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Abstract. Quaternionic modular forms on G2 carry a surprisingly rich arithmetic structure. For example,

they have a theory of Fourier expansions where the Fourier coefficients are indexed by totally real cubic rings.
For quaternionic modular forms on G2 associated via functoriality with certain modular forms on PGL2,

Gross conjectured in 2000 that their Fourier coefficients encode L-values of cubic twists of the modular

form (echoing Waldspurger’s work on Fourier coefficients of half-integral weight modular forms). We prove
Gross’s conjecture when the modular forms are dihedral, giving the first examples for which it is known.
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1. Introduction

To any holomorphic modular cusp form f of even weight 2k, one can associate its Shimura lift F [31], which
is a holomorphic modular cusp form of weight k+ 1

2 . Waldspurger [33] discovered a remarkable relationship
between the Fourier coefficients of F and the L-values of quadratic twists of f . This led, for example, to
Tunnell’s partial resolution [32] of the congruent number problem.

The goal of this paper is to prove a similar relationship between the Fourier coefficients of certain quaternionic
modular forms on G2 and the L-values of cubic twists of certain holomorphic modular forms. This was
conjectured by Gross in 2000, and we prove his conjecture for the first class of examples: the dihedral case.

1.1. Quaternionic modular forms on G2. Let G be a connected reductive group over Q. When the
symmetric space associated with G(R) is Hermitian, there is a natural generalization of holomorphic mod-
ular forms to G: automorphic forms on G that generate a holomorphic discrete series over G(R). These
automorphic forms are well-known to have rich connections with arithmetic.

When G is the split simple group of type G2, the real Lie group G(R) does not have holomorphic discrete
series. Nonetheless, Gross–Wallach [13] singled out a class of representations {πk}k≥1 of G(R) called quater-
nionic discrete series1, and Gan–Gross–Savin [8] initiated the arithmetic study of quaternionic modular
forms (of weight k), that is, automorphic forms F on G that generate πk over G(R).

1Strictly speaking, π1 is only a limit of quaternionic discrete series, but this does not matter for our purposes.

1
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Pollack [26] developed the following explicit theory of Fourier expansions for quaternionic modular forms.
The group G has a Heisenberg parabolic with Levi subgroupM ∼= GL2 and unipotent radical N . Write Z for
the center of N , write X for Hom(N/Z,Ga), and write ⟨−,−⟩ : X× (N/Z)→Ga for the evaluation pairing.
For all E in X(Q), Pollack defines an explicit function WE : M(R)→C such that, for any quaternionic
modular form F , its Z-constant term FZ(g) :=

∫
Z(Q)\Z(A) F(zg) dg can be written as

FZ(ng) =
∑

E∈X(Q)

aE(F)e−2πi⟨E,n⟩WE(g) for all g ∈M(R) and n ∈ N(R),(1.1)

where the aE(F) lie in C [26, Corollary 1.2.3]. Since the representation X of M ∼= GL2 is isomorphic to
Sym3⊗det−1, a classic result of Delone–Faddeev [6] shows that M(Q)-orbits in X(Q) correspond to cubic
algebras over Q. In fact, their work refines to show that M(Z)-orbits in X(Z) correspond to cubic algebras
over Z. When E ∈ X(Q) corresponds to an étale cubic algebra E/Q, one can show that aE(F) vanishes
unless E is totally real.

Examples of quaternionic modular forms include certain Eisenstein series, whose Fourier coefficients aE(F)
have been studied extensively by Jiang–Rallis [15], Gan–Gross–Savin [8], and Xiong [34].

1.2. Gross’s conjecture. What about cuspidal examples of quaternionic modular forms? For any holo-
morphic modular cusp form f of even weight 2k with level 1 and trivial character, Arthur’s conjecture [1]
predicts a cuspidal quaternionic modular form F of weight k on G associated with f by Langlands func-
toriality. In a manner analogous to Shimura lifts, Gan–Gurevich [9] gave a conjectural construction of F ,
assuming that L( 12 , f) ̸= 0.

Gross conjectured the following analogue of Waldspurger’s theorem [33]:

Conjecture 1.1 (Gross [23]). Assume that f has level 1. For all E ∈ X(Z) corresponding to the ring of
integers of a totally real étale cubic algebra E/Q, we have

aE(F)2 = L( 12 , f ⊗ VE) ·∆
k− 1

2

E ,

where VE is the 2-dimensional Artin representation with IndQE 1 = 1⊕VE, and ∆E is the discriminant of E.

Since f has level 1, the form F is invariant under G(Ẑ), which implies that aE(F) vanishes unless E ∈ X(Z).

More generally, for any holomorphic modular cusp form f with trivial character, Arthur’s conjecture [1]
predicts multiple cuspidal quaternionic modular forms on G associated with f .

Our paper studies the case where f is dihedral. Namely, let K/Q be an imaginary quadratic extension, let χ
be a conjugate-symplectic Hecke character for K with L( 12 , χ) ̸= 0, and take f to be the associated dihedral
modular cusp form. Then the level N of f must be nontrivial; in fact, N is necessarily not squarefree.

Here, Arthur’s conjecture [1] predicts that, for every sequence ϵ = (ϵp)p in {±1} indexed by primes p with

• ϵp = +1 when p splits in K or χ2
p = 1 (which includes all p not dividing N),

•
∏
p ϵp = −ϵ(

1
2 , χ

3),

there should be a cuspidal automorphic representation πϵ of G associated with f whose p-adic component
is explicitly determined by ϵp and χp and whose archimedean component is πk. In our previous work [2], we
proved Arthur’s conjecture in this case (assuming that K/Q is unramified at 2); in particular, we gave an
unconditional definition of πϵ.

For any quaternionic modular form Fϵ ∈ πϵ and for all E ∈ X(Q) corresponding to an étale cubic algebra
E/Q, we show that aE(Fϵ) vanishes for local reasons unless

• ϵp = ϵp(Ep, χp) for all primes p, where ϵp(Ep, χp) ∈ {±1} is purely local (see Definition 2.22),

2While Definition 2.2 depends on a continuous character ψp : Qp →C×, in the introduction we fix ψ : Q\A→C× to be the

unique continuous character such that ψ∞(x) = e−2πix.
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• E is totally real (which is the archimedean analogue of the above ϵ-condition).

When p does not divide N , we show that ϵp(Ep, χp) = +1 for all étale cubic algebras Ep/Qp; this explains
why the above ϵ-condition does not appear in Conjecture 1.1.

We construct a quaternionic modular form Fϵ ∈ πϵ satisfying the following version of Conjecture 1.1, which
takes into account the aforementioned local obstructions:

Theorem 1.2 (Theorem 3.14). Assume that L( 12 , f) ̸= 0. For all E ∈ X(Q), the Fourier coefficient aE(Fϵ)
vanishes unless E ∈ X(Z). Moreover, if E ∈ X(Z) corresponds to the ring of integers of a totally real étale
cubic algebra E/Q such that ϵp = ϵp(Ep, χp) for all p dividing N , then

|aE(Fϵ)|2 = L( 12 , f ⊗ VE) ·∆
k− 1

2

E .

Remark 1.3. Conjecture 1.1 does not take absolute values, while we do take absolute values in Theorem
1.2. This is essential for our method, as we explain in §1.4 below. Something similar happens when extract-
ing explicit results from Waldspurger’s theorem [33]: precise formulas which calculate all the constants of
proportionality all take absolute values [19, 20, 4, 28].

Remark 1.4. We actually work over totally real fields F and prove a generalization of Theorem 1.2 to dihedral
Hilbert modular forms (see Theorem 3.14). We restrict to F = Q here for the sake of exposition.

1.3. Related work. Fourier coefficients of cuspidal quaternionic modular forms have been extensively stud-
ied by Pollack; for example, he proved that, for all k ≥ 6, there exists a basis of cuspidal quaternionic modular
forms on G whose Fourier coefficients lie in Qab [27, Theorem 1.0.1].

Let us explain why this is consistent with Theorem 1.2. The projection formula yields

IndQK χ⊗ IndQE 1 = IndQKE(χ|KE),

so we get (IndQK χ)⊗ VE = IndQKE(χ|KE)− IndQK χ. Taking L-functions gives

L( 12 , f ⊗ VE) =
L( 12 , χ|KE)
L( 12 , χ)

.

Blasius’s work [5] on Deligne’s conjecture shows that there are periods c+(χ), c+(χ|KE) ∈ C such that

L( 12 , χ)

c+(χ)
,
L( 12 , χ|KE)
c+(χ|KE)

∈ Q(χ).

If the motive for χ is realized in an abelian variety A/Q with CM by K, then the motive for χ|KE is realized
in A/E, so one can show that c+(χ|KE) = c+(χ)3. Therefore we get

L( 12 , f ⊗ VE)
c+(χ)2

∈ Q(χ) ⊆ Qab.

Because c+(χ)2 is independent of E, this yields the desired consistency with Pollack’s result.

Pollack [27, Corollary 1.2.4] also obtained the first result towards Gross’s conjecture: when f is the cusp
form ∆ of weight 12, Conjecture 1.1 is true when E corresponds to the ring of integers of Q×F ′ for a totally
real étale quadratic algebra F ′ over Q.

Recently, assuming Arthur’s conjecture [1], Kim–Yamauchi [17, Theorem 1.4] generalized Pollack’s [27,
Corollary 1.2.4] to all f with squarefree level. Because the f that we consider do not have squarefree level,
their results are disjoint from ours. Their methods are also quite different: they only consider the case where
ϵp = +1 for all p, and by using explicit models for π+

p and studying the Fourier–Jacobi expansion of πϵ

along the other maximal parabolic subgroup of G, they relate aE(Fϵ) to the D-th Fourier coefficient of the

Shimura lift of f when E corresponds to the ring of integers of Q × Q(
√
D). Finally, they relate the latter

to L( 12 , f ⊗ VQ×Q(
√
D)) = L( 12 , f)L(

1
2 , f ⊗ χD) using Waldspurger’s theorem [33].
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1.4. Idea of proof. Let us explain the proof of Theorem 1.2. We start with the construction of Fϵ: it is
an exceptional theta lift from the compact form G′ of PU3 with respect to K/Q, using theta kernels on the

quasi-split adjoint form G̃ of E6 with respect to K/Q. More precisely, we associate a cuspidal automorphic

representation σϵ of G′ to ϵ and χ, and for all f ′ in σϵ and φ in the minimal representation Ω of G̃, we
construct a quaternionic modular form Fϵ := θ(φ, f ′) ∈ πϵ.

The Fourier coefficient aE(Fϵ) is explicitly related to the automorphic Fourier coefficient θ(φ, f ′)N,ψE (1),

where ψE denotes the continuous character of N(A) associated with E . Write Ñ for the unipotent radical of

the Heisenberg parabolic of G̃. By studying the automorphic Fourier coefficients of the theta kernels θ(φ)

along Ñ , we prove that

θ(φ, f ′)N,ψE (1) =

∫
i(TE)(A)\G′(A)

θ(g′ · φ)Ñ,ψi
(1)Pi(g′ · f ′) dg′ ,(1.2)

where i : TE ↪→ G′ is a certain maximal subtorus associated with the étale cubic algebra E/Q, ψi is a certain

continuous character of Ñ(A) restricting to ψE on N(A), and

Pi(f ′) :=
∫
i(TE)(Q)\i(TE)(A)

f ′(t′) dt′

is the period on σϵ associated with i : TE ↪→ G′.

For certain special factorizable f ′i in σ
ϵ, we relate |Pi(f ′i)|2 to L( 12 , f ⊗ VE) ·∆

1/2
E by combining a seesaw of

(classical) unitary group theta lifts with explicit calculations of T. Yang [35]. To leverage this relationship,
we prove that (1.2) also has a factorizable form

θ(φ, f ′)N,ψE (1) = Pi(f ′i) ·
∏
v

Iv(Ev, φv, f ′v)

whenever φ = ⊗′
vφv and f ′ = ⊗′

vf
′
v are factorizable, where the Iv(Ev, φv, f ′v) are certain local integrals that

incorporate both the discrepancy between f ′v and f ′i,v as well as the local Fourier coefficients of the local
minimal representation Ωv. Hence it remains to compute Iv(Ev, φv, f ′v) for appropriate choices of φv and f ′v.

At p-adic places where p does not divide N , we take φp and f ′p to be normalized spherical vectors in Ωp
and in the p-adic component σ

ϵp
p of σϵ, respectively. We prove that f ′p is an (unspecified) C1-multiple

of an i(TE)(Qp)-translate of f ′i,p, which lets us reduce the computation of |Ip(Ep, φp, f ′p)| to the following
elementary statement (Lemma 4.5) and its Hermitian analogue:

for all p-adic fields Fp, étale cubic algebras Ep/Fp, and OFp -algebra injections i : OEp ↪→ M3(OFp),

if g in GL3(Fp) satisfies g
−1i(OEp)g ⊆ M3(OFp), then g lies in i(E×

p )GL3(OFp).

At the archimedean place, the local minimal representation Ω∞ is actually a limit of quaternionic discrete

series for the ambient group G̃(R), so we can study it using the work of Pollack [26]. To ensure that
θ∞(φ∞, f

′
∞) is a highest weight vector in the lowest K-type of πk, we first define a raising operator D+

k in g̃C
and then take φ∞ to be D+

k applied to a normalized highest weight vector in the lowest K̃-type of Ω∞. Since
G′(R) is compact, we can take f ′∞ to be a normalized highest weight vector in the archimedean component
σ∞ of σϵ. With these choices, we compute I∞(E∞, φ∞, f

′
∞) using work of Pollack [26]. The result (Theorem

6.6) crucially involves ∆
(k−1)/2
E as well as some factors that cancel with the definition of WE from (1.1).

The above work already suffices to prove (Theorem 3.133) that, under the necessary local conditions,

|aE(Fϵ)|2 = L( 12 , f ⊗ VE) ·∆
k− 1

2

E ·
∏
p|N

|Ip(Ep, φp, f ′p)|2.

