3.24)] when Z is nonempty, or
• as in [73, Remark 3.36] when Z is empty,

using our choice of
√
q to replace cG with LG [73, Remark 3.1]. When Z is

nonempty, write LS□LG,U for its framed version as in [73, (3.24)], which the proof

of [73, Theorem 3.29] shows is a disjoint union of derived affine schemes almost of
finite type over Λ.

Similarly, for all closed points v of C, write LSLG,Fv
for the algebraic stack over

Λ of continuous LGv-valued representations of WFv
as in [73, (3.3)], and write

LS□LG,Fv
for its framed version as in [73, (3.3)]. Then [66, Corollary 4.5] implies

that LSLG,Fv
is the base change to Λ of the algebraic stack from [66, Definition 4.3],

and [25, Theorem VIII.1.3] shows that LS□LG,Fv
is a disjoint union of affine schemes

of finite type over Λ.
For all closed points u of U , write LSLG,Ou

⊆ LSLG,Fu
for the closed substack of

unramified LGv-valued representations of WFv
as in [73, p. 82]. Write LS□LG,Ou

for

its framed version, which is naturally isomorphic to Ĝ.

6.2. We will consider ind-coherent sheaves on these stacks. Namely, recall the
Λ-linear ind-coherent 6-functor formalism IndCoh(−) from [64, Lecture VIII.7] on

{derived qcqs schemes almost of finite type over Λ},

where we use the notation of Gaitsgory–Rozenblyum [30, p. 273] for the associated
functors instead of the notation of [56, Definition A.5.6]. Then [41, Theorem 3.4.11]
extends this to a 6-functor formalism on

{derived algebraic stacks over Λ}.

Let D be one of {U ̸= C,Fv}. Then 6.1 implies that the value of IndCoh on LSLG,D

is naturally equivalent to IndDqc
coh(LSLG,D).

11This arises from the fact that de Jong’s conjecture [18, Conjecture 1.1], which is used to
prove basic properties of LSLG,U [73, Theorem 3.29], is only known when ℓ ≥ 3 [27].
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6.3. When restricted to bounded below objects, there is no difference between
ind-perfect and ind-coherent objects on LSLG,D. More precisely, applying Ind to

the inclusion Dqc
perf(LSLG,D) ⊆ D

qc
coh(LSLG,D) yields a fully faithful functor

Ξ : IndDqc
perf(LSLG,D) ↪→ IndDqc

coh(LSLG,D).

Write Ψ : IndDqc
coh(LSLG,D)→ IndDqc

perf(LSLG,D) for its right adjoint. Then argu-

ing as in the proof of [28, Proposition 1.2.4] shows that Ψ restricts to an equivalence⋃
n∈Z

[
IndDqc

coh(LSLG,D)
]≥n ∼→

⋃
n∈Z

[
IndDqc

perf(LSLG,D)
]≥n

,

which we use to identify Dqc
coh(LSLG,D) with its image under Ψ.

6.4. Restriction induces the following morphisms between our stacks of Galois
representations. For all closed points u of U and z in Z, write

resu : LSLG,U→LSLG,Ou
and resz : LSLG,U→LSLG,Fz

for the resulting morphisms over Λ. Write resZ : LSLG,U→
∏
z∈Z LSLG,Fz

for the

morphism (resz)z∈Z , where all products are over Λ. By 6.1, the value of IndCoh
on

∏
z∈Z LSLG,Fz

is naturally equivalent to⊗
z∈Z

IndDqc
coh(LSLG,Fz

).

6.5. For places in U , we have the following (derived) spectral Hecke algebra action
on resZ,∗(ωLSLG,U

). Let Q be a finite nonempty set of closed points of U , and write

resQ : LSLG,U→
∏
u∈Q LSLG,Ou

for the morphism (resu)u∈U . Then [73, Lemma 3.34] implies that the square

LSLG,U

(resQ,resZ)
//

��

( ∏
u∈Q

LSLG,Ou

)
×
( ∏
z∈Z

LSLG,Fz

)

��

LSLG,U∖Q //
( ∏
u∈Q

LSLG,Fu

)
×
( ∏
z∈Z

LSLG,Fz

)
is derived cartesian. Moreover, 6.1 implies that bottom arrow is ∗-able, so the
same holds for the top arrow. Therefore Lemma 5.2 endows resZ,∗(ωLSLG,U

) in⊗
z∈Z IndDqc

coh(LSLG,Fz
) with the structure of a module for the E1-algebra

EndDcoh(
∏

u∈Q LSLG,Fu
)(O

∏
u∈Q LSLG,Ou

) =
⊗
u∈Q

EndDcoh(LSLG,Fu
)(OLSLG,Ou

)

over Λ. Taking the colimit over Q shows that resZ,∗(ωLSLG,U
) is naturally a module

for the E1-algebra
⊗

u EndDcoh(LSLG,Fu
)(LSLG,Ou

), where u runs over closed points

of U .
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6.6. Write Dqc
coh(LSLG,Fv

)Nilp ⊆ Dqc
coh(LSLG,Fv

) for the full subcategory of objects

with nilpotent singular support as in [25, VIII.2.2.2]. It is IndDqc
coh(LSLG,Fv

)Nilp

that appears in the categorical local Langlands conjecture, so we need to check that
resZ,∗(LSLG,U ) lies in this subcategory.

Proposition. The object resZ,∗(ωLSLG,U
) in

⊗
z∈Z IndDqc

coh(LSLG,Fz
) lies in⊗

z∈Z
IndDqc

coh(LSLG,Fz
)Nilp.

Proof. When Z is empty, this condition is also empty. When Z is nonempty, [73,

Theorem 3.29] implies that LS□LG,U is quasismooth over Λ, so [7, Corollary 2.2.8]12

shows that its dualizing complex ωLS□
LG,U

is a shift of a line bundle. By smooth

descent, the same holds for ωLSLG,U
, so the result follows from 6.3. □

6.7. The local automorphic and spectral sides are related by the following spectral
action of Fargues–Scholze. Write ZG for the center of G over F , and for the rest
of this paper, assume that π0((ZG)F ) is invertible in Λ. Then [66, Theorem
6.1] and 6.1 show that there is a natural Λ-linear action of Dperf(LSLG,Fv

) on

D(BunG,Fv ,Λ)
ω. Write Vv for the vector bundle on LSLG,Fv

associated with the

object Vv in RepΛ(
LG)I , so that by construction Vv in Dperf(LSLG,Fv

) acts on

D(BunG,Fv
,Λ)ω via TVv

.
By restricting to Dqc

perf(LSLG,Fv
) and applying Ind, the above naturally extends

to a Λ-linear colimit-preserving action of IndDqc
perf(LSLG,Fv

) on D(BunG,Fv
,Λ).

6.8. We now use the spectral action to state the categorical local Langlands con-
jecture of Fargues–Scholze. For the rest of this paper, assume that G is
quasisplit over F . Then we can choose B to be a Borel subgroup of G over F
and T to be a maximal subtorus of B over F . Write N for the unipotent radical
of B, and let ψ : N(A)→Λ× be a continuous homomorphism trivial on N(F ) such
that, for all closed points v of C, its restriction ψv to N(Fv) is generic.

Consider the colimit-preserving functor aψv
: IndDqc

perf(LSLG,Fv
)→D(BunG,Fv

,Λ)

given by acting as in 6.7 on i1,!c-Ind
G(Fv)
N(Fv)

ψv. Denote its right adjoint by

cψv : D(BunG,Fv ,Λ)→ IndDqc
perf(LSLG,Fv

).

Conjecture ([25, Conjecture X.3.5]). The functor cψv
restricts to an equivalence

D(BunG,Fv
,Λ)ω

∼→Dqc
coh(LSLG,Fv

)Nilp.

Consequently, applying Ind yields an equivalence

Lψv : D(BunG,Fv ,Λ)
∼→ IndDqc

coh(LSLG,Fv
)Nilp.

Conjecture 6.8 is known when G is a torus [75, Theorem 6.4.1].

12While [7] works over an algebraically closed field of characteristic zero, the proof of [7,
Corollary 2.2.8] does not use this assumption.
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6.9. To compare the actions of the (derived) automorphic and spectral Hecke
algebras for places in U , we consider the following conjecture of Zhu.

Conjecture ([73, Conjecture 4.11]). Let u be a closed point of U .

1) Assume Conjecture 6.8 for u. Then Lψu(i1,!c-Ind
G(Fu)
G(Ou)

Λ) ∼= OLSLG,Ou
.

2) There is a natural isomorphism of E1-algebras over Λ

EndG(Fu)(c-Ind
G(Fu)
G(Ou)

Λ) ∼= EndDcoh(LSLG,Fu
)(OLSLG,Ou

).

Note that Conjecture 6.9.1) implies Conjecture 6.9.2). The proof of [75, Theorem
6.4.1] shows that Conjecture 6.9.1) is known when G is a torus; see [73, Proposition
4.13] for an explicit description of the resulting isomorphism in Conjecture 6.9.2).

Conjecture 6.9.2) is known when Λ equals L [74, Theorem 5.3 (2)].

6.10. Finally, we arrive at Conjecture F.

Conjecture. Assume Conjecture 6.8 for all z in Z, which yields an equivalence⊗
z∈Z

Lψz :
⊗
z∈Z

D(BunG,Fz ,Λ)
∼→
⊗
z∈Z

IndDqc
coh(LSLG,Fz

)Nilp.

Assume Conjecture 6.9.2) for all closed points u in U , which yields an isomorphism⊗
u

EndG(Fu)(c-Ind
G(Fu)
G(Ou)

Λ) ∼=
⊗
u

EndDcoh(LSLG,Fu
)(OLSLG,Ou

).

Then the
⊗

u EndG(Fu)(c-Ind
G(Fu)
G(Ou)

Λ)-module

locZ,!Λ ∈
⊗
z∈Z

D(BunG,Fz
,Λ)

corresponds under
⊗

z∈Z Lψz
to the

⊗
u EndDcoh(LSLG,Fu

)(OLSLG,Ou
)-module

resZ,∗(ωLSLG,U
) ∈

⊗
z∈Z

IndDqc
coh(LSLG,Fz

)Nilp.

6.11. Example. Assume that Z is empty. Then Example 2.3 identifies BunG,C with

the constant stack over Fq associated with the groupoid (♡), so

loc∅,!Λ =
⊕

α∈ker1(F,G)

Γc(Gα(F )\G(A)/G(O),Λ),

where we remind the reader that Γc(Gα(F )\G(A)/G(O),Λ) can have cohomology

in nonzero degrees when Λ ̸= L [71, Remark 0.0.3]. On the other hand, by definition

res∅,∗(ωLSLG,C
) = Γ(LSLG,C , ωLSLG,C

).

Altogether, we see that Conjecture 6.10 specializes to [8, Conjecture 24.8.6] when
G is split, Λ = L, and Z is empty.
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6.12. More generally, Conjecture 6.10 implies the following formula for the coho-
mology of stacks of global shtukas for extended pure inner twists of G, which is
a conjecture of Zhu [73, Conjecture 4.49]. Let b be an element in G(UFq

) whose

image in B(F,G) is basic, and recall from 2.9 the parahoric group scheme Gb over
U . Using fpqc descent, extend Gb to a parahoric group scheme over C. Since Gb
is an inner twist of G over F , we have compatible identifications LG = LGb and
LGv =

LGb,v. Write

πGb

∞Z : lim←−
m≥1

ShtI
Gb,V̇ ,mZ

|(U∖Q)I
Fq
→(U ∖Q)IFq

for the structure morphism.
Recall the open embedding ib : ∗/Gb(Fz) ↪→BunG,Fz

[25, Theorem III.4.5], so
that taking the product over all z in Z yields an open embedding

ib : ∗/Gb(FZ) ↪→
∏
z∈Z BunG,Fz

.

For all z in Z, letKz be a compact open subgroup of Gb(Fz). WriteK for
∏
z∈Z Kz,

and consider the structure morphism

πGb

K :
[
lim←−
m≥1

ShtI
Gb,V̇ ,mZ

|(U∖Q)I
Fq

]/
K→(U ∖Q)IFq

.

Write V̇ for the vector bundle on LSLG,U associated with the object V̇ in

RepΛ(
LG)I , and write D(−) for the Grothendieck–Serre dual.

Proposition. Assume Conjecture 6.10. Then the image of πGb

K,!SV̇ in⊗
z∈Z

Dqcoh

(
(SpecΛ)/WDFz

)⊗ Iz

is isomorphic as modules for
⊗

u EndG(Fu)(c-Ind
G(Fu)
G(Ou)

Λ) to

Γ
(
LSLG,U , V̇ ⊗ res!Z(⊠z∈ZD(Lψz

(ib,! c-Ind
Gb(Fz)
Kz

)))
)
.

Proof. Because b is basic, Proposition 2.9 and Theorem 5.11 identify

πGb

K,!SV̇ = (πGb

∞Z,!SV̇ )
K = HomGb(FZ)

(
c-Ind

Gb(FZ)
K Λ, πGb

∞Z,!SV̇
)

= HomGb(FZ)

(
c-Ind

Gb(FZ)
K Λ, i∗b(TV (locZ,!Λ))

)
= Hom

(
ib,! c-Ind

Gb(FZ)
K Λ, TV (locZ,!Λ)

)
.

By Conjecture 6.10 and the projection formula, this is isomorphic to

Hom
(
⊠z∈Z Lψz (ib,! c-Ind

Gb(Fz)
Kz

Λ), V ⊗ resZ,∗(ωLSLG,U
)
)

= Hom
(
⊠z∈Z Lψz (ib,! c-Ind

Gb(Fz)
Kz

Λ), resZ,∗(V̇ ⊗ ωLSLG,U
)
)
.

Finally, applying Grothendieck–Serre duality yields

Hom
(
resZ,!(D(V̇ ⊗ ωLSLG,U

)),⊠z∈ZD(Lψz
(ib,! c-Ind

Gb(Fz)
Kz

))
)

= Hom
(
resZ,!(V̇

∨),⊠z∈ZD(Lψz
(ib,! c-Ind

Gb(Fz)
Kz

))
)

=Γ
(
LSLG,U , V̇ ⊗ res!Z(⊠z∈ZD(Lψz

(ib,! c-Ind
Gb(Fz)
Kz

)))
)
. □

6.13. Remark. When b = 1, it is expected that Lψz (i1,! c-Ind
G(Fz)
Kz

Λ) is isomorphic
to its Grothendieck–Serre dual [73, Remark 4.27].
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6.14. In this rest of this section, our goal is to prove Conjecture 6.10 when G = T
is a torus. We start by recalling work of Langlands [52] on his conjectures for tori.

Write WF̃ /F
:= WF /[WF̃ ,WF̃ ] for the relative Weil group of F̃ /F , so that global

class field theory gives a natural short exact sequence of locally profinite groups

1 // F̃×\A×
F̃

// WF̃ /F
// Gal(F̃ /F ) // 1.

Write T for the locally profinite group
[
T (F̃ )\T (AF̃ )

]Gal(F̃ /F )
. Then the long

exact sequence for group cohomology yields a natural short exact sequence

1 // T (F )\T (A) // T // ker1(F, T ) // 1

of locally profinite groups. Recall that the transfer map induces an isomorphism

H1(WF̃ /F , X∗(T ))
∼→H1(F̃

×\A×
F̃
, X∗(T ))

Gal(F̃ /F ) = T

[52, p. 233], and for all Gal(F̃ /F )-stable open subgroups P of F̃×\A×
F̃
, write

Θ(P ) := ker
[
H1(WF̃ /F , X∗(T ))→H1(WF̃ /F /P,X∗(T ))

]
.

Lemma. Under the identification H1(WF̃ /F , X∗(T ))
∼→T, the subgroup Θ(P ) cor-

responds to the image of P ⊗Z X∗(T ) ⊆ T (F̃ )\T (AF̃ ) under the norm map.

Proof. The five term exact sequence for group homology identifies Θ(P ) with the
image of H1(P,X∗(T )) = P ⊗ZX∗(T ) under the corestriction map. Postcomposing
the corestriction map with the transfer map yields the norm map, as desired. □

6.15. Assume that Z is nonempty. We will stratify LSLT,U by bounding rami-

fication as follows. Let K be a Gal(F̃ /F )-stable compact open subgroup of F̃×
Z̃
,

and write LS□LT,K for the presheaf on {affine schemes over Λ} whose SpecA-points

consist of 1-cocycles WF̃ /F /O
×
Ũ
K→ T̂ (A). Since WF̃ /F /O

×
Ũ
K is finitely generated,

LS□LT,K is an affine scheme of finite type over Λ. Write LSLT,K for the algebraic

stack LS□LT,K/T̂ over Λ.

For any finitely generated abelian group M , write Hom(M,Gm) for its Cartier
dual over Λ. Note that Hom(M,Gm) is a flat affine scheme of finite type over Λ.

Proposition. The algebraic stack LSLT,K is naturally a gerbe over

Hom
(
T/O×

UNmF̃ /F (K ⊗Z X∗(T )),Gm
)

banded by T̂Gal(F̃ /F ).

Proof. Write Hpre for the presheaf on {affine schemes over Λ} whose SpecA-points
consist of the set-theoretic quotient

LS□LT,K(A)
/
T̂ (A) = H1

(
WF̃ /F /O

×
Ũ
K, T̂ (A)

)
,

and writeH for its fpqc-sheafification. Using the presentation LSLT,K = LS□LT,K/T̂ ,

we see the inertia stack of LSLT,K is naturally isomorphic to T̂Gal(F̃ /F ) × LSLT,K

over LSLT,K . Therefore [68, Tag 06QJ] shows that LSLT,K is naturally a gerbe over

H banded by T̂Gal(F̃ /F ).
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Since X∗(T )⊗Z A
× = T̂ (A), the natural map

H1
(
WF̃ /F /O

×
Ũ
K,X∗(T )⊗Z A

×)→Hom
(
H1

(
WF̃ ,F /O

×
Ũ
K,X∗(T )

)
, A×)

yields a morphism ιpre : Hpre→Hom(H1(WF̃ ,F /O
×
Ũ
K,X∗(T )),Gm). When A×

is divisible, the above map is an isomorphism, so [75, Lemma 4.1.1] implies that

ιpre fpqc-sheafifies to an isomorphism ι : H
∼→Hom(H1(WF̃ ,F /O

×
Ũ
K,X∗(T )),Gm).

Finally, Lemma 6.14 shows that the transfer map yields an isomorphism

H1

(
WF̃ ,F /O

×
Ũ
K,X∗(T )

) ∼→T
/
O×
UNmF̃ /F (K ⊗Z X∗(T )). □

6.16. Assume that Z is nonempty. Using work of Langlands, we can prove the
following explicit description of LSLT,U .

Theorem. The derived algebraic stack LSLT,U is classical and equals⋃
K

LSLT,K ,

where K runs over Gal(F̃ /F )-stable pro-p open subgroups of F̃×
Z̃

and the transition

morphisms are clopen embeddings.

Proof. Recall that the SpecA-points of LS□,clLT,U
consist of 1-cocycles φ :WU→ T̂ (A)

that are continuous with respect to the ind-ℓ-adic topology on A as in [73, Remark

2.54]. Because φ|WŨ
is a homomorphism and T̂ (A) is abelian, φ factors through

WU→WF̃ /F /O
×
Ũ
. Since F̃×\A×

F̃
/O×

Ũ
is locally pro-p, there exists a Gal(F̃ /F )-

stable pro-p open subgroup K of F̃×
Z̃

such that φ factors through WF̃ /F /O
×
Ũ
K.

This shows that

LS□,clLT,U
=

⋃
K

LS□LT,K ,

where K runs over Gal(F̃ /F )-stable pro-p open subgroups of F̃×
Z̃
, and the proof

of [25, Theorem VIII.1.3] implies that the transition morphisms are clopen embed-

dings. Quotienting by T̂ yields an analogous description

LSclLT,U =
⋃
K

LSLT,K .

Because the finitely generated abelian group T/O×
UNmF̃ /F (K⊗ZX∗(T )) has rank

dim T̂Gal(F̃ /F ), its Cartier dual Hom(T/O×
UNmF̃ /F (K ⊗Z X∗(T )),Gm) has relative

dimension dim T̂Gal(F̃ /F ) over Λ. Hence Proposition 6.15 indicates that LSLT,K has
relative dimension 0 over Λ. Finally, LSLT,U also has relative virtual dimension 0

over Λ, so [35, Proposition B.0.1] implies that LSLT,U is classical. □

6.17. Finally, we prove Theorem G.

Theorem. Conjecture 6.10 holds when G = T is a torus.

Proof. Using Proposition 6.12, we can assume that Z is nonempty. Then Theorem
6.16 and Proposition 6.15 indicate that LSLT,U is naturally a gerbe over

Hom(T/O×
U ,Gm) :=

⋃
K

Hom
(
T/O×

UNmF̃ /F (K ⊗Z X∗(T )),Gm
)



48 SIYAN DANIEL LI-HUERTA

banded by T̂Gal(F̃ /F ), where K runs over Gal(F̃ /F )-stable pro-p open subgroups

of F̃×
Z̃
. This implies that ωLSLT,U

is isomorphic to OLSLT,U
. Using [75, Proposition

4.3.2], this also implies that we have a decomposition

Dqc
perf(LSLT,U ) =

⊕
χ∈X∗(T )WF

Dqc
perf(LSLT,U )χ

such that Dqc
perf(LSLT,U )1 is naturally equivalent to Dqc

perf(Hom(T/O×
U ,Gm)), the

latter of which [75, Lemma 4.2.1] identifies with D(∗/T/O×
U ,Λ)

ω. For all χ in

X∗(T )WF
, tensoring with the line bundle associated with χ also yields an equiva-

lence Dqc
perf(LSLT,U )1

∼→Dqc
perf(LSLT,U )χ.

For all z in Z, [75, Lemma 6.2.3] and [75, Lemma 4.2.1] indicate that we have
an analogous decomposition

Dqc
perf(LSLT,Fz

) =
⊕

χz∈X∗(T )WFz

Dqc
perf(LSLT,Fz

)χz
,

where Dqc
perf(LSLT,Fz

)χz is naturally equivalent to D(∗/T (Fz),Λ)ω for all χz in

X∗(T )WFz
. This induces a decomposition⊗
z∈Z

IndDqc
perf(LSLT,Fz

) =
∏

χ•∈
⊕

z∈Z X∗(T )WFz

D(∗/T (FZ),Λ).(♣)

Under these identifications, resZ,∗(ωLT,U ) corresponds to C
∞
c (T/O×

U ,Λ) in the fac-

tors where χ• lies in ker(
⊕

z∈Z X∗(T )WFz
→X∗(T )WF

) and 0 in the other factors.
Since T is a torus, every element in the Kottwitz set is basic. Therefore BunT,U

equals BunssT,U , so Theorem 4.11 and Lemma 2.6 naturally identify BunT,U with∐
b

T (F )\T (A)/T (OU )T (FZ),

where b runs over elements in B(F, T ) satisfying locu(b) = 1 for all closed points u
of U . Hence, for all b• in

∏
z∈Z B(Fz, T ), the corresponding factor of locZ,!Λ in⊗

z∈Z
D(BunT,Fz

,Λ) =
∏

b•∈
∏

z∈Z B(Fz,T )

D(∗/T (FZ),Λ)(♠)

equals
⊕

b′ C
∞
c (T (F )\T (A)/T (OU ),Λ), where b′ runs over elements in B(F, T ) sat-

isfying locz(b
′) = bz for all z in Z and locu(b

′) = 1 for all closed points u of U .
By [49, Proposition 15.6], the set of such b′ is nonempty if and only if (κ(bz))z lies
in ker(

⊕
z∈Z X∗(T )WFz

→X∗(T )WF
), and when this occurs, [49, p. 83] shows that

this set is a ker1(F, T )-torsor. Using 6.14, this implies that the images of locZ,!Λ in
(♠) and resZ,∗(ωLT,U ) in (♣) are isomorphic. Finally, [75, Remark 6.4.6] indicates

that
⊗

z∈Z Lψz
is given precisely by composing the equivalences (♠) and (♣). □

Appendix A. GAGA over sousperfectoid spaces

Our goal in this section is to prove Theorem H. Actually, we prove a generaliza-
tion of Theorem H over any complete Tate Huber pair, though stating it requires
the analytic geometry of Clausen–Scholze [62]; see Theorem A.18. While we were
finalizing this paper, a generalization of Theorem A.18 was proved independently
by Wang [70, Theorem 4.4.4] along very similar lines.
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The proof of Theorem A.18 closely follows Clausen–Scholze’s proof of GAGA for
complex analytic spaces [14, Theorem 13.10]. Namely, given an abstract formalism
of “analytic loci”, first we use discrete Huber pairs to prove a GAGA theorem for all
solid quasi-coherent sheaves. Next, we prove the analogue of Grauert’s coherence
theorem in our setting. Finally, we use this to prove that the previous GAGA
theorem restricts to an equivalence on pseudocoherent objects.