Finally, at p-adic places where p divides N , we custom design φp and f ′p so that Ip(Ep, φp, f ′p) equals 1 when
ϵp = ϵp(χp, Ep) and equals 0 otherwise (Proposition 5.3). This concludes the proof of Theorem 1.2.

3There are also some local constants in Theorem 3.13, which we ignore here for simplicity; alternatively, one can renormalize
the definition of Ip(Ep, φp, f ′p) to incorporate these constants.
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Outline. In §2, we introduce the automorphic forms on PU3 that we will lift to G2 and compute their
relevant torus periods. In §3, we define Fourier coefficients for quaternionic modular forms on G2, gather
facts about the exceptional theta lift between PU3 and G2, and prove our main results modulo calculating
certain local integrals. We calculate these local integrals at p-adic places where p does not divide N in §4,
at p-adic places where p divides N in §5, and at archimedean places in §6.

Notation. Throughout this paper, F is a field of characteristic 0, and K is a quadratic étale F -algebra.
Write k 7→ k for the nontrivial element of AutF (K) ∼= Z/2.

When F is a nonarchimedean local field, write v for its normalized valuation, and write ϖ for a choice of
uniformizer. When F is an archimedean local field, we always assume that F = R and K = C. We use the
absolute value on C given by z 7→

√
zz. Whenever possible and unless otherwise specified, all Haar measures

give maximal compact subgroups volume 1.

When F is a number field, we always assume that F is totally real and K is totally imaginary. For any affine
algebraic group G over F , write [G] for G(F )\G(AF ). Our automorphic representations are all irreducible,
contrary to our convention in [2].

Acknowledgments. We are indebted to Wee Teck Gan, Dick Gross, and Gordan Savin for initiating the
arithmetic study of quaternionic modular forms on G2. In addition, we are extremely thankful to Wee Teck
Gan and Dick Gross for suggesting this problem and for their continued interest and encouragement. Finally,
we are very grateful to Aaron Pollack for helpful discussions.

The second-named author was supported by UK Research and Innovation grant MR/V021931/1. The third-
named author was partially supported by NSF Grant #DMS2303195 and the Max Planck Institute for
Mathematics. The fourth-named author was supported by NSF grant #DMS2401823.

For the purpose of Open Access, the authors have applied a CC BY public copyright licence to any Author
Accepted Manuscript (AAM) version arising from this submission.

2. Unitary group theta lifts

We will construct and study automorphic forms on G2 using an exceptional theta lift from PU3, so in this
section we gather the necessary results about PU3. In §2.1, we begin with basic notation on 3-dimensional
Hermitian spaces, as well as their relation with cubic algebras. In §2.2, we introduce our unitary group theta
lifts and seesaw, the latter of which is essential for our results on torus periods.

We take a break in §2.3 to define spherical vectors in our local representations for later use. In §2.4 and §2.5,
we return to our torus periods and study them in the local context. Finally, we study the analogous global
torus period in §2.6. Our work relies on explicit calculations of T. Yang [35].

This section can be viewed as a refinement of [2, §3] in the setting of this paper.

2.1. Unitary groups and algebra embeddings. We begin by setting up our 3-dimensional Hermitian
spaces and explaining their relationship with Freudenthal–Jordan algebras.

Equip K3 with the Hermitian form for K/F given by (v1, v2) 7→ v1 · v2. Write U3 for its associated unitary
group over F , and write G′ for the adjoint group of U3. Note that the discriminant of K3 equals the image
of −1 under F×→F×/NmK/F (K

×).

For all x and y in M3(K), write x ◦ y for 1
2 (xy+ yx), and write x# for the adjugate matrix of x. Write J for

the set of Hermitian matrices in M3(K), and use ◦ to equip J with the structure of a Freudenthal algebra
over F in the sense of [18, §37.C]. Now G′ acts on J via conjugation, which identifies G′ with the connected
automorphism group of J over F .
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Let E be a cubic étale F -algebra, and write L for E ⊗F K. Write TE for the 2-dimensional torus

coker(R1
K/F Gm→RE/F (R

1
L/E Gm))

over F . Because F×/NmK/F (K
×) is 2-torsion and the composition

F×/NmK/F (K
×) // E×/NmL/E(L

×)
NmE/F

// F×/NmK/F (K
×)

is the cubing map, the left arrow is injective. Therefore (R1
L/E Gm)(E)→TE(F ) is surjective.

Write {E ↪→ J} for the set of F -algebra embeddings E ↪→ J . Note that any i in {E ↪→ J} induces an
injective morphism i : RE/F (R

1
L/E Gm) ↪→ U3 and hence i : TE ↪→ G′ of groups over F . Moreover, we see

that the stabilizer of i in G′ equals i(TE).

Let λ be in E×. Write Lλ for the associated 1-dimensional Hermitian space for L/E, so that R1
L/E Gm

is its associated unitary group over E. By postcomposing the Hermitian form with trL/K , we view Lλ as

a 3-dimensional Hermitian space for K/F . If we have an isomorphism K3 ∼= Lλ of Hermitian spaces for
K/F , then we obtain an embedding L ↪→ M3(K) of K-algebras with involution and hence an element of
{E ↪→ J}. By [2, Lemma 3.2], every i in {E ↪→ J} arises from this construction for some λ in E× and some
isomorphism K3 ∼= Lλ of Hermitian spaces for K/F , and λ1 and λ2 in E× induce the same G′(F )-orbit in
{E ↪→ J} if and only if λ1λ

−1
2 lies in F× NmL/E(L

×).

2.2. The seesaw and local representations of G′. We now introduce our unitary group theta lift over F ,
which we will use to construct representations of G′. This theta lift fits into a seesaw with a unitary group
theta lift over E, which we will use to compute torus periods of our representations of G′.

Let ϵ1 be in F×. Write Kϵ1 for the associated 1-dimensional Hermitian space for K/F , and write U1 for its
associated unitary group over F . Let δ in K× satisfy trK/F δ = 0, and write W for the symplectic space

Kϵ1 ⊗K K3 = K3 over F , where the symplectic form is given by

(w1, w2) 7→ trK/F (δϵ1w1 · w2).

Note that W has a polarization given by F 3 ⊕ δF 3. When K = F × F , it also has a polarization given by
(1, 0)F 3 ⊕ (0, 1)F 3.

Given a λ in E× and an isomorphism K3 ∼= Lλ of Hermitian spaces for K/F that give rise to i as in §2.1, we
get an isomorphism between W and the analogous symplectic space over F induced by δ and Lϵ1⊗LLλ = L.
Then the analogue of [21, (2.17)] for unitary groups yields a seesaw of dual pairs in SpW over F

RE/F R1
L/E Gm U3

U1

OO

RE/F R1
L/E Gm.

i

OO

(2.1)

Note that Lϵ1 ⊗L Lλ has a polarization given by E ⊕ δE.

For the rest of this subsection, assume that F is a local field or a number field. Write

CF :=

{
F× F local field,

F×\A×
F F number field,

AF :=

{
F F local field,

F\AF F number field,
RF :=

{
F F local field,

AF F number field.

Let χ : CK→C1 be a conjugate-symplectic unitary character, and let ψ : AF →C1 be a nontrivial unitary
character. By [22, Theorem 3.1], the data of

• ψ and (χ, χ3) induces a lifting of (U1×U3)(RF )→ SpW (RF ) to MpW (RF ),
• ψ ◦ trE/F and (χ ◦NmL/K , χ ◦NmL/K) induces a lifting of (R1

L/E Gm×R1
L/E Gm)(RE)→ SpW (RF )

to MpW (RF ).
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Since NmL/K(k) = k3 for all k in K×, these lifts restrict to one another under (2.1).

Endow R3
F with the self-dual measure with respect to ψ, which yields a Hermitian pairing on the Schwartz

space S(R3
F ). Using the polarizationW = F 3⊕δF 3, equip S(R3

F ) with the Weil representation of MpW (RF )
associated with ψ, and write θ13(−) for the resulting theta lift from U1 to U3.

In the setting of (2.1), endow RE with the self-dual measure with respect to ψ ◦ trE/F , which yields a
Hermitian pairing on S(RE). Using the polarization Lϵ1 ⊗LLλ = E⊕ δE, equip S(RE) with the Weil repre-
sentation of MpW (RF ) associated with ψ, and write θE(−) for the resulting theta lift from RE/F R1

L/E Gm
to RE/F R1

L/E Gm (when F is a number field, assume that R1
L/E Gm is anisotropic over E). When F is

a number field, any element of SpW (F ) that sends the polarization F 3 ⊕ δF 3 to E ⊕ δE induces a uni-
tary isomorphism S(A3

F )
∼= S(AE) of representations of MpW (AF ) that preserves their natural automorphic

realizations.

For the rest of this subsection, assume that F is a local field. Write ωK/F : F×→{±1} associated with K/F
by class field theory, and consider the sign

ϵ := ωK/F (−ϵ1) · ϵ( 12 , χ
3, ψ(trK/F (δ−))) ∈ {±1}.

When χ2 = 1, assume that ϵ = +1, and when F is archimedean, assume that ϵ = −1.

Definition 2.1. Write σϵ for the irreducible smooth representation θ13(1) of G
′(F ).

By [2, Proposition 3.7] or [2, Proposition 3.9], Definition 2.1 agrees with the σϵ from [2, §3.4] or [2, §3.5].

2.3. Spherical vectors for G′. In this subsection, we define spherical vectors in our representations of G′

for later use. Assume that F is a nonarchimedean local field, K/F and χ are unramified, and ψ has conductor
0.

WhenK is a field, our unramified hypotheses imply that χ2 = 1, so ϵ = +1 by assumption. Therefore vK(δϵ1)
must be even; write n := vK(δϵ1)/2. Then ϖ−nO3

K is self-dual in W and compatible with the polarization

W = F 3 ⊕ δF 3. Write ϕ0 in S(F 3) for vol(ϖ−nO3
F )

−1/2 times the indicator function of ϖ−nO3
F .

When K = F × F , endow (1, 0)F 3 = F 3 with the self-dual measure with respect to ψ, which yields a
Hermitian pairing on S((1, 0)F 3). Using the polarization W = (1, 0)F 3 ⊕ (0, 1)F 3, equip S((1, 0)F 3) with
the Weil representation of MpW (F ) associated with ψ. Fix a unitary isomorphism S((1, 0)F 3) ∼= S(F 3) of
representations of MpW (F ), and write ϕ0 in S(F 3) for the image of the indicator function of (1, 0)O3

F .

Finally, write f0 for the image of ϕ0 under the theta lift map S(F 3)→1 ⊠ θ13(1) = 1 ⊠ σϵ ∼= σϵ. Observe
that f0 is indeed G′(OF )-fixed.

2.4. Local torus periods. In this subsection, assume that F is a local field. Our local torus periods are
controlled by the following invariants. Identify E×/NmL/E(L

×) with its image in {±1}π0(SpecE) under

ωL/E , and consider the following element of E×/NmL/E(L
×):

λ0 := ∆E/F · ϵ( 12 , χ ◦NmL/K , ψ(trL/F (δ−))) ·NmE/F

[
ϵ( 12 , χ ◦NmL/K , ψ(trL/F (δ−)))

]
,

where ∆E/F in F×/(F×)2 denotes the discriminant of E/F , and the ϵ-factors at s = 1
2 are interpreted as

elements of {±1}π0(SpecE).

Definition 2.2. Write ϵ(E,χ, ψ) for the sign ωK/F (−∆E/F NmE/F (λ0)) · ϵ( 12 , χ
3, ψ(trK/F (δ−))) in {±1}.

When F is nonarchimedean and K/F and χ are unramified, [2, Proposition 6.8] shows that ϵ(E,χ, ψ) = +1.

When F is archimedean, the proof of [2, Proposition 6.15] shows that

ϵ(E,χ, ψ) =

{
+1 when E ∼= R× C,
−1 when E ∼= R3.
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Proposition 2.3. There exists at most one G′(F )-orbit of i in {E ↪→ J} satisfying Homi(TE)(F )(σ
ϵ,1) ̸= 0.

This G′(F )-orbit exists if and only if ϵ = ϵ(E,χ, ψ), and in this case it arises from λ0 and an isomorphism
K3 ∼= Lλ0

of Hermitian spaces for K/F , as in §2.1.

Proof. This follows from [2, Proposition 3.8] and [2, Proposition 3.10]; note that λ0 differs from the λ therein
by an element of F×, chosen so thatK3 and Lλ0

are already isomorphic as Hermitian spaces forK/F (instead
of after scaling λ0 by an element of F×). □

Assume a G′(F )-orbit as in Proposition 2.3 exists, and fix an i0 in it. Fix a representative of λ0 in E×, and
fix an isomorphism K3 ∼= Lλ0

of Hermitian spaces for K/F that gives rise to i0 as in §2.1, so that we get an
isomorphism W ∼= Lϵ1 ⊗L Lλ0 of symplectic spaces over F as in §2.2.

2.5. Local vectors for G′. In this subsection, assume that F is a local field. We will normalize our local
torus periods using the following vectors in our representations of G′.

Recall from §2.2 that we endowed S(E) and S(F 3) with Hermitian pairings for which the Weil representation
of MpW (F ) is unitary. Fix a unitary isomorphism S(E) ∼= S(F 3) of representations of MpW (F ), and write
ϕi0 in S(F 3) for the image of the element of S(E) defined as ϕ1,v in [35, p. 48] with respect to the quadratic4

E-algebra L. Write fi0 for the image of ϕi0 under the theta lift map S(F 3)→1⊠ θ13(1) = 1⊠ σϵ ∼= σϵ.

Since the stabilizer of i0 in G′(F ) equals i0(TE)(F ), we identify the G′(F )-orbit of i0 with G′(F )/i0(TE)(F ).

Write (−) : G′(F )→G′(F )/i0(TE)(F ) for the quotient map, and fix a section s of (−).

Definition 2.4. For all i = x · i0 in the G′(F )-orbit of i0, write ϕi for s(x) · ϕi0 , and write fi for s(x) · fi0 .

Recall from Proposition 2.3 that Homi(TE)(F )(σ
ϵ,1) is 1-dimensional.

Lemma 2.5. For all g′ in G′(F ), i in the G′(F )-orbit of i0, and β in Homi(TE)(F )(σ
ϵ,1), we have

β(g′−1 · fg′·i) = β(fi).

Proof. Let x be an element of G′(F ) such that i = x · i0. Then β ◦ x is an element of Homi0(TE)(F )(σ
ϵ,1),

and x−1g′−1s(g′x) and x−1s(x) lie in i0(TE)(F ). Therefore

β(g′−1 · fg′·i) = β(x · x−1g′−1s(g′x) · fi0) = β(x · fi0) = β(x · x−1s(x) · fi0) = β(fi). □

Remark 2.6. When K is a field, θ13(1) is the summand of SF where U1(F ) acts trivially. Moreover, if
R1
L/E Gm is anisotropic over E, then (R1

L/E Gm)(E) acts trivially on ϕi0 by construction [35, p. 48]. Because

(R1
L/E Gm)(E) contains U1(F ), this shows that ϕi0 lies in θ13(1). In particular, i0(TE)(F ) acts trivially on

fi0 = ϕi0 . Therefore in this situation the section s is unnecessary for defining fi, and we have g′−1 ·fg′·i = fi
even before applying β. However, when R1

L/E Gm is not anisotropic over E, one can see from [35, Corollary

2.10 (i)] that (R1
L/E Gm)(E) does not act trivially on ϕi0 .

Lemma 2.7. Let β be in Homi0(TE)(F )(σ
ϵ,1). If β is nonzero, then β(fi0) is nonzero.

Proof. Using (2.1), the proof of [2, Proposition 3.8] or [2, Proposition 3.10] shows that precomposition with
the theta lift maps S(F 3)→1⊠ θ13(1) ∼= σϵ and S(E)→ θE(1)⊠ 1 ∼= θE(1) identify

Homi0(TE)(F )(σ
ϵ,1)

∼→HomU1(F )×(R1
L/E

Gm)(E)(S(F 3),1)

∼= HomU1(F )×(R1
L/E

Gm)(E)(S(E),1)
∼←HomU1(F )(θE(1),1).

Now θE(1) is isomorphic to 1 by [29, Prop 3.4], and the image of ϕi0 in θE(1) is nonzero by construction.
Hence the desired result follows. □

Write βi0 for the unique element of Homi0(TE)(F )(σ
ϵ,1) satisfying βi0(fi0) = 1, which exists by Lemma 2.7.

4We warn the reader that [35] denotes the base field by Fv and the quadratic étale algebra by Ev .
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Definition 2.8. For all i = x · i0 in the G′(F )-orbit of i0, write βi for βi0 ◦ x−1.

Definition 2.8 implies that βg′·i = βi ◦ g′−1 for all g′ ∈ G′(F ), and Lemma 2.5 implies that βi(fi) = 1.
Moreover, βi is compatible with the spherical vector f0 as follows:

Lemma 2.9. Assume that F is nonarchimedean, K/F is unramified, χ is unramified, and ψ has conductor 0.
If i in {E ↪→ J} arises from an isomorphism K3 ∼= Lλ0

of Hermitian spaces for K/F under which the image
of O3

K in Lλ0
is OL-stable, then |βi(f0)| = 1.

Proof. If i satisfies the above condition, then g′ ·i does too if and only if g′ lies in G′(OF )i(TE)(F ). Therefore
we can assume that i = i0.

By inspecting the construction in §2.3, we see that ϕ0 in S(F 3) is a unitary spherical vector with respect to
a self-dual OF -lattice in W of the form tO3

K for some t in K×.

On the other hand, by inspecting Yang’s construction [35], we see that ϕi0 in S(E) ∼= S(F 3) is a unitary
spherical vector with respect to a self-dual (with respect to the symplectic form over F ) OL-lattice in Lλ.
Because any two such lattices are translates under L1 and βi0 is i0(L

1)-invariant, we can assume that ϕi0 is
spherical with respect to the image of tO3

K . Then the desired result immediately follows. □

2.5.1. Archimedean case. In this subsubsection, assume that F is archimedean. Because G′(R) is compact,
the existence of i0 implies that E ∼= R3. Therefore R1

L/E Gm is anisotropic over E, so Remark 2.6 applies.

Write ⟨−,−⟩σ for the Hermitian pairing on σ− = θ13(1) given by restricting the Hermitian pairing on S(F 3).
Since ϕi0 is a unitary element of S(E) ∼= S(F 3) by construction [35, p. 48], we see that fi0 = ϕi0 is unitary
with respect to ⟨−,−⟩σ. Because G′(R) preserves ⟨−,−⟩σ, this implies that βi0 equals ⟨−, fi0⟩σ. More
generally, this implies that βi equals ⟨−, fi⟩σ for all i in the G′(R)-orbit of i0.

2.6. Global torus periods. In this subsection, assume that F is a number field. We consider the following
cuspidal automorphic representations of G′. Let (ϵv)v be a sequence in {±1} indexed by places v of F with

• ϵv = +1 when v splits in K or χ2
v = 1,

• ϵv = −1 when v is archimedean,
•
∏
v ϵv = ϵ( 12 , χ

3).

Choose ϵ1 in F× such that its image in F×/NmK/F (K
×) is the unique element satisfying

ϵ1,v = ωKv/Fv
(−1) · ϵ( 12 , χ

3
v, ψv(trKv/Fv

(δ−))) · ϵv ∈ {±1}
for every place v of F , which exists by the Hasse principle and the fact that∏

v ϵ1,v = (
∏
v ωKv/Fv

(−1)) · ϵ( 12 , χ
3) · (

∏
v ϵv) = +1 · ϵ( 12 , χ

3)2 = +1.

Then [2, Proposition 3.3] and §2.2 identify σ := θ13(1) with
⊗′

v σ
ϵv
v , where σϵvv is the irreducible smooth

representation of G′(Fv) from Definition 2.1. Write ϵv(Ev, χv, ψv) for the sign from Definition 2.2.

We consider the following global torus periods. For any i in {E ↪→ J}, write Pi : σ→C for the C-linear map
f 7→

∫
[i(TE)]

f(t′) dt′. Then [2, Proposition 3.12] shows that Pi is nonzero only if, for every place v of F , we

have ϵv = ϵv(Ev, χv, ψv), and i localizes to the unique G′(Fv)-orbit of iv in {Ev ↪→ Jv} satisfying
Homiv(TEv )(Fv)(σ

ϵv
v ,1) ̸= 0.

Assume these conditions hold for ϵv and i. Then R1
Lv/Ev

Gm is anisotropic over Ev for any archimedean

place v of F , so R1
L/E Gm is anisotropic over E. Moreover, since J does not arise from a division algebra,

there exists a unique G′(F )-orbit of such i in {E ↪→ J} [11, Lemma 15.5.(2)]. Let i be an element of this
G′(F )-orbit. Write fiv for the element of σϵvv from Definition 2.4, and write fi for the element ⊗′

vfiv of σ.

Let S be a finite set of places of F such that,

• for all v not in S, v is nonarchimedean, Kv/Fv is unramified, and χv is unramified,
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• OK,S is a free OF,S-module.

Then R1
OK,S/OF,S

Gm is a smooth model of R1
K/F Gm over OF,S , and its Lie algebra is the rank-1 free OF,S-

module (OK,S)tr=0. Hence there exists a nowhere vanishing, translation-invariant 1-form µ on R1
OK,S/OF,S

Gm.

Note that (R1
OK,S/OF,S

Gm)OE,S
= R1

OL,S/OE,S
Gm is a smooth model of R1

L/E Gm over OE,S , and the

pullback of µ to R1
OL,S/OE,S

Gm remains nowhere vanishing and translation-invariant. For every place w

of E, write volµ for the associated measure on L1
w, and write Mw for the volume with respect to volµ of the

maximal compact subgroup of L1
w. When w does not lie above S, we have Mw = Lw(1, ωLw/Ew

)−1.

Proposition 2.10. We have

|Pi(fi)|2 = L( 12 , Ind
F
K χ⊗ IndFE 1) ·∆

1/2
OE/Z ·

∏
v∈S

Cv,

where ∆OE/Z in Z denotes the discriminant of OE/Z, and Cv is a nonzero constant depending only on χv,
Ev, and µ.

By Proposition 2.10, the product
∏
v∈S Cv is independent of µ.

Proof. Choose λ in E× and an isomorphism K3 ∼= Lλ of Hermitian spaces for K/F that give rise to i as in
§2.1. Using (2.1), for all ϕ in S(A3

F )
∼= S(AE) we see that

Pi(θ13(ϕ, 1)) =
∫
[i(TE)]

θ13(ϕ, 1)(t
′) dt′ =

1

vol([U1])

∫
[R1

L/E
Gm]

θ13(ϕ, 1)(t
′) dt′

=
1

vol([U1])

∫
[U1]

θE(ϕ, 1)(u) du = θE(ϕ, 1)(1)

(2.2)

since θE(1) is isomorphic to 1 by [29, Prop 3.4] and [12, Proposition 1.2].

We will apply (2.2) as follows. For every place v of F , write ϕiv for the element of S(F 3
v ) from §2.5, and

write ϕi for the element ⊗′
vϕiv of S(A3

F ). By construction, ϕi is an (R1
L/E Gm)(AE)-translate of the element

of S(A3
F )
∼= S(AE) defined as ϕ1 in [35, p. 48]. Because the Hermitian pairing on S(AE) is (R1

L/E Gm)(AE)-
invariant, this implies that ϕi still satisfies [35, (2.18)], so [35, Theorem 2.6] shows that

|θE(ϕi, 1)(1)|2 = L( 12 , Ind
F
K χ⊗ IndFE 1) ·

vol([R1
L/E Gm])

2π0(SpecE)L(1, ωL/E)
·
∏
w

Bw,

where w runs over places of E, and

Bw :=


(1 + q−1

w )−1 when w is inert in L and χv ◦NmLw/Kv
is ramified,

q
−c(χv◦NmLw/Kv )
w (1− q−1

w )2 when w is split in L and χv ◦NmLw/Kv
is ramified,

1 otherwise.

By [25, Main Theorem], we have

vol([R1
L/E Gm]) = 2π0(SpecE)L(1, ωL/E) ·∆

1/2
OE/Z ·

∏
w

Dw,

where

Dw :=

{
M−1
w Lw(1, ωLw/Ew

)−1 when w is nonarchimedean,

M−1
w when w is archimedean.

Therefore we get

|θE(ϕi, 1)(1)|2 = L( 12 , Ind
F
K χ⊗ IndFE 1) ·∆

1/2
OE/Z ·

∏
w

BwDw.

We conclude by noting that fi = θ13(ϕi, 1) and that Cv :=
∏
w|v BwDw depends only on χv, Ev, and µ. □
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3. Formulas for Fourier coefficients

Our goal in this section is to prove (modulo calculating certain local integrals) our main results on the
Fourier coefficients of quaternionic modular forms on G2 over totally real fields. We will calculate these local
integrals later in §4, §5, and §6.

We start in §3.1 by recalling quaternionic discrete series representations on G2, which we use to define
quaternionic modular forms and their Fourier coefficients in §3.2. Our quaternionic modular forms of interest
arise from an exceptional theta lift between PU3 and G2, using theta kernels on a quasi-split adjoint form
of E6. We gather basic facts about the Fourier coefficients of these theta functions in §3.3, §3.4, and §3.5.

In §3.6, we relate Fourier coefficients on E6 to Fourier coefficients on G2, leading to the definition of the local
integrals in §3.7. Finally, in §3.8 we put everything together and prove our main results.

3.1. Quaternionic discrete series on G2. We start with some notation on G2. Write g for the Lie algebra
over F defined as g̃F in [2, §2.2], and write G for its automorphism group over F . Recall that G is the
connected split simple group of type G2 over F [2, §2.3]. Following [2, §2.5], write P for the Heisenberg
parabolic subgroup of G, write N for the unipotent radical of P , and write M for the Levi subgroup of P .
We can naturally identify M with GL2.

Write Z for the center of N , and recall that N/Z is abelian [2, §2.5]. Write X for HomF (N/Z,F ). We
can naturally identify X and N/Z with F 4 [2, §2.5], and under this identification, the evaluation pairing
X× (N/Z)→F corresponds to

⟨(a, b, c, d), (a′, b′, c′, d′)⟩ := ad′ − bc′ + cb′ − da′.

Write q for the quartic form (a, b, c, d) 7→ b2c2 + 18abcd− 4ac3 − 4db3 − 27a2d2 on X.

For the rest of this subsection, assume that F is an archimedean local field. We now recall the quaternionic
discrete series on G(R). Recall that the maximal compact subgroup K of G(R) is SU(2)ℓ ×{±1} SU(2)s,
where the subscripts mean that their complexifications induce ℓong and short root subgroups, respectively, of
G(C) [13, Proposition 4.1]. For any positive integer n, write πn for the irreducible smooth representation of
G(R) defined as π′

2n+2 in [13, Proposition 5.7]. In particular, the minimal K-type of πn is Vn := Sym2n⊠1.

For all E in X(R), write ψE : N(R)→C1 for the unitary character ψ(⟨E ,−⟩). Write r for the unique nonzero
real number such that ψ(x) = e−irx. Write r0(i) for the element (1,−i,−1, i) of (N/Z)(C), and let E be an
element of X(R) such that ⟨rE ,m · r0(i)⟩ is nonzero for all m in M(R). For all integers v, write Kv for the
associated K-Bessel function, and write WE

n,v :M(R)→C for the function given by

m 7→
[
|⟨rE ,m · r0(i)⟩|
⟨rE ,m · r0(i)⟩

]v
· det(m)

n · | det(m)| ·Kv(|⟨rE ,m · r0(i)⟩|),

which agrees with the expression in [26, Theorem 1.2.1 (1) (b)] by [26, Proposition 2.3.1].