We conclude by applying Theorem H to prove that the analytification of algebraic
stacks of bundles agrees with analytic stacks of bundles, answering a question of
Heuer–Xu [40, Remark 8.1.2]. This was also proved independently by Wang [70].

Notation. For any (animated) condensed ring A, write Dcond(A) for its derived
category of condensed A-modules, and recall that there is a natural fully faithful
functor D(A(∗)) ↪→Dcond(A).

A.1. We start with some notation on analytic rings. Write AnRing for the ∞-
category of (normalized animated) analytic rings as in [62, Definition 12.11], and
for any analytic ring (A,M), write D(A,M) ⊆ Dcond(A) for the full subcategory
of complete objects as in [62, Remark 12.5]. Recall that D(A,M) ⊆ Dcond(A)
determines the analytic ring structure (A,M) on the underlying condensed ring A.

Recall that (A,M) 7→ D(A,M) yields a functor D(−) : AnRing→Sym.

Lemma. The functor D(−) : AnRing→Sym preserves pushouts.

Proof. Consider a pushout square in AnRing

(A,MA) //

��

(B,MB)

��

(C,MC) // (D,MD).

Then [62, Proposition 12.12] shows that we have a pullback square

D(A,MA) D(B,MB)oo

D(C,MC)

OO

D(D,MD),oo

OO

so the result follows from passing to adjoints. □

A.2. Next, let us recall the theory of quasi-coherent modules for analytic rings.
For any (A,M) in AnRing, write AnSpec(A,M) for the corresponding object of
AnRingop. Endow AnRingop with the topology generated by finite families of jointly
conservative steady localizations, as in [62, p. 95]. Consider the following classes of
morphisms AnSpec(B,N )→AnSpec(A,M) in AnRingop:

(I) the functor D(A,M)→D(B,N ) is an open embedding as in [14, p. 61],
(P ) (B,N ) is induced from (A,M) along A→B as in [62, Proposition 12.8].

Write E for the class of morphisms in AnRingop of the form p ◦ i for p in P and i
in I. Then the proof of [59, Lemma 3.2.5]13 shows that

• I and P form a suitable decomposition of E as in [56, Definition A.5.9],

13While [59, Lemma 3.2.5] restricts to the full subcategory of AnRingop consisting of solid
affinoids as in [59, Definition 2.6.6], this hypothesis is not used in the proof of [59, Lemma 3.2.5].
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• the functor D(−) : AnRing→Sym satisfies the conditions in [41, Proposition
A.5.10] with respect to I and P ,

so [41, Proposition A.5.10] endows AnSpec(A,M) 7→ D(A,M) with the structure
of a 6-functor formalism on AnRingop with E as its class of !-able morphisms. By
[62, Proposition 12.18], this 6-functor formalism is sheafy as in [41, Definition 3.4.1].

Write {analytic stacks} for the ∞-category of sheaves of anima on AnRingop.
Then [41, Theorem 3.4.11] extends the above 6-functor formalism on AnRingop to
a sheafy 6-functor formalism on {analytic stacks}. Note that the ∞-category of
analytic spaces as in [62, Definition 13.5] is a full subcategory of {analytic stacks}.

A.3. Nuclear modules enjoy the following compatibility with induced analytic ring
structures. Let (A,M) be an analytic ring, let B be an algebra in D(A,M), and
write (B,N ) for the analytic ring induced from (A,M) along A→B as in [62,
Proposition 12.8]. Then Lemma A.1 implies that D(B,N ) is naturally equivalent
to ModB(D(A,M)), so the image of −⊗(B,N ) − in D(A,M) is given by −⊗B −.

Lemma. Assume that B in D(A,M) is nuclear as in [14, Definition 8.5 (1)]. Then
an object C of D(B,N ) is nuclear if and only if its image in D(A,M) is nuclear.

Proof. Recall that C in D(B,N ) is nuclear if and only if, for all extremally discon-
nected S, the natural morphism

(HomB(N [S],B)⊗B C)(∗)→HomB(N [S], C)(∗)
is an isomorphism. Adjunction shows that HomB(N [S],−) = HomA(M[S],−), and
because B in D(A,M) is nuclear, [1, Proposition 5.35] shows that HomA(M[S],B)
is naturally isomorphic to HomA(M[S],A)⊗(A,M)B. Therefore the above becomes

(HomA(M[S],A)⊗(A,M) C)(∗)→HomA(M[S], C)(∗),
and this is an isomorphism for all extremally disconnected S if and only if the image
of C in D(A,M) is nuclear. □

A.4. When the analytic rings are all nuclear over a base, we can check nuclearity
on a cover as follows. Let (A,M) be an analytic ring, let B be a nuclear algebra in
D(A,M), and write (B,N ) for the analytic ring induced from (A,M) along A→B
as in [62, Proposition 12.8].

Let {Bj}rj=1 be a finite family of nuclear algebras in D(B,N ), and write (Bj ,Nj)
for the analytic ring induced from (B,N ) along B→Bj as in [62, Proposition 12.8]

for all 1 ≤ j ≤ r. Assume that
{
(B,N )→(Bj ,Nj)

}r
j=1

is a family of jointly

conservative steady localizations.

Proposition. An object C of D(B,N ) is nuclear if and only if C⊗BBj in D(Bj ,Nj)
is nuclear for all 1 ≤ j ≤ r.

Proof. Since the functor D(B,N )→D(Bj ,Nj) is symmetric monoidal, it preserves
trace-class morphisms as in [14, Definition 8.1]. It also preserves colimits, so it
preserves basic nuclear objects as in [14, Definition 8.5 (2)] and hence nuclear
objects by [14, Theorem 8.6 (2)].

Conversely, assume that C ⊗B Bj in D(Bj ,Nj) is nuclear for all 1 ≤ j ≤ r.
Then Lemma A.3 indicates that the image of C ⊗B Bj in D(B,N ) is nuclear.
Descent shows that C is naturally isomorphic to a finite limit with terms of the form
C⊗B

⊗
j∈J Bj for nonempty subsets J of {1, . . . , r}, and because the C⊗B

⊗
j∈J Bj

are nuclear, [14, Theorem 8.6 (1)] implies that C is also nuclear. □
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A.5. In the following situation, we can check pseudocompactness on a cover. Let
(A,M) be an analytic ring. Let

{
(A,M)→(Aj ,Mj)

}r
j=1

be a finite family of

jointly conservative steady localizations such that, for all 1 ≤ j ≤ r, the functor
D(A,M)→D(Aj ,Mj) is the open embedding as in [14, p. 61] corresponding to
an idempotent algebra Ij in D≤0(A,M).

Proposition. An object C of D(A,M) is pseudocompact as in [14, Definition 9.9]
if and only if its image in D(Aj ,Mj) is pseudocompact for all 1 ≤ j ≤ r.

Proof. Because D(Aj ,Mj)→D(A,M) is left t-exact and preserves direct sums, if
C is pseudocompact, then its image in D(Aj ,Mj) is pseudocompact.

Conversely, assume that the image of C in D(Aj ,Mj) is pseudocompact for all
1 ≤ j ≤ r. Since the composition D(A,M)→D(Aj ,Mj)→D(A,M) is given by
HomA(fib(A→Ij),−) and Ij lies inD≤0(A,M), we see thatD(A,M)→D(Aj ,Mj)
sends D≤0(A,M) to D≤1(Aj ,Mj). Descent shows that HomA(C,−) is naturally
isomorphic to a finite limit with terms of the form

Hom⊗
j∈J (Aj ,Mj)(C ⊗(A,M)

⊗
j∈J(Aj ,Mj),−⊗(A,M)

⊗
j∈J(Aj ,Mj))

for nonempty subsets J of {1, . . . , r}. The above shows that−⊗(A,M)

⊗
j∈J(Aj ,Mj)

sends D≤0(A,M) to D≤(#J)
(⊗

j∈J(Aj ,Mj)
)
. Because C ⊗(A,M)

⊗
j∈J(Aj ,Mj)

is pseudocompact, this implies that C is also pseudocompact. □

A.6. Next, let us recall the analytic rings associated with complete Huber pairs.
For any complete Huber pair (A,A+), write (A,A+)■ for the associated analytic
ring as in [62, Proposition 13.16], write (A,A+)■[−] for its functor of measures,
and write D■(A,A

+) for D((A,A+)■). When A+ equals A◦, we omit it from our
notation. By [1, Proposition 3.29], we see that D■(A,A

+) is naturally equivalent
to ModA(D■(A

+)).

Lemma. We have the following pushout squares in AnRing:

(Z[X,Y ],Z)■ //

��

(Z[X,Y ],Z[X])■

��

(Z[X,Y ],Z[Y ])■ // Z[X,Y ]■,

(Z[XY ],Z)■ //

��

Z[XY ]■

��

(Z[X,Y ],Z)■ // (Z[X,Y ],Z[XY ])■,

(Z[X + Y ],Z)■ //

��

Z[X + Y ]■

��

(Z[X,Y ],Z)■ // (Z[X,Y ],Z[X + Y ])■.

Proof. This follows from combining [62, Proposition 12.12] with the characteriza-
tion of (−,−)■ from [1, Proposition 3.32]. □

A.7. The following analytic rings correspond to the complements of the closed14

unit disk centered at the origin and at infinity. Recall that Z((T−1)) is an idem-
potent algebra in D■(Z[T ],Z) [61, Observation 8.7], and the corresponding open

14“Closed” in the sense of being defined by a non-strict inequality; our closed unit disks are
actually open in the affine line, so their complements in the affine line are actually closed.
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embedding as in [14, p. 61] is D■(Z[T ],Z)→D■(Z[T ]) [61, Observation 8.10]. Also,
recall that the complex

Z[[U ]]⊗Z Z[T ] UT−1
// Z[[U ]]⊗Z Z[T ]

is a projective resolution of Z((T−1)) in D■(Z[T ],Z) [61, Observation 8.6].
Recall that Z[[U ]] is naturally isomorphic to Z■[N ∪ {∞}]/Z[{∞}], where multi-

plication by U is induced by the endomorphism n 7→ n+ 1 of N [1, Lemma 3.11].

Lemma. Z[[T ]] is also an idempotent algebra in D■(Z[T ],Z), and we have

Z((T−1))⊗(Z[T ],Z)■ Z[[T ]] = 0.

Proof. By [61, Example 6.4], we obtain

Z[[T ]]⊗(Z[T ]■,Z) Z[[T ]] = (Z[[T1]]⊗Z■
Z[[T2]])/(T1 − T2) = Z[[T1, T2]]/(T1 − T2) = Z[[T ]].

Next, using the above projective resolution of Z((T−1)), we see that

Z((T−1))⊗(Z[T ],Z)■ Z[[T ]]

is the solidification of the complex

Z[[U ]]⊗Z Z[[T ]] UT−1
// Z[[U ]]⊗Z Z[[T ]].

After solidification, [61, Example 6.4] indicates that both terms become Z[[U, T ]].
Because UT − 1 is invertible in Z[[U, T ]], the resulting complex is indeed exact. □

A.8. Let (R,R+) be a complete Huber pair.

Lemma. We have a pushout square in AnRing

Z■
//

��

Z[T ]■

��

(R,R+)■ // (R⟨T ⟩, R+⟨T ⟩)■.

Proof. Write (A,M) for the pushout. Since [1, Lemma 3.8] indicates that Z■→Z[T ]■
is steady, we see that

A = R⊗Z■
Z[T ]■ by [62, p. 84],

= R⟨T ⟩ by [1, Proposition 3.14].

Next, [62, Proposition 12.12] indicates that D(A,M) ⊆ Dcond(R⟨T ⟩) is the full
subcategory of objects whose images in Dcond(Z[T ]) and Dcond(R) lie in D■(Z[T ])
and D■(R,R

+), respectively. Because R+⟨T ⟩ is topologically generated by Z[T ]
and R+, [1, Proposition 3.32] implies that D(A,M) equals D■(R⟨T ⟩, R+⟨T ⟩). □

A.9. One can use analytic rings to define the following version of analytification;
remarkably, it still remembers algebraic functions. For any R-algebra A, write Aalg

for the pushout in AnRing

(Rdisc, R
+
disc)■

//

��

(Adisc, (R
+)∼disc)■

��

(R,R+)■ // Aalg.
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Since Adisc is nuclear in D(Rdisc, R
+
disc), [62, Proposition 13.14] shows that the top

arrow is steady. Therefore underlying condensed ring of Aalg is A, by [62, p. 84].
For any f in A, write A|f |≤1 and A|f |≥1 for the following pushouts in AnRing:

(Z[T ],Z)■ //

f

��

Z[T ]■

��

Aalg // A|f |≤1,

(Z[T ],Z)■ //

f

��

(Z[T±1],Z[T−1])■

��

Aalg // A|f |≥1.

Because the top arrows are steady localizations, the same holds for the bottom
arrows.

A.10. The following analytic ring corresponds to the closure of the closed unit
disk centered at the origin. For the rest of this section, assume that R is Tate.

Proposition. The object R⟨T ⟩ in D■(R,R
+) is nuclear as in [14, Definition 8.5

(1)]. Moreover, the analytic ring induced from (R,R+)■ along R→R⟨T ⟩ as in
[62, Proposition 12.8] is naturally isomorphic to (R⟨T ⟩, R++T ·R◦◦⟨T ⟩)■, and the
induced morphism R[T ]alg→(R⟨T ⟩, R+ + T ·R◦◦⟨T ⟩)■ is a steady localization.

Proof. Since R is Tate, the first statement follows from [2, Lemma 4.4]. For the
second statement, write (A,M) for the analytic ring induced form (R,R+)■ along
R→R⟨T ⟩ as in [62, Proposition 12.8]. Because R⟨T ⟩ lies in D■(R,R

+), we see that
A = R⟨T ⟩. Next, [62, Proposition 12.12] indicates that D(A,M) ⊆ Dcond(R⟨T ⟩) is
the full subcategory of objects whose image in Dcond(R) lies in D■(R,R

+). Since
R++T ·R◦◦⟨T ⟩ is topologically generated by R+, [1, Proposition 3.32] implies that
D(A,M) equals D■(R⟨T ⟩, R+ + T ·R◦◦⟨T ⟩), as desired.

For the third statement, [62, Proposition 13.14] and the first statement imply

(R,R+)■→(R⟨T ⟩, R+ + T ·R◦◦⟨T ⟩)■
is steady, so [62, Proposition 12.15] shows that

R[T ]alg→(R⟨T ⟩, R+ + T ·R◦◦⟨T ⟩)■
is also steady. Finally, Lemma A.8 implies that the composition

R[T ]alg→(R⟨T ⟩, R+ + T ·R◦◦⟨T ⟩)■→(R⟨T ⟩, R+⟨T ⟩)■
is a localization. Because the right arrow is a localization, the same holds for the
left arrow. □

A.11. For any R-algebra A and f in A, write A|f |≤1 for the pushout in AnRing

R[T ]alg //

f

��

(R⟨T ⟩, R+ + T ·R◦◦⟨T ⟩)■

��

Aalg // A|f |≤1.

The following analytic spaces correspond the loci in AnSpecAalg where f is analytic
and where f is analytically invertible, respectively. Choose a pseudouniformizer ϖ
of R, form the colimits in {analytic stacks}

an(A, f) := lim−→
n≥0

AnSpecA|ϖnf |≤1 and Dan(f) := lim−→
n≥0

AnSpecA|ϖ−nf |≥1,
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and note that they do not depend on the choice of ϖ. Moreover, the factorization

(R⟨ϖT ⟩, R+⟨ϖT ⟩)■→(R⟨T ⟩, R+ + T ·R◦◦⟨T ⟩)■→(R⟨T ⟩, R+⟨T ⟩)■

indicates that an(A, f) is naturally isomorphic to lim−→n≥0
AnSpecA|ϖnf |≤1.

A.12. The analytic loci satisfy the following basic properties.

Proposition.

1) For any r in R, we have an(R, r) = AnSpecRalg.
2) Write an(R[X,Y ], X)∩an(R[X,Y ], Y ) for the fiber product in {analytic stacks}

an(R[X,Y ], X) ∩ an(R[X,Y ], Y ) //

��

an(R[X,Y ], X)

��

an(R[X,Y ], Y ) // AnSpecR[X,Y ]alg.

Then an(R[X,Y ], X) ∩ an(R[X,Y ], Y )→AnSpecR[X,Y ]alg factors through

an(R[X,Y ], XY )→AnSpecR[X,Y ]alg and an(R[X,Y ], X + Y )→AnSpecR[X,Y ]alg.

3) The composition an(R[T±1], T−1)→AnSpecR[T±1]alg→AnSpecR[T ]alg is nat-
urally isomorphic to Dan(T )→AnSpecR[T ]alg over AnSpecR[T ]alg.

4)
{
an(R[T ], T ), Dan(T )

}
forms a cohomologically étale (as in [64, Definition 6.12])

steady localization cover of AnSpecR[T ]alg.
5) Write Dan(X) ∪Dan(Y ) for the pushout in {analytic stacks}

Dan(X) ∩Dan(Y ) //

��

Dan(X)

��

Dan(Y ) // Dan(X) ∪Dan(Y ).

Then Dan(X + Y )→AnSpecR[X,Y ]alg factors through

Dan(X) ∪Dan(Y )→AnSpecR[X,Y ]alg.

Proof. For part 1), it suffices to show that R|r|≤1 = Ralg when r lies in R◦◦. By

A.7, the functor D(R[T ]alg)→D(R[T ]|T |≤1) is the open embedding as in [14, p. 61]

corresponding to the idempotent algebra Z((T−1))⊗Z■
(R,R+)■ in D(R[T ]alg). The

descriptions of Z((T )) and Z[[U ]] from A.7 show that Z((T−1))⊗Z■
(R,R+)■ is given

by the complex

(R,R+)■[N ∪ {∞}]
R[{∞}]

⊗R R[T ]
UT−1

//
(R,R+)■[N ∪ {∞}]

R[{∞}]
⊗R R[T ].

Since r lies inR◦◦, multiplication by Ur−1 is invertible on (R,R+)■[N∪{∞}]/R[{∞}].
Therefore, after base changing the above complex along the R-algebra morphism
R[T ] 7→ R that sends T 7→ r, the resulting complex is indeed exact.

For part 2), it suffices to show that

R[X,Y ]alg→R[X,Y ]|X|≤1 ⊗R[X,Y ]alg R[X,Y ]|Y |≤1
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factors throughR[X,Y ]alg→R[X,Y ]|XY |≤1 andR[X,Y ]alg→R[X,Y ]|X+Y |≤1. This

follows from applying −⊗Z■
(R,R+)■ to Lemma A.6 and the morphisms

(Z[X,Y ],Z[XY ])■→Z[X,Y ]■ and (Z[X,Y ],Z[X + Y ])■→Z[X,Y ]■.

For part 3), note that T is invertible in (Z[T±1],Z[T−1])■, and T 7→ T−1 induces

an isomorphism (Z[T±1],Z[T ])■
∼→(Z[T±1],Z[T−1])■. Applying − ⊗Z■

(R,R+)■
to this shows that R[T ]alg→R[T ]|T |≥1 factors through R[T ]alg→R[T±1]alg and

that the analytic rings R[T ]|T |≥1 and R[T±1]|T−1|≤1 are naturally isomorphic over

R[T±1]alg. This implies the desired result.
For part 4), [59, Lemma 3.2.9] indicates that it suffices to show that{

R[T ]|T |≤1, R[T ]|T |≥1

}
forms a family of jointly conservative steady localizations of R[T ]alg such that, after
applying D(−), the resulting functors are open embeddings as in [14, p. 61]. This
follows from applying −⊗Z■

(R,R+)■ to Lemma A.7.
For part 5), Lemma A.7 shows that Z[[T ]] is an idempotent algebra inD■(Z[T ],Z),

and A.7 implies that D■(Z[T ],Z)→D■(Z[T±1, T−1]) is the open embedding as in
[14, p. 61] corresponding to Z[[T ]]. Hence applying −⊗Z■

(R,R+)■ to the morphism
Z[[X + Y ]]→Z[[X,Y ]] of idempotent algebras in D■(Z[X,Y ],Z) yields the desired
result. □

A.13. Using discrete Huber pairs, one can prove the following GAGA theorem for
all (solid) quasi-coherent sheaves as in work of Clausen–Scholze [14]. Let A be a
finitely generated R-algebra, and let A+ ⊆ A be the integral closure of a finitely
generated R-subalgebra. If A+ equals the integral closure of the R-subalgebra
generated by f1, . . . , fm, write an(A,A+) for the intersection

⋂m
i=1 an(A, fi) in

{analytic stacks} over AnSpecAalg. By Proposition A.12.1), Proposition A.12.2),
and proof of [14, Lemma 6.11], this does not depend on the choice of f1, . . . , fm.

Theorem. The assignment Spa(Adisc, A
+
disc) 7→ an(A,A+) sends rational covers to

steady localization covers. Consequently, the assignments SpecA 7→ an(A,R∼) and
SpecA 7→ an(A,A) naturally glue to functors

(−)alg and (−)an : {schemes locally of finite type over R}→{analytic stacks},

respectively, along with a natural transformation (−)an→(−)alg. Moreover, (−)an
sends Zariski covers to cohomologically étale steady localization covers. Finally, for
any proper scheme X over R, the morphism Xan→Xalg is an isomorphism.

Proof. The first statement follows from the description of rational covers of

Spa(Adisc, A
+
disc)

from [14, Lemma 6.12] and Proposition A.12. The second statement follows from
the first statement and the fact that the assignments SpecA 7→ Spa(Adisc, R

∼
disc)

and SpecA 7→ Spa(Adisc, Adisc) send rational covers to rational covers. The third
statement follows from Proposition A.12.4). Finally, the fourth statement follows
from the valuative criterion for properness. □

Remark. By [62, Proposition 13.6], the functors (−)alg and (−)an are valued in the
full subcategory of analytic spaces as in [62, Definition 13.5].
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A.14. We will later need the notion of pseudocoherent sheaves on schemes, as well
as its relation with finite presentation. For any scheme X, write Dpc(X) for the full
subcategory of Dqc(X) consisting of pseudocoherent objects as in [68, Tag 08CB].
When X = SpecA is affine, recall from [68, Tag 08E7] that this is equivalent to the
full subcategory Dpc(A) ⊆ D(A) of pseudocoherent objects as in [68, Tag 064Q].