Write {xℓ, yℓ} for the standard basis of the standard representation of SU(2)ℓ, so that {xn+vℓ yn−vℓ }|v|≤n is

a basis of Vn. Then HomN(R)(πn, ψE) = HomG(R)(πn, Ind
G(R)
N(R) ψE) is spanned by the unique map WE

n such

that, for all |v| ≤ n, the function WE
n (x

n+v
ℓ yn−vℓ ) : G(R)→C restricted to M(R) equals

m 7→ 1

(n+ v)!(n− v)!
WE
n,−v(m)

[26, Theorem 1.2.1 (1) (b)]. On the other hand, if E is an element of X(R) such that ⟨rE ,m · r0(i)⟩ vanishes
for some m in M(R), then HomN(R)(πn, ψE) vanishes [26, Theorem 1.2.1 (1) (a)].

3.2. Quaternionic modular forms on G. In this subsection, assume that F is a number field. Thanks
to the results of Pollack [26] recalled in §3.1, the following automorphic forms on G have a good theory of
Fourier coefficients.
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Definition 3.1. We say that a cuspidal automorphic representation π of G(AF ) is quaternionic if, for all
archimedean places v of F , there exists a positive integer nv such that πv is isomorphic to the representa-
tion πnv

from §3.1. We say that (nv)v|∞ is the weight of π.

Let π be a cuspidal automorphic representation of G(AF ) that is quaternionic of weight (nv)v|∞. For any E
in X(F ), write ψE : [N/Z]→C1 for the unitary character ψ(⟨E ,−⟩). For any F∞ in

⊗′
v∤∞ πv, the function

F∞ 7→ (F∞ ⊗F∞)N,ψE (1) :=

∫
[N ]

(F∞ ⊗F∞)(n)ψE(n)
−1 dn

yields an element of HomN(F⊗QR)(
⊗

v|∞ πv,
⊗

v|∞ ψv,E) =
⊗

v|∞ HomN(Fv)(πv, ψv,E). If this space is nonzero,

then §3.1 shows that it is 1-dimensional. Hence, after fixing an isomorphism πv ∼= πnv
for all archimedean

places v of F , there is a unique aE(F∞) in C such that

(F∞ ⊗F∞)N,ψE (gv) = aE(F∞)
∏
v|∞

WEv
nv
(Fv)(gv)

for all F∞ = ⊗v|∞Fv in
⊗

v|∞ πv and g∞ = (gv)v|∞ in G(F ⊗Q R), where Ev denotes the image of E in

X(Fv).

Definition 3.2. We say that aE(F∞) is the E-th Fourier coefficient of F∞.

When F = Q, Definition 3.2 agrees with the Fourier coefficient defined in [26, Corollary 1.2.3].

3.3. A quasi-split adjoint form of E6. We study our quaternionic modular forms onG using an exceptional
theta lift between G′ and G in a quasi-split adjoint form of E6; let us recall this in the next few subsections.

Write g̃ for the Lie algebra over F defined as g̃J in [2, §2.2], and write G̃ for its connected automorphism

group over F . Recall that G̃ is the quasi-split adjoint form of E6 with respect to K over F [2, §2.2]. Following
[2, §2.5], write P̃ for the Heisenberg parabolic subgroup of G̃, write Ñ for the unipotent radical of P̃ , and

write M̃ for the Levi subgroup of P̃ .

Recall that there is a natural injective morphism G×G′ ↪→ G̃ of groups over F [2, §2.3]. Moreover, we have

P = P̃ ∩G, M = M̃ ∩G, N = Ñ ∩G, and G′ ⊆ M̃

[2, §2.5]. The center of Ñ equals Z, and the quotient Ñ/Z is abelian; write X̃ for HomF (Ñ/Z, F ). We can

naturally identify Ñ/Z and X̃ with F × J × J × F [2, §2.5], and under this identification, the evaluation

pairing X̃× (Ñ/Z)→F corresponds to

⟨(a, x, y, d), (a′, x′, y′, d′)⟩ := ad′ − tr(x ◦ y′) + tr(y ◦ x′)− da′.(3.1)

By [26, Lemma 4.3.1], the action of M̃ on X̃ identifies M̃ with a certain similitude group5 over F . Under

this identification, write ν : M̃→Gm for the similitude character, and write M̃1 for the kernel of ν.

Write Omin for the M̃ -orbit of (1, 0, 0, 0) in X̃ over F , often called the minimal orbit. Recall [11, Proposition
8.1] that Omin equals{

0 ̸= (a, x, y, d) ∈ X̃ | x# = ay, y# = dx, and l(x) ◦ l∗(y) = ad for all l in LJ(F )
}
,

where LJ ⊆ GLJ is the subgroup of linear maps preserving NJ , and (−)∗ denotes the dual with respect to
the trace pairing (X,Y ) 7→ tr(X ◦ Y ) on J .

Lemma 3.3. The group M̃1(F ) acts transitively on Omin(F ).

Proof. Write S for the M̃1(F )-orbit of (1, 0, 0, 0), which we want to show equals Omin(F ). For any t in F
×,

let gt be a linear automorphism of J over F such that det(gt(z)) = t2 det z for all z in J (e.g. we can take

5In [26], this similitude group is denoted by HJ .
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gt to be the operation of multiplying the first row and first column of a Hermitian matrix by t). Then [26,

p. 1221] yields an element M(t, gt) of M̃
1(F ) such that

M(t, gt)(a, x, y, d) = (t−1a, t−1gt(x), tg
∗
t (y), td).

In particular, (t, 0, 0, 0) lies in S.

Next, for any Z in J , [26, p. 1221] also yields an element n(Z) of M̃1(F ) satisfying

n(Z)(t, 0, 0, 0) = (t, tZ, tZ#, tdetZ).

Therefore S contains every (a, x, y, d) in Omin(F ) with a ̸= 0. On the other hand, given an X in Omin(F ),

the locus {m̃ ∈ M̃1 | m̃ · X = (a, x, y, d) with a ̸= 0} is a dense open subvariety of M̃1 over F . Since M̃1

is F -unirational and F is infinite, this implies that this subvariety contains an F -point. Hence M̃1(F ) · X
meets S, so X lies in S. □

3.4. Local Fourier coefficients of G̃. In this subsection, assume that F is a local field. Write Ω for

the minimal representation of G̃(F ) in the sense of [10, Definition 3.6] or [10, Definition 4.6], which is an

irreducible smooth representation of G̃(F ). When K/F is unramified, G̃ is unramified over F , so Ω is
unramified [10, Corollary 7.4]. We will use Ω as a kernel for our exceptional theta lift.

For all X in X̃(F ), write ψX : Ñ(F )→C1 for the unitary character given by ψ(⟨X ,−⟩). Then (Ñ(F ), ψX )-
equivariant functionals on Ω are the local analog of Fourier coefficients for Ω; we normalize them as follows.

3.4.1. Nonarchimedean case. In this subsubsection, assume that F is nonarchimedean. Then there exists a

P̃ (F )-equivariant short exact sequence

0→ C∞
c (Omin(F ))→ ΩZ(F ) → ΩÑ(F ) → 0

[24, Theorem 6.1]6, where the P̃ (F )-action on C∞
c (Omin(F )) is given by

• (m̃φ)(X ) = |ν(m̃)|1/5φ(m̃−1X ) for m̃ in M̃(F ),

• (ñφ)(X ) = ψX (ñ)φ(X ) for ñ in Ñ(F ).

In particular, for all X in Omin(F ) we have

(3.2) C∞
c (Omin(F ))Ñ(F ),ψX

∼→ΩÑ(F ),ψX
.

Moreover, the spaces in (3.2) are 1-dimensional [24, Lemma 6.2].

Definition 3.4. Write αX for the functional in HomÑ(F )(Ω, ψX ) identified via (3.2) with φ 7→ φ(X ).

Lemma 3.5. For all h̃ in M̃(F ), X in Omin(F ), and φ in Ω, we have

αX (φ) = |ν(h̃)|−1/5αh̃·X (h̃ · φ).

Proof. This follows immediately from the above description of the M̃(F )-action on C∞
c (Omin(F )). □

3.4.2. Archimedean case. In this subsubsection, assume that F is archimedean. Recall that the maximal

compact subgroup K̃ of G̃(R) is isomorphic to SU(2)ℓ ×{±1} SU(6)/µ3(C) [13, Proposition 4.1], and recall
from [10, Proposition 12.11] that Ω is isomorphic to the representation defined as π′

4 in [13, Proposition 5.7].

In particular, the minimal K̃-type of Ω is Ṽ1 := Sym2 ⊠1.

6Note that [24] works in the split case. However, the proof of [24, Theorem 6.1] holds verbatim in the quasi-split case if one
uses [10, Proposition 11.5 (i)] and [10, Proposition 11.7 (ii)] instead of [24, Lemma 6.2].



14 P. BAKIĆ, A. HORAWA, S. D. LI-HUERTA, AND N. SWEETING

Let X be in Omin(R), and recall from §3.1 the nonzero real number r. Write r̃0(i) for the element (1,−i,−1, i)
of (Ñ/Z)(C). For all integers v, write W̃X

v : M̃(R)→C for the function

m̃ 7→
[
|⟨rX , m̃ · r̃0(i)⟩|
⟨rX , m̃ · r̃0(i)⟩

]v
· ν(m̃) · |ν(m̃)| ·Kv(|⟨rX , m̃ · r̃0(i)⟩|),(3.3)

which agrees with the expression in [26, Theorem 1.2.1 (1) (b)] by [26, Proposition 2.3.1]. (Because X lies

in Omin(R), we have ⟨rX , m̃ · r̃0(i)⟩ ≠ 0 for all m̃ in M̃(R).)

Recall from §3.1 the standard basis {xℓ, yℓ} of the standard representation of SU(2)ℓ, so that {x2ℓ , xℓyℓ, y2ℓ}
is a basis of Ṽ1. Recall that HomÑ(R)(Ω, ψX ) is 1-dimensional by [26, Theorem 1.2.1 (1) (b)].

Definition 3.6. Write αX for the unique map in HomÑ(R)(Ω, ψX ) = HomG̃(R)(Ω, Ind
G̃(R)
Ñ(R)

ψX ) such that,

for all |v| ≤ 1, the function αX (x1+vℓ y1−vℓ ) : G̃(R)→C restricted to M̃(R) equals

m̃ 7→ 1

(1 + v)!(1− v)!
W̃X

−v(m̃),

which exists and is well-defined by [26, Theorem 1.2.1 (1) (b)].

Lemma 3.7. For all h̃ in M̃1(R), X in Omin(R), and φ in Ω, we have

αX (φ) = αh̃·X (h̃ · φ).

Proof. This follows immediately from ν(h̃) = 1 and (3.3). □

3.5. Global Fourier coefficients of G̃. In this subsection, assume that F is a number field. For every

place v of F , write Ωv for the minimal representation of G̃(Fv) from §3.4, and for every Xv in Omin(Fv),

write αXv : Ωv→ψv,Xv for the Ñ(Fv)-equivariant functional from §3.4.

When Fv is nonarchimedean, Kv/Fv is unramified, χv is unramified, and ψv has conductor 0, write φ0,v for

the nonzero G̃(OFv )-fixed element of Ωv from §4.1 below. In particular, Corollary 4.4 below implies that,
for all X in Omin(F ), we have αXv (φ0,v) = 1 for cofinitely many v, where Xv denotes the image of X in
Omin(Fv).

Write Ω for
⊗′

v Ωv. Recall that residues of Eisenstein series yield a G̃(AF )-equivariant embedding [11, §14.3]

θ : Ω ↪→ L2
disc([G̃]).

The (global) Fourier coefficients for Ω take the following particularly simple form.

Lemma 3.8. After replacing θ with a C×-multiple, the following is true: for all X in Omin(F ) and φ = ⊗′
vφv

in Ω with φv = φ0,v for cofinitely many v, we have

θ(φ)Ñ,ψX
(1) :=

∫
[Ñ ]

θ(φ)(ñ)ψX (ñ)−1 dñ =
∏
v

αXv
(φv).

Proof. For all X in Omin(F ) and every place v of F , the space HomÑ(Fv)
(Ωv, ψv,Xv

) is 1-dimensional. Hence

there is a unique cX in C such that, for all φ = ⊗′
vφv in Ω with φv = φ0,v for cofinitely many v, we have∫

[Ñ ]

θ(φ)(ñ)ψX (ñ)−1 dñ = cX
∏
v

αXv
(φv).



GROSS’S CONJECTURE: THE DIHEDRAL CASE 15

We claim that cm̃·X = cX for all m̃ in M̃1(F ). Indeed, we have

cm̃·X
∏
v

αXv (φv) = cm̃·X
∏
v

αm̃·Xv
(m̃ · φv) by Lemma 3.5 and Lemma 3.7

=

∫
[Ñ ]

θ(m̃ · φ)(ñ)ψm̃·X (ñ)−1 dñ

=

∫
[Ñ ]

θ(φ)(ñm̃)ψX (m̃−1ñm̃)−1 dñ since ⟨−,−⟩ is M̃ -invariant

=

∫
[Ñ ]

θ(φ)(m̃ñ)ψX (ñ)−1 dñ by ñ 7→ m̃ñm̃−1

=

∫
[Ñ ]

θ(φ)(ñ)ψX (ñ)−1 dñ

= cX
∏
v

αXv
(φv).

Therefore the desired result follows from Lemma 3.3. □

Henceforth, we replace θ : Ω ↪→ L2
disc([G̃]) with a C×-multiple such that the conclusion of Lemma 3.8 holds.

3.6. Cubic algebras and Omin. Fourier coefficients of G are indexed by cubic algebras as follows. Since G
is split over F , it and its various subgroups that we consider have natural models over Z. Let R be a ring;
we say that an R-algebra A is cubic if A is isomorphic to R3 as an R-module. Recall that a good basis of A
is an element (α, β) of A2 such that {1, α, β} is an R-basis of A and αβ lies in R. Then the proof of [8,
Proposition 3.1]7 shows there exists (a, b, c, d) in R4 satisfying

α2 = −ac+ bα− aβ, β2 = −bd+ dα− cβ, αβ = −ad,(3.4)

and this induces a bijection{
cubic R-algebras equipped with a good basis (α, β)

} ∼→X(R)(3.5)

that descends into an equivalence of groupoids {cubic R-algebras} ∼→M(R)\X(R) [8, Proposition 3.1]. Under
this correspondence, q(a, b, c, d) in R is a representative of the discriminant ∆A/R in R/(R×)2 [8, p. 116].