Lemma. Let A be a finitely generated R-algebra. Then A is a finitely presented
R-algebra if and only if, for all R-algebra surjections R[T1, . . . , Tm] ↠ A, the object
A lies in Dpc(R[T1, . . . , Tm]).

Proof. Let R[T1, . . . , Tm] ↠ A be an R-algebra surjection with A lying in

Dpc(R[T1, . . . , Tm]).

Then [68, Tag 064T] implies that A is a finitely presented R-algebra.
Conversely, assume that A is a finitely presented R-algebra, and let

α : R[T1, . . . , Tm] ↠ A

be an R-algebra surjection. By [68, Tag 00R2], kerα is finitely generated. Therefore
noetherian approximation yields a noetherian ring R0, a surjection

α0 : R0[T1, . . . , Tm] ↠ A0

of R0-algebras, and a ring homomorphism R0→R such that the base change of
(A0, α0) to R is isomorphic to (A,α). Because R0[T1, . . . , Tm] is noetherian, A0 lies
in Dpc(R0[T1, . . . , Tm]). Hence A lies in Dpc(R[T1, . . . , Tm]). □

A.15. By construction, the analytifications from Theorem A.13 are covered by
analytic rings of the following form. For any finitely generated R-algebra A with
generators f = (f1, . . . , fm), write A|f|≤1 and A|f|≤1 for these pushouts in AnRing:

(Z[T1, . . . , Tm],Z)■ //

f

��

Z[T1, . . . , Tm]■

��

Aalg // A|f|≤1,

R[T1, . . . , Tm]alg //

f

��

(R⟨T1, . . . , Tm⟩, R+ + (T1, . . . , Tm) ·R◦◦⟨T1, . . . , Tm⟩)■

��

Aalg // A|f|≤1.

For any scheme X locally of finite type over R, Theorem A.13 shows that Xan

is glued from objects of the form AnSpecA|f|≤1 along covers as in A.5. Therefore

Proposition A.5 indicates that the full subcategory of D(A|f|≤1) consisting of pseu-

docompact objects as in [14, Definition 9.9] naturally glues to a full subcategory of
D(Xan). We say that an object of D(Xan) is pseudocompact if it lies in this full
subcategory.

Theorem A.13 and A.11 show that Xan is also glued from objects of the form
AnSpecA|f|≤1 along covers as in A.4. Hence Proposition A.4 indicates that the full

subcategory of D(A|f |≤1) consisting of nuclear objects as in [14, Definition 8.5 (1)]
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naturally glues to a full subcategory of D(Xan). We say that an object of D(Xan)
is nuclear if it lies in this full subcategory.

Finally, write Dpc(X
an) for the full subcategory of D(Xan) consisting of pseu-

docompact and nuclear objects. Recall from [1, Theorem 5.50]15 that

Dpc((SpecR)
an) ⊆ D((SpecR)an) = D■(R,R

+)

equals the image of Dpc(R) ⊆ D(R) ↪→D■(R,R
+).

A.16. For the analytifications from Theorem A.13, !-pullback of quasi-coherent
sheaves commutes with arbitrary direct sums of uniformly bounded below objects.
More precisely, for any scheme X locally of finite type over R, write

π : Xan→(SpecR)an = AnSpec(R,R+)■

for (−)an applied to the structure morphism X→SpecR.

Proposition. Assume that X is of finite presentation over R, and let d be an
integer. Then there exists an integer e such that, for all families (Mα)α of objects

of D≥d
■ (R,R+), the family (π!Mα)α lies in D≥e(Xan) and the natural morphism⊕

α

π!Mα→π!
(⊕

α

Mα

)
is an isomorphism.

Proof. Theorem A.13 indicates that (−)an sends Zariski covers to cohomologically
étale steady localization covers, so by replacing X with an open cover, we can
assume that X = SpecA for a finitely presented R-algebra A.

Let f = (f1, . . . , fm) be generators of A. Then Xan is isomorphic to

lim−→
n≥0

AnSpecA|ϖnf|≤1,

where the transition morphisms are cohomologically étale, so it suffices to replace
Xan with AnSpecA|f|≤1. Write T = (T1, . . . , Tm) for the standard generators of

R[T1, . . . , Tm], and note we have a pushout square in AnRing

(R[T1, . . . , Tm]disc, R
+
disc)■

//

f

��

R[T1, . . . , Tm]|T |≤1

f

��

(Adisc, (R
+)∼disc)■

// A|f|≤1.

Now [1, Proposition 3.22] and the characterization of (−,−)■ from [1, Proposition
3.32] imply that the left arrow is induced as in [62, Proposition 12.8], so the same
holds for the right arrow. Therefore the functor

(AnSpec f)! : D(R[T1, . . . , Tm]|T |≤1)→D(A|f|≤1)

is given by HomR⟨T1,...,Tm⟩(R⟨T1, . . . , Tm⟩ ⊗R[T1,...,Tm] A,−), where we identify

R[T1, . . . , Tm]|T |≤1 = (R⟨T1, . . . , Tm⟩, R+⟨T1, . . . , Tm⟩)■

15While [1, Section 5] assumes that (R,R+) is sheafy, this hypothesis is not used in the proof
of [1, Theorem 5.50].
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using Lemma A.8. Lemma A.14 shows that A lies in Dpc(R[T1, . . . , Tm]), so

R⟨T1, . . . , Tm⟩ ⊗R[T1,...,Tm] A(≎)

lies in Dpc(R⟨T1, . . . , Tm⟩). By [1, Theorem 5.50], (≎) yields a pseudocompact ob-
ject ofD(R[T1, . . . , Tm]|T |≤1) as in [14, Definition 9.9], which implies that (AnSpec f)!

commutes with direct sums of objects of D≥n(R[T1, . . . , Tm]|T |≤1) for all integers

n. Because (≎) also lies in D≤0(R[T1, . . . , Tm]|T |≤1), the functor (AnSpec f)! is also
left t-exact.

Hence we can assume that A = R[T1, . . . , Tm]. Consider the morphisms

AnSpecA|T |≤1
j
// AnSpecAalg p

// AnSpec(R,R+)■,

and note that the restriction of π to AnSpecA|T |≤1 is p ◦ j. We claim that j!p!

is naturally isomorphic to j∗p∗[m]. First, [59, Lemma 3.2.9] and A.7 show that
j is cohomologically étale, so j∗ = j!. Since p is induced, for all objects M of
D■(R,R

+) we have j!p!M = j!HomR(A,M). Next, note that HomR(A,M) is
naturally isomorphic to M((T−1

1 , . . . , T−1
m ))/M [T1, . . . , Tm], which is a module for

the idempotent algebra Z((T−1
j ))⊗Z■

(R,R+)■ in D(Aalg) for all 1 ≤ j ≤ r. By A.7,

j! is the intersection of the open embeddings as in [14, p. 61] corresponding to these
idempotent algebras, so applying j! to the tensor product of the exact triangles

M [Tj ] // M((T−1
j )) // M((T−1

j ))/M [Tj ]
+1
//

implies that

j!HomR(A,M) = j!M((T−1
1 , . . . , T−1

m ))/M [T1, . . . , Tm] = j!M [T1, . . . , Tm][m]

= j!p∗M [m] = j∗p∗M [m].

Finally, the desired result follows immediately from the claim. □

A.17. As a consequence, we prove the following finitude result for proper pushfor-
wards, which is the analogue of Grauert’s coherence theorem in our setting.

Corollary. For any proper scheme X of finite presentation over R, the functor

π∗ : D(Xan)→D■(R,R
+)

sends Dpc(X
an) to Dpc(R).

Proof. Theorem A.13 indicates that Xan ∼→Xalg. Because Xalg is covered by
finitely many objects of the form AnSpec(A,M), it is quasicompact, so the same
holds for Xan. Therefore A.15 shows that Xan is covered by finitely many objects
of the form AnSpecA|f|≤1. Since X is separated over R, the intersection of these

objects over Xan are also of this form, so Lemma A.3 and [14, Theorem 8.6 (1)]
imply that π∗ sends nuclear objects of D(Xan) to nuclear objects of D■(R,R

+) as
in [14, Definition 8.5 (1)].

We claim that π∗ is naturally isomorphic to π!. To see this, note that Proposi-
tion A.10 indicates that (R,R+)■→A|f|≤1 is induced as in [62, Proposition 12.8].

Hence [41, Lemma 4.5.5] implies that AnSpecA|f|≤1→AnSpec(R,R+)■ is cohomo-

logically prim as in as in [41, Definition 4.5.1.(b)] with trivial codualizing complex,
and applying [41, Remark 4.4.11.(iii)] to the cover of Xan by such objects shows
that the same holds for π. This yields the claim.
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Let C be a pseudocompact object of D(Xan), and let d be an integer. Then
Proposition A.16 shows there exists an integer e such that, for all families (Mα)α
of objects of D≥d

■ (R,R+), the family (π!Mα)α lies in D≥e(Xan) and satisfies⊕
α

π!Mα = π!
(⊕

α

Mα

)
.

Because C is pseudocompact, the claim indicates that

Hom(π∗C,
⊕
α

Mα) = Hom(C, π!
⊕
α

Mα)

= Hom(C,
⊕
α

π!Mα) =
⊕
α

Hom(C, π!Mα) =
⊕
α

Hom(π∗C,Mα).

Therefore π∗C is pseudocompact, as desired. □

A.18. Using Corollary A.17, we prove that Theorem A.13 restricts to an equiva-
lence between subcategories of pseudocoherent objects as follows. For any scheme
X locally of finite type over R, Theorem A.13 shows that Xalg is glued from ob-
jects of the form AnSpecAalg along covers induced from Zariski covers. Hence A.14
indicates that the full subcategory Dpc(A) ⊆ D(A) ↪→D(Aalg) naturally glues to a
full subcategory of D(Xalg) that is naturally equivalent to Dpc(X).

Consider the functor D(Xalg)→D(Xan). When X = SpecA is affine, [1, Theo-
rem 5.50] and [14, Theorem 8.6 (1)] imply that this sendsDpc(A) toDpc((SpecA)

an),
so in general this sends Dpc(X) to Dpc(X

an).

Theorem. For any proper scheme X of finite presentation over R, the resulting
functor Dpc(X)→Dpc(X

an) is an equivalence.

Proof. Full faithfulness follows from Theorem A.13. For essential surjectivity, let
C be an object of Dpc(X

an). By full faithfulness, it suffices to prove that, for all
affine open subschemes j : SpecA ↪→X, the image of C under the composition

Dpc(X
an) ⊆ D(Xan) D(Xalg)

∼oo jalg,∗
// D(Aalg)

lies in the image of Dpc(A) ⊆ D(A) ↪→D(Aalg). Since jalg,∗ preserves pseudocom-

pact objects, it suffices to prove that jalg,∗C lies in the image of D(A) ↪→D(Aalg).
Noetherian approximation yields a finitely generated ideal sheaf Z of X whose
vanishing locus equals the closed subset X∖SpecA ⊆ X, so after replacing X with
its blowup along Z , we can assume that SpecA = X ∖D for an effective Cartier

divisor D on X. Then jalg∗ jalg,∗C = lim−→n≥0
C ⊗ OX(−nD) and hence

π∗j
alg
∗ jalg,∗C = lim−→

n≥0

π∗
(
C ⊗ OX(−nD)

)
.

Note that π∗j
alg
∗ jalg,∗C is the image of jalg,∗C inD■(R,R

+). Because C⊗OX(−nD)
lies in Dpc(X

an), Corollary A.17 shows that π∗
(
C ⊗OX(−nD)

)
lies in Dpc(R), so

the image of jalg,∗C in D■(R,R
+) lies in the image of D(R) ↪→D■(R,R

+). There-
fore jalg,∗C lies in the image of D(A) ↪→D(Aalg), as desired. □
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A.19. Finally, we prove Theorem H. Recall that the assignment

Spa(A,A+) 7→ AnSpec(A,A+)■

from Tate affinoid adic spaces to {analytic stacks} sends rational covers to steady
localization covers [59, Proposition 2.3.2], so it naturally glues to a functor

(−)■ : {analytic adic spaces}→{analytic stacks}.
For the rest of this section, assume that R is sousperfectoid, and write S for

Spa(R,R+). Then for any smooth scheme X over R, the adic space Xan
S as in

Definition 1.1 exists by [25, Proposition IV.4.9].

Theorem. For any smooth proper scheme X over R, the functor

{vector bundles on X}→{vector bundles on Xan
S }

is an equivalence of categories.

Proof. By coveringXan by small enough steady subspaces of the form AnSpecA|f|≤1,

we see that Xan is isomorphic to (Xan
S )■. Then Theorem A.18 yields a natural

equivalence Dpc(X)
∼→Dpc((X

an
S )■), hence a natural equivalence between the full

subcategories consisting of perfect objects C as in [14, Proposition 9.2] such that
−⊗ C is t-exact.

For Dpc(X), [68, Tag 0658] shows that this subcategory is naturally equivalent
to {vector bundles on X}. For Dpc((X

an
S )■), applying [1, Theorem 5.50] and [68,

Tag 0658] to the above cover of Xan ∼= (Xan
S )■ by objects of the form AnSpecA|f |≤1

shows that this subcategory is naturally equivalent to {vector bundles on Xan
S }. □

A.20. As an application of Theorem A.19, we conclude this section by proving
that the analytification of algebraic stacks of bundles agrees with analytic stacks of
bundles. This answers a question of Heuer–Xu [40, Remark 8.1.2].

LetK be an algebraically closed nonarchimedean field over Qp, and write PerfdK
for the category of affinoid perfectoid spaces over SpaK. Endow PerfdK with the
v-topology. Recall from [40, Definition 8.4.4] the diamondification functor

(−)♢ : {algebraic stacks over K}→{small v-stacks on PerfdK}.
Let X be a smooth proper scheme over K, and let G be a linear algebraic group
over K. Write BG,X and HG,X for the algebraic stacks over K of G-bundles and G-
Higgs bundles on X, respectively. Write BunG,X and HigG,X for the small v-stacks
on PerfdK as in [39, Definition 7.12.(1)] and [39, Definition 7.12.(2)], respectively.

Theorem. The natural morphisms of v-stacks on PerfdK

B♢G,X→BunG,X and H♢
G,X→HigG,X

are isomorphisms.

Proof. This follows immediately from Theorem A.19. □

Appendix B. ℓ-adic realizations of Berkovich motives

In §5 and §6, we use Berkovich (i.e. overconvergent) motivic sheaves as in [65, 66]
because they enjoy good formal properties. For example, there are !-pushforwards,
and when evaluated on condensed anima, they can be described in terms of classical
sheaves on profinite sets. We start this section by recalling this material.
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Difficulties arise when we need to compare Berkovich motives for (analytifica-

tions of) moduli stacks of global shtukas ShtIG,V with their classical ℓ-adic sheaves.

Ideally, we would start from a motivic intersection cohomology sheaf on ShtIG,V ,
analytify it, and then pass to ℓ-adic realizations. However, such motivic intersection
cohomology sheaves are only known when G is split [58], and one would still need to
compare Berkovich motives with classical motives. To avoid this, we develop some
tools that keep track of the relationship between ℓ-adic sheaves on varieties, ℓ-adic
sheaves on their analytifications, and motivic sheaves on said analytifications.

We conclude this section by recalling the description of motivic sheaves on F̆v
and Div1v and describing their relationship with motivic nearby cycles.

Notation. In this section, we work over Fq.

B.1. We start by recalling the theory of Berkovich motives [65]. Endow the cat-
egory {perfectoid rings over Fq}op with the arc-topology as in [65, Definition 3.1],

which is subcanonical by [65, Theorem 3.14]. Write {arc-sheaves over Fq} for the

∞-category of sheaves of anima on {perfectoid rings over Fq}op, and recall from
[65, p. 54] the Z[ 1q ]-linear overconvergent motivic 6-functor formalism Dmot(−) on
{arc-sheaves over Fq}.

B.2. When evaluating on stacks arising from profinite sets (i.e. condensed anima),
Berkovich motives enjoy the following description. Recall from [41, Construction
3.5.16] the Z[ 1q ]-linear 6-functor formalism D(−,Z[ 1q ]) on {condensed anima}, and
write

(−) : {condensed anima}→{arc-sheaves over Fq}

for the left Kan extension of the assignment X 7→ X from profinite sets. Then the
proof of [66, Proposition 2.1] implies we have a morphism of 3-functor formalisms

D(−,Z[ 1q ])→Dmot((−))

on {condensed anima} with respect to !-able morphisms for D(−,Z[ 1q ]).

Proposition. This induces an isomorphism of 6-functor formalisms

D(−,Z[ 1q ])⊗D(Z[ 1q ])
Dmot(∗)

∼→Dmot((−))

on {condensed anima} with respect to !-able morphisms for D(−,Z[ 1q ]).

Proof. When evaluating on finite sets, this is immediate. For any cofiltered limit
X = lim←−iXi of finite sets, we have X = lim←−iXi, so [65, Lemma 10.4] shows that

D(X,Z[ 1q ])⊗D(Z[ 1q ])
Dmot(∗) =

[
lim−→
i

D(Xi,Z[ 1q ])
]
⊗D(Z[ 1q ])

Dmot(∗)

= lim−→
i

[
D(Xi,Z[ 1q ])⊗D(Z[ 1q ])

Dmot(∗)
]

= lim−→
i

Dmot(Xi) = Dmot(X).

Finally, the result follows from the uniqueness in [66, Theorem 3.4.11]. □
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B.3. Berkovich motives are related to étale sheaves in the following way. Write

a′∗ : {small v-stacks over Fq}→{arc-sheaves over Fq}

for the left Kan extension of the assignment Spa(R,R+) 7→ HomFq
(R,−) [66, p. 3].

For all positive integers m and any small v-stack X over Fq, [65, Proposition 12.3]
yields a natural fully faithful symmetric monoidal functor

ModZ/ℓm(Dmot(a
′∗X)) ↪→Dét(X,Z/ℓm)

that is compatible with pullback and whose essential image consists of overconver-
gent objects as in [25, Proposition IV.2.4].

Using this, one can define ℓ-adic realization functors as follows. Write D̂ét(X,Zℓ)
for lim←−m≥1

Dét(X,Z/ℓm), so that taking lim←−m≥1
of the above induces a functor

r̂ℓ,X : Dmot(a
′∗X)→ lim←−

m≥1

ModZ/ℓm(Dmot(a
′∗X)) ↪→ D̂ét(X,Zℓ).

Write D̂(Zℓ) for lim←−m≥1
D(Z/ℓm). Then the natural functor Dperf(Zℓ)→ D̂(Zℓ) is

fully faithful [10, Lemma 4.2], and [25, p. 168] identifies D̂ét(∗,Zℓ) with D̂(Zℓ).
Under this identification, [65, Theorem 11.1] shows that r̂ℓ,∗ restricts to a functor
Dmot(∗)ω→Dperf(Zℓ), so [65, Theorem 11.1] indicates that applying Ind yields a
functor rℓ,∗ : Dmot(∗)→D(Zℓ).

B.4. For the rest of this section, we will use the following base change of Berkovich
motives. For any small v-stack X over Fq, write Dmot(X) for Dmot(a

′∗X).
Let Λ be a Zℓ-algebra, and consider the composition

Dmot(∗)
rℓ,∗−→(Zℓ)−→D(Λ).

Write D(X,Λ) for the symmetric monoidal∞-category Dmot(X)⊗Dmot(∗)D(Λ), so

that D(−,Λ) is a Λ-linear 6-functor formalism on {small v-stacks over Fq}.
As a consequence of Proposition B.2, evaluating D(−,Λ) on classifying stacks

yields categories of smooth representations. More precisely, let G be a locally pro-p
group, let K be a compact open subgroup of G, and write j : ∗/K→∗/G for the
associated morphism of small v-stacks.

Corollary. The symmetric monoidal ∞-category D(∗/G,Λ) is naturally equiva-
lent to the derived category of smooth representations of G over Λ. Under this
identification, j! : D(∗/K,Λ)→D(∗/G,Λ) corresponds to c-IndGK .

Proof. View G as a condensed set, and consider the condensed anima ∗/G. Then
the arc-sheaf ∗/G is naturally isomorphic to a′∗(∗/G), so the result follows from

Proposition B.2, [41, Proposition 5.3.10], and [41, Proposition 5.4.4]. □

B.5. To facilitate comparisons with classical étale ℓ-adic sheaf theories for varieties
over Fq in §5, we will consider the following notion of Zariski-constructible motives
(or étale sheaves) relative to a base. Let Z be a separated finite type scheme over
Fq, and let C be a small v-stack over Z♢.

Definition. For any separated finite type scheme X over Z,

a) Write D
Z\C
mot (X

♢
C) ⊆ Dmot(X

♢
C) for the full subcategory generated under cones

and retracts by objects of the form f♢C,!Z[
1
q ](n), where f : Y →X runs over

separated finite type morphisms and n runs over integers.
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b) For all positive integers m, write D
Z\C
ét (X♢

C ,Z/ℓm) ⊆ Dét(X
♢
C ,Z/ℓm) for the

full subcategory generated under cones and retracts by objects of the form
f♢C,!(Z/ℓm), where f : Y →X runs over separated finite type morphisms.

c) Write D
Z\C
ét (X♢

C ,Zℓ) ⊆ D̂ét(X
♢
C ,Zℓ) for the full subcategory

lim←−
m≥1

D
Z\C
ét (X♢

C ,Z/ℓ
m).

B.6. One immediately has the following relationship between étale sheaves on
varieties over Fq and étale sheaves on their analytifications. Note that Dmot((−)♢C),
D̂ét((−)♢C ,Zℓ) and D(−,Zℓ) are 6-functor formalisms on

{separated finite type schemes over Z}.

Now [63, Proposition 27.1], [63, Proposition 27.2], and [63, Proposition 27.4] yield
a fully faithful morphism of 3-functor formalisms

c∗ : D(−,Zℓ) ↪→ D̂ét((−)♢,Zℓ)

on {separated finite type schemes over Z}, and proper base change shows that pull-
back induces a morphism of 3-functor formalisms

|C : D̂ét((−)♢,Zℓ)→ D̂ét((−)♢C ,Zℓ)

on {separated finite type schemes over Z}.

B.7. One also has the following relationship between Zariski-constructible motives
and étale sheaves.

Proposition.

1) Dmot((−)♢C) restricts to a 3-functor formalism D
Z\C
mot ((−)♢C).

2) D̂ét((−)♢C ,Zℓ) restricts to a 3-functor formalism D
Z\C
ét ((−)♢C ,Zℓ).

3) The composition |C ◦ c∗ sends Dcons(−,Zℓ) to DZ\C
ét ((−)♢C ,Zℓ).

4) The functor r̂ℓ,(−)♢C
sends D

Z\C
mot ((−)♢C) to D

Z\C
ét ((−)♢C ,Zℓ) and induces a mor-

phism of 3-functor formalisms on {separated finite type schemes over Z}.

Proof. Part 1) and part 2) follow immediately from proper base change. For part
3), recall that Dcons(X,Z/ℓm) is generated under cones and retracts by objects of
the form f!(Z/ℓm), where f : Y →X runs over separated finite type morphisms.
Therefore B.6 and proper base change show that |C ◦ c∗ sends Dcons(X,Z/ℓm) to

D
Z\C
ét ((−)♢C ,Z/ℓm). Finally, taking lim←−m≥1

yields the desired result.