Fourier coefficients of G̃ can also be described in terms of cubic algebras as follows. Write p : X̃ ↠ X for the

map induced by N/Z ↪→ Ñ/Z. Under our identifications, p corresponds to the map

id× tr× tr× id : F × J × J × F →F × F × F × F
[2, Lemma 2.3]. Recall from §2.1 the set of F -algebra embeddings {E ↪→ J}.

Assume that R is a subring of F . Let J(R) be an R-submodule of J such that

• J(R)⊗R F equals J ,
• J(R) contains 1,
• J(R) is closed under (−)#,
• the image of J(R) under tr : J→F lies in R.

Example 3.9. When F is a nonarchimedean local field, we take J(OF ) to be the set of Hermitian matrices
in M3(OK).

Write X̃(R) for the image of R× J(R)× J(R)×R under our identification F × J × J × F = X̃(F ).

Let E = (a, b, c, d) be an element of X(R), and write A for the associated cubic R-algebra equipped with a
good basis (α, β). Assume that A⊗R F is isomorphic to a cubic étale F -algebra E. Write {A ↪→ J(R)} for
the set of R-module embeddings i : A ↪→ J(R) such that iF : E ↪→ J is an F -algebra embedding.

We have the following (integral, non-monic) generalization of [2, Lemma 6.1]:

7While [8] works over R = Z, the proof holds verbatim over general R.
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Lemma 3.10. We have a natural bijection

{A ↪→ J(R)} ∼→ X̃(R) ∩ Omin(F ) ∩ p−1(E)

given by i 7→ (a, i(α),−i(β), d).

Proof. View E as a Freudenthal algebra over F in the sense of [18, §37.C], and write (−)# : E→E for the
adjoint in the sense of [18, §38]. Then any i in {E ↪→ J} is an embedding of Freudenthal algebras over F ,
so (3.4) implies that

tr(i(α)) = tr(α) = b, tr(−i(β)) = − tr(β) = c, i(α)# = i(α#) = −ai(β), (−i(β))# = i(β#) = di(α).

This shows that (a, i(α),−i(β), d) lies in p−1(E). To see that (a, i(α),−i(β), d) lies in Omin(F ), first note
that (3.4) implies that i(α) ◦ i(β) = −ad. Next, recall from [3, p. 330] that the group LJ(F ) is isomorphic to

{g ∈ GL3(K) | det g lies in K1}⋊ Z/2,

where the generator of Z/2 acts via x 7→ x, and g acts on J via x 7→ gx tg. Since ad lies in F , we see that

i(α) ◦ i(β) = −ad. As for g, we have

g(i(α)) ◦ g∗(i(β)) = 1

2

[
gi(α)i(β)g−1 + tg−1i(β)i(α) tg

]
.

When F is algebraically closed, i : E ∼= F 3 ↪→ J ∼= M3(F ) is conjugate to the diagonal embedding. Therefore,
in general we have i(z) ◦ i(z′) = i(z)i(z′) for all z and z′ in J , so i(α) ◦ i(β) = −ad implies that the above

expression also equals −ad. Altogether, this shows that (a, i(α),−i(β), d) lies in X̃(R) ∩ Omin(F ) ∩ p−1(E).

Conversely, let (a, x, y, d) be an element of X̃(R)∩Omin(F )∩ p−1(E). Because z# = z2− tr(z)z+tr
(
z#

)
for

all z in J , we have

x2 = − tr
(
x#

)
+ tr(x)x+ x# = −a tr(y) + bx+ ay = −ac+ bx− a(−y),

(−y)2 = − tr
(
y#

)
+ y# + tr(y)y = −d tr(x) + dx+ cy = −bd+ dx− c(−y),

x ◦ (−y) = −ad.

Hence (3.4) implies that the unique R-module morphism i : A→ J(R) with i(1) = 1, i(α) = x, and i(β) = −y
becomes an F -algebra embedding E ↪→ J after applying −⊗R F . In particular, i lies in {A ↪→ J(R)}. □

3.7. Local integrals. In this subsection, assume that F is a local field. We now define the local integrals that
arise when calculating the (global) Fourier coefficients of our quaternionic modular forms on G. Recall from
§2.2 the sign ϵ and the irreducible smooth representation σϵ of G′(F ), recall from §2.4 the sign ϵ(E,χ, ψ), and
assume that ϵ = ϵ(E,χ, ψ). Then Proposition 2.3 shows there exists a unique G′(F )-orbit of i in {E ↪→ J}
satisfying Homi(TE)(F )(σ

ϵ,1) ̸= 0. Let i be an element of this G′(F )-orbit, write X for the corresponding

element of Omin(F )∩p−1(E) under Lemma 3.10, and write βX : σϵ→1 for the associated i(TE)(F )-invariant
functional denoted by βi in Definition 2.8.

Definition 3.11. For any φ in Ω and f in σϵ, write

I(E , φ, f) :=
∫
i(TE)(F )\G′(F )

αX (g′ · φ)βX (g′ · f) dg′ .

Because G′ is semisimple, it lies in M̃1. Hence Definition 2.8, Lemma 3.5, and Lemma 3.7 imply that
I(E , φ, f) does not depend on the choice of X .

When F is archimedean, write N for the unique odd integer such that χ(z) = (z/|z|)N , and write n for the

positive integer |N |+1
2 .

We will compute I(E ,−,−) in the unramified case in §4 and in the archimedean case in §6:

Proposition 3.12.
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(1) Assume that F is nonarchimedean, K/F and χ are unramified, and ψ has conductor 0. Write φ0 for

the nonzero G̃(OF )-fixed element of Ω from §4.1 below, and recall from §2.3 the nonzero G′(OF )-fixed
element f0 of σ+. Then we have

|I(E , φ0, f0)| =

{
1 if E lies in X(OF ) and OE ∼= OE ,
0 if E does not lie in X(OF ),

where OE denotes the cubic OF -algebra associated with E in X(OF ) via (3.5).
(2) Assume that F is archimedean. Write φ0 for the element of Ω denoted by φN in §6.3 below, and write

f0 for the element of σ− from §6.4 below. After replacing f0 or φ0 with a C×-multiple independent
of E and X , we have

I(E , φ0, f0) = q(E)(n−1)/2

[
|r(ai+ b− ci− d)|
r(ai+ b− ci− d)

]−n
K−n(|r(ai+ b− ci− d)|).

Proof. Part (1) is Theorem 4.8, and part (2) follows from Theorem 6.6. □

3.8. Global Fourier coefficients of G. In this subsection, assume that F is a number field. We use an
exceptional theta lift to construct our quaternionic modular forms on G as follows. Recall from §2.6 the
sequence (ϵv)v and the associated cuspidal automorphic representation σ of G′(AF ). For all archimedean
places v of F , write rv for the nonzero real number associated with ψv from §3.1, write Nv for the odd integer

associated with χv from §3.7, and write nv for the positive integer |Nv|+1
2 .

Write θ(−) for the theta lift from G′ to G from [2, Definition 2.8]. Assume that Kv/Fv is unramified for
every place v of F above 2, and assume that L( 12 , χ) ̸= 0. Then [2, Theorem B] shows that π := θ(σ) is a
cuspidal automorphic representation of G(AF ) that is quaternionic of weight (nv)v|∞.

We actually work without the unramified assumption at 2, as follows. In this generality, our arguments from
[2] still yield a G(AF )-equivariant map (a priori possibly zero) π :=

⊗′
v θ(σ

ϵv
v )→L2

cusp([G]), where θ(σ
ϵv
v ) is

isomorphic to πnv
for all archimedean places v of F . After fixing such isomorphisms, Definition 3.2 still goes

through, where now F∞ lies in
⊗′

v∤∞ θ(σϵvv ). For example, if the map π→L2
cusp([G]) is zero, then aE(F∞)

vanishes for all E in X(F ).

We will calculate the Fourier coefficients of certain elements of π. Let S be a finite set of places of F where

• for all v not in S, v is nonarchimedean, Kv/Fv and χv are unramified, and ψv has conductor 0,
• OK,S is a free OF,S-module.

Recall from §2.6 the nowhere vanishing, translation-invariant 1-form µ on R1
OK,S/OF,S

Gm. For all v not

in S, write φ0,v for the nonzero G̃(OFv
)-fixed element of Ωv from §4.1 below, and write f0,v for the nonzero

G′(OFv
)-fixed element of σ+

v from §2.3. For all archimedean places v of F , write φ0,v and f0,v for the elements
of Ωv and σ−

v , respectively, from Proposition 3.12.(2).

Let φ = ⊗′
vφv in Ω and f = ⊗′

vfv in σ be elements such that, for all archimedean places v of F or v not
in S, we have φv = φ0,v and fv = f0,v. For every place v of F , write Fv := θ(φv, fv), and write F := ⊗′

vFv.
For all archimedean places v of F , Proposition 6.3 below indicates that Fv lies in the highest weight space
of the minimal K-type of πv. Fix the isomorphism πv ∼= πnv

such that Fv corresponds to x2nv

ℓ .

Theorem 3.13. If E does not lie in X(OF,S), then aE(F∞) = 0. After replacing F with a C×-multiple, the
following is true: for all E in X(F ), if E lies in X(OF,S) and corresponds to a cubic étale F -algebra E, then

• if the cubic OF,S-algebra corresponding to E is OE,S and ϵv = ϵv(Ev, χv, ψv) for all v in S, then

|aE(F∞)|2 = L( 12 , Ind
F
K χ⊗ VE) ·

∏
v|∞

q(Ev)nv−1/2 ·
∏
v∤∞
v∈S

|Iv(Ev, φv, fv)|2 ·
∏
v∈S

Cv,

where VE denotes the 2-dimensional Artin representation associated with E/F , and Cv is a nonzero
constant depending only on χv, Ev, and µ,
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• if ϵv ̸= ϵv(Ev, χv, ψv) for some v in S, then aE(F∞) = 0.

Proof. By our choice of isomorphism πv ∼= πnv for all archimedean places v of F , we have

FN,ψE (1) = aE(F∞)
∏
v|∞

WEv
nv
(x2nv

ℓ )(1)

= aE(F∞)
∏
v|∞

1

(2nv)!

[
|rv(avi+ bv − cvi− dv)|
rv(avi+ bv − cvi− dv)

]−nv

K−nv
(|rv(avi+ bv − cvi− dv)|),

(3.6)

where (av, bv, cv, dv) denotes Ev.

If ϵv ̸= ϵv(Ev, χv, ψv) for some v in S, then [2, Proposition 6.2] and the discussion from §2.6 show that
FN,ψE (1) = 0 and hence aE(F∞) = 0. If ϵv = ϵv(Ev, χv, ψv) for all v in S, then [2, (6.1)] indicates that

FN,ψE (1) = θ(φ, f)N,ψE (1) =

∫
i(TE)(AF )\G′(AF )

θ(g′ · φ)Ñ,ψX
(1)Pi(g′ · f) dg′ ,(3.7)

where i is any element of the G′(F )-orbit from §2.6, X is the corresponding element of Omin(F ) ∩ p−1(E)
under Lemma 3.10, and Pi : σ→1 is the associated i(TE)(AF )-invariant functional from §2.6.

Recall from Proposition 2.10 the element fi of σ. First, we claim that, for all f in σ of the form ⊗′
vfv,

Pi(g′ · f) = Pi(fi) ·
∏
v

βXv
(g′v · fv),(3.8)

where v runs over places of F . To see this, note that Pi is an element of the 1-dimensional space

Homi(TE)(AF )(σ,1) =
⊗′

v

Homi(TE)(Fv)(σ
ϵv
v ,1),

so Pi is a C-multiple of
∏
v βXv . Evaluating at f = fi shows that this multiple is Pi(fi), as desired.

The claim (3.8) and Lemma 3.8 show that (3.7) equals

FN,ψE (1) = Pi(fi) ·
∏
v

∫
i(TE)(Fv)\G′(Fv)

αXv (g
′
v · φv)βXv

(g′v · fv) dg′v

= Pi(fi) ·
∏
v

Iv(Ev, φv, fv),

where Iv(Ev,−,−) denotes the integral from Definition 3.11. If E does not lie in X(OF,S), then Proposition
3.12.(1) shows that this vanishes. If E does lie in X(OF,S) and corresponds to OE,S for some étale F -algebra
E, then Proposition 2.10 and Proposition 3.12 yield

|FN,ψE (1)|2 = |Pi(fi)|2 ·
∏
v

|Iv(Ev, φv, fv)|2

= L( 12 , χ) · L(
1
2 , Ind

F
K χ⊗ VE) ·∆

1/2
OE/Z ·

∏
v∤∞
v∈S

|Iv(Ev, φv, fv)|2 ·
∏
v∈S

Cv

·

∣∣∣∣∣∣
∏
v|∞

q(Ev)(nv−1)/2

[
|rv(avi+ bv − cvi− dv)|
rv(avi+ bv − cvi− dv)

]−nv

K−nv
(|rv(avi+ bv − cvi− dv)|)

∣∣∣∣∣∣
2

.

(3.9)

Finally, by rewriting

∆OE/Z = ∆3
OF /Z ·NmOF /Z(∆OE/OF

) = ∆3
OF /Z ·

∏
v|∞

q(Ev),

the desired result follows from comparing (3.9) with (3.6). □

For nonarchimedean v in S, we can explicitly calculate Iv(Ev, φv, fv) for certain φv and fv, which yields:

Theorem 3.14. We can choose φ and f such that the following is true: for all E in X(F ),
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• if E does not lie in X(OF ), then aE(F∞) = 0,
• if E lies in X(OF ) and corresponds to the ring of integers of a cubic étale F -algebra E, then

|aE(F∞)|2 =


L( 12 , Ind

F
K χ⊗ VE) ·

∏
v|∞

q(Ev)nv−1/2 if ϵv = ϵ(Ev, χv, ψv) for all v in S,

0 otherwise.

Proof. For all v in S and cubic étale Fv-algebras Ev, write CEv,v for the resulting nonzero constants from

Theorem 3.13 (which depend on µ). For archimedean v in S, replace φ0,v or f0,v with its C−1
R3,v-multiple.

For nonarchimedean v in S, apply Proposition 5.3 below with these constants CEv,v to obtain elements φv
of Ωv and fv of σϵvv . Finally, the result follows from applying Theorem 3.13 to our resulting φ and f . □

Remark 3.15. If there exists a positive integer n such that n = nv for all archimedean places v of F , and if
E lies in X(OF ) with associated cubic OF -algebra OE , then∏

v|∞

q(Ev)nv−1/2 = NmOF /Z(∆OE/OF
)n−1/2.

4. Unramified test vectors and local integrals

In this section, assume that F is a nonarchimedean local field and that K/F is unramified. Then G̃ and
its various subvarieties that we consider have natural models over OF . For instance, recall J(OF ) from
Example 3.9. Also, assume that χ is unramified and that ψ has conductor 0.

Our goal is to prove Theorem 4.8, which shows that our local integral evaluates to 1 in the unramified, locally
maximal setting. We begin in §4.1 by defining and studying our spherical vector φ0 in Ω. We calculate local
Fourier coefficients of φ0 in terms of certain subalgebras of J(OF ), and we analyze how these subalgebras
behave in §4.2. Finally, in §4.3 we use these results to compute our local integral.

4.1. Spherical vectors for G̃. For all X in Omin(F ), write v(X ) for the unique integer n such that X lies

in ϖnX̃(OF )−ϖn+1X̃(OF ).

Lemma 4.1. The sets Sn := {X ∈ Omin(F ) | v(X ) = n} are precisely the M̃(OF )-orbits in Omin(F ).

Proof. We follow the discussion in [16, §3.4], with some simplifications. Since M̃ acts linearly on X̃, we see

that M̃(OF ) preserves Sn. To show that Sn is a single orbit, write Q ⊆ M̃ for the stabilizer of the line

spanned by (1, 0, 0, 0) in X̃(F ). Write S ⊆ Q for the stabilizer of (1, 0, 0, 0), write λ : Gm ↪→ M̃ for the

cocharacter given by scaling on X̃, and note that Q = S × λ(Gm). Because Q is a parabolic subgroup of M̃ ,

the Iwasawa decomposition yields M̃(F ) = M̃(OF )S(F )λ(F×).

Let X be in Sn. Then Lemma 3.3 and the above decomposition imply that there exists t in F× such that X
lies in the M̃(OF )-orbit of λ(t) · (1, 0, 0, 0) = (t, 0, 0, 0). Since M̃(OF ) stabilizes Sn, this indicates that

v(t) = n. Therefore X lies in the M̃(OF )-orbit of (ϖn, 0, 0, 0), i.e. Sn is indeed a single orbit. □

Lemma 4.2. For any nonzero G̃(OF )-fixed element φ of Ω, the image of φ in ΩÑ(F ),ψ(1,0,0,0)
is nonzero.

Proof. We will use the model for Ω from [16] in the split case (for the non-split case, see [30]). In this model,

there is a certain continuous representation of G̃(F ) on L2(F× × F × J), and Ω is its subspace of smooth

vectors. Moreover, using a pinning of G̃ over OF , we get an isomorphism z : Ga
∼→Z of groups over OF and

a section ñ : Ñ/Z ↪→ Ñ over OF of the quotient morphism such that, for all f in Ω, we have

(z(t)f)(y, x0, x) = ψ(ty)f(y, x0, x),(4.1)

(ñ(a, b, 0, 0)f)(y, x0, x) = f(y, x0 + ay, x+ by),(4.2)

(ñ(0, 0, c, d)f)(y, x0, x) = ψ(− tr(c ◦ x) + dx0)f(y, x0, x)(4.3)
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[16, p. 5].8 Also, for a certain pair of Weyl elements A and S in G̃(OF ), we have

(Sf)(y, x0, x) =

∫
F×J

f(y, x′0, x
′)ψ

(x′0x0 + tr(x′ ◦ x)
y

)
|y|−5 dx′0 dx

′ ,(4.4)

(Af)(y, x0, x) = ψ(−det(x)/(x0y))f(−x0, y, x),(4.5)

where (4.5) only holds for x0 ̸= 0 [16, p. 5].

For all X = (a, x, x#/a,det(x)/a2) in Omin(F ) with a ̸= 0, one can use (4.3) to show that the functional

(4.6) f 7→ lim
x0→0

ψ(−det(x)/(x0a))f(−x0, a, x) = (Af)(a, 0, x)

yields a nonzero element of HomÑ(F )(Ω, ψX ). In particular, αX is a C×-multiple of (4.6).

Let φ be a G̃(OF )-fixed element of Ω. Because ψ has conductor 0, (4.1) and (4.3) imply that φ is supported
on (OF −{0})×OF ×J(OF ). If α(1,0,0,0)(φ) = 0, then we will show by induction on non-negative integers n
that φ(y, x0, x) = 0 whenever v(y) = n. As n varies, this will imply that φ = 0, which completes the proof.

First, consider the base case n = 0. Because v(1, 0, 0, 0) = 0 and α(1,0,0,0)(φ) = 0, Lemma 4.1 and Lemma

3.5 indicate that αX (φ) = 0 for all X with v(X ) = 0. For all y in O×
F , (4.2) implies that (x0, x) 7→ φ(y, x0, x)

is invariant under translation by OF × J(OF ), so it suffices to check that φ(y, 0, 0) = 0. Since Aφ = φ, (4.6)
shows that this is equivalent to α(y,0,0,0)(φ) = 0, and the latter follows from v(y, 0, 0, 0) = 0.

Next, consider the inductive step. Let y be in ϖn+1O×
F , and by induction assume that φ(y′, x0, x) = 0

whenever v(y′) ≤ n. Since Aφ = φ, (4.6) shows that α(y′,0,0,0)(φ) = 0. Hence Lemma 4.1 and Lemma 3.5
indicate that αX (φ) = 0 for all X with v(X ) ≤ n. ApplyingAφ = φ and (4.6) again yields φ(y, 0, x) = 0 for all
x in J(F )−ϖn+1J(OF ). Applying Aφ = φ, (4.5), and the induction hypothesis indicates that φ(y, x0, x) = 0
whenever v(x0) ≤ n, so altogether (x0, x) 7→ φ(y, x0, x) is supported on (ϖn+1OF )×(ϖn+1J(OF )). Therefore
(4.4) implies that (x0, x) 7→ (Sφ)(y, x0, x) is invariant under translation by OF × J(OF ). Finally, Sφ = φ,
so we see that φ(y, x0, x) = 0 for all (x0, x) in OF × J(OF ), as desired. □

Write φ0 for the unique G̃(OF )-fixed element of Ω satisfying α(1,0,0,0)(φ0) = 1, which exists by Lemma 4.2.

Corollary 4.3. For all X in Omin(F ), we have αX (φ0) = 0 if v(X ) < 0 and αX (φ0) = 1 if v(X ) = 0.

Proof. If v(X ) < 0, then ψX : Ñ(F )→ C1 is nontrivial on Ñ(OF ) because ψ has conductor 0. In particular,

the Ñ(OF )-invariance of φ0 implies that αX (φ0) = 0.

If v(X ) = 0, the claim follows from the G̃(OF )-invariance of φ0 along with Lemma 3.5 and Lemma 4.1. □

Corollary 4.4. Let E = (a, b, c, d) be an element of X(OF ) such that the associated cubic OF -algebra OE is
the ring of integers of a cubic étale F -algebra. Then for all X = (a, x, y, d) in Omin(F ) ∩ p−1(E), we have

αX (φ0) =

{
1 when x and y lie in J(OF ),
0 otherwise.

Proof. If x and y do not both lie in J(OF ), then v(X ) < 0, so the claim follows from Corollary 4.3.

Now assume that x and y lie in J(OF ). By Corollary 4.3, it suffices to show that v(X ) = 0, i.e. that
(a, x, y, d) ̸≡ 0 (mod ϖ). If we had (a, x, y, d) ≡ 0 (mod ϖ), then (a, b, c, d) ≡ 0 (mod ϖ), so that OE/ϖ
is isomorphic to (OF /ϖ)[α, β]/(α2, β2, αβ) by [8, p. 115]. In particular, the OF -algebra OE is ramified and
not monogenic. But OE is the ring of integers of a cubic étale F -algebra, so OE is only not monogenic when
OF /ϖ = F2 and OE is split over OF . But this OE is unramified, so altogether we must have v(X ) = 0. □

8The formulas in [30, Proposition 41] look slightly different and in particular omit the minus sign in (4.3). This arises from

us using a different identification between Ñ/Z and F ⊕J⊕J⊕F than the one in [30]; compare [30, Proposition 10] with (3.1).
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4.2. Conjugates of algebra embeddings. Let i : E ↪→ J be an F -algebra embedding such that i(OE) lies
in J(OF ). To apply Corollary 4.4, we will need a criterion for when conjugates of i(OE) remain in J(OF ).
First, we tackle the case when K = F × F .

Lemma 4.5. If g′ in GL3(F ) satisfies g
′−1i(OE)g′ ⊆ M3(OF ), then g′ lies in i(E×)GL3(OF ).

Our original proof of Lemma 4.5 used tedious casework on the ramification behavior of E/F . We are very
grateful to Aaron Pollack for explaining to us the following, much simpler proof.

Proof. The two OF -algebra embeddings OE ↪→ M3(OF ) given by i and ad g′−1 ◦ i both endow O3
F with an

OE-module structure extending its OF -module structure. In both OE-module structures, O3
F is evidently

finitely generated and torsionfree, so it is finite free over OE . These two OE-module structures have the same
rank over OE and hence are isomorphic, so there exists an OF -linear isomorphism k : O3

F
∼→O3

F sending
the action of i to the action of ad g′−1 ◦ i. This implies that g′k centralizes i(E×). But i(E×) is its own
centralizer in GL3(F ), which yields the desired result. □

Next, we use Lemma 4.5 to deduce the case when K is a field.

Proposition 4.6. If g′ in U3(F ) satisfies g
′−1i(OE)g′ ⊆ J(OF ), then g′ lies in i(L1)U3(OF ).

Proof. When K = F × F , this is Lemma 4.5, so assume that K is a field. If g′−1i(OE)g′ ⊆ J(OF ), then
applying Lemma 4.5 to L/K shows that g′ = hk for some h in i(L×) and k in GL3(OK). Since i(L1) ⊆ U3(F )
and i(O×

L ) ⊆ GL3(OK), it suffices to prove that h lies in i(L1O×
L ).

We have g′ =
t
g′−1, so

t
hh =

t
k−1k−1 lies in i(L×) ∩ GL3(OK) = i(O×

L ). Because i : L ↪→ M3(K) is an

embedding of K-algebras with involution, it suffices to prove that, for all h0 in L×, if h0h0 lies in O×
L , then

h0 lies in L1O×
L . By writing E as a product of fields, we can assume that E is a field. Finally,

• If L is a field, then L/E is an unramified quadratic extension. Therefore if h0h0 lies in O×
L , then h0

lies in O×
L .

• If L = E × E, then h0 = (h1, h2) for some h1 and h2 in E×. Hence if h0h0 = (h1h2, h1h2) lies in
O×
L = (O×

E)
2, then h0 = (h1, h

−1
1 )(1, h1h2) lies in L

1O×
L . □

4.3. Unramified local integrals. With Proposition 4.6 in hand, we are ready to finish calculating the
unramified local integrals. Recall from §2.3 that, under the unramified hypotheses of this section, when K
is a field we have χ2 = 1, so the sign ϵ equals +1. Recall from §2.4 the element λ0 of E×/NmL/E(L

×).

Lemma 4.7. There exists an isomorphism K3 ∼= Lλ0
of Hermitian spaces for K/F such that

• the image of O3
K in Lλ0

is OL-stable,
• the associated F -algebra embedding i : E ↪→ J satisfies Homi(TE)(F )(σ

+,1) ̸= 0.

In particular, i(OE) lies in J(OF ).

Proof. By Propositon 2.3, the i satisfying Homi(TE)(F )(σ
+,1) ̸= 0 are precisely those arising from λ0 and

an isomorphism K3 ∼= Lλ0
of Hermitian spaces for K/F as in §2.1, with λ0 as in §2.4. If there exists an

OL-lattice M in Lλ0 which is self-dual with respect to the Hermitian form on K3, then we can choose the
isomorphism K3 ∼= Lλ0 to send O3

K to M . Hence it suffices to prove that such an M exists.

When E = F × F × F , our λ0 is represented by 1, so we can take M = O3
K ⊆ Lλ0

= K3.

When E/F is a field, note that the inclusion and norm maps induce mutually inverse isomorphisms between
E×/NmL/E(L

×) and F×/NmK/F (K
×). Write d(E/F ) for the valuation of the different of OE/OF (equiv-

alently, of OL/OK). Because the norm of the different is the discriminant, λ0 is represented by ϖ
−d(E/F )
E .

Using this, we see that we can take M = OL.
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When E = F × F ′ for a field F ′, write K ′ := K ⊗F F ′, and write d(K ′/K) for the valuation of the different

of OK′/OK . Then we see that λ0 is represented by (1, ϖ
d(K′/K)
F ′ ) in

E×/NmL/E(L
×) = (F×/NmK/F (K

×))× (F ′×/NmK′/F ′(K ′×)) ⊂ {±1} × {±1}.

Hence M = OK ×ϖ−d(K′/K)
K′ OK′ yields the desired OL-lattice. □

Recall from §2.4 that, under the unramified hypotheses of this section, the sign ϵ(E,χ, ψ) = +1.

Recall from §3.6 that E denotes an element of X(F ) such that the associated cubic F -algebra is isomorphic
to E. When E lies in X(OF ), write OE for the associated cubic OF -algebra. Recall from §2.3 the nonzero
G′(OF )-fixed element f0 of σ+, and recall from Definition 3.11 the integral I(E ,−,−).