For the first statement in part 4), let f : Y →X be a separated finite type mor-
phism, and let n be an integer. By Nagata compactification, there exists a proper
morphism f : Y →X and an open embedding j : Y →Y such that f = f ◦ j.
Then j♢C is a partially proper open embedding, so the image of j♢C,!Z[

1
q ](n) in

Dét(Y
♢
C ,Z/ℓm) is isomorphic to j♢C,!(Z/ℓm). Because f♢C is proper and of finite

cohomological dimension as in [65, Definition 4.17], we see from [65, Proposition

12.3] that the image of f♢C,!Z[
1
q ](n) = f

♢
C,∗j

♢
C,!Z[

1
q ](n) in Dét(X

♢
C ,Z/ℓm) is iso-

morphic to f
♢
C,∗j

♢
C,!(Z/ℓm) = f♢C,!(Z/ℓm). Hence taking lim←−m≥1

yields the desired

statement. Finally, the second statement in part 4) follows from B.3 and the above
argument. □
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B.8. Finally, we Ind-extend the preceding discussion. Proposition B.7.2) implies
that Ind-extending yields a morphism

Υ : IndD
Z\C
mot ((−)♢C)→Dmot((−)♢C)

of 3-functor formalisms on {separated finite type schemes over Z}, and Proposition

B.7.3) indicates that applying Ind to |C ◦c∗ : Dcons(−,Zℓ)→D
Z\C
ét ((−)♢C ,Zℓ) yields

a morphism of 3-functor formalisms

ρ : D(−,Zℓ)→ IndD
Z\C
ét ((−)♢C ,Zℓ)

on {separated finite type schemes over Z}. Finally, Proposition B.7.4) shows that
r̂ℓ,(−)♢C

induces a morphism of 3-functor formalisms

D
Z\C
mot ((−)♢C)→D

Z\C
ét ((−)♢C ,Zℓ)

on {separated finite type schemes over Z}, so applying Ind yields a morphism

rℓ,(−)♢C
: IndD

Z\C
mot ((−)♢C)→ IndD

Z\C
ét ((−)♢C ,Zℓ)

of 3-functor formalisms on {separated finite type schemes over Z}.

B.9. Write F for Fq((π)), fix a separable closure F of F , and write C for the

completion of F . Then there is a simple description of Zariski-constructible étale

sheaves on SpaC (relative to any Z). More precisely, D̂ét(SpaC,Zℓ) is naturally

isomorphic to D̂(Zℓ), and under this identification, B.6 implies that

D
Z\SpaC
ét (SpaC,Zℓ) = Dperf(Zℓ).

We prove an analogous description of Zariski-constructible motives on SpaC:

Proposition. We have D
Z\SpaC
mot (SpaC) = Dmot(SpaC)

ω.

Proposition B.9 and [65, Proposition 10.1] imply that

Υ : IndD
Z\ SpaC
mot (SpaC)→Dmot(SpaC)

is an equivalence.

Proof. By considering f : Z × X→Z for smooth projective schemes X over Fq,
[65, Proposition 10.1] shows that Dmot(SpaC)

ω lies in D
Z\SpaC
mot (SpaC). For the

reverse inclusion, it suffices to prove that, for any separated finite type morphism

f : Y →SpecC, the object fan,♢! Z[ 1q ] in Dmot(SpaC) is compact. Since (−)an,♢
factors through limit perfection, we can assume that Y is reduced.

We now induct on dimY , where the dimY = 0 case is immediate. By ex-
cision [65, Proposition 4.25] and the induction hypothesis, we can assume that
Y is irreducible. Then [17, Theorem 4.1] yields a smooth projective morphism

f̃ : Ỹ →SpecC, a dense open subspace V ⊆ Y , a dense open subspace i : Ṽ ↪→ Ỹ ,

and a finite étale morphism j : Ṽ →V over C. By excision [65, Proposition 4.25]
and the induction hypothesis, we can assume that Y = V . Write d for the product

of all primes ℓ ̸= p dividing deg j. Because (fan,♢! Z[ 1q ])⊗Z[ 1q ]
Z/dm = fan,♢! (Z/dm),

spreading out implies that the image of fan,♢! Z[ 1q ] in

lim←−
m≥1

ModZ/dm(Dmot(SpaC)) = D̂
(∏
ℓ|d

Zℓ
)
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is compact. Therefore it suffices to prove that the image fan,♢! Z[ 1
dq ] of f

an,♢
! Z[ 1q ] in

ModZ[ 1
dq ]

(Dmot(SpaC)) is compact.

The proof of [65, Proposition 10.1] shows that f̃an,♢! Z[ 1
dq ] is compact in

ModZ[ 1
dq ]

(Dmot(SpaC)),

so excision [65, Proposition 4.25] and the induction hypothesis imply that the same

holds for (f̃ ◦ i)an,♢! Z[ 1
dq ]. Finally, the trace map exhibits fan,♢! Z[ 1

dq ] as a retract of

(f̃ ◦ i)an,♢! Z[ 1
dq ], which yields the desired result. □

B.10. Write F̆ for Fq((π)), write ϕ : Spd F̆ →Spd F̆ for the geometric q-Frobenius

automorphism over Fq, and write Div1 for the small v-sheaf (Spd F̆ )/ϕZ over Fq.
Let us recall the following descriptions of motives on Spd F̆ and Div1. Fix a

group isomorphism F×
q
∼= Q/Z[ 1p ], and choose a compatible system {π1/n}p∤n of

n-th roots of π in F . Recall that these choices induce a short exact sequence of
certain group schemes over Z[ 1q ] [66, p. 10]

1 // IDF //WDF // Z // 1.

Lemma. These choices induce compatible equivalences

D(Spd F̆ ,Λ) ∼= Dqcoh

(
(SpecΛ)/IDF

)
and D(Div1,Λ) ∼= Dqcoh

(
(SpecΛ)/WDF

)
.

Proof. Write MGFq
for the algebraic stack over Z[ 1q ] from [65, p. 62], and recall

that we have a natural functor Dqcoh(MGFq
)→Dmot(∗) [65, p. 62]. Consider the

morphism SpecZ[ 1q ]→MGFq
induced by the isomorphism F×

q
∼= Q/Z[ 1p ] as in [66,

p. 10]; note that the isomorphism F×
q
∼= Q/Z[ 1p ] also induces a commutative square

Dqcoh(MGFq
) //

��

Dmot(∗)

rℓ,∗

��

D(Z[ 1q ]) // D(Zℓ).

Write MGF̆ and MGDiv1 for the algebraic stacks over MGFq
from [66, Definition

4.1]. Then [66, Theorem 4.2] and its proof yield compatible equivalences

Dqcoh(MGF̆ )⊗Dqcoh(MGFq )
Dmot(∗)

∼→Dmot(Spd F̆ ),

Dqcoh(MGDiv1)⊗Dqcoh(MGFq )
Dmot(∗)

∼→Dmot(Div1).

so the above commutative square induces compatible equivalences

Dqcoh(MGF̆ ×MGFq
SpecΛ)

∼→D(Spd F̆ ,Λ),

Dqcoh(MGDiv1 ×MGFq
SpecΛ)

∼→D(Div1,Λ).

Finally, [66, p. 10] compatibly identifies

MGF̆ ×MGFq
SpecΛ ∼= (SpecΛ)/IDF ,

MGDiv1 ×MGFq
SpecΛ ∼= (SpecΛ)/WDF . □
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B.11. We conclude this section by describing how motivic nearby cycles behave
after ℓ-adic realization. Write f : SpaC→∗ for the structure morphism. Recall that
f∗ yields an equivalence Dmot(SpaC)

∼→Modf∗Z[ 1q ](Dmot(∗)) and that our choice of

{π1/n}p∤n from B.10 induces a morphism f∗Z[ 1q ]→Z[ 1q ] of E∞-algebras in Dmot(∗)
[65, p. 61]. Under this identification, write Ψ : Dmot(SpaC)→Dmot(∗) for the
functor corresponding to −⊗f∗Z[ 1q ] Z[

1
q ] [65, Definition 11.3].

Recall that pullback yields an equivalence [25, p. 168]

D̂ét(∗,Zℓ)
∼→ D̂ét(SpaC,Zℓ).

Proposition. The functor Ψ preserves compact objects. Moreover, we have a com-
mutative square

Dmot(SpaC)
r̂ℓ,SpaC

//

Ψ

��

D̂ét(SpaC,Zℓ)

Dmot(∗)
r̂ℓ,∗

// D̂ét(∗,Zℓ).

∼

OO

Proposition B.11 and B.3 imply that r̂ℓ,SpaC restricts to a functor

Dmot(SpaC)
ω→Dperf(Zℓ),

so [65, Proposition 10.1] indicates that applying Ind yields a functor

rℓ,SpaC : Dmot(SpaC)→D(Zℓ).

Proof. Because f∗ : Dmot(∗)→Dmot(SpaC) is left adjoint to f∗, it corresponds to
−⊗Z[ 1q ]

f∗Z[ 1q ]. Therefore Ψ ◦ f
∗ is naturally isomorphic to the identity, so the first

statement follows from [65, Proposition 10.1] and [65, Theorem 11.1].
For the second statement, the proof of [65, Proposition 11.4] implies that, for all

positive integers m, applying −⊗Z[ 1q ]
Z/ℓm to f∗Z[ 1q ]→Z[ 1q ] gives an isomorphism.

This yields the desired result. □

Appendix C. Global rigid inner forms, by Peter Dillery

In the following, G always denotes a connected reductive group over F a global
function field associated to the projective curve C with constant field Fq. We will
break from the notation of the rest of the paper by denoting F s a separable closure
of F inside a fixed algebraic closure F . The set of all places of F will be denoted
by VF . We denote the Kottwitz gerbe over F by KottF , and the Kottwitz gerbe
over each Fv by Kottv. For a set of places Σ of F , we denote by OF,Σ the ring of
Σ-integers of F .

C.1. Theorem 4.11 says that the B(F,G)basic-inner forms Gb of a quasi-split con-
nected reductive group G appear naturally in the description of the semistable
locus of BunG,F . The goal of this appendix is to use results in the main body
of the paper to prove fundamental geometric properties of the “extended” stack
BuneG,F introduced in [21], which has geometry analogous to that of BunG,F but
whose semistable locus encodes global rigid inner forms of G, in the sense of [20],
rather than just B(F,G)basic-inner forms. The advantage of using global rigid inner
forms is that they enable a statement ([21, Conjecture 5.7]) of a multiplicity for-
mula for discrete automorphic representations that applies to arbitrary connected
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reductive groups over F . It is reasonable to believe that a BuneG,F -adapted ver-
sion of the machinery in the main part of this paper together with the conjectural
Kottv×FvKalv-adapted refined Langlands correspondence from [21, Conjecture 5.1]
at each v can be used to prove cases of this multiplicity formula. We emphasize
that the construction presented here is inspired by the work of [22] in the local case.

C.2. We review the notion of local and global rigid inner forms. One can use class
field theory to construct a global gerbe KalF → Spec(F ) ([20, Proposition 3.21])
and for each place v ∈ VF a local gerbe Kalv → Spec(Fv) ([19, Theorem 3.4]) which
are banded by profinite multiplicative group schemes P and uv, respectively. We
refer the reader to [21, §2.1] for a more detailed summary of these two gerbes and
their bands. We give these gerbes the étale topology inherited from Spec(F ).

For ? ∈ {F, v}, the basic cohomology H1(Kal?, G)basic is defined as all isomor-
phism classes of étale G-torsors on Kal? whose restriction to the band of Kal? is an
F -rational homomorphism P → ZG or uv → ZG. A key property of these gerbes is
that the natural map

H1(Kal?, G)basic → H1(F,Gad)

is always surjective. In other words, any inner form of G can be realized as coming
from a G-torsor on one of these gerbes.