Theorem 4.8. We have

|I(E , φ0, f0)| =

{
1 if E lies in X(OF ) and OE ∼= OE ,
0 if E does not lie in X(OF ).

Proof. Since G′ lies in M̃1, Lemma 3.5 yields

I(E , φ0, f0) =

∫
i(TE)(F )\G′(F )

αX (g′ · φ0)βX (g′ · f0) dg′

=

∫
i(TE)(F )\G′(F )

αg′−1·X (φ0)βX (g′ · f0) dg′ .

If E does not lie in X(OF ), then for any X in Omin(F ) ∩ p−1(E), we have v(g′−1 · X ) < 0 for all g′ in G′(F )

because p sends X̃(OF ) to X(OF ). Together with Corollary 4.3, this proves the second case.

For the first case, choose i satisfying the conclusion of Lemma 4.7, and write X = (a, x, y, d) for the cor-
responding element of Omin(F ) ∩ p−1(E) under Lemma 3.10. In particular, x and y lie in J(OF ). Then
Corollary 4.4 and Proposition 4.6 show that

αg′−1·X (φ0) =

{
1 when g′ lies in i(TE)(F )G

′(OF ),
0 otherwise.

Because G′(OF ) fixes f0, Definition 2.8 indicates that βX (g′ · f0) = βX (f0) for all g′ in i(TE)(F )G
′(OF ).

Therefore Lemma 2.9 implies that the absolute value of our integral equals

|I(E , φ0, f0)| = vol (i(TE)(F )\i(TE)(F )G′(OF )) = vol (i(TE)(F ) ∩G′(OF )\G′(OF )) .

Since i(OE) lies in J(OF ), we see that i(TE)(F ) ∩ G′(OF ) is the maximal compact subgroup of i(TE)(F ).
Hence our choice of measures yields vol(i(TE)(F ) ∩G′(OF )\G′(OF )) = 1, as desired. □

5. Ramified test vectors and local integrals

In this section, assume that F is a nonarchimedean local field. Our goal is to prove Proposition 5.3, which
lets us choose local vectors with particularly nice local integrals.

Recall from §3.6 that E denotes an element of X(F ) such that the associated cubic F -algebra E is étale.
When E lies in X(OF ), write OE for the associated cubic OF -algebra.

Lemma 5.1. Assume that E lies in X(OF ), and write M for the stabilizer of E in M(OF ). There exists a
continuous section s :M(OF )/M→M(OF ) of the quotient whose image is a compact neighborhood of 1.

Proof. The discussion from §3.6 shows that M is isomorphic to AutOF
(OE) and hence is finite. Therefore

the quotient map M(OF )→M(OF )/M is finite étale. Because M(OF )/M is profinite, this map has a
continuous section s : M(OF )/M→M(OF ), which is étale and hence an open embedding. Finally, after
replacing s with anM-translate, we can assume that its image indeed contains 1. □
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Recall from §2.2 the sign ϵ and the irreducible smooth representation σϵ of G′(F ), recall from §2.4 the sign
ϵ(E,χ, ψ), and assume that ϵ = ϵ(E,χ, ψ). Then Proposition 2.3 shows there exists a unique G′(F )-orbit
of i in {E ↪→ J} satisfying Homi(TE)(F )(σ

ϵ,1) ̸= 0. Let i be in this G′(F )-orbit, and recall the element βi in
Homi(TE)(F )(σ

ϵ,1) from Definition 2.8.

Recall from Definition 3.11 the integral I(E ,−,−).

Lemma 5.2. Let O0 be a cubic OF -subalgebra of OE, and let f in σϵ be an element such that βi(f) ̸= 0.
Then there exists φO0 in Ω such that

I(E , φO0 , f) =

{
1 if E lies in X(OF ) and OE ∼= O0,

0 otherwise.

Proof. Let E0 be an element of X(OF ) such that the associated cubic OF -algebra is isomorphic to O0.
Write X0 for the element of Omin(F ) ∩ p−1(E0) corresponding to i under Lemma 3.10, and let K ′ be a
compact open subgroup of G′(F ) that fixes f . Write M0 for the stabilizer of E0 in M(OF ), write s0 :
M(OF )/M0→M(OF ) for the section of M(OF )→M(OF )/M0 from Lemma 5.1, and write U for the
image of s0.

We claim that (U ×K ′) · X0 is a compact open subset of Omin(F ). To see this, it suffices to prove that the
map M ×G′/i(TE)→Omin over F given by (m, g′) 7→ mg′ · X0 is an open embedding in a neighborhood of 1.
By dimension counting, it suffices to show it is injective in a neighborhood of 1. If mg′ · X0 = X0, then

m · E0 = m · p(X0) = m · p(g′ · X0) = p(mg′ · X0) = p(X0) = E0.
The discussion from §3.6 indicates that the stabilizer of E0 in M is finite, so in a Zariski neighborhood of 1
the above implies that m = 1. Then g′ · X0 = X0, so g

′ lies in i(TE), concluding the proof of the claim.

Let φO0 be an element of Ω whose image in ΩZ(F ) corresponds to the indicator function of (U ×K ′) · X0

under the injection C∞
c (Omin(F )) ↪→ ΩZ(F ) from §3.4.1.

Now choose an element X ∈ Omin(F ) ∩ p−1(E), with which we will calculate the local integral. If E does
not lie in X(OF ) or OE is not isomorphic to O0, then E is not in the M(OF )-orbit of E0. This implies that
αX (g′ · φO0

) = 0 for all g′ in G′(F ), so I(E , φO0
, f) = 0.

If E lies in X(OF ) and OE is isomorphic to O0, then the discussion from §3.6 indicates that there is a unique
u in U such that u · E0 = E . In particular, we can take X = u · X0 for the definition of the local integral, so

I(E , φO0
, f) =

∫
i(TE)(F )\G′(F )

αu·X0
(g′ · φO0

)βu·X0
(g′ · f) dg′ .

Now Definition 3.4 shows that

αu·X0
(g′ · φO0

) =

{
1 when ug′−1 · X0 lies in (U ×K ′) · X0,

0 otherwise.

We claim that ug′−1 · X0 lies in (U ×K ′) · X0 if and only if g′ lies in i(TE)(F )K
′. To see this, if ug′−1 · X0 =

u1k1 · X0 for some u1 in U and k1 in K ′, then u · E0 = u1 · E0, so u = u1 by uniqueness. This implies that
g′−1 · X0 = k1 · X0. Then g

′k1 stabilizes X0, so it lies in i(TE)(F ), concluding the proof of the claim.

The claim indicates that our integral equals∫
i(TE)(F )\i(TE)(F )K′

βu·X0
(g′ · f) dg′ .

Because K ′ fixes f , we obtain

I(E , φO0
, f) = βu·X0

(f) vol(i(TE)(F )\i(TE)(F )K ′).

Finally, dividing φO0 by the above constant yields the desired result. □

Now we allow E to vary. Suppose we are given, for each isomorphism class of cubic étale F -algebras E, an
element CE of C×.
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Proposition 5.3. There exists φ0 in Ω and f0 in σϵ with the following property: for all E in X(F ), we have

I(E , φ0, f0) =

{
C−1
E if E lies in X(OF ) and OE ∼= OE for some cubic étale F -algebra E with ϵ(E,χ, ψ) = ϵ,

0 otherwise.

Proof. There are finitely many (isomorphism classes of) cubic étale F -algebras E, so in particular finitely
many E satisfy ϵ = ϵ(E,χ, ψ). For each such E, fix a corresponding i : E ↪→ J and hence βi as above.
Because each βi is nontrivial and C is infinite, there exists an f0 in σϵ such that βi(f0) ̸= 0 for each such
E. Finally, for each such E write φOE

for the corresponding element of Ω constructed in Lemma 5.2 with
f = f0. Then Lemma 5.2 implies that it suffices to take

φ0 :=
∑
E with

ϵ(E,χ,ψ)=ϵ

C−1
E φOE

. □

6. Archimedean test vectors and local integrals

In this section, our goal is to prove Theorem 6.6, which computes our local integrals at archimedean places.
This calculation relies heavily on work of Pollack [26]. First, in §6.1 and §6.2 we recall some structural results

about G̃(R) and its complexified Lie algebra. Then, in §6.3 we define the element of Ω that we will use.
Finally, in §6.4 we define the element of σ− that we will use and compute the associated integral.

6.1. The Freudenthal construction of G̃. In the computations of this section, we will use the following

alternate description of g̃ from [26, §4]. Write m̃0 for the Lie algebra of M̃1. Then we have an identification

g̃ = (sl2 ⊕ m̃0)⊕ (V2 ⊗ X̃)

[26, Section 4.1, §4.2.4], where V2 denotes the standard representation of sl2 with standard basis {e, f}. Under
this identification, the Lie bracket between the two summands is the natural action, and ñ corresponds to( [0 ∗

0 0

]
⊕ 0

)
⊕
(
e⊗ X̃

)
⊆ g̃.

For the rest of this section, assume that F is an archimedean local field. Choose K̃ to be the maximal

compact subgroup of G̃(R) with Lie algebra equal to the fixed points of the explicit Cartan involution from

[26, §4.2.3]. We identify K̃ with SU(2)ℓ ×{±1} SU(6)/µ3(C) using [13, Proposition 4.1]. By checking on Lie
algebras, we see that

SU(2)ℓ ×{±1} SU(2)s × PU(3)
∼→ K̃ ∩ (G(R)×G′(R)),

where the map SU(2)ℓ → K̃ corresponds to the first factor, and the map SU(2)s × PU(3)→ K̃ corresponds
to the tensor product map SU(2)× SU(3)→ SU(6)/µ3(C) into the second factor.

In the notation of [26, p. 1242], recall that the complexified Lie algebra of K̃ is spanned by the following:

• The complexified Lie algebra of SU(2)ℓ is given by the sl2-triple {eℓ, fℓ, hℓ} in g̃C.
• The complexified Lie algebra of SU(6)/µ3(C) is spanned by nE(Z), nH(Z), and nF (Z) for Z in JC.

6.2. Some explicit elements in g̃C. In the notation of [26], we now describe some explicit elements in the

complexified Lie algebra of G̃. Write J0 for the trace-zero subspace of J .

Definition 6.1. For all Z in J0,C,

(1) Write M(Φ1,Z) in m̃0
C for the element acting on X̃ by

M(Φ1,Z)(a, x, y, d) := (0, 2Z ◦ x,−2Z ◦ y, 0).

(2) Write nL(Z) in m̃0
C for the element acting on X̃ by

nL(Z)(a, x, y, d) := (0, aZ, (x+ Z)# − x# − Z#, tr(y ◦ Z)).
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(3) Write R(Z) in m̃0
C for 1

2M(Φ1,Z) + inL(Z), and write S(Z) in ñC for ie⊗ (0, iZ,−Z, 0).
(4) Write h−1(Z) in g̃C for R(Z) + 1

2nH(Z), and write h1(Z) in g̃C for S(Z)− nF (Z).

Since J arises from the associative algebra M3(C), [26, §3.3.1] shows that M(Φ1,Z) agrees with the notation
from [26, (3)] and [26, p. 1229]. One immediately sees that nL(Z) agrees with the notation from [26, p. 1228],
and [26, p. 1249] shows that h−1(Z) and h1(Z) agree with the notation from [26, p. 1242].

Lemma 6.2. Let Z1 and Z2 be elements in J0,C = M3(C)tr=0 satisfying

Z1Z2 = Z2Z1 = Z1 ◦ Z2 = 0 and (Z1 + Z2)
# − Z#

1 − Z
#
2 = 0.

Then [R(Z1), nH(Z2)] = [R(Z1), nF (Z2)] = [S(Z1), nH(Z2)] = [S(Z1), nF (Z2)] = 0.

Proof. We claim that

[nH(Z1), nH(Z2)] = [nH(Z1), nF (Z2)] = [nF (Z1), nF (Z2)] = 0.

To see this, use the description of nH and nF from [26, p. 1246] (where {v1, v2, v3} is defined in [26, §4.2.3])
and apply [26, Claim 6.3.2] along with the last identity in [26, §3.3.1]. Using the claim, we can replace S(Z1)
with h1(Z1) and R(Z1) with h−1(Z1). Then the lemma follows immediately from [26, Proposition 6.2.1]. □

6.3. Archimedean vectors for G̃. Recall from §2.2 that the sign ϵ equals −1, and recall from Definition
2.1 the irreducible smooth representation σ− of G′(R). Recall from §3.7 the odd integer N associated with χ,

and write m for the non-negative integer |N |−1
2 .

Recall that σ− has highest weight (m,m,−2m) when N is positive and (2m,−m,−m) when N is negative.
To emphasize the dependence on N , we write σN := σ−. Write θ(−) for the theta lift from G′ to G from [2,
Definition 2.5], and recall that θ(σN ) is isomorphic to the irreducible smooth representation πm+1 of G(R)
from §3.1 [14, Theorem 5.2].

We now define an element φN of Ω by using certain raising operators. Define the matrices

Z1 :=

0 0 1
0 0 0
0 0 0

 and Z2 :=



0 0 0

0 0 1

0 0 0

 when N is positive,

0 1 0

0 0 0

0 0 0

 when N is negative

in J0,C = M3(C)tr=0, and define the raising operator

DN :=

m∑
j=0

(−1)j
(
m

j

)
h−1(Z1)

jh−1(Z2)
m−jh1(Z1)

m−jh1(Z2)
j ∈ (g̃C)

⊗2m.

Recall from §3.1 that Vm+1 := Sym2m+2 ⊠1 is the minimal K-type of πm+1 and that x2m+2
ℓ is a highest

weight vector in Vm+1, and recall from §3.4.2 that Ṽ1 := Sym2 ⊠1 is the minimal K̃-type of Ω and that x2ℓ
is a highest weight vector in Ṽ1. Define φN := DNx2ℓ in Ω.

Proposition 6.3. The image of φN under the theta lift map

Ω→σN ⊠ θ(σN ) ∼= σN ⊠ πm+1

lies in σN ⊠ x2m+2
ℓ .

Proof. By [14, Proposition 4.2] and [14, Theorem 5.2], it suffices to show that eℓφN = 0 and hℓφN =
(2m+2)ϕN . Now [26, p. 1251] shows that [eℓ, h1(Z)] = [eℓ, h−1(Z)] = 0 for all Z in J0,C, which implies that

eℓφN = eℓDNx2ℓ = DNeℓx2ℓ = 0.
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Moreover, [26, p. 1251] also shows that

[hℓ, h1(Z)] = h1(Z) and [hℓ, h−1(Z)] = h−1(Z)

for all Z in J0,C, which similarly implies that

hℓφN = hℓDNx2ℓ = DNhℓx2ℓ + 2mDNx2ℓ = 2DNx2ℓ + 2mDNx2ℓ = (2m+ 2)φN . □

6.4. Archimedean local integrals. Assume that there exists a G′(R)-orbit of i in {E ↪→ J} satisfying
Homi(TE)(R)(σ

−,1) ̸= 0 (this G′(R)-orbit is unique by Proposition 2.3), and let i be in this G′(R)-orbit.
Because G′(R) is compact, this forces E ∼= R3. Recall from Definition 2.4 the element fi of σ

−. Recall from
§2.5.1 the Hermitian pairing ⟨−,−⟩σ on σN and the fact that βi equals ⟨−, fi⟩σ.

Recall from §3.6 that E = (a, b, c, d) denotes an element of X(F ) such that the associated cubic F -algebra
is isomorphic to E. Write X = (a, x, y, d) for the element of Omin(F ) ∩ p−1(E) corresponding to i under
Lemma 3.10, and recall from Definition 3.11 the integral I(E ,−,−).

Recall from §3.1 the nonzero real number r. Write (−,−) for the trace pairing (X,Y ) 7→ tr(X ◦ Y ) on J .

Write T ′ ⊆ G′ for the subgroup of diagonal matrices, and let f0 be a highest weight vector in σN with respect
to T ′(R) that is unitary with respect to ⟨−,−⟩σ. We now begin calculating our archimedean local integral:

Proposition 6.4. The integral I(E , φN , f0) equals the product of[
|r(ai+ b− ci− d)|
r(ai+ b− ci− d)

]−m−1

K−m−1(|r(ai+ b− ci− d)|)

and
(2ir2)m

2

∫
i(TE)(R)\G′(R)

[
(g′ · Z2, x)(g

′ · Z1, y)− (g′ · Z2, y)(g
′ · Z1, x)

]m⟨g′ · f0, fi⟩σ dg′ .

Proof. It will be convenient to describe φN using another differential operator instead. Write

D′
N :=

m∑
j=0

(−1)j
(
m

j

)
R(Z1)

jR(Z2)
m−jS(Z1)

m−jS(Z2)
j ∈ (g̃C)

⊗2m.

Then the SU(6)-invariance of x2ℓ and Lemma 6.2 indicate that D′
Nx

2
ℓ = DNx2ℓ = φN , so Definition 3.6 yields

αX (m̃ · φN ) =
1

2
(D′

N · W̃X
−1)(m̃)

for all m̃ in M̃(R). Using the equivariance of W̃X under left translation by Ñ(R), for all Z in J0,C, we get

(S(Z)W̃X
−1)(m̃) = ⟨rX , m̃ · (0, iZ,−Z, 0)⟩W̃X

−1(m̃).

Because Ñ/Z is abelian, for all Z ′ in J0,C, the differential operator S(Z) annihilates the function

m̃ 7→ ⟨rX , m̃ · (0, iZ ′,−Z ′, 0)⟩.

Next, for all integers v, [26, Corollary 7.6.1]9 shows that

(R(Z)W̃X
−v)(m̃) = ⟨rX , m̃ · (0,−iZ,−Z, 0)⟩W̃X

−v−1(m̃)

for all m̃ in M̃1(R). For all k and k′ in {1, 2}, the endomorphism of Ñ/Z induced by R(Zk) annihilates
(0,±iZk′ ,±Zk′ , 0), so the differential operator R(Zk) annihilates the function

m̃ 7→ ⟨rX , m̃ · (0,±iZk′ ,±Zk′ , 0)⟩.

Altogether, the above computations show that, for all m̃ in M̃1(R),

(R(Z1)
jR(Z2)

m−jS(Z1)
m−jS(Z2)

jW̃X
−1)(m̃)

9A guide to the notation of [26, Corollary 7.6.1]: DZ∗ (E) is defined on [26, p. 1250], M is defined in [26, Theorem 7.5.1],
and V (E)∗ is defined on [26, p. 1242]. We take E = Z and M = m̃. Then DZ∗ (E) = R(Z) and V (E)∗ = (0,−iZ,−Z, 0).
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equals W̃X
−m−1(m̃) times

⟨rX , m̃ · (0,−iZ1,−Z1, 0)⟩j⟨rX , m̃ · (0,−iZ2,−Z2, 0)⟩m−j⟨rX , m̃ · (0, iZ1,−Z1, 0)⟩m−j⟨rX , m̃ · (0, iZ2,−Z2, 0)⟩j .

Finally, specialize to m̃ = g′ in G′(R). Since g′ lies in K̃ ∩ M̃1(R), it fixes r̃0(i), so αX (g′ · φN ) equals

W̃X
−m−1(g

′) =

[
|r(ai+ b− ci− d)|
r(ai+ b− ci− d)

]−m−1

K−m−1(|r(ai+ b− ci− d)|)

times

1

2

m∑
j=0

(−1)j
(
m

j

)
r2m(x− iy, g′ · Z1)

j(x− iy, g′ · Z2)
m−j(x+ iy, g′ · Z1)

m−j(x+ iy, g′ · Z2)
j

=
r2m

2

[
(x− iy, g′ · Z2)(x+ iy, g′ · Z1)− (x− iy, g′ · Z1)(x+ iy, g′ · Z2)

]m
=
r2m

2

[
− 2i(y, g′ · Z2)(x, g

′ · Z1) + 2i(x, g′ · Z2)(y, g
′ · Z1)

]m
=

(2ir2)m

2

[
(g′ · Z2, x)(g

′ · Z1, y)− (g′ · Z2, y)(g
′ · Z1, x)

]m
.

This immediately yields the desired result. □

To compute the integral from Proposition 6.4, we use two different models of σN :

(1) Write C3 for the standard representation of SU(3), write (C3)∨ for its dual, and write {z1, z2, z3} for
the standard basis of (C3)∨. Checking highest weights yields an isomorphism of PU(3)-representations

σN ∼=

{
Sym3m(C3)∨ ⊗ det⊗m when N is positive,

Sym3m(C3)⊗ det⊗(−m) when N is negative.

(2) Write λ for the partition (m,m) of 2m, and write cλ in C[S2m] for the associated Young symmetrizer
as in [7, p. 46]. Then the representation Sλ(g′C) := cλ(g

′
C)

⊗2m ⊆ (g′C)
⊗2m of PU(3) contains both

(m,m,−2m) and (2m,−m,−m) as extremal weights with multiplicity one. Since Z⊗m
1 ⊗ Z⊗m

2 in
(g′C)

⊗2m has weight (m,m,−2m) when N is positive and (2m,−m,−m) when N is negative, this
implies that σN is isomorphic to the subrepresentation of Sλ(g′C)⊗2m generated by cλ(Z

⊗m
1 ⊗Z⊗m

2 ).

Lemma 6.5. For all g′ in G′(R), we have[
(g′ · Z2, x)(g

′ · Z1, y)− (g′ · Z2, y)(g
′ · Z1, x)

]m
= Cq(a, b, c, d)m/2⟨g′ · f0, fi⟩σ,

where C is a nonzero constant independent of E and X .

Proof. First, we show that the desired identity holds up to some constant, using model (2) for σN above.

Endow g′C = M3(C)tr=0 with the Hermitian pairing (X,Y ) 7→ tr(X · tY ), which induces a Hermitian pairing
⟨−,−⟩⊗ on (g′C)

⊗2m and hence on Sλ(g′C), and write prσ in EndPU(3)(Sλ(g′C)) for the associated orthogonal

projector onto σN . Because PU(3) preserves ⟨−,−⟩⊗, its restriction to σN ⊆ Sλ(g′C) equals a scalar multiple
of ⟨−,−⟩σ. Moreover, (x+ iy)⊗m ⊗ (x− iy)⊗m is fixed by i(TE)(R), the i(TE)(R)-invariant subspace of σN
is 1-dimensional, and cλ(Z

⊗m
1 ⊗Z⊗m

2 ) is a highest weight vector in σN . This implies that there exists C1 in
C× such that, for all g′ in G′(R), we have

C1⟨g′ · f0, fi⟩σ = ⟨prσ cλ(g′ · (Z⊗m
1 ⊗ Z⊗m

2 )),prσ cλ((x+ iy)⊗m ⊗ (x− iy)⊗m)⟩⊗
= ⟨cλ(g′ · (Z⊗m

1 ⊗ Z⊗m
2 )), cλ((x+ iy)⊗m ⊗ (x− iy)⊗m)⟩⊗

= ⟨cλ((g′ · Z1)
⊗m ⊗ (g′ · Z2)

⊗m), (x+ iy)⊗m ⊗ (x− iy)⊗m⟩⊗.

A combinatorial exercise using the definition of cλ shows that cλ((g
′ · Z1)

⊗m ⊗ (g′ · Z2)
⊗m) equals

m∑
j=0

(−1)j
(
m

j

) ∑
σ1,σ2∈Sm

σ1

(
(g′ · Z1)

⊗j ⊗ (g′ · Z2)
⊗(m−j)

)
⊗ σ2

(
(g′ · Z2)

⊗j ⊗ (g′ · Z1)
⊗(m−j)

)
.
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Combined with the S2m-invariance of ⟨−,−⟩⊗, this shows that

C1⟨g′ · f0, fi⟩σ =

m∑
j=0

(−1)j
(
m

j

)
(m!)2(g′ · Z1, x+ iy)j(g′ · Z2, x+ iy)m−j(g′ · Z2, x− iy)j(g′ · Z1, x− iy)m−j

= (m!)2
[
(g′ · Z2, x+ iy)(g′ · Z1, x− iy)− (g′ · Z1, x+ iy)(g′ · Z2, x− iy)

]m
(6.1)

= (−2i)m(m!)2
[
(g′ · Z2, x)(g

′ · Z1, y)− (g′ · Z2, y)(g
′ · Z1, x)

]m
.

To finish the proof, we will compute C1 by evaluating at a convenient point. For this, choose h′ in G′(R)
such that h′ · x is of the form x1 x2

x3

 ,
where x1 ≥ x2 ≥ x3. Because h′ · X = (a, h′ · x, h′ · y, d) and fh′·i = h′ · fi, we can replace x with h′ · x to
assume that x is of the above form. Then i(TE) equals T

′, and

y = x#/a =

x2x3/a x1x3/a
x1x2/a

 .
Since (6.1) is a polynomial identity in g′, it also holds for g′ in G′(C). Hence we can evaluate at

g′ = 1 + s tZ1 + t tZ2 =



1 1

s t 1

 when N is positive,

1t 1

s 1

 when N is negative,

where s and t are complex numbers.

For the rest of the proof, assume that N is positive; the other case is analogous. Then the right-hand side
of (6.1) involves

(g′ · Z2, x)(g
′ · Z1, y)− (g′ · Z2, y)(g

′ · Z1, x) =

−s −t 1
−st −t2 t

 , x
−s −t 1

−s2 −st s

 , y


−

−s −t 1

−s2 −st s

 , x
−s −t 1

−st −t2 t

 , y


= −ts(x2 − x3)(x1 − x3)x2/a+ st(x1 − x3)(x2 − x3)x1/a
= st(x2 − x3)(x1 − x3)(x1 − x2)/a

= stq(a, b, c, d)1/2.

Finally, we calculate the left-hand side of (6.1) using model (1) for σN above. Endow C3 with the standard
pairing, which induces a Hermitian pairing ⟨−,−⟩Sym on Sym3m(C3)∨. Then z3m3 is a unitary highest weight

vector of Sym3m(C)∨ ⊗ det⊗m, and √
(3m)!

m!m!m!
zm1 z

m
2 z

m
3(6.2)

is a unitary i(TE)(R)-fixed vector of Sym3m(C)∨ ⊗ det⊗m.

Let σN ∼= Sym3m(C3)∨ ⊗ det⊗m be the unique unitary isomorphism that sends f0 to z3m3 . Then the image
of fi in Sym3m(C3)∨ ⊗ det⊗m is a C1-multiple of (6.2), where the multiple does not depend on X . After
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replacing fi with this C1-multiple, we get

⟨g′ · f0, fi⟩σ =

√
(3m)!

m!m!m!
⟨g′ · z3m3 , zm1 z

m
2 z

m
3 ⟩Sym

=

√
(3m)!

m!m!m!
⟨(−sz1 − tz2 + z3)

3m, zm1 z
m
2 z

m
3 ⟩Sym

= smtm
√

(3m)!

m!m!m!

3

⟨zm1 zm2 zm3 , zm1 zm2 zm3 ⟩Sym

= smtm
√

(3m)!

m!m!m!
.

We conclude by taking s = t = 1 and comparing both sides of (6.1). □

By putting everything together, we finally obtain:

Theorem 6.6. The integral I(E , φN , f0) equals the product of[
|r(ai+ b− ci− d)|
r(ai+ b− ci− d)

]−m−1

K−m−1(|r(ai+ b− ci− d)|)

and
CN · q(a, b, c, d)m/2,

where CN is a nonzero constant independent of E and X .

Proof. After combining Proposition 6.4 and Lemma 6.5, we conclude by observing that∫
i(TE)(R)\G′(R)

⟨g′ · f0, fi⟩σ⟨g′ · f0, fi⟩σ dg′ = dim(σN )−1 vol(i(TE)(R)\G′(R))⟨f0, f0⟩σ⟨fi, fi⟩σ

= dim(σN )−1. □
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