There is a variant of this gerbe defined in [22] and [21] which is better–suited to
geometry:

Definition. Define Be(G) (resp. Be(GFv
)) to be all isomorphism classes of étale

G-torsors on the gerbe KottF ×F KalF (resp. Kottv ×Fv
Kalv) whose restriction to

the band of KalF (resp. KalFv
) factors through ZG. Define the subset Be(G)basic

(resp. Be(GFv )basic) to be those classes whose restriction to the entire band of the
gerbe KottF ×F KalF (resp. Kottv ×Fv Kalv) factors through ZG.

In the same way that there is a bijection B(F,G)basic
∼−→ (π1(G)[VF s ]0)Gal(F s/F ),

one has a linear-algebraic description of Be(G)basic given by [21, Theorem 3.10]
which recovers the B(F,G)-bijection and the H1(KalF , G)basic-bijection from [20,
Theorem 4.11]. We omit the details here for sake of brevity, but remark that the
proof relies on an explicit Tannakian description [21, Proposition 3.1] of the gerbe
KottF ×F KalF generalizing the description of KottF using Drinfeld isoshtukas.

C.3. The key ingredient for defining the stack BuneG,F is a generalization of KalF
which is defined over a fixed affine open subset U = C \ |Σ| of the curve C for a
finite set of places Σ. This gerbe is denoted by KalF,Σ → U .

The gerbe KalF,Σ is built from finite level gerbes. Fix a set of lifts Σ̇ of Σ in
VF s and denote by FΣ the maximal Σ-unramified extension of F . Fix also a cofinal
system of pairs {(Ei, ni)}i∈N such that ni ∈ N, F ⊆ Ei ⊆ FΣ and if j ≥ i then
Ei ⊆ Ej and ni | nj . Define PΣ̇,i to be the OF,Σ-group scheme Cartier dual to

( 1
ni
Z/Z)[Gal(Ei/F )×ΣFi ]0,0 consisting of all elements whose [(σ,w)]-coefficient is

zero unless σ−1(w) ∈ Σ̇Ei . The subscript “0, 0” means we insist that the elements
must be killed by both augmentation maps. There is ([21, Corollary 2.12]) a “level
i” canonical class ξi ∈ H2

fppf(OF,Σ, PΣ̇,i), and these classes are compatible via a

system of transition maps {PΣ̇,j → PΣ̇,i} defined loc. cit. such that PΣ̇ = lim←−PΣ̇,i.
To define the canonical class corresponding to KalF,Σ, one takes the unique lift

of lim←− ξi in H2
fppf(F, PΣ̇) which, for each v ∈ VF , localizes in some suitable sense



68 SIYAN DANIEL LI-HUERTA

to the class in H2
fppf(Fv, uv) corresponding to Kalv—for the full details see [21,

Theorem 2.16]. One can define a transition map KalF,Σ′ → KalF,Σ for all Σ ⊆ Σ′

and pullback by these maps induces a bijection

lim−→
Σ

H1
ét(KalF,Σ, G)

∼−→ H1
ét(KalF , G).

C.4. We now recall the definition of the stack BuneG,F from [21, §4], which is
inspired by the ideas of [22]. Each gerbe KalF,Σ defines ([21, Lemma 4.2]) an adic

gerbe KaladF,Σ → Spa(OF,Σ) (for the v-topology), and, for an affinoid perfectoid space

S over Fq, define H1
ét(US , G)Kal-basic as all isomorphism classes of étale G-torsors

G on US := Uan
S ×Spa(OF,Σ) KaladF,Σ whose restriction to the band is a morphism

(P ad
Σ̇

)S
λG−−→ ZG,S .

We denote all such torsors (not isomorphism classes) by Z1
ét(US , G)KalF -basic.

The main definition is then ([21, Definition 4.6]):

Definition. (1) Given U a dense affine open of C, define a functor BuneG,U
from affinoid perfectoid spaces over Fq to groupoids by

S 7→ {(G , ϕ)|G ∈ Z1
ét(US , G)KalF -basic, ϕ : G

∼−→ (FrobS × id)∗G };

(2) Define a functor BuneG,F from affinoid perfectoid spaces over Fq to groupoids
by

S 7→ lim−→
U

BuneG,U (S).

It is proved in [21, Lemma 4.7] that both of these functors are small v-stacks.

C.5. The assignment (G , ϕ) ∈ BuneG,U (S) 7→ λG defines a map

BuneG,U
Λ−→ HomU (PΣ̇, ZG),

where HomU (PΣ̇, ZG) is the functor sending S to HomUan
S
((P ad

Σ̇
)S , ZG,S). We now

recall one more definition [21, Definition 4.11].
Observe that we have a canonical isomorphism for every geometric point s̄ of a

perfectoid space S over Fq

HomU (PΣ̇, ZG)
∼−→ HomUan

s̄
((P ad

Σ̇
)s̄, ZG,s̄)

Frobs̄ .

In view of this, given λ ∈ Hom(P ad
Σ̇
, ZG), define Bune,λG,U as the substack character-

ized by

Bune,λG,U (S) = {x ∈ BuneG,U (S)|λx̄ = λ ∈ HomUan
s̄
((P ad

Σ̇
)s̄, ZG,s̄)

Frobs̄},

where s̄ runs over all geometric points of S and x̄ denotes the image of x at s̄.
A key result which allows us to use the results in the main body of paper in this

new setting is [21, Corollary 4.13], which says that Λ induces a decomposition (as
a v-stack)

BuneG,U
∼−→

⊔
λ∈HomF (PΣ̇,ZG)

Bune,λG,U ,

and analogously for BuneG,F .
There is an analogue [21, Definition 4.9] of the notions introduced in §2.9:
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Definition. (1) Define Bune,1G,F to be the substack characterized by

Bune,1G,F (S) = {x ∈ BuneG,F (S)|x̄ = triv ∈ BunG,F (s)},

where s̄ runs over all geometric points of S and x̄ denotes the image of x
at s̄.

(2) Given b an element of Be(G)basic, define Bun
e,b
G,F as the substack character-

ized by Bune,bG,F (S) = {x ∈ BuneG,F (S)|x̄ = b ∈ BunG,F (s)}, where s̄ runs
over all geometric points of S and x̄ denotes the image of x at s̄.

The identical twisting argument from the proof of Proposition 2.9 shows that:

Proposition. (1) For b ∈ Be(G)basic pulled back from KottF,Σ ×U KalF,Σ,

there is a natural isomorphism BuneG,U
∼−→ BuneGb,U

sending Bune,bG,U to

Bune,1Gb,U
.

(2) For b ∈ H1(KottF,Σ ×U KalF,Σ)basic above a fixed λ ∈ HomU (PΣ̇, ZG), we

have an isomorphism Bune,λG,U
∼−→ BunGb,U .

In the above KottF,Σ is a “U -level” version of KottF defined in [21, §2.3]. Com-
bining this result with [21, Corollary 4.13] proves that the stack BuneG,U is isomor-
phic to a disjoint union of the stacks BunG′,U for varying inner forms G′ of G (this
is a global analogue of [22, Exemple 12.6]).

We therefore deduce from Proposition 4.5 that:

Corollary. Each BuneG,U is an Artin v-stack.

C.6. We now prove some more refined results about the geometry of BuneG,F .
First, we deduce the following analogue of Theorem 2.10, which, in particular,

identifies BuneG,U (SpdFq) with Be(G):

Theorem. The perfect v-stack Bune,redG,U over Fq is the v-sheafification of

SpecB 7→
{

KalF -basic G-torsors G on UB ×U KalF,Σ equipped with

an isomorphism ϕ : G
∼→(FrobB ×id)∗G

}
.(1)

Moreover, when each connected component of SpecB is a valuation ring, no sheafi-
fication is needed.

Proof. [21, Corollary 4.13] implies that Bune,redG,U
∼−→

⊔
λ∈HomF (PΣ̇,ZG) Bun

e,λ,red
G,U . We

have seen in Proposition C.5 that picking b ∈ H1(KottF,Σ × KalF,Σ)basic above a

fixed λ (we can do this by [21, Proposition 2.29]) gives an identification Bune,λG,U
∼−→

BunGb,U . A similar (but easier) argument as in the proof of [21, Proposition 4.12]
gives an analogous disjoint union decomposition of the functor (1) according to
HomU (PΣ̇, ZG), and twisting by b gives an isomorphism from the presheaf mapping
SpecB to all G as in (1) such that λG = λ at all geometric points of B to the
functor in (∗). We can then use Theorem 2.10 to deduce the result. □

C.7. This subsection is purely review from [21] and concerns the localization prop-
erties of the stack BuneG,F . First, we define for a place v ∈ VF the stack BuneG,Fv

to
be the same as BuneG,U but with Fv in place of OF,Σ and Kalv in place of KalF,Σ,
as defined in [22, §12].
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We recall from [21, §4.2] the functor BuneG,A defined by

S 7→ lim−→
Σ

∏
v/∈Σ

BunG,Ov
(S)×

∏
v∈Σ

BuneG,Fv
(S),

where the limit is over all finite subsets of places Σ. This defines a small v-stack,
and we have a morphism

BuneG,F → BuneG,A

induced by a localization map Kalv → KalF at each place as discussed in [21, §2.1].
One then has [21, Proposition 4.16]:

Proposition. There is a morphism

BuneG,U →
∏
v/∈Σ

BunG,Ov ×
∏
v∈Σ

Bun
e,(Σ)
G,Fv

⊆
∏
v/∈Σ

BunG,Ov ×
∏
v∈Σ

BuneG,Fv

which makes the square

BuneG,U
∏
v/∈Σ BunG,Ov ×

∏
v∈Σ Bun

e,(Σ)
G,Fv

BuneG,F BuneG,A

Cartesian.

In the above, Bun
e,(Σ)
G,Fv

is a minor modification of the stack BuneG,Fv
adapted to

the completion of FΣ at a fixed place above v, see [21, §4.2] for the full details.

C.8. There is an analogue of the semistable locus of BunG,F :

Definition. Set Bune,ssG,F to be the preimage of

lim−→
∏
v/∈Σ

BunG,Ov ×
∏
v∈Σ

Bune,ssG,Fv

in BuneF,G, where Bun
e,ss
G,Fv

is the local semistable locus as defined in [22]. This does
not depend on the choice of localization maps, is a small v-stack, and is an open
substack of Bune,ssG,F .

One can explicitly describe the semistable locus of BuneG,F using Be(G)basic.

Theorem. (1) The substack Bune,1G,U ⊆ BuneG,U is open, and is isomorphic to

∗/G(OF,Σ).
(2) For b ∈ Be(G)basic, the substack Bune,bG,F ⊆ BuneG,F is open and isomorphic

to ∗/Gb(F ).
(3) We have an equality of stacks Bune,ssG,F =

⊔
b∈Be(G)basic

Bune,bG,F .

Proof. For the first statement, we observe that the image of Bune,1G,U via Λ is deter-
mined by its value at any geometric point, and is thus the trivial morphism 0P . By
Proposition C.5 we can identify the inclusion Bune,1G,U ↪→ Bune,0PG,U with the inclusion

Bun1G,U ↪→ BunG,U , so that the desired result is true by combining [21, Proposition
4.12] with Theorem 2.4.

The second part is a consequence of the first statement and Proposition C.5.
The disjointness part of the second statement can be deduced from the disjointness
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of the BunbG,F after decomposing BuneG,F using [21, Corollary 4.13]. Similarly, the
verification that this union is exhaustive can be done using the decomposition (as
stacks)

Bune,ssG,U
∼−→

⊔
λ∈HomF (PΣ̇,ZG)

Bune,ss,λG,U

induced by [21, Corollary 4.13] and then observing that the identification Bune,λG,U
∼−→

BuneGb,U
for b ∈ Be(G)basic identifies Bune,ss,λG,U with BunssGb,U

. Now one can use
Theorem 4.11. □
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